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Abstract. Aesthetics, in the world of art and photography, refers to
the principles of the nature and appreciation of beauty. Judging beauty
and other aesthetic qualities of photographs is a highly subjective task.
Hence, there is no unanimously agreed standard for measuring aesthetic
value. In spite of the lack of firm rules, certain features in photographic
images are believed, by many, to please humans more than certain oth-
ers. In this paper, we treat the challenge of automatically inferring aes-
thetic quality of pictures using their visual content as a machine learning
problem, with a peer-rated online photo sharing Website as data source.
We extract certain visual features based on the intuition that they can
discriminate between aesthetically pleasing and displeasing images. Au-
tomated classifiers are built using support vector machines and classifi-
cation trees. Linear regression on polynomial terms of the features is also
applied to infer numerical aesthetics ratings. The work attempts to ex-
plore the relationship between emotions which pictures arouse in people,
and their low-level content. Potential applications include content-based
image retrieval and digital photography.

1 Introduction

Photography is defined as the art or practice of taking and processing pho-
tographs. Aesthetics in photography is how people usually characterize beauty
in this form of art. There are various ways in which aesthetics is defined by
different people. There exists no single consensus on what it exactly pertains to.
The broad idea is that photographic images that are pleasing to the eyes are
considered to be higher in terms of their aesthetic beauty. While the average
individual may simply be interested in how soothing a picture is to the eyes, a
photographic artist may be looking at the composition of the picture, the use
of colors and light, and any additional meanings conveyed by the picture. A
professional photographer, on the other hand, may be wondering how difficult
it may have been to take or to process a particular shot, the sharpness and the
color contrast of the picture, or whether the “rules of thumb” in photography
have been maintained. All these issues make the measurement of aesthetics in
pictures or photographs extremely subjective.
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In spite of the ambiguous definition of aesthetics, we show in this paper
that there exist certain visual properties which make photographs, in general,
more aesthetically beautiful. We tackle the problem computationally and exper-
imentally through a statistical learning approach. This allows us to reduce the
influence of exceptions and to identify certain features which are statistically
significant in good quality photographs.

Content analysis in photographic images has been studied by the multime-
dia and vision research community in the past decade. Today, several efficient
region-based image retrieval engines are in use [13, 6, 21, 18]. Statistical modeling
approaches have been proposed for automatic image annotation [4, 12]. Cultur-
ally significant pictures are being archived in digital libraries [7]. Online photo
sharing communities are becoming more and more common [1, 3, 11, 15]. In this
age of digital picture explosion, it is critical to continuously develop intelligent
systems for automatic image content analysis.

1.1 Community-Based Photo Ratings as Data Source

One good data source is a large online photo sharing community, Photo.net, pos-
sibly the first of its kind, started in 1997 by Philip Greenspun, then a researcher
on online communities at MIT [15]. Primarily intended for photography enthusi-
asts, the Website attracts more than 400, 000 registered members. Many amateur
and professional photographers visit the site frequently, share photos, and rate
and comment on photos taken by peers. There are more than one million pho-
tographs uploaded by these users for perusal by the community. Of interest to us
is the fact that many of these photographs are peer-rated in terms of two quali-
ties, namely aesthetics and originality. The scores are given in the range of one to
seven, with a higher number indicating better rating. This site acts as the main
source of data for our computational aesthetics work. The reason we chose such
an online community is that it provides photos which are rated by a relatively
diverse group. This ensures generality in the ratings, averaged out over the en-
tire spectrum of amateurs to serious professionals. While amateurs represent the
general population, the professionals tend to spend more time on the technical
details before rating the photographs. One caveat: The nature of any peer-rated
community is such that it leads to unfair judgments under certain circumstances,
and Photo.net is no exception, making our acquired data fairly noisy. Ideally, the
data should have been collected from a random sample of human subjects under
controlled setup, but resource constraints prevented us from doing so.

We downloaded those pictures and their associated metadata which were
rated by at least two members of the community. For each image downloaded, we
parsed the pages and gathered the following information: (1) average aesthetics
score between 1.0 and 7.0, (2) average originality score between 1.0 and 7.0, (3)
number of times viewed by members, and (4) number of peer ratings.

1.2 Aesthetics and Originality

According to the Oxford Advanced Learner’s Dictionary, Aesthetics means (1)
“concerned with beauty and art and the understanding of beautiful things”, and
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(2) “made in an artistic way and beautiful to look at”. A more specific discussion
on the definition of aesthetics can be found in [16]. As can be observed, no con-
sensus was reached on the topic among the users, many of whom are professional
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Fig. 1. Correlation between the aes-
thetics and originality ratings for
3581 photographs

photographers. Originality has a more spe-
cific definition of being something that is
unique and rarely observed. The originality
score given to some photographs can also be
hard to interpret, because what seems origi-
nal to some viewers may not be so for others.
Depending on the experiences of the viewers,
the originality scores for the same photo can
vary considerably. Thus the originality score
is subjective to a large extent as well.

One of the first observations made on the
gathered data was the strong correlation be-
tween the aesthetics and originality ratings
for a given image. A plot of 3581 unique photograph ratings can be seen in
Fig. 1. As can be seen, aesthetics and originality ratings have approximately
linear correlation with each other. This can be due to a number of factors. Many
users quickly rate a batch of photos in a given day. They tend not to spend too
much time trying to distinguish between these two parameters when judging
a photo. They more often than not rate photographs based on a general im-
pression. Typically, a very original concept leads to good aesthetic value, while
beauty can often be characterized by originality in view angle, color, lighting,
or composition. Also, because the ratings are averages over a number of people,
disparity by individuals may not be reflected as high in the averages. Hence
there is generally not much disparity in the average ratings. In fact, out of the
3581 randomly chosen photos, only about 1.1% have a disparity of more than
1.0 between average aesthetics and average originality, with a peak of 2.0.

Fig. 2. Aesthetics scores can
be significantly influenced by the
semantics. Loneliness is depicted
using a person in this frame,
though the area occupied by the
person is very small. Avg. aes-
thetics: 6.0/7.0.

As a result of this observation, we chose to
limit the rest of our study to aesthetics ratings
only, since the value of one can be approximated
to the value of the other, and among the two,
aesthetics has a rough definition that in princi-
ple depends somewhat less on the content or the
semantics of the photograph, something that is
very hard for present day machine intelligence
to interpret accurately. Nonetheless, the strong
dependence on originality ratings means that
aesthetics ratings are also largely influenced by
the semantics. As a result, some visually simi-
lar photographs are rated very differently. For
example in Fig. 2, loneliness is depicted using a
man in the frame, increasing its appeal, while
the lack of the person makes the photograph
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uninteresting and is likely to cause poorer ratings from peers. This makes the
task of automatically determining aesthetics of photographs highly challenging.

1.3 Our Computational Aesthetics Approach

A classic treatise on psychological theories for understanding human perception
can be found in [2]. Here, we take the first step in using a computational approach
to understand what aspects of a photograph appeal to people, from a population
and statistical standpoint. For this purpose, we aim to build (1) a classifier that
can qualitatively distinguish between pictures of high and low aesthetic value,
or (2) a regression model that can quantitatively predict the aesthetics score,
both approaches relying on low-level visual features only. We define high or low
in terms of predefined ranges of aesthetics scores.

There are reasons to believe that classification may be a more appropri-
ate model than regression in tackling this problem. For one, the measures are
highly subjective, and there are no agreed standards for rating. This may render
absolute scores less meaningful. Again, ratings above or below certain thresh-
olds on an average by a set of unique users generally reflect on the photo-
graph’s quality. This way we also get around the problem of consistency where
two identical photographs can be scored differently by different groups of
people. However, it is more likely that both the group averages are within
the same range and hence are treated fairly when posed as a classification
problem.

On the other hand, the ‘ideal’ case is when a machine can replicate the task
of robustly giving images aesthetics scores in the range of (1.0-7.0) the humans
do. This is the regression formulation of the problem. The possible benefits of
building a computational aesthetics model can be summarized as follows: If the
low-level image features alone can tell what range aesthetics ratings the image
deserves, this can potentially be used by photographers to get a rough estimate
of their shot composition quality, leading to adjustment in camera parameters or
shot positioning for improved aesthetics. Camera manufacturers can incorporate
a ‘suggested composition’ feature into their products. Alternatively, a content-
based image retrieval (CBIR) system can use the aesthetics score to discriminate
between visually similar images, giving greater priority to more pleasing query
results. Biologically speaking, a reasonable solution to this problem may lead to
a better understanding of the human vision.

2 Visual Feature Extraction

Experiences with photography lead us to believe in certain aspects as being
critical to quality. This entire study is on such beliefs or hypotheses and their
validation through numerical results. We treat each downloaded image separately
and extract features from them. We use the following notation: The RGB data of
each image is converted to HSV color space, producing two-dimensional matrices
IH , IS , and IV , each of dimension X × Y .
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Our motivation for the choice of features was principled, based on (1) rules
of thumb in photography, (2) common intuition, and (3) observed trends in
ratings. In photography and color psychology, color tones and saturation play
important roles, and hence working in the HSV color space makes computation
more convenient. For some features we extract information from objects within
the photographs. An approximate way to find objects within images is segmen-
tation, under the assumption that homogeneous regions correspond to objects.
We use a fast segmentation method based on clustering. For this purpose the
image is transformed into the LUV space, since in this space locally Euclidean
distances model the perceived color change well. Using a fixed threshold for all
the photographs, we use the K-Center algorithm to compute cluster centroids,
treating the image pixels as a bag of vectors in LUV space. With these centroids
as seeds, a K-means algorithm computes clusters. Following a connected compo-
nent analysis, color-based segments are obtained. The 5 largest segments formed
are retained and denoted as {s1, ..., s5}. These clusters are used to compute
region-based features as we shall discuss in Sec. 2.7.

We extracted 56 visual features for each image. The feature set was care-
fully chosen but limited because our goal was mainly to study the trends or
patterns, if any, that lead to higher or lower aesthetics ratings. If the goal was
to only build a strong classifier or regression model, it would have made sense
to generate exhaustive features and apply typical machine-learning techniques
such as boosting. Without meaningful features it is difficult to make meaningful
conclusions from the results. We refer to our features as candidate features and
denote them as F = {fi|1 ≤ i ≤ 56} which are described as follows.

2.1 Exposure of Light and Colorfulness

Measuring the brightness using a light meter and a gray card, controlling the
exposure using the aperture and shutter speed settings, and darkroom print-
ing with dodging and burning are basic skills for any professional photographer.
Too much exposure (leading to brighter shots) often yields lower quality pictures.
Those that are too dark are often also not appealing. Thus light exposure can
often be a good discriminant between high and low quality photographs. Note
that there are always exceptions to any ‘rules of thumb’. An over-exposed or
under-exposed photograph under certain scenarios may yield very original and
beautiful shots. Ideally, the use of light should be characterized as normal day-
light, shooting into the sun, backlighting, shadow, night etc. We use the average
pixel intensity f1 = 1

XY

∑X−1
x=0

∑Y −1
y=0 IV (x, y) to characterize the use of light.

We propose a fast and robust method to compute relative color distribution,
distinguishing multi-colored images from monochromatic, sepia or simply low
contrast images. We use the Earth Mover’s Distance (EMD) [17], which is a
measure of similarity between any two weighted distributions. We divide the
RGB color space into 64 cubic blocks with four equal partitions along each
dimension, taking each such cube as a sample point. Distribution D1 is generated
as the color distribution of a hypothetical image such that for each of 64 sample
points, the frequency is 1/64. Distribution D2 is computed from the given image
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by finding the frequency of occurrence of color within each of the 64 cubes. The
EMD measure requires that the pairwise distance between sampling points in
the two distributions be supplied. Since the sampling points in both of them are
identical, we compute the pairwise Euclidean distances between the geometric
centers ci of each cube i, after conversion to LUV space. Thus the colorfulness
measure f2 is computed as follows: f2 = emd(D1, D2, {d(a, b) | 0 ≤ a, b ≤ 63}),
where d(a, b) = ||rgb2luv(ca) − rgb2luv(cb)|| .

Fig. 3. The proposed colorfulness measure. The two photographs on the left have high
values while the two on the right have low values.

The distribution D1 can be interpreted as the ideal color distribution of a
‘colorful’ image. How similar the color distribution of an arbitrary image is to
this one is a rough measure of how colorful that image is. Examples of images
producing high and low values of f2 are shown in Fig. 3.

2.2 Saturation and Hue

Saturation indicates chromatic purity. Pure colors in a photo tend to be more
appealing than dull or impure ones. In natural out-door landscape photography,
professionals use specialized film such as the Fuji Velvia to enhance the sat-
uration to result in deeper blue sky, greener grass, more vivid flowers, etc. We
compute the average saturation f3 = 1

XY

∑X−1
x=0

∑Y −1
y=0 IS(x, y) as the saturation

indicator. Hue is similarly computed averaged over IH to get feature f4, though
the interpretation of such a feature is not as clear as the former. This is because
hue as defined in the HSV space corresponds to angles in a color wheel.

2.3 The Rule of Thirds

A very popular rule of thumb in photography is the Rule of Thirds. The rule can
be considered as a sloppy approximation to the ‘golden ratio’ (about 0.618). It
specifies that the main element, or the center of interest, in a photograph should
lie at one of the four intersections as shown in Fig. 4 (a). We observed that most
professional photographs that follow this rule have the main object stretch from
an intersection up to the center of the image. Also noticed was the fact that
centers of interest, e.g., the eye of a man, were often placed aligned to one of the
edges, on the inside. This implies that a large part of the main object often lies
on the periphery or inside of the inner rectangle. Based on these observations,
we computed the average hue as f5 = 9

XY

∑2X/3
x=X/3

∑2Y/3
y=Y/3 IH(x, y), with f6 and

f7 being similarly computed for IS and IV respectively.
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Fig. 4. (a) The rule of thirds in photography: Imaginary lines cut the image horizontally
and vertically each into three parts. Intersection points are chosen to place important
parts of the composition instead of the center. (b)-(d) Daubechies wavelet transform.
Left: Original image. Middle: Three-level transform, levels separated by borders. Right:
Arrangement of three bands LH, HL and HH of the coefficients.

2.4 Familiarity Measure

We humans learn to rate the aesthetics of pictures from the experience gathered
by seeing other pictures. Our opinions are often governed by what we have
seen in the past. Because of our curiosity, when we see something unusual or
rare we perceive it in a way different from what we get to see on a regular
basis. In order to capture this factor in human judgment of photography, we
define a new measure of familiarity based on the integrated region matching
(IRM) image distance [21]. The IRM distance computes image similarity by using
color, texture and shape information from automatically segmented regions, and
performing a robust region-based matching with other images. Primarily meant
for image retrieval applications, we use it here to quantify familiarity. Given
a pre-determined anchor database of images with a well-spread distribution of
aesthetics scores, we retrieve the top K closest matches in it with the candidate
image as query. Denoting IRM distances of the top matches for each image
in decreasing order of rank as {q(i)|1 ≤ i ≤ K}. We compute f8 and f9 as
f8 = 1

20

∑20
i=1 q(i) , f9 = 1

100

∑100
i=1 q(i).

In effect, these measures should yield higher values for uncommon images.
Two different scales of 20 and 100 top matches are used since they may poten-
tially tell different stories about the uniqueness of the picture. While the former
measures average similarity in a local neighborhood, the latter does so on a more
global basis. Because of the strong correlation between aesthetics and originality,
it is intuitive that a higher value of f8 or f9 corresponds to greater originality
and hence we expect greater aesthetics score.

2.5 Wavelet-Based Texture

Graininess or smoothness in a photograph can be interpreted in different ways.
If as a whole it is grainy, one possibility is that the picture was taken with a
grainy film or under high ISO settings. If as a whole it is smooth, the picture can
be out-of-focus, in which case it is in general not pleasing to the eye. Graininess
can also indicate the presence/absence and nature of texture within the image.

The use of texture is a composition skill in photography. One way to mea-
sure spatial smoothness in the image is to use Daubechies wavelet transform [10],
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which has often been used in the literature to characterize texture. We perform
a three-level wavelet transform on all three color bands IH , IS and IV . An ex-
ample of such a transform on the intensity band is shown in Fig. 4 (b)-(c). The
three levels of wavelet bands are arranged from top left to bottom right in the
transformed image, and the four coefficients per level, LL, LH , HL, and HH are
arranged as shown in Fig. 4 (d). Denoting the coefficients (except LL) in level
i for the wavelet transform on hue image IH as whh

i , whl
i and wlh

i , i = {1, 2, 3},
we define features f10, f11 and f12 as follows:

fi+9 =
1
Si

{∑

x

∑

y

whh
i (x, y) +

∑

x

∑

y

whl
i (x, y) +

∑

x

∑

y

wlh
i (x, y)

}

where Sk = |whh
i | + |whl

i | + |whh
i | and i = 1, 2, 3. The corresponding wavelet

features for saturation (IS) and intensity (IV ) images are computed similarly
to get f13 through f15 and f16 through f18 respectively. Three more wavelet
features are derived. The sum of the average wavelet coefficients over all three
frequency levels for each of H , S and V are taken to form three additional
features: f19 =

∑12
i=10 fi, f20 =

∑15
i=13 fi, and f21 =

∑18
i=16 fi.

2.6 Size and Aspect Ratio

The size of an image has a good chance of affecting the photo ratings. Although
scaling is possible in digital and print media, the size presented initially must be
agreeable to the content of the photograph. A more crucial parameter is the aspect
ratio. It is well-known that 4 : 3 and 16 : 9 aspect ratios, which approximate the
‘golden ratio,’ are chosen as standards for television screens or 70mm movies, for
reasons related to viewing pleasure. The 35mm film used by most photographers
has a ratio of 3 : 2 while larger formats include ratios like 7 : 6 and 5 : 4. While
size feature is f22 = X + Y , the aspect ratio feature is f23 = X

Y .

2.7 Region Composition

Fig. 5. The HSV
Color Wheel

Segmentation results in rough grouping of similar pixels,
which often correspond to objects in the scene. We denote
the set of pixels in the largest five connected components
or patches formed by the segmentation process described
before as {s1, ...s5}. The number of patches t ≤ 5 which
satisfy |si| ≥ XY

100 denotes feature f24. The number of color-
based clusters formed by K-Means in the LUV space is
feature f25. This number is image dependent and dynami-
cally chosen, based on the complexity of the image. These
two features combine to measure how many distinct color blobs and how many
disconnected significantly large regions are present.

We then compute the average H , S and V values for each of the top 5 patches
as features f26 through f30, f31 through f35 and f36 through f40 respectively.
Features f41 through f45 store the relative size of each segment with respect to
the image, and are computed as fi+40 = |si|/(XY ) where i = 1, ..., 5.
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The hue component of HSV is such that the colors that are 180◦ apart in
the color circle (Fig. 5) are complimentary to each other, which means that they
add up to ‘white’ color. These colors tend to look pleasing together. Based on
this idea, we define two new features, f46 and f47 in the following manner, cor-
responding to average color spread around the wheel and average complimentary
colors among the top 5 patch hues. These features are defined as

f46 =
5∑

i=1

5∑

j=1

|hi − hj |, f47 =
5∑

i=1

5∑

j=1

l(|hi − hj |), hi =
∑

(x,y)∈si

IH(x, y),

where l(k) = k if k ≤ 180◦, 360◦ − k if k > 180◦ . Finally, the rough po-
sitions of each segment are stored as features f48 through f52. We divide the
image into 3 equal parts along horizontal and vertical directions, locate the
block containing the centroid of each patch si, and set f47+i = (10r + c) where
(r, c) ∈ {(1, 1), ..., (3, 3)} indicates the corresponding block starting with top-left.

2.8 Low Depth of Field Indicators

Pictures with a simplistic composition and a well-focused center of interest are
sometimes more pleasing than pictures with many different objects. Professional
photographers often reduce the depth of field (DOF) for shooting single objects
by using larger aperture settings, macro lenses, or telephoto lenses. DOF is the
range of distance from a camera that is acceptably sharp in the photograph. On
the photo, areas in the DOF are noticeably sharper.

We noticed that a large number of low DOF photographs, e.g., insects, other
small creatures, animals in motion, were given high ratings. One reason may
be that these shots are difficult to take, since it is hard to focus steadily on
small and/or fast moving objects like insects and birds. A common feature is
that they are taken either by macro or by telephoto lenses. We propose a novel
method to detect low DOF and macro images. We divide the image into 16
equal rectangular blocks {M1, ...M16}, numbered in row-major order. Let w3 =
{wlh

3 , whl
3 , whh

3 } denote the set of wavelet coefficients in the high-frequency (level
3 by the notation in Sec. 2.5) of the hue image IH . The low depth of field indicator
feature f53 for hue is computed as follows, with f54 and f55 being computed
similarly for IS and IV respectively:

f53 =

∑
(x,y)∈M6∪M7∪M10∪M11

w3(x, y)
∑16

i=1
∑

(x,y)∈Mi
w3(x, y)

The object of interest in a macro shot is usually in sharp focus near the
center, while the surrounding is usually out of focus. This essentially means that
a large value of the low DOF indicator features tend to occur for macro shots.

2.9 Shape Convexity

It is believed that shapes in a picture also influence the degree of aesthetic
beauty perceived by humans. The challenge in designing a shape feature lies in
the understanding of what kind of shape pleases humans, and whether any such
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Fig. 6. Demonstrating the shape convexity feature. Left: Original photograph. Middle:
Three largest non-background segments shown in original color. Right: Exclusive re-
gions of the convex hull generated for each segment are shown in white. The proportion
of white regions determine the convexity value.

measure generalizes well enough or not. As always, we hypothesize that convex
shapes like perfect moon, well-shaped fruits, boxes, or windows have an appeal,
positive or negative, which is different from concave or highly irregular shapes.
Let the image be segmented, as described before, and R patches {p1, ..., pR} are
obtained such that |pk| ≥ XY

200 . For each pk, we compute its convex hull, denoted
by g(pk). For a perfectly convex shape, pk ∩g(pk) = pk, i.e. |pk|

|g(pk)| = 1. We define

the shape convexity feature as f56 = 1
XY {

∑R
k=1 I( |pk|

|g(pk)| ≥ 0.8)|pk|}, allowing
some room for irregularities of edge and error due to digitization. Here I(·) is
the indicator function. This feature can be interpreted as the fraction of the
image covered by approximately convex-shaped homogeneous regions, ignoring
the insignificant image regions. This feature is demonstrated in Fig. 6. Note that
a critical factor here is the segmentation process, since we are characterizing
shape by segments. Often, a perfectly convex object is split into concave or
irregular parts, considerably reducing the reliability of this measure.

3 Feature Selection, Classification, and Regression

A contribution of our work is the feature extraction process itself, since each fea-
ture represents an interesting aspects of photography. We now perform selection
in order to (1) discover features that show correlation with community-based
aesthetics scores, and (2) build a classification/regression model using a sub-
set of strongly/weakly relevant features such that generalization performance is
near optimal. Instead of using any regression model, we use a one-dimensional
support vector machine (SVM) [20]. SVMs are essentially powerful binary clas-
sifiers that project the data space into higher dimensions where the two classes
of points are linearly separable. Naturally, for one-dimensional data, they can
be more flexible than a single threshold classifier.

For the 3581 images downloaded, all 56 features in F were extracted and nor-
malized to the [0, 1] range to form the experimental data. Two classes of data are
chosen, high containing samples with aesthetics scores greater than 5.8, and low
with scores less than 4.2. Only images that were rated by at least two unique mem-
bers were used. The reason for choosing classes with a gap is that pictures with close
lying aesthetic scores, e.g., 5.0 and 5.1 are not likely to have any distinguishing fea-
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ture, and may merely be representing the noise in the whole peer-rating process.
For all experiments we ensure equal priors by replicating data to generate equal
number of samples per class. A total of 1664 samples is thus obtained, forming the
basis for our classification experiments. We perform classification using the stan-
dard RBF Kernel (γ = 3.7, cost = 1.0) using the LibSVM package [9]. SVM is run
20 times per feature, randomly permuting the data-set each time, andusing a 5-fold
cross-validation (5-CV). The top 15 among the 56 features in terms of model accu-
racy are obtained. The stability of these single features as classifiers is also tested.
We proceed to build a classifier that can separate low from high. For this, we use
SVM as well as the classification and regression trees (CART) algorithm [8]. While
SVM is a powerful classifier, a limitation is that when there are too many irrele-
vant features in the data, the generalization performance tends to suffer. Feature
selection for classification purposes is a well-studied topic [5], with some recent
work related specifically to feature selection for SVMs. Filter-based methods and
wrapper-based methods are two broad techniques for feature selection. While the
former eliminates irrelevant features before training the classifier, the latter chooses
features using the classifier itself as an integral part of the selection process. In this
work, we combine these two methods to reduce computational complexity while
obtaining features that yield good generalization performance: (1) The top 30
features in terms of their one-dimensional SVM performance are retained while the
rest of the features are filtered out. (2) We use forward selection, a wrapper-based
approach in which we start with an empty set of features and iteratively add one
feature at a time that increases the 5-fold CV accuracy the most. We stop at 15
iterations (i.e. 15 features) and use this set to build the SVM-based classifier.

Classifiers that help understand the influence of different features directly
are tree-based approaches such as CART. We used the recursive partitioning
(RPART) implementation [19], to build a two-class classification tree model for
the same set of 1664 data samples. Finally, we perform linear regression on
polynomial terms of the features values to see if it is possible to directly predict
the aesthetics scores in the 1 to 7 range from the feature vector. The quality
of regression is usually measured in terms of the residual sum-of-squares error
R2

res = 1
N−1

∑N
i=1(Yi − Ŷi)2 where Ŷi is the predicted value of Yi. Here Y being

the aesthetics scores, in the worst case Ȳ is chosen every time without using the
regression model, yielding R2

res = σ2 (variance of Y ). Hence, if the independent
variables explain something about Y , it must be that Rres ≤ σ2. For this part,
all 3581 samples are used, and for each feature fi, the polynomials (fi, f2

i , f3
i ,

f
1
3
i , and f

2
3
i ) are used as independent variables.

4 Experimental Results

For the one-dimensional SVM performed on individual features, the top 15 re-
sults obtained in decreasing order of 5-CV accuracy are as follows: {f31, f1, f6,
f15, f9, f8, f32, f10, f55, f3, f36, f16, f54, f48, f22}. The maximum classification
rate achieved by any single feature was f31 with 59.3%. With accuracy over 54%,
they act as weak classifiers and hence show some correlation with the aesthetics.
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Fig. 7. Left: Variation of 5 − CV SVM accuracy with the minimum number of unique
ratings per picture. Right: Variation of 5 − CV SVM accuracy with inter-class gap δ.

The combined filter and wrapper method for feature selection yielded the
following set of 15 features:{f31, f1, f54, f28, f43, f25, f22, f17, f15, f20, f2, f9,
f21, f23, f6}. The accuracy achieved with 15 features is 70.12%, with precision
of detecting high class being 68.08%, and low class being 72.31%. Considering
the nature of this problem, these classification results are indeed promising.
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Fig. 8. Decision tree obtained using CART and the
56 visual features (partial view)

The stability of these clas-
sification results in terms of
number of ratings is consid-
ered next. Samples are cho-
sen in such a way that each
photo is rated by at least K
unique users, K varying from
1 to 8, and the 5-CV accu-
racy and precision plotted, as
shown in Fig. 7. It is observed
that accuracy values show an
upward trend with increasing
number of unique ratings per
sample, and stabilize some-
what when this value touches
5. This reflects on the peer-
rating process - the inherent
noise in this data gets averaged out as the number of ratings increase, converg-
ing toward a somewhat ‘fair’ score. We then experimented with how accuracy
and precision varied with the gap in aesthetics ratings between the two classes
high and low. So far we have considered ratings ≥ 5.8 as high and ≤ 4.2 as low.
In general, considering that ratings ≥ 5.0 + δ

2 , be (high) and ratings ≤ 5.0 − δ
2

be (low), we have based all classification experiments on δ = 1.6. The value 5.0
is chosen as it is the median aesthetics rating over the 3581 samples. We now
vary δ while keeping all other factors constant, and compute SVM accuracy and
precision for each value. These results are plotted in Fig. 7. Not surprisingly,
the accuracy increases as δ increases. This is accounted by the fact that as δ
increases, so does the distinction between the two classes.
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Fig. 8 shows the CART decision tree obtained using the 56 visual features.
In the figures, the decision nodes are denoted by squares while leaf nodes are de-
noted by circles. The decisions used at each split and the number of observations
which fall in each node during the decision process, are also shown in the figures.
Shaded nodes have a higher percentage of low class pictures, hence making them
low nodes, while un-shaded nodes are those where the dominating class is high.
The RPART implementation uses 5-CV to prune the tree to yield lowest risk.
We used a 5-fold cross validation scheme. With complexity parameter governing
the tree complexity set to 0.0036, the tree generated 61 splits, yielding an 85.9%
model accuracy and a modest 62.3% 5-CV accuracy. More important than the
accuracy, the tree provides us with a lot of information on how aesthetics can
be related to individual features. We do not have the space to include and dis-
cuss the entire tree. Let us discuss some interesting decision paths, in each tree,
which support our choice of features. The features denoted by IRM100, i.e. f9,
and the low DOF indicators for S and V components, respectively (denoted by
low DOF s, i.e. f54 and low DOF v, i.e. f55), appear to play crucial roles in the
decision process. The expected loss at L3 and L4 are 0% and 9%, respectively. A
large numeric value of the low DOF indicators shows that the picture is focused
on a central object of interest. As discussed before, taking such pictures requires
professional expertise and hence high peer rating is not unexpected.

Finally, we report the regression results. The variance σ2 of the aesthetics
score over the 3581 samples is 0.69. With 5 polynomial terms for each of the 56,
we achieved a residual sum-of-squares R2

res = 0.5020, which is a 28% reduction
from the variance σ2. This score is not very high, but considering the challenge
involved, this does suggest that visual features are able to predict human-rated
aesthetics scores with some success. To ensure that this was actually demonstrat-
ing some correlation, we randomly permuted the aesthetics scores (breaking the
correspondence with the features) and performed the same regression. This time,
Rres is 0.65, clearly showing that the reduction in expected error was not merely
by the over-fitting of a complex model.

5 Conclusions and Future Work

We have established significant correlation between various visual properties
of photographic images and their aesthetics ratings. We have shown, through
using a community-based database and ratings, that certain visual properties
tend to yield better discrimination of aesthetic quality than some others. De-
spite the inherent noise in data, our SVM-based classifier is robust enough to
produce good accuracy using only 15 visual features in separating high and
low rated photographs. In the process of designing the classifier, we have de-
veloped a number of new features relevant to photographic quality, including a
low depth-of-field indicator, a colorfulness measure, a shape convexity score and
a familiarity measure. Even though certain extracted features did not show a
significant correlation with aesthetics, they may have applications in other pho-
tographic image analysis work as they are sound formulations of basic principles
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in photographic art. In summary, our work is a significant step toward the highly
challenging task of understanding the correlation of human emotions and pic-
tures they see by a computational approach. There are yet a lot of open avenues
in this direction. The accuracy can potentially be improved by incorporating
new features like dominant lines, converging lines, light source classification,
and subject-background relationships.
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