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Abstract 

Traditional Chinese medicine (TCM), as a unique form of natural medicine, has been used in Chinese traditional thera-
peutic systems over two thousand years. Active components in Chinese herbal medicine are the material basis for the 
prevention and treatment of diseases. Research on drug-protein binding is one of the important contents in the study 
of early stage clinical pharmacokinetics of drugs. Plasma protein binding study has far-reaching influence on the phar-
macokinetics and pharmacodynamics of drugs and helps to understand the basic rule of drug effects. It is important 
to study the binding characteristics of the active components in Chinese herbal medicine with plasma proteins for 
the medical science and modernization of TCM. This review summarizes the common analytical methods which are 
used to study the active herbal components-protein binding and gives the examples to illustrate their application. 
Rules and influence factors of the binding between different types of active herbal components and plasma proteins 
are summarized in the end. Finally, a suggestion on choosing the suitable technique for different types of active 
herbal components is provided, and the prospect of the drug-protein binding used in the area of TCM research is also 
discussed.
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Introduction
Traditional Chinese medicine (TCM) is the summary 

of practical experience of Chinese people for thousands 

of years in the fight against disease. It is the treasure of 

Chinese culture and constitutes multi-billion-dollar mar-

kets—more than 1500 kinds of herbal medicines are sold 

as dietary supplements or the raw material of medicines 

[1]. Its active components are the substantial basis for the 

treatment of various diseases and the related study is also 

one of the most important parts of the modernization of 

Chinese herbal medicine.

Generally speaking, the concentration of the free active 

(or toxic) components is directly related to the biologi-

cal effect (or poisoning), and the concentration of the 

free drugs in plasma is directly related to the concen-

tration in the tissue. When drugs are absorbed into the 

blood, drug-plasma protein binding (PPB) is a common 

and reversible dynamic process [2]. PPB is one of the 

important parameters of drug efficacy and safety, and 

the determination of bound fraction is a necessary step 

in drug discovery and clinical trials [3]. It determines 

the pharmacokinetic and pharmacodynamic character-

istics of drugs and influences drug absorption, distribu-

tion, metabolism, excretion and toxicity (ADMET) [4, 5]. 

It is generally considered that only free drug can trans-

fer through biological membranes, combine with the 

appropriate site of action and drive the therapeutic out-

come [6]. And then it displays the pharmacological and/

or toxicological effects [7]. Small molecular substances 

can be protected from some elimination pathways, such 

as enzymatic reactions in the liver or blood and glomer-

ular filtration of the kidneys, by forming non-covalent 

complexes with plasma proteins [8]. As a drug reservoir, 

the bound drug fraction can maintain an effective con-

centration and prolong the duration of the drug action. 

For the drugs with high affinity for plasma proteins, they 
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generally need a higher dose to reach therapeutic level, 

have a long half-life and probably increase toxicity. Con-

versely, the drugs with low plasma protein binding affini-

ties are limited in their ability to perfuse tissues and reach 

the site of action [9].

Although many Chinese herbal medicines have been 

proved to be effective by modern clinical trials and phar-

macological studies, their active components and the 

remedial mechanism are still unclear [10]. �e phar-

macological activities of Chinese herbal medicines are 

considered to be the combination of multi-components 

effects, including the interactions of active components 

with proteins. It is well known that a kind of herbal medi-

cine usually contains hundreds of different components 

[11]. �ere is no doubt that this is a complex and heavy 

work to elucidate the mechanism of action of these com-

ponents. �erefore, it is extremely valuable to investigate 

the binding of one or a few active components from Chi-

nese herbal medicine with plasma proteins.

Plasma proteins involved in drug binding
Major drug-binding proteins in plasma are human serum 

albumin (HSA), α1-acid glycoprotein (AAG) and lipo-

proteins [12]. �ey have many important physiological 

functions, for example, mediating osmotic pressure and 

nutrient delivery, participating in the clot formation and 

immune response [13]. It is generally accepted that acidic 

drugs display greater affinity for HSA, while AAG is pri-

marily responsible for the binding of neutral and acidic 

drugs [14]. HSA, as the most abundant protein in plasma 

proteins, is in a position to bind endogenous ligands (e.g., 

fatty acids, amino acids, hormones, bile acids, metals and 

toxic metabolites) as well as drugs [15–17]. AAG is the 

second most abundant one, and its endogenous ligands 

include heparin, serotonin, histamine, steroid hormones 

and so on [18]. Research reporting on drugs binding to 

lipoprotein is still sparse.

As the most abundant plasma protein with amaz-

ing properties and functions, HSA is the most widely 

explored protein which is always used as the ligand-bio-

logical macromolecules interaction model [19]. �rough 

the first crystallographic analyses of HSA, it is revealed 

that the protein, as a kind of nonglycosylated molecules, 

consists of 585 amino acids and 35 cysteine residues, 

forming 17 disulfides and one free sulfhydryl group at 

Cys34. �e classical researches revealed that the atomic 

structure of HSA consists of three homologous α-helical 

domains (I–III) each including two subdomains (A and 

B) [20]. �e protein has two high affinity drug binding 

sites, named as Sudlow’s sites in subdomain IIA and IIIA 

[8]. Drug site 1 (subdomain IIA) is composed of three 

extended sub-chambers and a central zone. �e inside of 

the pocket is mainly non-polar molecules. Two clusters 

of polar residues located in the bottom (Tyr 150, His 242, 

Arg 257) and the entrance (Lys 195, Lys 199, Arg 218, Arg 

222) are also identified. Drug site 1 is occupied by phe-

nylbutazone and warfarin. Drug site 2 (subdomain IIIA) 

is smaller than site 1, but it can accommodate large mol-

ecules, such as ibuprofen and thyroxine. In addition, 

there is another binding site named site 3, to which the 

digitoxin binds. Because of the structural homology with 

HSA, bovine serum albumin (BSA) is also a common 

interaction model used for investigating PPB [21].

Methods to investigate the interaction 
between active herbal components and plasma 
proteins
In recent years, with the development of Chinese herbal 

medicine, researchers have been paying more and more 

attention to the pharmacological activity of components 

in herbal medicine, and numerous experimental tech-

niques have been used in the characterization of PPB. 

�e work has become increasingly diverse and detailed 

by the application of spectroscopy, chromatography, 

thermodynamics, electrochemistry and other techniques. 

�e principle and the detection methods of current anal-

ysis tool have been introduced in several theses [8, 19, 

22]. In this article, a brief introduction of common meth-

ods is given, and the applications of techniques used in 

the investigation of the interaction between active herbal 

components with plasma proteins are described in detail.

Membrane technology

Equilibrium dialysis (ED)

ED, combined with highly-sensitive assay, such as high 

performance liquid chromatography (HPLC) and mass 

spectrometry (MS), is regarded as the gold standard to 

determine protein binding rate. �e working principle of 

ED is that the small drug molecules could be separated 

from protein solution by semipermeable membrane. 

�e small drug molecules could pass through the semi-

permeable membrane until the dialysis reaches equi-

librium, while the drug-protein complexes are retained 

in the dialysis bag. �e binding rates of drug molecules 

with plasma proteins can be calculated by measuring the 

concentrations of small molecules in the solution on both 

sides. ED is an easy, economical, practical method and 

can eliminate the possible effect of non-specific binding 

[23, 24]. In recent years, ED has been widely used in the 

multi-component drug research in Chinese herbal medi-

cine. Liu et al. investigated the effects of sinomenine on 

the therapeutic action of paeoniflorin in the treats-rats by 

an equilibrium dialysis assay in vitro [25, 26]. �e results 

showed that the protein binding ability is not influenced 

when they are administrated simultaneously. Wang et al. 

used a kind of dialysis sampling on-line coupled with 
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HPLC (DS-HPLC) to monitor the interactions of multi-

components in danshen (Salvia miltiorrhiza) injection 

with BSA [27]. �e five components (danshensu, proto-

catechuic acid, protocatechuic aldehyde, caffeic acid and 

ferulic acid) in danshen injection had suitable binding 

degrees with BSA. Talbi et  al. found that wogonin had 

a very high protein binding degree (over 90%) with rat 

plasma [28].

But ED also has disadvantages in some ways, includ-

ing a long time for balancing, the strict control of the 

pH of plasma and buffer solution, dilution effect and 

Gibbs–Donnan effects, etc. [19, 29–31]. In recent years, 

the equilibrium dialysis devices based on the 48-well 

and 96-well plates have been used in the plasma protein 

binding studies [32]. �e unique design of the device 

increases the surface area-to-volume ratio and offers the 

possibility of reducing equilibration times and higher 

assay throughput. Compared with traditional equilibrium 

dialysis, this device also has many advantages including 

easy-to-clean, reusability, the reduction of the drug non-

specific absorption and capability of being automated. As 

the early screening tools for drug research, rapid equilib-

rium dialysis (RED) device and parallel artificial mem-

brane permeability assay (PAMPA) are two major in vitro 

models based on Teflon base plate.

�e RED device comprises replaceable tube inserts and 

a 48-well Teflon base plate. Each insert is divided into 

a buffer compartment (white) and a plasma compart-

ment (red) by a semipermeable membrane at molecu-

lar weight cut-off (MWCO) = 8000. Each plate could be 

sealed with sealing tape and self-adhesive lid. �e vol-

ume of the insert should be checked to guarantee the 

little to no volume change occurred [33–35]. Kim et  al. 

developed a RED device combined with LC–MS/MS 

method to quantify the acacetin in human plasma [36]. 

�e results showed a concentration-independent and 

extensive protein binding of acacetin in human plasma. 

�e general PAMPA plate system consists of an accep-

tor compartment (96-well filter plate) and a donor com-

partment (96-well receiver plate) [37]. Each well of the 

96-well microfiltration membrane is filled with 10  μL 

of the artificial membrane solution which is made of 

film-forming material dissolved in organic solvent. �e 

96-well filter plate will be placed on the receiver plate to 

allow the artificial membrane to touch the donor fluid. 

And thus the system forms a sandwich structure: the 

bottom is the donor liquid of the sample, and the drug 

molecules diffuse from the donor tube into the upper 

receptor tube through the artificial membrane. When the 

diffusion is completed, the receptor fluid and the donor 

fluid can be used to make quantitative analysis [38, 39]. 

Singh et  al. investigated the blood uptake characteris-

tics, protein binding, pharmacokinetics and metabolism 

of formononetin by this system. Formononetin had high 

protein binding rate, and the rapid absorption of which 

might due to the high permeability and lipophilicity [40].

Ultrafiltration

Ultrafiltration is a popular alternative of ED and a better 

choice for the clinical pharmacokinetic and pharmacody-

namic studies of new drugs [41]. Similar to ED, it utilizes 

semipermeable membrane to separate the device into 

two chambers. Driven by the pressure difference or cen-

trifugation (approximately 2000×g), the drug molecules 

diffuse through the semipermeable membrane. Because 

this method achieves the rapid separation of small mol-

ecules in plasma, the work efficiency is greatly increased 

[42]. Ultrafiltration is more suitable for highly lipophilic 

compounds, and it, in combination with HPLC, GC–MS, 

LC-IT-TOF–MS, RRLC-ESI–MS–MS and other high 

sensitivity detection methods, has been applied to deter-

mine the plasma protein binding rate of active herbal 

components [43–50].

In ultrafiltration, the concentration polarization, which 

is caused by the diffuse direction of the small molecules, 

is perpendicular to the ultrafiltration membrane. It will 

compromise the protein-binding equilibrium and affect 

the determination of free drug concentration. Li et  al. 

developed a novel and practical method based on hol-

low fiber centrifugal ultrafiltration (HFCF-UF) combined 

with HPLC to determine the plasma protein binding of 

three coumarins in human plasma [51]. �e device was 

made of a glass tube, in which a U-shaped hollow fiber 

was placed. �erefore, the direction of molecular dif-

fusion was completely parallel to the membrane. �e 

binding rates of bergenin, daphnetin, and scopoletin 

determined by this method were 52.7–53.5, 56.7–58.0 

and 59.0–60.1% respectively, which were consistent with 

the results of the equilibrium dialysis method. Compared 

with the classical method, HFCF-UF has higher precision 

and accuracy and simpler sample preparation procedure.

Microdialysis

Microdialysis was originally used to determine the free 

adenosine levels in the brain of rats [52]. In recent years, 

it has become an important technique for direct deter-

mination of the free drug concentration in the body’s 

plasma, tissue and other physiological fluids. �e key of 

this technique is the probe with a semipermeable mem-

brane which has a molecular mass cut-off ranging from 

5000 to 50,000 Da [53]. �e biggest advantage of micro-

dialysis is the real-time sampling and on-line analysis in 

a condition that hardly interfered with the normal life 

activity of animals [54]. With this method, we can contin-

uously measure the concentration of unbound drug over 

time in vivo [55]. Another advantage of microdialysis is 
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the convenience for automation that hyphenated with 

many sensitive analytical techniques like HPLC, capil-

lary electrophoresis (CE), nuclear magnetic resonance 

(NMR), etc. [56].

Microdialysis has many features in the field of tradi-

tional Chinese medicine. �e most prominent feature 

is the ability to simultaneously investigate the interac-

tion of multi-components in Chinese herbal medicine or 

compound prescription with plasma proteins, and thus 

finding the potential active components [57]. Qian et al. 

found that chlorogenic acid, luteolin-3-O-glucoside and 

4,5-di-O-caffeoyl quinic acid might compete for the same 

binding sites and caffeic acid and rutin had synergistic 

effects in Flos Lonicerae Japonicae [58]. Wen et al. found 

that four compounds (chlorogenic acid, calycosin-7-O-β-

-glucoside, ferulic acid and calycosin) in Danggui Buxue 

Decoction had suitable binding degrees with human 

plasma proteins [10]. �ese compounds had been proven 

to be the active components in the prescription. Guo 

et al. found that compound I and compound M identified 

in Rhizoma Chuanxiong had the similar binding degrees 

to HSA as two known active compounds, ferulic acid and 

3-butylphthalide [59]. �ey thought compound I and 

compound M might be the potential active compounds. 

�e online coupling of microdialysis with sensitive and 

selective analytical systems has great value and poten-

tial in screening the effective components from Chinese 

herbal medicine.

Centrifugation

Other than the membrane techniques like ED and UF, 

ultracentrifugation (UC) techniques separate the free 

drug molecule from the drug-protein complex by high 

gravitational force (625,500  g). Small molecules and 

proteins have different density or sedimentation rate 

in centrifugal force field. After centrifugation, the drug 

molecules combined with high density plasma macro-

molecules will rapidly subside to the bottom, while the 

free fraction can be quantitated in the supernatant of 

the centrifuge tube [8, 60]. UC has several advantages 

such as the lack of Gibbs–Donnan effects and nonspe-

cific adsorption, adoptability for high molecular weight 

and lipophilic compounds [61]. But the limit factors, 

like the expensive equipment and the low throughput 

caused by the relatively smaller number of samples that 

can be processed at one time, restrict the application of 

UC techniques. Li et al. removed the plasma proteins by 

ultracentrifugation and measured the concentration of 

syringopicroside in serum by HPLC after injection of low, 

medium and high doses [62]. �e results showed that 

syringopicroside was a medium plasma protein bind-

ing drug and the binding rate was not dependent on the 

doses.

Extraction methods

Solid phase microextraction (SPME)

SPME is a simple and effortless technique to determine 

free drug concentration [63]. It was developed as a con-

venient method for volatile organic compounds in the 

early 1990s. Because of its simplicity, SPME has been 

used to monitor the metabolites, ligand–protein binding, 

toxicity and permeability of drugs, and metabonomics of 

volatile or semivolatile compounds. Basic theory of this 

technique is that the solid support, which is hydropho-

bic and dispersed with extracting phases, is exposed to 

the test sample for a definite period of time [64]. �en, 

the enriched drug molecules in the extraction phase 

are rapidly and completely separated into the analyti-

cal instruments by high temperature or solvent elution 

methods. SPME fiber is an optical glass fiber which is 

evenly coated with a polymer coating [65]. Because of 

the non-depleting extraction mode, SPME is a particular 

suitable technique for drug-protein binding studies [66]. 

�e development of biocompatible coating makes SPME 

can investigate complex biological samples for any bind-

ing equilibriums [64, 67]. �e relative high accuracy and 

sensitivity, no need to use organic solvents and possibility 

to automate are the main advantages of SPME. But the 

fouling formed of protein-fiber binding may lead to erro-

neous estimate of the concentration in the fiber coating 

[63, 65].

SPME has been used in investigating the interaction 

between active components in TCMs and plasma pro-

teins [68–70]. Volatile oil widely exists in traditional 

Chinese medicine derived from plants. It is well known 

that there are 136 genera of 56 families in China con-

taining volatile oil. In addition to volatile oil, there are 

many aromatic substances of Chinese medicine, such 

as musk, bezoar and borneol. �ese components are 

complex, volatile and insoluble in water. �erefore, con-

ventional methods are difficult to determine the bind-

ing degrees of these components with plasma proteins. 

Headspace-SPME, in which the extraction fiber is placed 

in the upper space of the samples, is more suitable for the 

determination of these components. �e extraction head 

of headspace-SPME does not touch the sample, and thus 

avoids the matrix effect. Hu et al. developed a headspace 

negligible-depletion extraction mode (nd-SPME) coupled 

to GC method to investigate the noncovalent interaction 

of borneol with HSA [71]. �e method was simple, sen-

sitive, rapid and could overcome the drawback of losing 

volatile components in the binding or transfer process.

Hollow fiber liquid–liquid phase microextraction (HF-LLPME)

HF-LLPME is an inexpensive sample preparation method 

to investigate the drug-protein binding under physi-

ological conditions without disturbing the equilibrium 
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between drugs and proteins [72]. In microextration sys-

tem, the polypropylene hollow-fiber membrane is filled 

with 15–25 μL of extraction solvent and placed into the 

mixture of drug and protein. When small molecule drugs 

establish distribution equilibrium between bulk aqueous 

phase and organic phase, the unbound concentration of 

drugs can be determined by analytical instrument [73, 

74]. �is method allows simultaneous determination of 

multi-components. Compared with the traditional liq-

uid–liquid extraction (LLE), HF-LLPME allows the sam-

ple under vigorous stirring conditions and requires less 

organic solvents. �erefore, the method reduces the anal-

ysis time of drugs transferred across the membrane. HF-

LLPME has potential to determine drug-protein binding 

of active components from TCMs in the complex sam-

ple matrices. Hu et al. investigated the interaction of four 

furocoumarin and two alkaloid compounds with BSA by 

HF-LLPME combined with HPLC [75, 76]. �e results 

demonstrated that HF-LLPME is a simple, rapid and 

effective method for characterizing drug-protein binding 

parameters without separation.

Chromatographic methods

High performance affinity chromatography (HPAC)

HPAC is a kind of adsorption chromatography which 

uses a biologically related agent as stationary phase [77]. 

As one of the most effective methods that separate and 

purify the biological macromolecules, HPAC is based on 

the specific reversible interaction between the target pro-

tein and the immobilized ligand. HPAC immobilizes the 

proteins onto a support and injects the interacting solute 

into the column. �e drugs with high affinities will be 

eluted later than low-affinity drugs because of the strong 

interaction [78]. �e method has been coupled with 

HPLC to determine the binding of drugs and various pro-

teins such as HSA, AGP and lipoproteins in plasma [79]. 

Many reports have demonstrated that the allosteric inter-

actions and displacement effects seen on HSA columns 

are similar to those observed for soluble HSA [80, 81]. 

Compared to the traditional methods, HPAC has many 

advantages such as automation, high precision, speed, 

specificity and the ability to work with small amounts of 

a target solute [82, 83]. But some problems still need to 

be solved, such as the short service life of the column and 

the high standards of the preparation of fillers.

For complex research objects, such as Chinese herbal 

medicines, HPAC could eliminate the interference of a 

large number of inactive impurities due to the specific-

ity and selectivity of the stationary phase in combination 

with the active component. Cai et al. detected the bind-

ing rates of puerarin and goitrin with HSA by a HSA 

column [84]. �e results were consistent with those 

obtained by ultrafiltration method and demonstrated 

that HPAC method was a reliable technique. HPAC is 

often applied to investigate the competition displacement 

in different active herbal components with plasma pro-

teins. Lei et  al. investigated the competition interaction 

of ferulic acid and paeonol with HSA by HPAC [85]. �e 

results demonstrated that ferulic acid and paeonol com-

peted for binding to the indole site (site 2) and the main 

force was deduced to be hydrogen bonding according to 

the thermodynamic parameters.

Capillary electrophoresis (CE)

CE is a series of related techniques that the separation 

processes are happened in narrow bore capillaries under 

the force of electric field [86]. It is a powerful analytical 

tool that is widely used in the analysis of small organic 

molecules, inorganic ions and biopolymers [87]. In the 

years past, CE has become a hit for drug-protein inter-

action measurements because of low sample require-

ments and consumption, simplicity, short analysis times, 

high sample throughput and high separation efficien-

cies [5, 88]. �ere are several modes of electrophore-

sis to investigate the drug-protein binding, including 

affinity CE (ACE), vacancy peak (VP), Hummel–Dreyer 

method (HD), frontal analysis (FA) and zone migration 

CE (CZE) [89]. Among them, ACE, FA and CZE have the 

same advantages: (1) only a small number of proteins and 

drugs are required; (2) all interacting components can be 

investigated in free buffer solution at physiological condi-

tions; (3) binding constants of multi-components can be 

simultaneously estimated. �erefore, these methods are 

suitable for the study of some Chinese herbal medicines 

which are chemically complex and expensive [90–93].

In recent years, with the development of microdialysis 

in the field of medicine, CE combined with microdialysis 

techniques has been used in pharmacokinetics research 

[94, 95]. It combines the characteristics of continuous, 

dynamic sampling in microdialysis and less sample vol-

ume in CE. �e method could objectively analyze the 

drug-protein binding behavior of specific drugs under 

physiological and/or pathological conditions. Although 

there are few reports about the research on CE combined 

with microdialysis techniques in the field of TCMs, there 

is no doubt that it is the best choice if you want to study 

the change of multi-components in Chinese herbal medi-

cine and plasma protein binding in disease states.

Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS-PAGE)

SDS-PAGE, which was proposed by Laemmli in 1970, 

is a charming and powerful tool for protein characteri-

zation [96]. �e principle of SDS-PAGE is the positive 

correlation between electrophoretic mobility of protein 

and the molecular mass [97–99]. SDS, a kind of anionic 
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detergent, could denature original proteins, eliminate 

protein’s original surface charge and destroy the struc-

ture. And then the SDS-protein complexes are formed. 

�e advantages of SDS-PAGE are simplicity, less analy-

sis time and excellent repeatability. However, because of 

the large errors and low resolution of SDS-PAGE, the 

method cannot reflect the binding degree of drug and the 

application is rare. Kaldas et  al. identified the irrevers-

ible binding between oxidized quercetin and protein by 

a radioactively labelled drug and SDS-PAGE. �e result 

showed that quercetin oxidized by hydrogen/peroxidase 

covalently links to proteins and with particularly high 

affinity for HSA [100].

Spectroscopic methods

The main spectroscopic methods of the interaction 

between active herbal components and plasma protein

Spectroscopic methods are based on the change of spec-

troscopic properties of proteins in ligand–protein bind-

ing processes. �e information of drug-protein binding 

can be obtained without separation.

Fluorescence spectroscopy Fluorescence spectroscopy is 

the most widely used and powerful spectroscopic tech-

nique for gaining the information about the binding of 

drug and plasma proteins because of its accuracy, sen-

sitivity, rapidity and usability [101, 102]. Because of the 

existence of aromatic, such as tryptophan (Trp), tyrosine 

(Tyr) and phenylalanine (Phe), serum proteins are consid-

ered as endogenous fluorescent substance. When 295 nm 

is selected as the excitation light source, endogenous flu-

orescence is all from the Trp residue [103]. When small 

molecule drugs interact with proteins, they are often 

able to decrease the fluorescence intensity or quench the 

intrinsic fluorescence of proteins. Synchronous fluores-

cence spectrum, which can be obtained by simultane-

ous scanning excitation wave and emission wave, could 

determine the emission spectra of Tyr and Trp. �ree-

dimensional fluorescence spectroscopy, a kind of new 

fluorescence analytical technologies developed in the past 

20  years, can visually show the microenvironment and 

conformational changes under different conditions of Trp 

in protein molecules.

UV–Vis absorption spectroscopy UV–Vis absorption 

spectroscopy is another widely used technique to inves-

tigate drug-protein binding. Inherent ultraviolet absorp-

tion of plasma protein is mainly due to the absorption of 

light generated by the n–π* transition in indolyl group 

of Trp, the phenol group of Tyr and the phenyl group of 

Phe. �e changes of the peak intensity and position of two 

characteristic absorptions could reflect the conforma-

tional change of proteins.

Fourier transform infrared spectroscopy Fourier trans-

form infrared spectroscopy (FT-IR) is one of the popular 

techniques for the structural characterization of proteins. 

�e most important advantage of FT-IR compared with 

other methods is the extensive applicability of any biologi-

cal system in a wide variety of environments [104, 105]. 

�e characteristic absorption peaks of amide groups of 

proteins are the most valuable ones for the study of pro-

tein secondary structure.

Circular dichroism spectroscopy Circular dichroism 

(CD) spectroscopy is based on the different absorp-

tion of the left and the right circularly polarized light by 

optically active groups of proteins. �e CD spectra of 

serum proteins are generally divided into two wavelength 

ranges—178–250 nm for the far-ultraviolet CD spectrum 

and 250–320  nm for the near-ultraviolet CD spectrum. 

Extrinsic Cotton effect is used to represent the change 

of the normal CD spectrum in the binding of ligands to 

HSA. �e far-ultraviolet CD spectrum, the most com-

monly used spectrum in protein study, could reflect the 

protein secondary structure information. �e peak in the 

near-ultraviolet region is sensitive to reflect the subtle 

changes in the conformation of the serum protein.

Surface plasmon resonance (SPR) Surface plasmon 

resonance (SPR), which can monitor the formation and 

dissociation of the drug-protein complex in real-time 

and obtain the equilibrium (KD) and kinetic (kon and koff) 

data for the interaction, is one of the most excellent opti-

cal biosensor technologies [106–108]. �e conventional 

SPR device requires a biomolecule to be immobilized on 

a sensor chip. �e sensor chip can monitor the change 

of refractive index that occurs at the surface of the com-

plexes during form or break process in the binding reac-

tion [108–110]. Another partner in solution is placed 

together with the sensor. Fabini et al. developed a sensor 

chip whose serum albumins were covalently bound to the 

carboxymethyl dextran layer of the sensor chips through 

its primary amine groups by an amine coupling reaction 

[111]. �e result indicated that cucurbitacins were able to 

modulate the binding of biliverdin and serum albumins.

Compared with the traditional analytical methods or 

means, SPR has much salient features such as free label 

detection, real-time dynamic analysis, non-destructive 

testing, high sensitivity and larger detection range [112, 

113]. Shi et al. developed a rapid, continuous and effec-

tive method to identify the multi components from 

Radix Astragali which were bound to HSA by a SPR-

HPLC–MS/MS system [114]. �e data of reverse ultra-

filtration assay showed a good agreement with SPR. SPR 

has become a popular technique to study DNA–DNA, 

antibody-antigen, protein–protein interaction and the 



Page 7 of 20Jiao et al. Chemistry Central Journal  (2018) 12:48 

interaction between drugs and specific cellular receptor 

proteins, key genes, proteases and other disease-related 

biomolecules.

Besides, there are several commonly used spectra like 

mass spectrometry (MS), nuclear magnetic resonance 

(NMR) spectrum, resonance light scattering (RLS) and 

surface-enhanced Raman scattering spectroscopy. Sev-

eral spectra are generally used together to study the drug-

protein binding and could give more comprehensive data 

and results.

The main research contents of spectroscopic methods of the 

interaction between active herbal components and plasma 

protein

What we can learn from the result of the spectroscopic 

methods about the binding between plasma proteins and 

active herbal components include judging the mecha-

nisms of fluorescence quenching, calculating the bind-

ing constant, the number of binding sites, the distance 

between Trp and drug molecule and thermodynamic 

parameter, determining the binding site, binding forces 

and change of protein’s secondary structure, etc.

Mechanisms of  fluorescence quenching �e effect of 

active herbal components on the intrinsic fluorescence of 

serum albumin can be divided into fluorescence quench-

ing and fluorescence sensitizing. In most cases, fluo-

rescence quenching is the main one. �e mechanism of 

fluorescence quenching can be classified as dynamic 

quenching and static quenching. �e reason for the static 

quenching is the formation of non-fluorescent complex 

between the fluorescent molecules in the ground state 

and quencher [101]. So that the fluorescence spectra of 

the static quenched fluorescent molecules change. �e 

dynamic quenching is caused by the collision of the fluo-

rescent molecules in the excited state with the quencher. 

After collision, the fluorescent molecules return to the 

ground state, so that the fluorescence spectra of the 

dynamic quenched fluorescent molecules do not change.

�e mechanism of fluorescence quenching can be 

determined by the following points [115].

Firstly, in the Stern–Volmer equation, the value of 

Kq is about  109–1010  L  (mol  s)−1. If Kq calculated from 

Ksv and τ0 is much larger than this range, it means that 

the binding is not diffusion control and the mecha-

nism of fluorescence quenching is static quenching. 

Conversely, the mechanism may be dynamic quench-

ing. �e Kq of delphinidin-3-O-glucoside at 298  K was 

6.163 × 1012 L mol−1s−1, which was much higher than the 

maximum diffusion collision quenching constant value 

(2.0 × 1010 L mol−1s−1). It illustrated that the interaction 

of delphinidin-3-O-glucoside with BSA occurred by the 

static quenching [116].

Secondly, when the dynamic quenching occurs, the 

UV–Vis absorption spectra of fluorescent molecules do 

not change. In the event of static quenching, the changes 

occur on the UV–Vis absorption spectra of fluores-

cent molecules. HSA had an absorption peak approxi-

mately at 280 nm on the UV–Vis absorption spectra. �e 

increasing neohesperidin dihydrochalcone concentration 

decreased the absorption peak of HSA and a slight blue 

shift could be observed. �ese evidences showed that the 

interaction between neohesperidin dihydrochalcone and 

HSA belonged to static quenching [117].

�irdly, dynamic quenching relies on molecular diffu-

sion. �e temperature rise increases the diffusivity of the 

molecules and the possibility of molecular collision. So 

the quenching constant increased with temperature. On 

the contrary, the increase of temperature may reduce the 

stability of non-fluorescent complex, thereby reducing 

the degree of static quenching. �e value of Ksv of feru-

lic acid was 3.818 × 104, 3.912 × 104, and 4.881 × 104 at 

25, 35 and 45 °C. �e trend that the quenching constant 

increased with the increase of temperature indicated that 

the interaction of ferulic acid with HSA was influenced 

by diffusion [118].

And, fourthly, in the case of static quenching, quench-

ing does not change the lifetime of the excited state of 

fluorescent molecules: τ0/τ = 1. Whereas in the case 

of dynamic quenching, the presence of the quencher 

reduces the lifetime of fluorescence: τ0/τ = F0/F. Yang 

et al. found that the increasing concentration of paclitaxel 

hardly changed the lifetime of HSA (from 5.58 to 5.47 ns) 

and the quenching followed a static mechanism [119].

But for some active herbal components, the static and 

dynamic procedure may exist simultaneously. Cheng 

et al. investigated the interaction of tetrandrine with BSA 

and HSA. �e trend that the values of Ksv increased with 

the increasing temperature indicated that the interac-

tion belonged to dynamic quenching [120]. But the UV–

Vis spectra data and the higher Kq ~ 1013   L mol−1s−1 at 

298  K showed the formation of complex. �erefore, a 

combination of the static and dynamic quenching played 

an important role in the interaction of tetrandrine with 

BSA and HSA. Similarly, Gao et  al. found an increase 

of absorbance band intensity on the UV–Vis spectra 

when the concentration of syringin was increased in 

HSA [121]. However, the value of K increased with the 

increasing temperature. �erefore, they thought that the 

quenching mechanism of HSA by syringin was dynamic 

quenching, while static quenching could not be ignored.

Binding constant and the number of binding sites Bind-

ing constant and the number of binding sites can be calcu-

lated by Stern–Volmer equation, modified Stern–Volmer 

equation, Lineweaver–Burk equation, Benesi–Hidebrand 
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equation, Benesi–Hidebrand equation and multiple bind-

ing sites equation. Stern–Volmer equation is the most 

well-known formula which is used to calculate binding 

constant and the number of binding sites and could apply 

to study the fluorescence quenching mechanism. Both 

static quenching and dynamic quenching process fol-

low this equation [19]. Modified Stern–Volmer equation 

could reduce the effect of other light in the fluorescence 

experiment on the measured value [122, 123]. When the 

linearity of the Stern–Volmer equation is not ideal, the 

Lineweaver–Burk equation can be used. But Matei et al. 

predicted slightly higher K values by this model than 

classical Scatchard equation in the investigation of the 

kaempferol-HSA complex [124]. �ey thought that in fact 

here K represented quenching constant which was used 

to describe the binding efficiency of the quencher to the 

fluorescent molecules, but not the binding constant. �is 

equation applies to the system with only one binding site. 

If the small molecule ligand has fluorescence, its fluo-

rescence intensity increases as it interacts with the pro-

tein. Bhattacharya et al. modified the Benesi–Hidebrand 

equation to escape this interference [125]. �is equation 

is suitable for the active herbal components which have 

auto-fluorescence [126]. For the multiple binding sites 

system, Zhang et  al. proposed a multiple binding sites 

equation that could calculate the binding constant and the 

number of binding sites at the same time [127]. �e bind-

ing constants and the number of binding sites of N-trans-

p-coumaroyltyramine, 3-trans-feruloyl maslinic acid, four 

flavonoid aglycones (baicalein, quercetin, daidzein, and 

genistein) and their monoglycosides (baicalein, querci-

trin, daidzin, and puerarin, genistin) were all calculated 

by this equation [128–130]. It is noteworthy that all the 

active herbal components using this equation must follow 

static quenching.

�ermodynamic parameter and binding forces �e bind-

ing forces between small molecules and proteins include 

hydrophobic interactions, electrostatic interactions, 

hydrogen bonds and van der Waals forces [131]. Accord-

ing to the thermodynamic parameters, the type of binding 

forces can be roughly determined. �e change in enthalpy 

(∆H) can be considered as a constant when the tempera-

ture changes a little. �en the values of enthalpy changes 

and entropy changes (∆S) can be calculated from van’t 

Hoff equation. Ross et al. thought that the type of bind-

ing forces can be determined by the sign and magnitude 

of the thermodynamic parameter [132]. �e relationship 

between thermodynamic parameters and binding forces 

are shown in Table 1.

However, the structure of HSA is very complex and 

usually there are multiple forces between small molecules 

and proteins in the actual reaction system. For example, 

corresponding thermodynamic parameters about the 

interaction between HSA and icariin were calculated 

according to van’t Hoff equation [133]. �e negative ∆H 

and ∆S were the evidence of van der Waal’s force and 

hydrogen bonds in low dielectric medium. �e negative 

∆H was associated with electrostatic interactions. �ere-

fore, electrostatic interactions cannot be excluded from 

the binding forces.

�e distance between  Trp in  protein and  drug mole-

cule Fluorescence resonance energy transfer (FRET) is 

the distance-dependent interaction that occurs between 

molecules with different electronic excited states. Accord-

ing to the Förster’s non-radiative energy transfer theory, 

two molecules must meet the following conditions: (1) 

the energy donor can produce fluorescence; (2) UV–Vis 

absorption spectra of the energy acceptor and fluores-

cence emission spectra of the energy donor increasingly 

overlap; (3) the distance between donor and acceptor is 

less than 7  nm [134]. Because the endogenous fluores-

cence of protein is mainly produced by Trp residue, the 

distance between the binding site of the drug and the Trp 

residue can be calculated by the Förster’s non-radiative 

energy transfer theory. �is theory is widely used in the 

study of active herbal components-HSA interactions 

[135–137].

�e change of protein’s secondary structure �e binding 

process of small molecules and proteins may affect the 

conformation of proteins. �e main techniques to deter-

mine the effect of small molecules on the secondary struc-

ture of proteins contain UV–Vis absorption spectroscopy, 

synchronous fluorescence spectroscopy, CD spectroscopy 

and Fourier transform infrared spectroscopy.

UV–Vis absorption spectroscopy

When the structure or environment of protein changes, 

the environment and conformation of the chromophore 

will also change. And these changes can be expressed 

Table 1 The relationship between thermodynamic param-

eters and binding forces

Thermodynamic parameter Binding force

∆S > 0 May be hydrophobic and electrostatic 
interactions

∆S < 0 May be hydrogen bonds and van der 
Waals forces

∆H > 0, ∆S > 0 Hydrophobic interactions

∆H < 0, ∆S < 0 Hydrogen bonds and van der Waals 
forces

∆H ≈ 0 or very small, ∆S > 0 Electrostatic interactions
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through the absorption spectra. By comparing the 

changes of UV–Vis absorption spectra before and after 

the binding of the active herbal components and HSA, 

it is possible to determine the presence of the chromo-

phore in the vicinity of the binding site and the change 

of microenvironment around protein. For example, api-

genin has a strong absorption peak at 202  nm on the 

UV–Vis spectra [138]. With the increasing of HSA, the 

position of peaks shifted from 202 to 224  nm and the 

absorption intensity decreased. It suggested that querce-

tin interacted with HSA in ionic form in non-planar 

conformation, and the binding changed the microenvi-

ronment around quercetin.

Synchronous fluorescence spectroscopy

Synchronous fluorescence spectra can simultaneously 

scan the excitation and emission wavelengths. �e 

spectral characteristics of a certain amino acid residue 

can be shown by selecting the appropriate wavelength 

interval (∆λ). �e synchronous fluorescence spectra of 

∆λ = 15  nm and ∆λ = 60  nm represent the characteris-

tics of Tyr residues or Trp residues of HSA. �e maxi-

mum absorption wavelengths of residues are related to 

the polarity of their environment. �erefore, the change 

of the conformation of the protein can be judged by the 

absorption wavelength [138]. Cheng et al. found that sig-

nificant red shift of the maxima emission wavelength of 

Trp and Tyr residues when adding tetrandrine to HSA 

and BSA solution [120]. It indicated that the polar-

ity around the Trp and Tyr residues increased and the 

hydrophobicity decreased. However, the microenviron-

ment changes of Trp and Tyr residues are not necessar-

ily synchronized. Hedge et al. investigated the molecular 

environment in the vicinity of a chromophore in the pres-

ence of hesperitin [123]. A marginal red shift (from 288 

to 290 nm) could be observed at ∆λ = 60 nm, while the 

emission maximum did not exhibit a significant shift 

at ∆λ = 15  nm. It indicated that the microenvironment 

around Tyr residue was not affected. But the polarity 

around the Trp residues increased and the hydrophobic-

ity decreased.

Fourier transform infrared spectroscopy

�e amide bands of protein secondary structure showed 

a characteristic absorption peak on FT-IR. Among the 

amide bands of the protein, amide I band is ranged from 

1600 to 1700  cm−1 (mainly C=O stretch) and amide II 

band is at 1550  cm−1 (C–N stretch coupled with N–H 

bending mode) [139]. �e amide I band is more sensitive 

to the change of protein secondary structure and more 

commonly used to test the change of the HSA second-

ary structure [140]. �e assignments of spectral peaks 

are attributed as follows: 1610–1640  cm−1 to β-sheet, 

1640–1650  cm−1 to random coil, 1650–1658  cm−1 to 

α-helix, and 1660–1695  cm−1 to β-turn structure [109]. 

�e absorption peaks of the infrared spectrum often 

overlap each other to form a broad peak. And the broad 

infrared bands in the spectra of protein can be analyzed 

in detail by using second-derivative and deconvolution 

procedures. �e percentage of each secondary struc-

ture of protein can be calculated based on the integrated 

areas of the component bands in amide I [141]. Tang 

et al. investigated the binding of glycyrrhetinic acid and 

HSA by multispectroscopic techniques [142]. �e FT-IR 

spectra showed that the peak positions of amide I bands 

shifted from 1656.40 to 1637.83  cm−1 in HSA infrared 

spectrum after interaction with glycyrrhetinic acid. It 

demonstrated that the secondary structures of the HSA 

had been changed after the binding of glycyrrhetinic acid 

and HSA. �e α-helix structure reduced from 50.93 to 

24.73%, β-turn increased from 23.61 to 25.27% and ran-

dom coil appeared (13.98%).

CD spectroscopy

�e CD spectra of protein have two negative bands at 208 

and 222 nm, which is the characteristic feature of α-helix 

structure. �e results of CD spectra could be expressed 

as MRE (mean residue ellipticity) in deg  cm2  dmol−1 

and the percentage of α-helix can be calculated by equa-

tion [143]. By measuring the percentage of α-helix, the 

conformational change of protein could be determined 

clearly. Liu et al. investigated the impacts of baicalin and 

rutin on the interaction between curcumin and HSA 

[144]. �e CD spectra showed that curcumin induced 

a slight decrease in the α-helical content of HSA in the 

absence and presence of rutin and baicalin, correspond-

ing to a reduction of 3.27, 8.94 and 4.81%, respectively. It 

demonstrated that the effects of curcumin on HSA were 

slightly less than those of rutin and baicalin.

Binding site Some fluorescent probes have specific bind-

ing to different regions of the HSA, and the binding sites 

can be determined by the displacement binding experi-

ments using some probes. Commonly used florescent 

probes include: warfarin, phenylbutazone for site 1; ibu-

profen, naproxen for site 2 and digitoxin for site 3. Miklós 

Poór et al. compared the affinity to HSA between flavo-

noids and warfarin [145]. �ey found that different flavone 

(acacetin, chrysin, apigenin, luteolin), flavonol (galangin, 

quercetin), and flavanone (naringenin, hesperetin) could 

displace warfarin and highlighted that flavonoids were 

powerful competitors for HSA and could bind to the drug 

site 1. In the competition experiments with ibuprofen 

probes and warfarin probes for HSA binding sites, Bari 

et al. demonstrated that quercetin primarily binds to the 

site located in the subdomain IIA [146].
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Displacement binding experiments also can be a guid-

ance to reasonably predict clinical toxic and side effect of 

active herbal components. Soligard et  al. used purified 

Chinese herbal constituents and sulfisoxazole to displace 

the bilirubin from HSA from jaundiced newborns [147]. 

�e positive inhibitor control sulfisoxazole increased 

plasma unbound fraction by an average of 60%, while, 

no displacement phenomena that neferine, sinome-

nine, tetrahydropalmitine and notoginsenoside showed 

up. �is experiment revealed that four purified Chinese 

herbal components possessed no significant potential to 

increase the sulfiisoxazole concentration in jaundiced 

newborn infants.

Electrochemical methods

Electrochemical method, which has characteristic of 

quick response, easy operation and relatively high sen-

sitivity, provides an important tool for the study of pro-

tein bioelectrochemistry [148, 149]. As a commonly 

used electrochemical method, cyclic voltammetry (CV) 

detects the current signals of the electrochemical sub-

stance which is consumed and/or generated during 

the biological and chemical interaction of the bioactive 

material and the substrate [150–153]. �e method can 

use mercury, gold, platinum, glassy carbon, carbon fiber 

microelectrodes, chemically modified electrodes and so 

on. Based on the analysis of the changes of position, cur-

rent and number of redox peak, the stoichiometry of the 

interaction process and the stability constant of supra-

molecular compounds can be measured, and the bind-

ing mode of small drug molecules and proteins can be 

assumed.

Electrochemical methods can be used to study the 

molecules whose absorption spectra are weak, or over-

laps occur between their electron transition band and 

the absorption spectrum of the macromolecules them-

selves. Cyclic voltammetry provides a possibility for the 

measurement of these molecules, but it is limited to a 

certain degree by electrical activity [154]. Ni et al. inves-

tigated the interaction of quercetin with BSA by UV–Vis 

absorption spectrometry, fluorescent spectrometry and 

cyclic voltammetry [155]. �e oxidation peak moved 

from 465 to 520 mV and the reduction peak moved from 

430 to 400 mV. Corresponding data calculated by equa-

tion showed that a 1:1 quercetin-BSA fluorescent com-

plex was formed, but this complex did not appear to be 

electroactive. �at could be due to the electroactive parts 

of quercetin, the 3′- and 4′-OH group, were embedded 

within the BSA, and this prevented its interaction at the 

electrode surface and therefore its participation in the 

redox reaction.

Calorimetry

Calorimetry is the primary source of thermodynamic 

information which is produced from the heat exchange 

of any physical, chemical and biological processes. �ere-

fore, calorimetry has become one of the effective tools 

for studying in many fields of technology and science 

[156]. Calorimetry could get the basic physical forces that 

characterize the binding of drug molecule and protein in 

detail by measuring heat quantities or heat effects. �is 

method can be used as the verification of the results of 

spectroscopy, which more accurately reflect the bind-

ing of active herbal components and plasma proteins. 

�e application of microcalorimetry, including isother-

mal titration calorimetry (ITC) and differential scanning 

calorimetry (DSC), makes the calorimetry develop in the 

direction of high sensitivity and high accuracy.

ITC is the straightest path to complete the thermody-

namic characterization of protein interaction without the 

requirement for chemical modification or labeling [157]. 

�is advantage sets the technique apart from fluores-

cence spectroscopy, because fluorescence methods often 

need a quencher to label proteins. Typically, a syringe 

containing the ligand is titrated into the cells containing 

the protein solution. With the formation of ligand–pro-

tein complex, binding affinity can be evaluated by moni-

toring the heat that quantitatively occurs in the release 

and absorption of the binding process [158, 159]. �ese 

experimental data can be fitted into an equation, and 

the binding constants (Kb), reaction stoichiometry (n) 

and thermodynamic parameters, including molar calori-

metric enthalpy (ΔHobs), heat capacity (ΔCp,obs), entropy 

(ΔSobs) of binding and change in free energy (ΔG), can be 

determined accurately [156, 157]. Zhao et  al. developed 

an ITC combined with CD and UV–Vis spectra method 

to investigate the interaction of colchicine with HSA 

[160]. �e standard enthalpy of the first class binding 

site was 29.35 ± 0.36  kJ  mol−1 (endothermic process). It 

indicated that the binding of drug molecules and ligand 

molecules destroyed the hydration layers. ΔH0 of the sec-

ond binding site of HSA was − 19.62 ± 0.28 kJ mol−1. It 

showed the main driving force of the binding was hydro-

phobic interaction. �e thermodynamic parameters 

showed that the first-class of binding process was primar-

ily driven by entropy and the second-class of binding was 

driven by enthalpy and entropy. Li et al. presented a new 

and efficient method of using ITC combined with fluo-

rescence spectroscopy, UV–Vis absorption spectroscopy 

and Fourier transform infrared (FT-IR) spectroscopy, to 

study the interaction between (+)-catechin and bovine 

serum albumin (BSA) [161]. Corresponding thermody-

namic parameters suggested the binding was synergisti-

cally driven by enthalpy and entropy.
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But ITC cannot study very high and low affinity process 

and the experiments that need a great deal of accurate 

measurements. Differential scanning calorimetry (DSC) 

is a complementary technique which could be used to 

investigate the interaction that is not amenable to anal-

ysis by ITC. DSC is developed to investigate thermally 

induced transitions, especially the conformational tran-

sitions of proteins [163]. It can measure the heat differ-

ence between a sample and a reference substance at the 

programmed temperature [163]. �e changes of protein 

structure can be estimated from the relevant thermody-

namic parameters, such as phase transition temperature, 

enthalpy and half-width of the lipoprotein, which could 

get from DSC curve [164]. Khan et  al. investigated the 

effect of berberine and palmatine on the thermal sta-

bility of BSA and HSA by DSC [165]. �e melting tem-

perature of BSA and HSA by berberine and palmatine 

were decreased by (6.00 and 6.02) and (5.70 and 6.01) 

K, respectively, under saturating conditions. It indicated 

that the binding destabilized the protein structure. Simi-

larly, the effects of sanguinarine iminium and alkanola-

mine on the thermal stability of HSA were investigated 

by DSC, too [166].

Research achievements on the interaction 
between active herbal components and plasma 
proteins
In recent years, the study of the interaction between 

active herbal components and plasma proteins has been 

a hot spot. �e researchers have carried out a lot of inves-

tigations and already gained some achievements in this 

field. According to the type of compounds, the active 

herbal components are divided into flavonoids, alka-

loids, triterpenes, phenylpropanolds and other phenolic 

substances. Corresponding binding parameters between 

different types of active herbal components and plasma 

proteins are shown in Table 2.

Binding rules between different types of active herbal 

components and plasma proteins

Based on the data in Table 2, the properties of different 

types of active herbal components are significantly dif-

ferent. For the flavonoids, hydrophobic interaction and 

hydrogen bonds are the major noncovalent interactions 

between drugs and proteins. Most flavonoid compounds 

often contain one or more hydroxyl groups, such as C-5 

and C-7 in A ring and C-3′, C-4′ and C-5′ in B ring. �ese 

hydroxyl groups could form hydrogen bonds with amino 

acid residue in α-helical domains of serum albumin. �e 

major presence of hydrogen bonds in phenylpropanolds 

may be due to the same reason. Because of the com-

plex structure of alkaloids, the binding forces of them 

include all the four types. �e quenching mechanism 

of most active herbal components is static. It indicated 

that complexes can be formed between the active herbal 

components and plasma proteins, which are conducive 

to the distribution and pharmacological actions of the 

active herbal components. �e binding site of most active 

herbal components was site 1 in subdomain IIA of HSA. 

So the displacement binding of the active herbal compo-

nents should be taken into consideration in the compat-

ibility of TCMs, so as not to affect the efficacy.

Influence factors on the interaction between active herbal 

components and plasma proteins

In practice, because of the complexity and diversity of 

active components in herbal medicine, an analysis of 

condition changes of drug binding may promote the 

understanding of the molecular mechanisms involved 

and clinical relevance about them. Several factors have 

significant impacts on the interaction of active herbal 

components with plasma proteins.

At first, the degree of drug binding to plasma proteins 

is greatly influenced by pH [33, 177]. Many researches 

have demonstrated the obvious correlation between 

the binding degree and pH levels by in  vitro assays. By 

fluorescence quenching method, Cahyana et  al. inves-

tigated the effects of structure and pH to the constants 

for binding of anthocyanins and HSA [178]. �e range 

of the binding constants of anthocyanins with HSA was 

1.08 × 105  M−1 to 13.2 × 105  M−1. Due to the special 

structure of anthocyanin, such as chalcone, hemiacetal, 

flavyliumcation, quinoidal bases, the binding affinity was 

pH-dependent. But this dependency was not always posi-

tive correlated. Glycosylation and hydroxyl substituents 

of anthocyanin had lower affinity to HSA at pH 4, but had 

relatively potent binding at pH 7.4. However, methylation 

of a hydroxyl group had the opposite conclusion. �e 

phenomenon that many active herbal components are 

sensitive to pH may be due to the existence of the acidic 

phenolic hydroxyl groups. �e polar and charged amino 

acid residues on the protein surface could react with the 

phenolic hydroxyl by a hydrogen interaction. �e change 

of pH could cause different concentrations of the ioniza-

tion state and then impact the ability of molecules to bind 

to HSA.

�en, temperature is another main factor in the inter-

action of active herbal components with plasma protein. 

�e increasing temperature could affect the binding 

of small molecules and protein for different quench-

ing types. For static quenching, the binding constants 

decrease with increasing temperature. On the con-

trary, the binding constants of dynamic quenching 

process increase with increasing temperature. Cheng 

et  al. demonstrated that the mechanism of the fluo-

rescence quenching of HSA induced by icariin was 
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static quenching [133]. �e binding constants were 

3.0335 × 104, 2.0165 × 104 and 1.4227 × 104  L  mol−1 

at 298, 304 and 310  K, respectively, in the fluorescence 

quenching experiments. �e trend that the binding 

constants vary with increasing temperatures is also the 

judgement standard of the quenching mechanism.

Afterwards, as trace elements in the blood of the 

human body, metal ions can act on the active center of the 

enzyme and play an important role in the normal physi-

ological metabolism. �e presence of metal ion directly 

affects the interaction of plasma proteins with active 

herbal components. Hu et  al. investigated the effects of 

metal ions on chlorogenic acid-HSA system. Since add-

ing the metal ions  (La3+,  Ce3+,  Fe3+,  Cr3+,  Co2+,  Hg2+, 

 Cu2+,  Mn2+,  Zn2+), the chlorogenic acid-HSA binding 

constants ranged from 62 to 108% of the value of the 

CGA-HSA binding constant without ions [176]. Hegde 

et al. found that the presence of different concentrations 

of  Zn2+ decreased the binding constants of hesperitin-

HSA [123]. �at might be due to the flexible coordination 

geometry of the metal ion, which allowed the rapid shift 

conformations of proteins to perform biological reaction.

Also, the binding is associated with the enantioselec-

tive interaction between plasma protein and chiral com-

pounds. Two enantiomers of the same chiral compound 

have different optical properties, physical and chemical 

properties and biological activities. Stereoselective dif-

ference in PPB between clausenamide (CLA) enantiom-

ers has been found by equilibrium dialysis in rat plasma 

protein binding [179]. �e results of this trial indicated 

that mean percentages of (−) and (+) CLA in the bind-

ing form were 28.5 and 38.0%, respectively. �e results 

explained the stereoselective differences in pharmacoki-

netics in rats by intravenous drip and oral administration 

trials between CLA enantiomers. Sun et al. investigated 

the binding of tetrahydropalmatine (THP) enantiomers 

and HSA, AGP and proteins in human plasma and found 

that (+)-THP had higher affinity to HSA and AGP than 

(−)-THP, respectively [180].

Finally, species differences are also a vital factor that 

can affect the binding of active components binding and 

plasma proteins. Liu et  al. investigated the plasma pro-

tein binding rates of naringin and aglycone naringenin in 

rat, dog and human plasma by equilibrium dialysis com-

bined with LC–ESI–MS/MS. �e plasma protein bind-

ing ratios of naringin were found to be 83.30–84.56%, 

48.17–51.33% and 72.14–74.06% in rat, dog and human 

plasma, respectively. Gu et  al. used equilibrium dialysis 

followed by LC–MS analysis to assess 20(R)-ginsenoside 

 Rh2 plasma protein binding at four concentration levels 

(50, 100, 200 and 400 ng mL−1) in rat and human plasma 

[181]. �ey suggested that the binding degrees were 

about 27% for human plasma and 70% for rat plasma. 

�is diversity indicated that species difference was an 

inevitable factor in new drug development containing 

20(R)-ginsenoside  Rh2. �ere are differences between 

different species about plasma protein binding, but they 

often have a good correlation [182]. �erefore, measuring 

the drug binding in other species contributes immeasur-

ably to the forecast of human plasma.

Method selection for different types of active herbal 

components

�e active herbal components in TCMs are complex and 

the properties of different types of medicines are quite 

different. �erefore, the selection of appropriate methods 

for the drug-protein binding studies would be of great 

significance. Each method has its own advantages and 

restrictions, and it depends on the situation.

Firstly, researchers should take into consideration the 

aim and experimental condition. If you just want to get 

the binding affinity of the active herbal components and 

plasma proteins, membrane technology, centrifugation, 

extraction methods and chromatographic methods are 

the good choice. While in the advanced drug discov-

ery or development stages, chromatographic methods, 

electrochemical methods and calorimetry are the meth-

ods of choice to obtain a complete view of the binding 

mechanisms [22]. In these methods, equilibrium dialysis 

and ultrafiltration are the classical detection methods. 

�ese methods are cheap, simple to operate and easily 

available, and thus they are widely used to evaluate the 

binding of drug and protein in the early phases of drug 

development.

Another important consideration is the properties of 

active herbal components. �e classical methods (ED, 

UF, and UC) are suited to investigate most of the water-

soluble compounds. If the water solubility of some active 

herbal components is low, chromatographic meth-

ods, electrochemical methods and calorimetry may fail 

because the compounds need dissolve into phosphate 

buffered saline at pH 7.4 in these methods. �e advan-

tage of HF-LLPME is that the method can be applied to 

different physicochemical property drugs with different 

extraction modes, and the sensitivity and reproducibil-

ity are comparable. HF-LLPME is suitable for the extrac-

tion of samples with high solubility in the organic phase. 

For the volatile components in Chinese herbal medicine, 

like volatile oils which give certain herbs their distinc-

tive aroma, conventional techniques could easily lead to 

the loss of the samples and affect the final results. Head-

space-SPME is much suitable for those components.

�en, researchers need to consider the purity and 

quantity of the active herbal components. For the low 

purity compounds, CE and HPAC are better choices. 

Some active herbal components are expensive and scarce. 
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CE inherits its advantages including speediness, low 

consumption of sample and reagent, high separation 

efficiency, and availability in the same or similar physi-

ological system conditions. And this method is a good 

choice for those compounds.

Finally, because of the complexity of the chemical con-

stituents of TCMs, it is important to choose the suitable 

technique to determine the binding of multi-components 

in TCMs and plasma proteins simultaneously. HPAC has 

obvious advantages in investigation of multi-components 

in TCMs which could react with plasma proteins. Con-

ventional screening methods are blind and massive. HSA 

or AAG is prepared as the stationary phase of HPAC and 

affinity chromatography screening model can be estab-

lished. �ese components in herbal extracts, which can 

specifically bind to the receptor protein, are retained in 

the column, so that the active components in TCMs can 

be found quickly and effectively. Microdialysis technol-

ogy can directly obtain the free drug molecules without 

protein and analyze the concentration of the free drug 

without pretreatment. �erefore, this method has unique 

advantages to study the synergistic effect of multi-com-

ponents, and is a good guidance for the screening of 

active components in  vitro in Chinese herbal medicine. 

�e combination of CE and microdialysis techniques, 

which inherits the advantages of both methods, could 

objectively analyze the drug-protein binding behavior of 

specific drugs under physiological and/or pathological 

conditions.

Conclusions
�e safety and efficacy of Chinese herbal medicines have 

been proven through experience passed on from genera-

tion to generation in China. Chinese herbal medicines 

experienced the change from the single herb to the com-

pound medicines under the guidance of TCM theory and 

had established itself as a relatively independent disci-

plinary system. �e single active component in Chinese 

herbal medicines has developed into a multitude of new 

drugs, and artemisinin is a typical example. �erefore, 

studies on the binding of active components in Chinese 

herbal medicines and plasma proteins are of great sig-

nificance to the guidance and evaluation of new drug 

development. �is article reviewed common techniques 

including membrane technology, centrifugation, extrac-

tion methods, chromatographic methods, spectroscopic 

methods, electrochemical methods and calorimetry. 

Rules and influence factors of the binding between differ-

ent types of active herbal components and plasma pro-

teins are summarized in the end. And some suggestions 

are also given to help to choose the suitable technique.

But holism is a key element of all systems of traditional 

medicine and compound prescription is the advantage 

of traditional Chinese medicine. Under compatibility 

theory of Chinese medicine, the drugs could enhance 

effect, reduce toxicity, expand treatment coverage and 

be an effective preparation for the treatment of com-

plex diseases. �e complexity of the compositions of the 

traditional Chinese medicine prescription has become 

the biggest obstacle to the further development of tra-

ditional medicine. And, based on the existing research 

results, future studies are worthy to be performed to fur-

ther study the plasma proteins binding rules of the major 

active components in single herb or Chinese medicine 

prescription under the guidance of holism and system 

biology. More new technologies should be used, and 

the combination of multiple analytical methods is a new 

trend to study the interaction between active ingredients 

of traditional Chinese medicine and plasma proteins. 

And these studies will, hopefully, be guiding factors in 

futuristic endeavor to scientifically explain the efficacy 

and the overall mechanism of action of traditional Chi-

nese medicine.
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