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Abstract: The fatigue performance of polypropylene (PP) at various amplitudes and frequencies
on fatigue cycles under tensile test conditions is investigated in this study. The results show that
increasing the frequency leads to a decrease in fatigue cycles due to increased cycle time. The
decline rate can be divided into two stages, between 1 and 5 Hz. The first stage rapidly decreases
fatigue performance as the frequency increases from 1 Hz to 2 Hz or 3 Hz. The second stage has a
lower reduction rate, which occurs between 2 Hz or 3 Hz and 5 Hz due to the strengthening effect
of increasing frequency. Furthermore, increasing the amplitude from 0.1 mm to 0.4 mm reduces
the fatigue cycle due to the higher deformation rate. In summary, expanding both amplitude and
frequency reduces the fatigue performance of the PP material. Moreover, according to the scanning
electron microscope microstructure, increasing the frequency results in more microcracks in the
polymer matrix.

Keywords: fatigue cycle; deformation; amplitude; frequency; injection molding

1. Introduction

Due to the advantages of a short cycle time, high efficiency, and ease of automation,
injection molding has become the dominant process for producing plastic products. The
injection mold design’s quality directly impacts the actual mold structure and the final
plastic products. The efficiency and quality of mold design have increased over the last few
decades due to the widespread use of Computer Aided Design/Engineering (CAD/CAE)
technology. Researchers in the field of injection mold design have recently focused on feed
and cooling system design [1,2], optimal parting direction determination [3], parting line
and parting surface generation [4,5], and core and cavity generation [6]. However, the
automated generation of venting systems is barely covered in the literature.

The weld line in injection molding is created when two melt streams connect, as shown
in Figure 1. The melt stream is separated at the part’s cutout and reunited at the other
end of the cutout. A weld line region is typically filled at the end of an injection stroke
or during the pressure phase. The weld line’s strength is reduced when partially frozen
melt fronts meet. The joint orientation remains perpendicular to the flow direction and
signals weakening. Melting streams flowing in the same direction or opposite directions
can form a weld line. Weld lines cannot be removed entirely, but they can be strengthened,
or their position managed to change [7]. Numerous solutions have been proposed [8–12]
for decreasing weld line problems and increasing weld line strength.

Polypropylene (PP) is a prevalent polymer material due to its advantages in mechani-
cal, chemical, and physical properties [13,14]. PP is a lightweight thermoplastic polymer. It
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also has a high level of chemical resistance. Furthermore, PP can be manufactured using var-
ious techniques such as injection molding, extrusion, blowing, and compression [15,16]. PP
is less expensive and more flexible for thermal forming than other common polymers such
as polyethylene (PE), polystyrene (PS), polyethylene terephthalate (PET), and polyvinyl
chloride (PVC) [17–20]. Other uses include fan blades, hand tools, bicycle wheels, and
machine parts. These parts could be subjected to cyclic loads, sometimes in the form of
low-amplitude vibrations over long periods, and consequently be vulnerable to fatigue
failure in use. This issue raises questions about their functionality and long-term durability.
Therefore, more significant consideration must be given to their design against fatigue
failure. Some research has mentioned the fatigue strength of the weld line in the injection
molding part when it stands by the stress [21–30]. However, in real applications, many
plastic products will work under deformation, especially with the parts of microelectrome-
chanical systems (MEMS). In these cases, the loading is not large; however, the deforming
will let the material have creep deformation, and the fatigue stage will appear, which will
decrease the plasticity of the part, as well as the weld line position.
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Polymer materials may suffer severe damage due to the fatigue phenomenon after
being used for an expected period under a moderate load [31–33]. The fatigue properties
of composite materials containing a PP matrix and some reinforced fibers are widely
studied [34–36]. For example, Ferreira et al. [37] investigated the fatigue properties of PP
composites reinforced with glass fiber. This report demonstrated the superiority of the
0◦-angle laminate over 30◦ and 45◦ angles. Gamstedt et al. [38] added maleic anhydride
modification and discovered that it could strengthen the interfacial zone. As a result, it
may improve the fatigue strength of the fiberglass-reinforced PP composite.
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Interestingly, Petrucci et al. [39] revealed that adding 16% cotton and polyvinyl acetate
binding agent could improve the fatigue strength of the PP composite. Mixing PP/wood
flour composite with maleic anhydride and peroxide could enhance the tensile strength of
this material [40]. However, the fatigue performance of the composite suffered a decline. In
addition to fatigue, PP polymer could be degraded by the effects of sunlight and hydrolytic
effects of the natural environment [41,42]. Moreover, PP and other common polymers are
also impacted by heat, marine, and chemical conditions [43–45].

In addition, Bureau et al. [46] studied the impact of temperature on the fatigue per-
formance of the fiberglass-reinforced PP composite. They reported that the fatigue value
at 50 ◦C is lower than those at −40 ◦C and 23 ◦C due to the softening of the PP matrix.
Reinforcing the PP matrix with alkali alone and alkali-silane led to a great improvement
in the fatigue and impact characteristics due to the strengthening of the interfacial bond-
ing [47]. Mixing additives, mainly fillers, results in higher costs and, in most cases, less
flexibility in molding processes. The fatigue properties of PP under tensile conditions are
rarely discussed and analyzed. Investigating the degradation of PP polymer is critical
to predicting the product’s lifetime. Therefore, the outcome could be replaced in time,
avoiding the severe damage that could lead to unsafe conditions.

Unlike previous studies, in this report, fatigue testing is applied to the welding line
of the injection molding part. Moreover, the test occurs under different displacement
amplitudes and frequencies, simulating the polymer products’ different loading conditions.
The fatigue test is performed under repeated tensile requirements. The test sample is
produced via an injection molding process with the composite material as PP mixed with
CaCO3. According to Maiti et al. [48], adding CaCO3 powder to the PP matrix increases
the elastic modulus. However, the tensile strength, impact toughness, and ductility values
declined due to the debonding between the filler and the matrix and the weaker filler–
matrix interface [49].

2. Experimental Methods

The injection PP polymer was previously mixed with CaCO3 with five wt.% for
improving the mechanical properties. The molding conditions are presented in Table 1.
After injection molding with an ASTM D638 shape, the sample was assembled in a fatigue
test machine, as shown in Figure 2. The fatigue test machine was controlled under Labview
and DOPSoft software to manipulate the loadcell and the motor, respectively. The fatigue
testing process will stop when the plasticity force drops 10% compared to the initial value.
The sample surface was analyzed by scanning electron microscope JEOL 5410 LV (JEOL
Ltd., Japan Office, Otemachi Nomura Bldg.13F 2-1-1, Otemachi, Chiyoda, Tokyo 100-0004,
Japan). The observing points were the weld line in the middle of the sample, as shown in
Figure 2a.

Table 1. Molding conditions.

Molding Parameters Unit Value

Melt temperature ◦C 220
Mold temperature ◦C 75
Injection pressure MPa 40
Injection time s 0.5
Drying time (85 ◦C) h 12

For molding the testing sample, the mold structure was manufactured as shown in
Figure 3 with the part size in Figure 2a. In this design, two cavities were created for the
molding cycle. In each cavity, two gates were designed for generating the welding line at
the “weld line area” as in Figure 3. The experimental setup is displayed in Figure 4. To
reduce the negative influence of the air trap, the venting channel was designed to remove
the air in the cavity volume.
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3. Results and Discussion
3.1. Fatigue at Different Amplitudes

The PP samples are tested with different amplitudes of 0.1–0.4 mm, the fatigue fre-
quency is set at 1–5 Hz, and each fatigue test condition is investigated via five samples.

Figure 5 shows the fatigue diagram of samples with different amplitudes and 1 Hz
frequency. The force tends to reduce as the cycle time increases gradually. The amplitude
of the force also suffers a decline when the cycle time increases. The reason for these
reductions is the fatigue of the PP sample. The fatigue test will stop counting when the
force drops 10% compared to the initial value during the testing process. The results show
that sample 1.1, with an amplitude of 0.1 mm, is measured for about 25 h and 56 min, which
is equal to 1556 fatigue cycles. Sample 6.1, with an amplitude of 0.2 mm, is estimated for
approximately 17 h and 54 min, or 1073 fatigue cycles. Sample 11.1, with an amplitude of
0.3 mm, is measured for about 11 h 43 min, which equates to 703 fatigue cycles. Finally,
sample 11.1, with an amplitude of 0.4 mm, has a fatigue performance of about 6 h 36 min,
equal to 396 fatigue cycles. These fatigue cycle results reveal that increasing the amplitude
causes a reduction in the fatigue cycles. Interestingly, the force diagram becomes sparser at
a higher amplitude than those of lower amplitudes.

The test results of other PP samples with different amplitudes and 1 Hz frequencies
are presented in Table 2. The average fatigue cycle value of the samples with 0.1 mm
amplitude and 1 Hz frequency is 1488, 1058, 718, and 374, corresponding to the amplitudes
of 0.1 mm, 0.2 mm, 0.3 mm, and 0.4 mm, respectively. The results indicate that increasing
the amplitude leads to a decline in fatigue strength, because the higher amplitude generates
a higher force and deformation rate, resulting in lower fatigue performance [50,51]. The
samples suffer more severe damage during the fatigue test. In addition, we employ optimal
design approaches by using machine learning to determine which parameters or factors
affect fatigue [52–56] as additional tasks.
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Table 2. The fatigue cycle of PP samples with different amplitudes and 1 Hz frequency.

Sample—0.1 mm Time Fatigue Cycle Sample—0.3 mm Time Fatigue Cycle

Sample 1.1 25:56:29 1556 Sample 11.1 11:43:18 703

Sample 1.2 24:01:32 1442 Sample 11.2 12:57:52 777

Sample 1.3 23:46:17 1426 Sample 11.3 11:09:58 669

Sample 1.4 25:54:20 1554 Sample 11.4 12:12:52 732

Sample 1.5 24:20:26 1460 Sample 11.5 11:51:35 711

Average 1488 Average 718

Sample—0.2 mm Time Fatigue Cycle Sample—0.4 mm Time Fatigue Cycle

Sample 6.1 17:53:57 1073 Sample 16.1 6:36:07 396

Sample 6.2 17:27:02 1047 Sample 16.2 6:52:14 412

Sample 6.3 17:08:06 1028 Sample 16.3 6:07:05 367

Sample 6.4 17:46:05 1066 Sample 16.4 5:53:04 353

Sample 6.5 17:58:08 1078 Sample 16.5 5:40:30 340

Average 1058 Average 374

Figure 6 represents the fatigue cycle diagram of PP samples tested at different ampli-
tudes and frequencies. With 0.1 mm amplitude, from 1 Hz to 2 Hz, increasing the frequency
leads to a sudden drop in the fatigue strength from 1488 cycles to 813 cycles. From 2 Hz to
5 Hz, the fatigue performance also decreases from 813 cycles to 318 cycles when increas-
ing the frequency. However, the decreasing level is significantly lower than in the prior
stage. The reason for this lower level could be the strengthening effect when increasing
the frequency, a result consistent with that in Eftekhari et al.’s report [52]. In general, with
the same frequency, increasing the amplitude from 0.1 mm to 0.4 mm decreases the fatigue
performance due to the higher deformation rate. With the sample amplitude, increasing
the frequency also leads to a decline in the fatigue performance of the PP sample. This
reduction rate could be divided into two stages. The first stage indicates a rapid reduction
in fatigue performance. This immediate reduction stage occurs when increasing the fre-
quency from 1 Hz to 2 Hz or 3 Hz. The second stage has a lower reduction rate of fatigue
per performance, which appears in the ranges from 2 Hz or 3 Hz to 5 Hz. In this range, the
decreasing level is lower at the higher frequency.
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3.2. SEM Microstructure

Figure 7 presents the SEM microstructure and the EDS spectra of PP samples before
and after the fatigue test at 0.4 mm amplitude and different frequencies. These SEM figures
display the middle point of the gauge length of the testing samples, which suffers the
highest level of deformation during testing. Before the fatigue test, there are no microcracks
on the sample surface, as shown in Figure 7a. Figure 7a also presents the results of the EDS
spectra of particles dispersed in the PP matrix. The results show that these particles are
CaCO3, as also mentioned in Section 2. CaCO3 particles are well-dispersed in the PP matrix.
After the fatigue test, the microcracks appear in the sample, indicating the degradation of
the materials. Increasing the fatigue frequency leads to more microcracks at the polymer
matrix due to the higher deformation speed. This result is consistent with the fatigue cycle
diagram in Figure 6. It indicates that the fatigue performance drops when the frequency
increase as the samples suffer a higher deformation rate.
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4. Conclusions

This study investigates the fatigue performance of PP under tensile test conditions.
The analysis surveys the effects of different amplitudes and frequencies on the fatigue
cycles. Some critical points are discussed as follows:

(i). Increasing the frequency leads to a decline in the fatigue cycles because of the increase
in the cycle times. The maximum fatigue performance is 1488 cycles at 0.1 ampli-
tude and 1 Hz frequency, while the minimum fatigue performance is 26 cycles at
0.4 amplitude and 5 Hz frequency.

(ii). The greater deformation rate, improving the amplitude from 0.1 mm to 0.4 mm, also
decreases the fatigue cycles. Increasing both amplitude and frequency leads to a
decline in fatigue performance.

(iii). The SEM microstructure shows that increasing the frequency leads to more micro-
cracks on the polymer matrix. In the future, we plan to investigate the effects of
injection conditions, such as a preheated mold, on the formation and strengthening of
weld lines, to improve the sample’s fatigue strength.
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