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Abstract

Aims

Beta diversity is the variation in species composition among sites in

a geographic region. Beta diversity is a key concept for understand-

ing the functioning of ecosystems, for the conservation of biodiversity

and for ecosystem management. The present report describes how to

analyse beta diversity from community composition and associated

environmental and spatial data tables.

Methods

Beta diversity can be studied by computing diversity indices for each

site and testing hypotheses about the factors that may explain the var-

iation among sites. Alternatively, one can carry out a direct analysis

of the community composition data table over the study sites, as

a function of sets of environmental and spatial variables. These anal-

yses are carried out by the statistical method of partitioning the var-

iation of the diversity indices or the community composition data

table with respect to environmental and spatial variables. Variation

partitioning is briefly described herein.

Important findings

Variation partitioning is a method of choice for the interpretation of

beta diversity using tables of environmental and spatial variables. Beta

diversity is an interesting ‘currency’ for ecologists to compare either

different sampling areas or different ecological communities co-

occurring in an area. Partitioning must be based upon unbiased esti-

mates of the variation of the community composition data table that is

explained by the various tables of explanatory variables. The adjusted

coefficient of determination provides such an unbiased estimate in

both multiple regression and canonical redundancy analysis. After

partitioning, one can test the significance of the fractions of interest

and plot maps of the fitted values corresponding to these fractions.
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Introduction

Ecologists collect community composition data (species pres-

ence–absence or abundance data) at several sites in a region

of interest in order to analyse and interpret beta diversity,

which is the variation in species composition among the sites

(Whittaker, 1960, 1972; Legendre et al., 2005). Analysis of

a synthetic descriptor such as species richness or Shannon di-

versity can be done by multiple regression, whereas the anal-

ysis of whole community composition data tables is carried out

by canonical analysis. Results from these two types of analyses

are not equivalent: analysis of the whole community compo-

sition data produces results that are much more informative

since they provide information about the reactions of individ-

ual species to the environmental and spatial variables. The

asymmetrical forms of canonical analysis used for this type

of research are canonical redundancy analysis (RDA; Rao,

1964) and canonical correspondence analysis (CCA; ter Braak,

1986, 1987a, b). These analyses are described in several text-

books, including Legendre and Legendre (1998). They are

implemented in computer packages such as Canoco (ter Braak

and Smilauer, 2002) and the ‘vegan’ library (Oksanen et al.,

2007) of the R statistical language (R Development Core Team,

2007).

Variation in species composition among sites is studied by

canonical analysis of the species composition data as a function

of different types of environmental variables: water or soil

chemistry, geology, geomorphology, environmental impact

descriptors, and so on. The study of spatial structures involves

spatial variables derived from the geographic coordinates of the

sampling sites, described below. Variation partitioning is a tech-

nique of choice for this type of analysis. In all cases, statistics are

used to describe how successful the explanatory variables are at

explaining the response variables (community composition
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data). The choice of an appropriate, unbiased statistical estima-

tor is of great importance for the correct interpretation of the

results. This report will briefly describe partial linear regression

and canonical analysis, the simple and adjusted forms of the

coefficient of determination used in regression and canonical

analysis, and finally variation partitioning.

Partial linear regression

The notation y;XjW represents the partial linear regression

of a response variable y (vector of length n) on a matrix X

containing m explanatory variables, while controlling for

the linear effect of a matrix W containing q covariables. Partial

regression is computed in two steps: (i) regress X on W and

compute the residuals Xres(W); and (ii) regress y on Xres(W)

to obtain the partial R2, the fitted values, the residuals, and

so on.

The R2 statistic of a partial regression that will be used to

construct the F-statistic for the test of significance (next para-

graph) is called the partial R2. It is the ratio of the sum-of-

squares (SS) of the fitted values of the partial regression on

the sum (SS of the fitted values + SS of the residuals):

R2
y;XjW = SSðfitted values ofy;XjWÞ=ðSSðfitted valuesÞ

+SSðresidualsÞÞ
ð1Þ

Using the graphical representation of Fig. 1, Ry;XjW
2 = [a]/

[a + d].

The F-statistic used to test the significance of the partial re-

gression relationship takes into account the number of cova-

riables q; in ordinary multiple regression, q = 0. The F-statistic

is computed as follows using the partial R2:

F = ðR2
y;XjW=mÞ=ðð1 � R2

y;XjWÞ=ðn � 1 � m � qÞÞ ð2Þ

It can also be computed directly from the sums-of-squares:

F = ðSSðfitted values ofy;XjWÞ=mÞ=ððSSðresidualsÞÞ=
ðn � 1 � m � qÞÞ

ð3Þ

or, using Fig. 1:

F = ð½a�=mÞ=ð½d�=ðn � 1 � m � qÞÞ ð4Þ

Significance of the F-statistic can be tested with reference to

an F-distribution if the condition of normality of the residuals

is met (this is rarely the case for ecological data), or by a

permutation test if it is not (this is the most common case).

Permutation tests are described in several textbooks, includ-

ing Manly (1997) and Legendre and Legendre (1998). In

the application to variation partitioning described below,

both y;XjW and y;WjX will be computed and tested for

significance.

Partial canonical analysis

Similarly, the notation Y;XjW represents the partial canon-

ical redundancy analysis (partial RDA) of a response data ma-

trix Y of size (n 3 p) on a matrix X containing m explanatory

variables, while controlling for the linear effect of a matrix W

containing q covariables. Partial canonical analysis is com-

puted in the same way as partial linear regression and uses

the same F-statistic for significance testing (see below for

details). In the application to variation partitioning described

below, both Y;XjW and Y;WjX will be computed and tested

for significance.

Unadjusted and adjusted coefficients
of determination

The coefficient of multiple determination (unadjusted R2) esti-

mates the forecasting potential of a multiple regression equa-

tion:

R2 =
regression SS

total SS
=
R
�
ŷi � y

�2

Rðyi � yÞ2
= 1 � residual SS

total SS
ð5Þ

where ‘regression SS’ is the sum-of-squares of the fitted values

of the regression equation. It measures the proportion of the

variation of y about its mean that is explained by the regression

equation.

In multiple regression, an alternative measure of determina-

tion is the adjusted coefficient of multiple determination Ra
2

(Ezekiel, 1930):

R2
a = 1 � residual mean square

total mean square
= 1 �

�
1 � R2

�� total d:f:

residual d:f:

�

ð6Þ

The right-hand parentheses of equation 6 shows that Ra
2 takes

into account the numbers of degrees of freedom associated

with the numerator and denominator of equation 5. In ordi-

nary multiple regression, the total degrees of freedom of the

F-statistic are (n � 1) and the degrees of freedom of the

residuals are (n – m � 1) where n is the number of observations

and m is the number of explanatory variables in the model. In

multiple regression through the origin, where the intercept is

forced to zero, the total degrees of freedom of the F-statistic are

[a] [b] [c]
Variation
explained
by X

Variation
explained

by W

Unexplained variation
(residual variation) = [d]

Variation in
response
variable y

or response
matrix Y

=

Figure 1 Venn diagram representing the partition of the variation of

a response variable y or a response matrix Y between two sets of ex-

planatory variables X and W. The rectangle represents 100% of the

variation in y or Y. Fraction [b] is the intersection (not the interaction)

of the amounts of variation explained by linear models of X and W.

Adapted from Legendre (1993).
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n and the residual degrees of freedom are (n – m). In both

cases, the correction takes into account the number of

objects n and the number of explanatory variables m; the cor-

rection is light when m is small when compared with n. Ra
2 is

a suitable measure of goodness-of-fit for comparing regression

equations fitted to different data sets, with different numbers

of objects and explanatory variables. Using simulated data with

normal error, Ohtani (2000) has shown that Ra
2 is an unbiased

estimator of the contribution of a set of explanatory variablesX

to the explanation of y. The Ra
2 statistic cannot be directly

computed for partial linear regression because the number

of degrees of freedom to use in the correction is then

unknown.

In RDA, the canonical R2 is called the bimultivariate redun-

dancy statistic (Miller and Farr, 1971) or the canonical coeffi-

cient of determination. It is computed in the same way as in

multiple regression: it is the ratio of the sum of each response

variable’s regression (or fitted values) SS to the sum of all re-

sponse variables’ total SS. In canonical analysis, the signifi-

cance of the F-statistic is always tested by permutation,

except in the very restrictive case where the variables in Y

are standardized and the residuals are multinormal. These con-

ditions are almost never met with ecological data; in the rare

cases where they are, the F-statistic is tested using the Fisher–

Snedecor F-distribution with (m 3 p) and p(n – m � 1) degrees

of freedom (Miller, 1975). Using numerical simulations, Peres-

Neto et al. (2006) have shown that, for normally distributed

data or Hellinger-transformed species abundances in RDA,

the adjusted bimultivariate redundancy statistic Ra
2, obtained

by applying equation 6 to the canonical R2, produced unbiased

estimates of the real contributions of the variables in X to the

explanation of a response matrix Y. The Hellinger transforma-

tion is one of five transformations that make community com-

position data containing many zeros suitable for analysis by

linear methods such as principal component analysis (PCA)

or RDA (Legendre and Gallagher, 2001).

Adjusted coefficients of determination in multiple regres-

sion and canonical analysis can, on occasion, take negative

values. For large data sets, Ra
2 is zero when the explanatory

variables explain no more variation than random normal

variables would. Negative values of Ra
2 are interpreted as

zeros; they correspond to cases where the explanatory varia-

bles explain less variation than random normal variables

would.

Variation partitioning

The technique of variation partitioning is used when two or

more complementary sets of hypotheses can be invoked to ex-

plain the variation of an ecological response variable. For ex-

ample, the abundance of a species could vary as a function of

biotic and abiotic factors. In the study of beta diversity, the

total variation of the community composition data table,

denoted SS(Y), can be partitioned among one or more sets

of environmental variables and a table describing the spatial

relationships among the sampling sites. Fitting the community

composition data to spatial variables, as described below,

allows researchers to establish that there are significant spatial

patterns, perhaps at various scales, present in the species data.

The presence of significant spatial patterns in the response data

can be invoked as support either for a neutral model (Bell,

2001, Hubbell, 2001, He, 2005) or for environmental control

since environmental data are often spatially structured. The

presence of significant relationships between the species and

environmental variables would strongly support the hypoth-

esis of environmental control, which is not in opposition to

a hypothesis of neutral process, as discussed by Legendre et al.

(2005).

Variation partitioning among environmental and spatial

components was first described by Borcard et al. (1992) and

Borcard and Legendre (1994). Variation partitioning will be

presented in the context of the analysis of a response commu-

nity composition data table Y. It can also be applied to a single

response variable y since the algebra of partial linear regression

is the same as that of partial canonical analysis.

Variation partitioning of a response data table Ywith respect

to two matrices of explanatory variables X and W involves the

following three steps, which correspond to different research

objectives.

Obtaining the Fractions of Variation

The calculations, based upon three multiple regressions (for

a single variable y) or three canonical analyses (for a multivar-

iate response table Y), are summarized in Table 1.

(i) Compute the canonical analysis of Y with respect to the

first table of explanatory variables X. Compute the R2 and

Ra
2 using equations 5 and 6. Assuming that the rectangle

has a surface area normalized to 1, the Ra
2 corresponds to

the surface area of the left-hand circle in Fig. 1. It contains

the adjusted fractions [a] and [b].

(ii) Compute the canonical analysis of Y with respect to the

second table of explanatory variables W. Compute the R2

and Ra
2 using equations 5 and 6. The Ra

2 corresponds to the

surface area of the right-hand circle in Fig. 1. It contains

the adjusted fractions [b] and [c].

(iii) Compute the canonical analysis of Y with respect to the

union of tables X and W. Compute the R2 and Ra
2 using

equations 5 and 6. The Ra
2 corresponds to the union of the

two circles in Fig. 1. It contains the adjusted fractions [a],

[b] and [c].

(iv) From these first results, compute fraction [b] by subtrac-

tion: [b] = [a + b] + [b + c] � [a + b + c].

(v) Compute fraction [a] by subtraction: [a] = [a + b] � [b].

(vi) Compute fraction [c] by subtraction: [c] = [b + c] � [b].

(vii) Compute fraction [d], which represents the residual var-

iation, by subtraction: [d] = 1 � [a + b + c].

These values can be added to a Venn diagram such as the

one shown in Fig. 1. Because they are based on adjusted
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coefficients of determination, the fractions can, on occasion,

take negative values. These are interpreted as zeros, as

explained in the previous section.

When X is a matrix of environmental variables and W con-

tains descriptors of the spatial relationships among the sam-

pling sites, the Venn diagram (Fig. 1) provides the following

information:

(i) The circle containing [a + b] shows how much of the var-

iation of Y is explained by the environmental variables. Of

that, [b] is the variation explained jointly by X and W, or

the fraction of the environmentally explained variation

that is spatially structured. [a] is the environmentally

explained variation that is not explained by the spatial var-

iables found in W.

(ii) The circle containing [b + c] shows how much of the var-

iation of Y is explained by the spatial variables found in W.

Of that, [c] is the variation explained uniquely by a linear

model of the spatial variables found in W and not by a lin-

ear effect of the environmental variables X. This compo-

nent may be due to spatially structured environmental

variables that are not present in table X or to non-linear

effects of the environmental variables X on Y. That vari-

ation may also be due to processes, such as competition

or dispersal, in the ecological community depicted by table

Y. In that case, it cannot be related to environmental

variables.

To model broad-scale spatial patterns only, Borcard et al.

(1992) and Borcard and Legendre (1994) used a third-degree

polynomial function of the geographic coordinates of the sam-

pling sites as matrixW in variation partitioning. More recently,

Borcard and Legendre (2002) and Borcard et al. (2004) de-

scribed PCNM (principal coordinate analysis of neighbour ma-

trices) analysis, which generates a matrix W containing spatial

descriptors that represent a spectral decomposition of the spa-

tial relationships among the sampling sites. PCNM analysis

allows researchers to model these relationships at all spatial

scales. PCNM geographic functions are a type of ‘distance-based

eigenvector maps’ (DBEMs), which belong to a general class

called ‘Moran’s eigenvector maps’ (MEMs) (Dray et al., 2006).

Testing the Significance of the Fractions

The fractions must be tested for significance in order to support

fully the reasoning described in the first paragraph of this

section. The F-statistics of the three regressions or canonical

analyses giving rise to the adjusted fractions [a + b], [b + c]

and [a + b + c] (Table 1) can be tested directly by parametric

or permutation tests. Individual fractions [a] and [c] cannot

be tested in that way (see below), while fraction [b] cannot

be tested at all, as shown in Table 1. [d] is the residual varia-

tion. Fraction [d], together with its degrees of freedom, forms

the denominator of the F-statistics used in testing the other

fractions.

The partial canonical analyses Y;XjW and Y;WjX have to

be computed to test the significance of fractions [a] and [c],

respectively. The F-statistics are computed following equation

2, 3 or 4. These F-statistics are tested using special permutation

methods, called ‘permutation of the residuals’, described in

Legendre and Legendre (1998) and Anderson and Legendre

(1999).

Mapping the Fitted Values of the Fractions

The fitted values corresponding to fractions [a + b], [b + c], [a +

b + c], [a] and [c] can be computed in order to draw maps that

will help in interpreting them. In the case of a single response

variable y, the fitted values of the multiple and partial multiple

regressions giving rise to these fractions provide the values that

can be mapped. In the case of a multivariate response table Y,

e.g. a community composition table, the fitted values are con-

tained in multivariate tables of site scores produced by the ca-

nonical and partial canonical analyses. The first few axes of

each of these tables, which correspond to the largest canonical

eigenvalues, can be used for mapping. Point maps, such as

bubble plots, should be produced for fraction [a] because that

fraction is not spatially structured; the map will display the ‘lo-

cal innovation’ at each sampling site. Interpolation mapping

techniques, such as kriging, can be used for the other fractions,

which contain spatially correlated values.

Variation partitioning of Y can be computed with respect

to three or four tables of explanatory variables. The algebra,

Table 1 Method for calculating the adjusted fractions of variation [a] to [d] depicted in Fig. 1

Canonical analyses

Compute

R2 (eq. 5)

Compute Ra
2 (eq. 6) and

fractions of variation

Can be tested

for significance

Y;X R2 of Y;X [a + b] = Ra
2 of Y;X Yes

Y;W R2 of Y;W [b + c] = Ra
2 of Y;W Yes

Y;(X,W) R2 of Y;(X,W) [a + b + c] = Ra
2 of Y;(X,W) Yes

[a] = [a + b] � [b] Yes

[b] = [a + b] + [b + c] � [a + b + c] No

[c] = [b + c] � [b] Yes

Residuals = [d] = 1 � [a + b + c] No

Three multiple regressions or canonical analyses are required.
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which involves more steps, will not be explained in detail here.

It is described in one of the documentation files of the package

‘vegan’ (Oksanen et al., 2007) of the R statistical language.

Discussion

Analysis of the variation of a community composition data ta-

ble is a widely used approach in community ecology. As stated

in the Introduction, the total variation in a community com-

position table, denoted SS(Y), is a measure of beta diversity,

which is the diversity among sites in the study area. Ordination

methods such as PCA, correspondence analysis (CA) and prin-

cipal coordinate analysis (PCoA) have been used since the

1970s to partition the variation of community composition

data tables into orthogonal axes, which can be used to produce

ordination plots or can be related to potentially explanatory

variables. In the years 1980 and 1990, canonical ordination

methods were made widely available to ecologists, firstly

through the program Canoco (ter Braak, 1988; ter Braak

and Smilauer, 2002). Canonical ordination offers the possibil-

ity of directly incorporating the environmental variables of in-

terest in the analysis as constraints for the ordination, hence

the expression ‘constrained ordination methods’. Ecologists

quickly took advantage of this improved methodology and ap-

plied it to all problems of species–environment relationships.

(Two bibliographies on the applications of canonical analysis

to ecology, covering together the period 1986 to 1996, contain

a total of 804 entries. They are available from H. J. B. Birks,

Botanical Institute, University of Bergen, Allégaten 41, N-

5007 Bergen, Norway, and also on the URL http:/www.bio.

umontreal.ca/casgrain/cca_bib/.) In 1990, Legendre proposed

to use canonical analysis to model the spatial structure of com-

munity composition data, representing the spatial relation-

ships among the sampling sites by a polynomial function of

their geographic coordinates. That development led to the

method of variation partitioning among environmental and

spatial components, described in the previous section.

Variation partitioning has become a method of choice for

the interpretation of beta diversity using tables of environmen-

tal and spatial variables. At the last count, the ISI Web of

Knowledge of the Institute for Scientific Information listed

603 papers that had used the method or were referring to

it. The published examples concern most groups of organisms.

An example is the analysis of the spatial variation of a commu-

nity of oribatid mites in the peat carpet of a peat bog. Thirty-

five mite species collected in 70 soil cores were analysed by

variation partitioning with respect to a set of environmental

and spatial variables. In the papers of Borcard et al. (1992)

and Borcard and Legendre (1994), a polynomial function of

the geographic coordinates was used as the spatial representa-

tion of the spatial relationships among the soil cores. In Bor-

card and Legendre (2002) and Borcard et al. (2004), PCNM

spatial base functions were used instead, providing a much

better explanation of the spatial variation in species composi-

tion among the cores (beta diversity).

Beta diversity is an interesting ‘currency’ for ecologists to

compare either different sampling areas, or different ecological

communities co-occurring in an area. (i) For the comparison of

different study areas to be meaningful, the areas must be of the

same size and sampled in the same way. An example would be

the comparative study of the five 24 ha forest plots that are

presently monitored under the auspices of the Chinese Forest

Biodiversity Monitoring Network, forming a latitudinal gradi-

ent through China. The comparison would be meaningful if all

compared plots are similarly divided into cells of 20 m 3 20 m,

or 40 m 3 40 m, etc. In the framework of variation partition-

ing, SS(Y) is a convenient measure of beta diversity within

each area. The total beta variation can be partitioned among

one or several sets of environmental variables, as well as a table

of spatial variables. The resulting partitions of the five separate

areas can be compared using the results of these analyses. (ii)

In each of these forest plots, one could compare the beta di-

versity of trees with that of other vegetation strata, for exam-

ple, after dividing the plot into cells of equal sizes. The method

of variation partitioning would allow researchers to partition

the beta variation of each community among environmental

and spatial variables and determine if the factors controlling

the spatial organization are the same for the different groups

of organisms.

Statistical analysis of community composition data must not

be taken lightly. For proper tests of hypotheses concerning the

factors responsible for the creation and maintenance of beta

diversity in ecosystems, it is important to use tests of signifi-

cance that do not rely on unrealistic assumptions, such as mul-

tivariate normality, when the data do not support these

assumptions. Tests of significance must have correct type I er-

ror rates and good power to detect effects, whether natural or

anthropogenic, when these effects are present. When signifi-

cant effects are identified, one should use unbiased statistics

(Ra
2) to report their magnitude. The conclusions reached during

ecological analysis will be used by practitioners to take impor-

tant decisions about the management of ecosystems, so they

must be grounded in good science.

This report described the method of variation partitioning,

which took many years to develop. Variation partitioning

allows researchers to test precise hypotheses about the origin

of beta diversity in ecosystems and determine how much of the

spatial variation is controlled by environmental variables and

how much remains unexplained. The latter fraction may be

under the influence of unmeasured environmental variables,

or else it may be determined by community processes such as

competition or dispersal that need to be explored. In any case,

the use of appropriate statistics is of foremost importance dur-

ing ecological variation partitioning.
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329–358.

R Development Core Team (2007) R: A Language and Environment for

Statistical Computing. R Foundation for Statistical Computing,

Vienna, Austria. URL http://www.R-project.org.

ter Braak CJF (1986) Canonical correspondence analysis: a new eigen-

vector technique for multivariate direct gradient analysis. Ecology

67:1167–1179.

ter Braak CJF (1987a) The analysis of vegetation–environment

relationships by canonical correspondence analysis. Vegetatio

69:69–77.

ter Braak CJF (1987b) Ordination. In: Jongman RHG, ter Braak CJF,

van Tongeren OFR (eds). Data Analysis in Community and Landscape

Ecology. Pudoc, Wageningen [reissued in 1995 by Cambridge: Cam-

bridge University Press], 91–173.

ter Braak CJF (1988) CANOCO—A FORTRAN Program for Canonical Com-

munity Ordination by [Partial] [Detrended] [Canonical] Correspondence

Analysis, Principal Component Analysis and Redundancy Analysis (Ver-

sion 2.1). Wageningen: Agricultural Mathematics Group, Ministry

of Agriculture and Fisheries.

ter Braak CJF, Smilauer P (2002) Canoco Reference Manual and CanoDraw

for Windows User’s Guide: Software for Canonical Community Ordination

(Version 4.5). Ithaca, NY: Microcomputer Power.

Whittaker RH (1960) Vegetation of the Siskiyou mountains, Oregon

and California. Ecol Monogr 30:279–338.

Whittaker RH (1972) Evolution and measurement of species diversity.

Taxon 21:213–251.

8 Journal of Plant Ecology

D
ow

nloaded from
 https://academ

ic.oup.com
/jpe/article/1/1/3/1130269 by guest on 20 August 2022

http://cran.r-project.org
http://cran.r-project.org
http://www.R-project.org

