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	e characteristics of vibrational power 
ow in an in�nite laminated composite cylindrical shell �lled with 
uid excited by a
circumferential line cosine harmonic force are investigated using wave propagation approach. 	e harmonic motions of the shell
and the 
uid �lled in the shell are described by Love shell theory and acoustic wave equation, respectively. Under the driving
force, the vibrational power 
ow input into the coupled system and the transmission of the power 
ow carried by di�erent internal
forces (moments) of the shell in the axial direction are established. Numerical computations are implemented to investigate the
vibrational power 
ow input and its propagation. It is found that characteristics of the vibrational power 
ow vary with di�erent
circumferential mode orders and frequencies, and the presence of 
uid in the shell signi�cantly a�ects the vibration of the shell
structure. Additionally, parametric investigations are carried out to study the e�ects of the �ber orientation, modulus ratio �11/�22,
and thickness-to-radius parameter ℎ/� on input power into the coupled system and propagation power along the shell axial
direction. 	is work will provide some guidance for the vibration control of the laminated composite cylindrical shell.

1. Introduction

Laminated composite cylindrical shell commonly applied in
structural designs is an important element of submerged
and 
oating structures due to its excellent mechanical char-
acteristics of high speci�c strength-to-weight ratio, good
fatigue resistance, and ease of fabrication [1–5].	e vibration
problems of 
uid-�lled shell systems are also common and
important in many �elds [6–10]. It is well known that
vibration not only causes severe noise pollution, but also
a�ects the normal working of equipment installed on piping
systems.	erefore, it is very necessary to provide insights into
the characteristics of dynamic response for the 
uid-�lled
laminated composite cylindrical shell system.

Numerous researches have been conducted on the vibra-
tion characteristics of the composite circular cylindrical shell,
and most are focused on vacant shell. For example, Lam et
al. [11] investigated the e�ect of boundary conditions and
�ber orientation on the natural frequencies of orthotropic

laminated cylindrical shells by Love’s �rst approximation
theory and Ritz’s procedure. Jafari et al. [12] used the �rst
Love approximation theory to study the free and forced
vibration characteristics of the composite circular cylindrical
shell. Ferreira et al. [13] employed the �rst-order theory
of Donnell to illuminate the natural frequencies of doubly
curved cross-ply composite shells, and a meshless method
is adopted for discretization of motion equations. Alibeigloo
[14] investigated the vibration characteristics of anisotropic
laminated cylindrical shell by using di�erential quadrature
method. Asadi et al. [15] investigated static and free vibration
characteristics for cross-ply cylindrical shells by using �rst-
order shear deformation theory. Viola et al. [16] studied
the vibration characteristics of completely doubly curved
laminated shells by using a higher-order shear deformation
theory, associated with the application of generic shear func-
tions. Khalili et al. [17] studied the free and forced vibration
characteristics of the composite cylindrical shell subjected
to the transverse impulse loading using the �rst-order shear
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2 Shock and Vibration

deformation theory. Amabili and Reddy [18] developed a
higher-order shear deformation nonlinear theory, and then
large-amplitude forced vibrations of laminated circular cylin-
drical shell were studied by using the developed theory.

A few investigations have been made on the vibration
characteristics of the circular cylindrical shell �lled with 
u-
ids. Zhang et al. [19] studied the natural frequencies of �nite

uid-�lled cylindrical shells by using the wave propagation
method. 	e result showed that the 
uid e�ect on the shell
was signi�cant. Iqbal et al. [20] used the wave propagation
method to make the vibrational analysis of a functionally
graded material (FGM) circular cylindrical 
uid-�lled shell.
Natsuki et al. [21] investigated the vibration characteristics
of 
uid-�lled double-walled carbon nanotubes based on the
proposed simpli�ed Flügge shell equations using the wave
propagation approach. Kadoli and Ganesan [22] studied the
free vibrational analysis of the composite cylindrical shell
�lled with hot 
uid based on the �rst-order shear deforma-
tion theory. Paak et al. [23] investigated the large-amplitude
vibrations of the circular cylindrical tanks �lled with liquid
based on Flügge’s shell theory. Many studies have been con-
ducted on the vibration of the partially 
uid-�lled isotropic
and composite tanks. Xi et al. [24] studied free vibration of
partially 
uid-�lled laminated composite circular cylindrical
shells, and the in
uence factors such as circumferential
wavenumber, 
uid depth, and boundary condition have been
investigated systemically. Saviz [25] also investigated the free
vibration of partially 
uid-�lled laminated composite circular
cylindrical shell based on Rayleigh-Ritz method. Although
both vibrational power 
ow concerning circular cylindrical
shell and vibrational characteristics in laminated composite
cylindrical shell have been studied by numerous scholars,
literatures about the characteristics of vibrational power 
ow
in a laminated composite cylindrical shell �lled with 
uid are
rarely found.

	e wave propagation approach is very valuable in the
vibrational analysis of thin cylindrical shell. Xu and Zhang
[26] studied the characteristics of vibrational power 
ow in
an in�nite elastic circular cylindrical shell �lled with 
uid
based on Flügge’s thin shell theory and Helmholtz equation.
Yan et al. [27] also studied the vibrational power 
ow for a
submerged in�nite cylindrical shell excited by a radial cosine
harmonic line force based on the wave propagation approach.
Gan et al. [28] also studied the free vibration of ring-sti�ened
cylindrical shell subjected to hydrostatic pressure based on
Flügge’s classical thin shell theory by the wave propagation
approach. Bahrami and Teimourian [29] investigated the free
vibration and wave re
ection of carbon nanotubes by using
the wave propagation approach.

From the above, we can draw the conclusion that much
attention has been paid to the free vibration and forced
vibration characteristics of the laminated cylindrical shells.
Few of them have investigated the vibrational power charac-
teristics of in�nite laminated cylindrical shells. In this paper,
the characteristics of vibrational power 
ow in a laminated
composite cylindrical shell �lled with 
uid excited by a
circumferential line cosine harmonic force are investigated
with wave propagation approach. 	e harmonic motions
of the shell and the 
uid �lled in the shell are described

by Love shell theory and Helmholtz equation, respectively.
Vibrational power 
ow input into the coupled system and its
propagation along the shell axial direction are both studied.
Additionally, investigations are carried out to study the
e�ects of the �ber orientation, modulus ratio �11/�22, and
thickness-to-radius parameter ℎ/� on input power into the
coupled system and propagation power along the shell axial
direction.

2. Fundamental Equations of Laminated
Composite Cylindrical Shell

	e composite cylindrical shell can be de�ned through
thickness ℎ, radius �, and axial length �, as exhibited in
Figure 1(a).	e orthogonal coordinate system (�, �, and �) is
built up at themiddle surface of the cylindrical shell.	e �, �,
and � coordinates are considered as the axial, circumferential,
and radial directions of the cylindrical shell, respectively.	e
corresponding displacement components of the cylindrical
shell are expressed as 	, V, and 
, respectively.

According to Love theory, the motion equations of the
cylindrical shell can be expressed through the force compo-
nents� and the moment components�:

��� + ����� = �ℎ2	�2
���� + ���� + ����� + ���2� = �ℎ

2
V�2

���2 + 2
2����� + 

2���2�2 + ��� = �ℎ2
�2

(1)

where� and� can be calculated by the corresponding stress
components ��, ��, and ��� at a distance � from the middle
surface:

(��, ��, ���) = ∫ℎ/2
−ℎ/2

(��, ��, ���) ��
(��,��,���) = ∫ℎ/2

−ℎ/2
(��, ��, ���) ���

(2)

According to Hooke’s law, the stress components ��,��, and ��� for a thin shell can be expressed through the
corresponding strain components ��, ��, and ��� at a distance� from the middle surface:

{{{{{
�������
}}}}}
= [[
[
!11 !12 0
!12 !22 0
0 0 !66

]]
]
{{{{{
�������
}}}}}

(3)

According to Love’s approximation theory, ��, ��, and ���
can be calculated by themiddle surface strain components �1,�2, and % and the thickness coordinate �:

�� = �1 + �&1
�� = �2 + �&2
��� = % + 2�'

(4)
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Figure 1: (a) Coordinate system and circumferential modal shape. (b) Harmonic line force F applied on thin laminated composite cylindrical
shell.

where &1, &2, and ' are the middle surface curvature com-
ponents of the cylindrical shell. 	e middle surface strain
components and their corresponding curvature components
are de�ned according to displacement components of the
cylindrical shell:

{�1, �2, %} = {	� , 1� (V� + 
) , V� + 1� 	�}
{&1, &2, '}
= {−2
�2 , 1�2 (−

2
�2 + V�) , 1� (− 
2
�� + V�)}

(5)

Associated with (2)–(5), the force and moment compo-
nents can be expressed as

{{{{{{{{{{{{{{{{{{{{{{{

��������������

}}}}}}}}}}}}}}}}}}}}}}}

=
[[[[[[[[[[[
[

811 812 816 911 912 916812 822 826 912 922 926816 826 866 916 926 966911 912 916 :11 :12 :16912 922 926 :12 :22 :26916 926 966 :16 :26 :66

]]]]]]]]]]]
]

{{{{{{{{{{{{{{{{{{{{{{{

�1�2%
&1&22'

}}}}}}}}}}}}}}}}}}}}}}}

(6)

where the extensional sti�ness8 ��, coupling sti�ness 9��, and
bending sti�ness:�� are expressed as

8 �� = ∫ℎ/2
−ℎ/2

!���� = �∑
�=1
!�� (�� − ��−1)

9�� = ∫ℎ/2
−ℎ/2

�!���� = �∑
�=1
!�� (�2� − �2�−1)

:�� = ∫ℎ/2
−ℎ/2

�2!���� = �∑
�=1
!�� (�3� − �3�−1)

(7)

where ��−1 and �� are the boundaries of the &th layer.!�� is the
elastic sti�ness constant of the &th layer. !�� in (7) is de�ned
as

[!] = [A]−1 [!] [A]−T (8)

where the transformation matrix [A] is de�ned as

[A] = [[[
[

cos2B sin2B 2 sinB cosB
sin2B cos2B −2 sinB cosB

−sinB cosB sinB cosB cos2B − sin2B
]]]
]

(9)

For the thin laminated composite cylindrical shell, the
modulus components can be obtained from the engineering
elasticity constants.	e reduced transformed sti�ness!�� can
be expressed based on material properties as follows:

!11 = �11(1 − C12C21)
!12 = �22C12(1 − C12C21)

(!22, !66) = ( �22(1 − C12C21) , D12)
(10)

where �11 and �22 are longitudinal sti�ness and transverse
sti�ness of the composite shell, respectively; G12 is the shear
modulus. C12 and C21 are Poisson’s ratio of the composite
shell. Associated with (6)–(10), the motion equation of the
composite cylindrical shell can be expressed in a matrix form
as

[[
[
E11 E12 E13E21 E22 E23E31 E32 E33

]]
]
{{{{{
	
V



}}}}}
= {{{{{

0
0
0
}}}}}

(11)
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3. The Response of the Coupled System

	e following spatial displacement �eld of the cylindrical
shell can be expressed in the form of wave propagation:

	 = ∞∑
�=0

∞∑

=1

F
 cos (H�) exp (JK� − J&
�)
V = ∞∑
�=0

∞∑

=1

L
 sin (H�) exp (JK� − J&
�)

 = ∞∑
�=0

∞∑

=1

M
 cos (H�) exp (JK� − J&
�)
(12)

where F
, L
, and M
 are constants respecting the ampli-
tudes of displacement in the �, �, and � directions, respec-
tively. n is the circumferential modal parameter, K is the
circular driving frequency, and &
 is the axial wavenumber.

	e 
uid in the cylindrical shell is supposed to be
incompressible and inviscid which should satisfy the acoustic
wave equation. 	e motion equation of the 
uid can be
expressed as

1N N (NON) + 1N2 
2O�2 + 

2O�2 = 1P2 
2O�2 (13)

where t is time, p is the acoustic pressure, and c is the
sound speed of the 
uid. 	e associated form of the acoustic
pressure �eld in the coupled system can be de�ned as

O = ∞∑
�=0

∞∑

=1

O
 cos (H�) Q� (&�N) exp (JK� − J&
�) (14)

where Jn() is the Bessel function of circumferential mode
order n. 	e parameter &� is the radial wavenumber. Mean-
while, &� and &
 should be satis�ed by the following equa-
tions:

(&��)2 = Ω2 ( S�S)
2 − (&
�)2

Ω = K�√ ���2
(15)

whereΩ is the nondimensional frequency. S� and S are the
sound speed of the shell and 
uid, respectively.

In the vibrational analysis, the radical displacement for
the cylindrical shell and �lled 
uid should be the same at
the interface between them to ensure contacting with each
other. So the coupled boundary at the interface should meet
the following:

−{ 1
(JK�)}(

ON)
WWWWWWWWWWW�=� = (


� )
WWWWWWWW�=� (16)

and

O
 = [ K2�&�Q�� (&��)]M
 (17)

where � is the density of the �lled 
uid and Q��() denotes
di�erentiationwith respect to the argument &��. Considering
the acoustic pressure on the shell and the coupling (14),
motion equations of the coupled system can be expressed as

[[[
[

E�11 E�12 E�13E�21 E�22 E�23E�31 E�32 E�33 − Z�
]]]
]
{{{{{{{

F��
L��
M��

}}}}}}}
= {{{{{

0
0
0
}}}}}

(18)

where E��� (J, \ = 1, 2, 3) can be obtained by E�� a�er they are
operated on with � and �. Z� is the 
uid loading term owing
to the acoustic pressure on the shell and is expressed as

Z� = Ω2 (��� )(
�ℎ ) (&��)−1 [Q� (&��)Q�� (&��)] (19)

where �� is the density of the shell.
4. Power Flow Input and Transmission

	e shell wall is excited by a harmonic line force Z applied on
the circumference at � =0, and it is speci�ed by

Z (�, �) = Z0 cos (H�) exp (JK�) (20)

where the constant term F0 represents the amplitude of
harmonic line force. 	e cosine function cos(H�) represents
the distribution of force along circumferential direction. 	e
exponential function exp(JK�) represents the harmonic force.
Substituting (12) into the original motion equations of the

uid-�lled shell (19) gives the spectral motion equations of
the forced response of this coupled system:

[[[
[

E�11 E�12 E�13E�21 E�22 E�23E�31 E�32 E�33 − Z�
]]]
]
{{{{{{{

F��
L��
M��

}}}}}}}
=
{{{{{{{{{{{

0
0

Ω2Z02c��ℎK2

}}}}}}}}}}}
(21)

	e solutions of the equations are

{{{{{{{

F��
L��
M��

}}}}}}}
= [[
[
d11 d12 d13d21 d22 d23d31 d32 d33

]]
]

{{{{{{{{{{{

0
0

Ω2Z02c��ℎK2

}}}}}}}}}}}
(22)

where the elements of matrix d�� (J, \ = 1, 2, 3) are the inverse
of matrix E� (J, \ = 1, 2, 3) and can be given as

d13 = (E
�
12E�23 − E�13E�22)(det WWWWE�WWWW)

d23 = (E
�
12E�13 − E�11E�32)(det WWWWE�WWWW)

d33 = (E
�
11E�22 − E�12E�21)(det WWWWE�WWWW)

(23)
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	rough making the inverse Fourier transform of (23),
the shell displacements can be obtained as

[[
[
	 (�)
V (�)

 (�)

]]
]
= Ω2Z02c��ℎK2

⋅
[[[[[[[
[

∫∞
−∞
d13 cos (H�) exp (JK� − J&���) d&��

∫∞
−∞
d23 sin (H�) exp (JK� − J&���) d&��

∫∞
−∞
d33 cos (H�) exp (JK� − J&���) d&��

]]]]]]]
]

(24)

When the shell is excited by an external harmonic forceZ(�, �) radially, the radial response of the shell at the cross
section x=0 can be calculated according to (20) and (24).
	erefore, the input power 
ow into the shell produced by
the exciting force can be obtained as

finput = ∫2�
0

12Re [Z0 cos (H�) 
 (0)
∗

� ] �d�
= c2i�Re [JKZ0
 (0)]

(25)

Here, the asterisk represents the complex conjugate, and

i� = {{{
0.5 H = 0
1 H ̸= 0 (26)

And the nondimensional input power 
ow can be
expressed as

f�input = finputZ20c √���2�2 (27)

When the shell wall is subjected to the radial exciting
force, the vibrational input power 
ow will be transmitted
in the axial direction from the exciting location, along with
the generated vibration waves propagating.	e displacement
components 	(�), V(�), and 
(�) of the shell and its radial
slope 
(�)/� at x=0 can be obtained from (24). 	ere are
four internal forces (moments) of the shell wall in the axial
direction, which are the axial force (��), torsional shear force
(E�), transverse shear force (A�), and bending moment (��),
respectively. Associated with displacement components, the
components of vibrational power 
ow carried by the internal
forces (moments) at the cross section � = � can be obtained
as

f�� = 12i�cRe [JK���F∗��]
f�� = 12i�cRe [JKE��L∗��]
f�� = 12i�cRe [JKA��M∗��]
f�� = 12i�cRe [JK��� (


� )
∗]

(28)

	e total vibrational power 
ow can be written as

f�ℎ��� = f�� + f�� + f�� + f�� (29)

Once the driving force inputs power 
ow into the shell-

uid coupled system, the four kinds of power 
ow will be
transmitted in the axial direction from the exciting location.
Due to symmetry of the transmission, only half of the input
power will be considered in the positive direction of the shell.
From the viewpoint of energy, four kinds of power 
ow can
be characterized by the ratios of the power 
ow carried by
di�erent shell internal forces (moment) to the total power in
the shell wall, namely, f��(�) = f��/f�ℎ���, f��(�) = f��/f�ℎ���,f��(�) = f��/f�ℎ���, and f��(�) = f��/f�ℎ���. 	e power 
ow

components f��(�), f��(�), and f���(�) = f��(�) + f��(�) denote
the shell motion in the extensional, torsional, and radial
directions, respectively.

5. Verification of the Present Method

In this paper, a simple numerical method [27] is employed
to obtain the integral in (22). It should be mentioned that
structural damping is adopted to shi� Young’s modules�2 to be complex, namely, ��2 = �2(1 − Jp), which can
avoid singularities occurring in obtaining the integral. It
is necessary to determine the appropriate upper truncation
point in integral ranges. If the error between the integral
values in [−q, q] and in [−0.5q, 0.5q] is not more than 1%,
the parameter q is considered as the upper truncation point.
And then the exact integral value can be calculated by Gauss
integral method in this integral range.

To check the accuracy of the uncoupled vibration (the
case of Z� = 0) analysis of a �nite shell, the nondimensional
frequency parameters Ω = K�√��/�22 are compared
with those in the literatures [30, 31], as shown in Table 1.
Here, �22 is Young’s modulus of the laminated shell. 	e
natural frequencies of the three-layered cross-ply [0∘/90∘/0∘]
orthotropic cylindrical shell wall with a simply supported-
simply supported (SS-SS) boundary condition are investi-
gated. For the SS-SS boundary condition of the beam, the
wavenumber equation is &� = sc. 	e material parameters
of the shell are given as �22=7.6 GN/m2, �11/�22 = 2.5,C1=0.25, and � = 1640 kg/m3.	e comparisons are presented
for the geometric ratios ℎ/� = 0.002, and �/� = 10.0 and20.0. Here, a value of s = 1 is adopted and corresponding
parameter H is selected from 1 to 10 for these comparisons.
	e comparisons demonstrate that there is a good agreement
between the results of the present analysis and [30, 31].

To check the accuracy of the coupled vibration (the
case of Z� ̸= 0) analysis of a �nite shell, no available
results for the laminated cylindrical shell are found in the
published literature. 	erefore, the isotropic cylindrical shell
with clamped-clamped (C-C) boundary condition is chosen
to verify the proposed coupled vibration analysis, and the
natural frequencies are compared with those in the literature
[19]. 	e shell is made of steel with mass density �1 =7850 kg/m3, Poisson’s ratio V = 0.3, and Young’s modulus � =210 GPa. 	e length, radius, and thickness of the shell wall
are, respectively, 20, 1, and 0.01m.	e shell is �lledwithwater
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Table 1: Comparison of the frequency parameters for a three-layered, cross-ply [0∘/90∘/0∘] cylindrical shell with SS boundary conditions
(h/R = 0.002, FL = 0).

L/R n Lam[30] Zhang[31] Present

10

1 0.083908 0.083908 0.083908

2 0.030009 0.030008 0.030009

3 0.015193 0.015191 0.015193

4 0.012176 0.012174 0.012176

5 0.015231 0.015230 0.015231

6 0.021179 0.021178 0.021179

20

1 0.023590 0.023589 0.023590

2 0.007904 0.007903 0.007904

3 0.005869 0.005868 0.005869

4 0.009020 0.009019 0.009020

5 0.014236 0.014235 0.014236

6 0.020801 0.020800 0.020801
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Figure 2: 	e comparison of nondimensional input power 
ow into the shell �lled and un�lled with water. Black dashed line: in vacuo; red
solid line: water-�lled.

whose sound speed P = 1500m/s and mass density �2 =1000
kg/m3. 	e modal vector of the coupled vibration is de�ned
as mode of the axial wavenumber s and the circumferential
wavenumber H of standing wave. 	e �rst eight coupled
natural frequencies of the shell can be obtained by the above-
mentioned analysis and compared with the results obtained
by the FEM/BEM (2000 and 2800 elements) analysis with
SYSNOISE, as shown in Table 2. 	e di�erences between the
present analysis and [19] are within 3.5%. 	e comparisons
indicate that the proposed coupled vibration analysis method
is reasonable and the calculated results are reliable.

6. Numerical Results and Discussion

Some numerical computations are conducted to investigate
the vibration analysis of the coupled system, including the
power 
ow input into the shell wall and its power 
ow
transmission in the axial direction. Besides, the in
uence
factors such as the �ber orientation, modulus ratio �11/�22,
and thickness-to-radius parameter ℎ/� are discussed in
detail. 	e following parameters of the coupled system have
been employed in the analysis.	ematerial parameters of the

shell are given as �22=7.6 GN/m2, �11/�22 = 2.5, C1=0.25,
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Figure 3: Continued.
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Figure 3: Power transmitted by di�erent shell forces (moments) for shell �lled and un�lled with water: (a) H = 0,Ω = 0.3; (b) H = 0,Ω = 1.2;
(c) H = 0, Ω = 3.0; (d) H = 1, Ω = 0.3; (e) H = 1, Ω = 1.2; (f) H = 1, Ω = 3.0; black solid line: f��(�); blue dashed double dotted line: f��(�); red
dashed line: f��(�); green dashed dotted line: f��(�).

Table 2: Comparison of frequency for a C-C cylindrical shell (L=20 m, R=1 m, and h=0.01 m).

Frequency (HZ)

Order Modal vector (m, n) FEM/BEM(2000) FEM/BEM(2800) Reference [19] present

1 1,2 4.91 4.89 4.93 4.92

2 1,3 9.13 9.00 8.94 8.91

3 2,3 10.8 10.64 10.64 10.61

4 2,2 11.19 11.12 11.48 11.18

5 3,3 14.79 14.55 14.66 14.32

6 1,4 18.99 18.55 18.26 18.37

7 2,4 19.46 19.00 18.73 19.22

8 3,4 20.7 20.21 19.96 20.18

� = 1640 kg/m3, and ℎ/� = 0.0375. 	e shell with cross-ply
[0∘/90∘/0∘] is �lled with water of sound speed P = 1500 m/s
and mass density �2 =1000 kg/m3. 	e magnitude of radial
force is supposed to be Z = 1 N.
6.1. 	e Vibrational Power Flow Analysis between Filled Fluid
and In Vacuo Shell. 	e nondimensional input 
ow f������

against the nondimensional driving frequency Ω for 
uid-
�lled cylindrical shell of di�erent circumferential mode orderH is plotted in Figure 2. In order to investigate the e�ect of
�lled water, the results of the same shell in vacuo are also
plotted. It is obvious that the input power 
ow varies with
circumferential mode order and nondimensional frequency.(1) Due to existing 
uid, there are many peaks in curve
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Figure 4: Power transmitted by the shell �lled and un�lled with water: (a)Ω = 0.3, (b)Ω = 1.2, and (c)Ω = 3.0; black dashed line: in vacuo;
red solid line: water-�lled.

of input power 
ow for a 
uid-�lled shell compared with
shell in vacuo. (2) When Ω <3.0, the input power 
ow for
a shell in vacuo is much larger than that for a 
uid-�lled
shell. 	e reason is that the shell in vacuo vibrates resonantly
with the external force, while the 
uid contained in the
shell has the e�ect of reducing the resonant response. But
with the frequency increasing, the di�erence in input power

between 
uid-�lled shell and a shell in vacuo is negligible.	e
reason is that the coupling e�ect is weakening with frequency
increasing. (3) With the increasing of the circumferential
mode order, the peak amplitude of input power 
ow of shell-

uid coupled system shows a decrease while it increases whenH = 5. 	e reason is that the increasing of circumferential
modal parameter is bene�cial to the absorption of external
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Figure 5: 	e comparison of nondimensional input power 
ow into the shell with di�erent cross-ply: black dashed line: [90∘/0∘/90∘]; red
solid line: [0∘/90∘/0∘].

force power 
ow. From the above, it can be concluded that
the �lled water will greatly in
uence the input power 
ow
as a result of an additional mass of water and the shell-
uid
interaction at middle frequencies.

	e power 
ow carried by di�erent internal forces
(moment) f��(�), f��(�), f��(�), and f��(�) of the 
uid-�lled shell
and vacant shell against the nondimensional axial distance�/� is investigated, as shown in Figure 3. 	e low circum-
ferential mode orders H = 0 and H = 1 are discussed in the
following, which are the most common cases for the coupled
system. Correspondingly, three kinds of representative fre-
quencies (low frequency Ω = 0.3, middle frequency Ω = 1.2,
and high frequencyΩ = 3.0) are chosen for analysis. It should
be noted that the negative values represent the notion that the
power 
ow may be transmitted in the opposite direction. At
the driving point �/� = 0, there is f��(�) = 1 at any frequency
for any circumferential mode order. In other words, at the
vicinity of the driving point, the total energy transmitted
by the shell is almost concentrated on 
exural motion; as�/� increases, the 
exural motion weakens rapidly, and
other motion modes appear. For the in vacuo shell, f��(�) +f��(�) < f��(�) + f��(�) at low frequencies, the power is mainly
transmitted by axial force and torsional shear force, whereas
the ratio of the powerf��(�)+f��(�) increases as circumferential

mode order increases. However, f��(�) + f��(�) > f��(�) + f��(�)
at high frequencies for any circumferential mode order; this
implies that the motion of the shell wall is mainly in radial

direction and the power is transmitted by the transverse shear
force and bendingmoment. Similar phenomena can be found
for the vacant shell. Besides, for the shell with �lled water,f��(�) ≈ f��(�) at middle frequencies and high frequencies

for any circumferential mode order, while f��(�) ≈ f��(�) at
high frequencies for the in vacuo shell. 	is means that the
propagation power carried by the transverse shear force is
almost equal to that carried by the bending moments.

	e power 
ow f��ℎ���(�) transmitted by the shell in the
coupled system against axial distance �/� is described in
Figure 4. For comparison, the power 
ow transmitted by in
vacuo shell is also plotted. 	e investigation also focuses on
three typical frequencies for H = 0 and H = 1. As �/�
increases, the shell wall experiences interaction with �lled
water, and f��ℎ���(�) attenuates gradually along the shell axial
direction due to the energy dissipation of damping and sound
radiation.	edecay speed of 
uid-�lled shell ismuch quicker
than that of vacant shell at the vicinity of the driving point.
	e attenuation of vacant shell is nearly linear, while the
attenuation of 
uid-�lled shell has a periodic wave motion,
which means the shell-
uid coupling occurs. 	e power

ow transmitted by the shell �lled with water is signi�cantly
smaller than that by the in vacuo shell, except for the middle
frequency. At the middle frequency, the attenuation of the
vibrational power 
ow transmitted by the shell �lled with
water is quicker than those by in vacuo shell at the driving
point, while being gradually slower than those by in vacuo
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Figure 6: Power transmitted by di�erent shell forces (moments) with cross-ply [90∘/0∘/90∘]: (a) Ω = 0.3, (b) Ω = 1.2, and (c) Ω = 3.0; black
solid line: f��(�); blue dashed double dotted line: f��(�); red dashed line: f��(�); green dashed dotted line: f��(�).

shell along the axial direction. 	us, it can be concluded
that the existence of 
uid in the shell signi�cantly a�ects the
vibration characteristics of the shell.

6.2. 	e In
uence of Fiber Orientation. In order to illuminate
the in
uence of layer orientation of �ber on the vibra-
tion analysis, the 
uid-�lled cylindrical shell with cross-ply

[90∘/0∘/90∘] is chosen to compare with the original model.
	e input 
ow f������ against the driving frequency Ω for


uid-�lled cylindrical shell with cross-ply [90∘/0∘/90∘] and
[0∘/90∘/0∘] is plotted in Figure 5. 	e pro�le of the input
power 
ow into the cross-ply [90∘/0∘/90∘] shell is similar
to that into the cross-ply [0∘/90∘/0∘] shell, while the former
becomes clearly bigger than the latter. 	is is because the
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Figure 7: 	e comparison of power transmitted by the shell with di�erent cross-ply: (a)Ω = 0.3, (b) Ω = 1.2, and (c) Ω = 3.0; black dashed
line: [90∘/0∘/90∘]; red solid line: [0∘/90∘/0∘].

ratio of axial sti�ness to circumferential sti�ness of composite
cylindrical shell decreases relatively, so that the input power

ow into shell increases.

	e power 
ow transmitted by internal forces (moments)
of the shell with cross-ply [90∘/0∘/90∘] against the axial
distance �/� is shown in Figure 6. 	e characteristics of the
propagation power 
ow for cross-ply [90∘/0∘/90∘] shell are
similar to those of cross-ply [0∘/90∘/0∘] shell. It is obvious that
the power 
ow carried by di�erent shell forces (moments) is

periodic function of distance �/� at middle frequencies and
high frequencies. As the frequencies increase, the vibration
period becomes much shorter due to the e�ect of coupling
between the shell and 
uid for two cases. 	is indicates that
the layer orientation of �ber has little in
uence on the power

ow transmitted by internal forces.

	e power 
ow f��ℎ���(�) transmitted by the shell with

cross-ply [90∘/0∘/90∘] in the coupled system is described in
Figure 7. 	e attenuation of the cross-ply [90∘/0∘/90∘] shell
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Figure 8: 	e comparison of nondimensional input power 
ow into the shell with �11/�22 = 15; black dashed line: �11/�22 = 15; red solid
line: �11/�22 = 2.5.

is similar to that in the cross-ply [0∘/90∘/0∘] shell. At low
frequencies, the curve of power transmitted by the shell
is nearly linear. 	is implies that the e�ect of shell-
uid
coupling at low frequencies is weak so that wave motion
phenomena can hardly be observed. With the increasing of
frequencies, wavemotion phenomena can be obviously found
because of the strong e�ect of shell-
uid coupling. Compared
with the cross-ply [0∘/90∘/0∘] shell, power transmitted by the
shell for the cross-ply [90∘/0∘/90∘] shell is slightly stronger at
middle and high frequencies and weaker at low frequencies,
but the di�erence is relatively small. 	is indicates that the
cross-ply has little in
uence on the power transmitted by the
shell at high frequencies.

6.3. 	e In
uence of Modulus Ratio �11/�22 of Material. In
order to investigate the in
uence ofmodulus ratio�11/�22 on
the vibration analysis of the coupled system, thematerial sti�-
ness increases to �11/�22 = 15, six times that in the original
model. 	e input power 
ow against the driving frequency
for 
uid-�lled cylindrical shell is presented in Figure 8. It is
obvious that the wave amplitudes of the power transmitted by
the shell decrease signi�cantly. According to the numerical
results, it shows that the power 
ow into the shell decreases
substantially as the axial sti�ness increases. So, from the
viewpoint of vibration control, it seems useful to properly
increase the axial sti�ness of composite cylindrical shell.

	e power 
ow transmitted by internal forces (moments)
of the thicker shell against the axial distance �/� is shown
in Figure 9. Compared with the results of original model,

the variable amplitudes become much more intense at cor-
responding frequencies for any circumferential mode order.
	is indicates that the e�ect of coupling between the shell
and 
uid becomes intense as the material sti�ness �11/�22
increases. For circumferential mode order H = 0, the power

ow f��(�) carried by bending moment increases as the

frequency increases, while the power 
ow f��(�) carried by
transverse shear force increases as the frequency increases
for circumferential mode order H = 1. 	is implies that the
torsional motion strengthens as the frequency increases for
circumferential mode order H = 0, while the 
exural motion
enhances as the frequency increases for circumferentialmode
order H = 1.

	e power 
ow f��ℎ���(�) transmitted by the shell in the
coupled system is described in Figure 10. For circumferential
mode order H = 0, the power transmitted by the shell
rapidly decreases to zero at low frequencies, while the power
transmitted by the shell with �11/�22 = 15 is bigger than
that of original model. At middle and high frequencies, the
power transmitted by the shell decreases rapidly and the
wave motion phenomena become particularly intense due
to the e�ect of shell-
uid coupling becoming stronger. 	is
is because of the increasing of �11/�22, which makes the
vibrational wave pattern more complex and enhances the
coupling e�ects. 	us, the ability to control the input power

ow into the coupled system is improved as axial sti�ness
strengthens. 	is indicates that increasing the axial sti�ness
in the cylindrical shell can greatly improve the performance
of the coupled system.
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Figure 9: Power transmitted by di�erent shell forces (moments) with �2/�1=15: (a) Ω = 0.3, (b) Ω = 1.2, and (c) Ω = 3.0; black solid line:f��(�); blue dashed double dotted line: f��(�); red dashed line: f��(�); green dashed dotted line: f��(�).

6.4. 	e In
uence of 	ickness-to-Radius Parameter ℎ/�.
In order to investigate the in
uence of shell thickness-to-
radius on the vibration analysis of the coupled system, the
shell thickness increases to ℎ/� = 0.075 with cross-ply
[0∘/90∘/0∘]s, twice that in the original model. 	e input

ow against the driving frequency for 
uid-�lled cylindrical

thicker shell is plotted in Figure 11. From the results, it
can be seen that the power 
ow transmitted by the shell
along the whole frequency bands reduced remarkably with
the increasing of shell thickness. 	is indicates that the
shell thickness has huge e�ect on the power 
ow into the
shell.
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Figure 10: 	e comparison of power transmitted by the shell with �2/�1=15: (a) Ω = 0.3, (b) Ω = 1.2, and (c) Ω = 3.0; black dashed line:�11/�22 = 15; red solid line: �11/�22 = 2.5.

	e power 
ow transmitted by internal forces (moments)
of the thicker shell against the axial distance �/� is displayed
in Figure 12. For circumferential mode order H = 0, f��(�) +f��(�) > f��(�)+f��(�), the shell motion is predominantly in the
radial direction.When the circumferential mode order H = 1,
the torsional motion is coupled with other motions; apart
from the close range of the driving point, the torsionalmotion
of the shell wall is primarily the wave motion mode at
low frequency. As the frequency increases, the dominating

motion gradually attenuates while other motion modes
gradually increase, especially for extensional motion along
the axial direction. Besides, it is obvious that the amplitude
of the power 
ow transmitted by di�erent internal forces
increases as the frequency increases for any circumferential
mode order.

	e power 
ow f��ℎ���(�) transmitted by the thicker shell
in the coupled system is described in Figure 13. Compared
with the original model, the attenuation mode of the thicker
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Figure 11: 	e comparison of nondimensional input power 
ow into the shell with ℎ/� = 0.004; black dashed line: ℎ/� = 0.075; red solid
line: ℎ/� = 0.0375.

shell exhibits intense periodic wave motion, which means
there is a strong shell-
uid coupling for the thicker shell.
At low frequencies, there is no obvious 
uctuation for the
attenuation of the power transmitted by the shell. 	is
indicates that the e�ect of shell-
uid coupling is weak. For
circumferential mode order H = 0, the power transmitted by
the shell rapidly decreases to zero at low frequencies, while
the power transmitted by the thicker shell is bigger than that
of original model. At middle frequencies, the magnitude of
power transmitted by the thicker shell is almost the same
as that of the original model, whereas the amplitude of the
resonance hump is further enlarged. At high frequencies, the
power transmitted by the thicker shell decreases rapidly and
thewavemotion phenomena becomeparticularly intense due
to the e�ect of shell-
uid coupling becoming stronger. 	is
indicates that the thickness of shell has a strong in
uence
on the vibrational power 
ow propagation. So, making use
of thicker shell in middle and high frequency bands will be
helpful to control structure vibration.

7. Conclusions

	epaper aims to investigate the characteristics of vibrational
power 
ow in an in�nite laminated composite cylindrical
shell �lledwith 
uid by using thewave propagation approach.
	e vibrational power 
ow input into the coupled system
and its propagation are established under a circumferential

line cosine harmonic force. Numerical computations are
implemented to study the e�ects of the �ber orientation,
modulus ratio �11/�22, and thickness-to-radius parameterℎ/� on input power into the coupled system and propagation
power along the shell axial direction. Based on the numerical
results, the following conclusions can be drawn:(1)	e wave propagation approach is a noniterative, less
computationally intensive, and reasonably accurate method.
It can easily handle the vibration analysis of composite shells.(2) Filled water in the shell will greatly in
uence the
input power 
ow due to an additional mass of water and the
shell-
uid interaction atmiddle frequencies.	e propagation
power carried by the transverse shear force is almost equal to
that carried by the bending moments at middle frequencies
and high frequencies for any circumferential mode order.(3) 	e input power 
ow into shell with cross-ply
[90∘/0∘/90∘] is larger than that into shell with cross-ply
[0∘/90∘/0∘], while the layer orientation of �ber has little
in
uence on the power 
ow transmitted by internal forces.(4)	e power 
ow into the shell decreases substantially
as the modulus ratio �11/�22 increases, so increasing the
axial sti�ness in the cylindrical shell can greatly improve the
performance of the coupled system.(5) 	e thickness of shell has a strong in
uence on the
vibrational power 
ow propagation; thus, making use of
thicker shell in middle and high frequency bands will be
helpful to control structure vibration.
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Figure 12: Power transmitted by di�erent shell forces (moments) with ℎ/� = 0.075: (a) Ω = 0.3, (b) Ω = 1.2, and (c) Ω = 3.0; black solid
line: f��(�); blue dashed double dotted line: f��(�); red dashed line: f��(�); green dashed dotted line: f��(�).
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Figure 13: 	e comparison of power transmitted by the shell with ℎ/� = 0.075: (a) Ω = 0.3, (b) Ω = 1.2, and (c) Ω = 3.0; black dashed line:ℎ/� = 0.075; red solid line: ℎ/� = 0.0375.
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