
Journal of Cloud Computing:
Advances, Systems and Applications

Liu et al. Journal of Cloud Computing: Advances, Systems

and Applications (2020) 9:35

https://doi.org/10.1186/s13677-020-00176-9

RESEARCH Open Access

Studying gas exceptions in
blockchain-based cloud applications
Chao Liu1* , Jianbo Gao1, Yue Li1, Huihui Wang2 and Zhong Chen1

Abstract

Blockchain-based cloud application (BCP) is an emerging cloud application architecture. By moving trust-critical
functions onto blockchain, BCP offers unprecedented function transparency and data integrity. Ethereum is by far the
most popular blockchain platform chosen for BCP. In Ethereum, special programs named smart contracts are often
used to implement key components for BCP. By design, users can send transactions to smart contracts, which will
automatically lead to code execution and state modification. However, unlike regular programs, smart contracts are
restricted in execution by gas limit, i.e., a form of runtime resource. If a transaction uses up all available gas, an out of
gas exception (OG) will trigger, reverting state until right before that transaction.
In this work, we study the out of gas exceptions (or gas exceptions in short) on Ethereum empirically for the very first
time. In particular, we collect exception transactions using an instrumented Ethereum client. By investigation, we
found gas exceptions stand out in terms of both occurrences and losses. Moreover, we focused on individual
contracts and transactions, aiming at discovering and identifying common causing factors triggering these
exceptions. At last, we also investigate existing tools in preventing gas exceptions. Our results suggest further research
and study in this direction.

Keywords: Cloud application, Blockchain, Ethereum, Runtime exception, Out of gas, Empirical study

Introduction
In the last few years, the cloud computing community

has seen a number of emerging techniques and applica-

tion categories. For example, edge computing is a new

proposed cloud computing paradigm aiming at meeting

the increasing computation demand for low latency and

fast response, with abroad applications in IoT (internet-

of-things) [1], smart cities [2], autonomous cars [3], and

etc.

Besides, another trend of cloud computing has also

gained vast attention both within and beyond the commu-

nity, i.e., the ongoing movement towards building a fully

decentralized infrastructure in the name of blockchain.

In fact, the interest for blockchain technology has seen

a steep growth in the last five years, with a number

*Correspondence: liuchao_cs@pku.edu.cn
1School of Electronics Engineering and Computer Science, Peking University,
No.5 Yiheyuan Road, 100871, Beijing, China
Full list of author information is available at the end of the article

of investigations both in academia [4–10] as well as in

industry [11–14].

One particular use case of the movement towards

decentralization is the invention of decentralized appli-

cation (dApp in short), a combination of both traditional

cloud application and new blockchain-enabled applica-

tion (i.e., the smart contract). We give these systems a

more straightforward name, i.e., blockchain-based cloud

application (BCP for short). Since these names both refer

to the similar concept, throughout this work, we use

the name decentralized application and blockchain-based

cloud application interchangeably. In addition, we will

stick to the most popular blockchain platform for BCP in

this work, i.e., the Ethereum blockchain.

In general, blockchain is a new paradigm for cloud

computing with a unique emphasises on trust-free and

decentralization. More specifically, a blockchain can be

seen as a replicated append-only log shared by all net-

work peers using the “chain of blocks” (thus given the

© The Author(s). 2020Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-020-00176-9&domain=pdf
http://orcid.org/0000-0002-6181-6324
mailto: liuchao_cs@pku.edu.cn
http://creativecommons.org/licenses/by/4.0/

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:35 Page 2 of 25

name blockchain) data structure, where every block con-

sists of an ordered list of user transactions. Through an

ingenious combination of distributed consensus, crypto-

graphic primitives, peer-to-peer gossip protocol, plus eco-

nomic incentives, the blockchain has proven to be a trans-

parent, tamper-free, yet decentralized way of information

sharing. For example, the Bitcoin blockchain is imple-

mented as a public available shared ledger on network

peers (aka nodes, clients, miners), effectively facilitating a

digital payment system without trusted third-party (TTP)

binding. Some other similar blockchain-based payment

systems are proposed, like BitcoinCash [15], Litecoin [16],

Zcash [17], and Libra [18].

In the view of cloud computing, a blockchain is not only

a persistent place for data storage, but also provides the

ability of computation. The crux of such capability lies

in the concept of programmable transaction scripts, aka,

smart contracts. By design, first generation blockchain like

Bitcoin implements a simple transaction script (i.e. smart

contracts) to achieve flexible processing logic [19]. While

this enables non-trivial transaction settlement logic (some

examples as escrow service, micropayment channel, and

private transaction), the omission of Turing-complete

capability as well as UTXO (unspent transaction output)

account model has limited its application in areas outside

of payment settlement [20].

The Ethereum [14] blockchain was thus proposed to

address the issue, and later grew as a canonical design

for public decentralized cloud computing platforms.

Unlike Bitcoin, Ethereum adopts a more straightforward

approach to holding transacting entities, i.e., modelling

each transactor an independent account. More specifi-

cally, there are two types of accounts in Ethereum, i.e.,

externally owned account (or EOA) 1 and smart con-

tract, both accounts are identified and can be retrieved

by their unique identites called addresses (a 160-bit length

integer identifier). In Ethereum, every account resides

directly on the blockchain and has its own state per-

sisted by so-called state database [14]. An account’s state

consists of four fields: 1) nonce used to prevent replay

attack; 2) balance standing for account’s holding of

Ether (or ETH), Ethereum’s native cryptocurrency; 3)

storageRoot representing account-owned storage data

(structured as a Merkle tree); and 4) codeHash refer-

ring to self-governance code. Here, the last two fields

(i.e., storageRoot and codeHash) are key for smart

contracts, which set them apart from ordinary accounts.

Smart contracts, in essence, are special programs run-

ning on the blockchain. When receiving transactions from

1In Ethereum, EOAs are accounts held by external users (or software on behalf
of external users) with the corresponding public/private key pairs, whereas
smart contracts are self-governed accounts with their own governance logic
embedded in code (as referenced by codeHash). In principle, an EOA can
send transactions directly to other accounts (both EOAs and smart contracts).

other accounts, contracts are automatically loaded and

then executed according to their predefined logic (as

specified by codeHash). In Fig.1, we show a simple

contract named EtherBank in Solidity. Solidity is the

statically typed object-oriented high-level programming

language dedicated to smart contract programming, and

the most popular and widely used such languages in

Ethereum. Solidity supports a rich group of features, such

as native big integer (uint256/int256) type, dynamic

array, user-defined struct, multiple inheritance, and

important blockchain primitives (e.g., msg.sender,
block.number).
As can be seen in Fig.1, the EtherBank contract

defines a storage variable named balances (line 4),

which is persisted on blockchain within consecutive trans-

actions. This variable represents a balance record of rel-

evant accounts, modelled as a mapping from account

address to its corresponding Ether savings. Besides, there

are two publicly available functions in EtherBank,
i.e., deposit() (line 6) and withdraw(uint256
amount) (line 11). These functions define the process-

ing logic for corresponding requests, and will thus get

executed if called by other accounts, respectively. For

instance, the withdraw(uint256 amount) function

states, if called, it first ensures there are no potential

integer overflows (line 12), then updates account’s bal-

ance (line 13), and at last begins to transfer requested

Ether accordingly (line 14). To facilitate this kind of con-

tract execution, Ethereum implements a Turing-complete

stack-based virtual machine called Ethereum Virtual

Machine, or EVM in abbreviation (see Section 2). And

every smart contract (just like EtherBank) has to be

compiled into a corresponding EVM bytecode (i.e., a

sequence of instructions) before ever deployed and exe-

cuted in Ethereum.

In Ethereum, smart contracts are always compiled

into bytecode, and then deployed and executed in EVM

(Ethereum Virtual Machine) along with transaction pro-

cessing mechanism. In particular, every instruction thus

executed will be charged a fee to compensate for resources

spent, as well as to prevent potential DoS (denial of ser-

vice) attacks. This fee is always pre-paid by transaction

sender (i.e., tx.sender2) on a transaction basis, and

are further be factorized into two related parameters in

concept of gas, i.e., tx.gasLimit and tx.gasPrice
. Here, tx.gasLimit specifies maximal amount of

gas available to the transaction, whereas tx.gasPrice
converts gas units into ETH value (the exact fee paid

by transaction sender). In principal, every transaction

sender is required to specify both tx.gasLimit and

tx.gasPrice , and will have to pay the amount of Ether

2By design [14], the raw data structure of Ethereum transaction does not have
a sender field. Instead, the transaction sender is derived from a valid
signature accompany with this transaction, i.e., tx.v, tx.r, and tx.s.

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:35 Page 3 of 25

Fig. 1 EtherBank: an example smart contract written in Solidity

(i.e., tx.gasLimit · tx.gasPrice) before execution.
If, after transaction execution, there are unused gas left,

the remaining part will be refunded back to transaction

sender in ETH in the same rate as tx.gasPrice .

During execution, there are cases where a transaction

ends up using all available gas limit, e.g., it runs into an

infinite loop. When that happens, EVM will force that

transaction to an immediate stop, reverting all intermedi-

ate states modified until right before the transaction. In

this case, we say the transaction has encountered an out of

gas (OG) exception [14], or in short, gas exception.

Out of gas exceptions are problematic or even vulnera-

ble in at least three aspects, i.e., 1) money loss; 2) resource

waste; 3) potential vulnerabilities. First of all, gas excep-

tion causes money loss for the transaction sender. As

of August 30th, 2019, typical market value for this kind

of loss spans from several cents towards several tens of

cents US dollars per transaction. Besides, these exceptions

also mean a kind of resource waste for the entire system

as a whole. Instead of choosing and processing transac-

tions that are doomed to fail, miners could have spent

scarce resources on other normal transactions, which are

more “meaningful” for the network. Last but not least,

previous literature [21] has already revealed a direct link

between out of gas exception and severe contract vulner-

ability, which putting billions of US dollars under threat

according to the study.

We claim the importance of studying out of gas excep-

tion in the scope of blockchain-based cloud application.

While there are previous works concerning the gas mech-

anism of Ethereum [21–25, 32, 44], none of them are

either complete or explicitly towards out of gas exceptions

in a general form. Besides, there also lacks a comprehen-

sive and empirical treatment on these exceptions, or any

other types. In this work, we present a first systematic and

empirical analysis on out of gas exceptions. In particular,

we aim to answer the following research questions (RQs):

• RQ1How do out of gas exceptions exist in Ethereum?

To what extent does it affect external users, network

peers, as well as the blockchain as a whole?
• RQ2What are the main factors or reasons for out of

gas exceptions? Are there lessons developers,

researchers, and users can learn from?
• RQ3 How effectively do existing tools or methods

can help in preventing out of gas exceptions? What

are the limitations?

In summary, the main contributions of our work are:

• We give a comprehensive taxonomy of EVM runtime

exceptions, and find that the two most commonly

seen exception types are out of gas and explicit revert,

which combinedly account for around 95% of all

exception instances, w.r.t. both external transactions

as well as internal message calls.
• To the best of our knowledge, we are the first to

conduct large scale empirical analysis on out of gas

exceptions in blockchain-based cloud applications on

Ethereum. Our study shows that this kind of

exceptions is very prevalence in the world of smart

contracts, and has already caused significant amount

of losses.
• We have investigated the reasons behind out of gas

exceptions. More specifically, we identify four

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:35 Page 4 of 25

possible factors, i.e., misunderstanding of transaction

mechanism, conservative gas limit, compiler derived

bug, and unbounded mass operation.
• We have studied existing tools and methods in use of

preventing out of gas exceptions. The result suggests

room for further research and investigations.

Background

Blockchain-based cloud application

The unparalleled characteristics of blockchain, i.e., trans-

parency, no third-party trust dependency, and perfor-

mance assurance, have motivated widespread interest

and exploration of new application opportunities. Among

them are a new kind of application called decentral-

ized application (dApp), or more specifically blockchain-

based cloud application (BCP). Based on the decentral-

ized blockchain platform, these applications promise to

give birth to a new spectrum of emerging use cases,

such as open source crypto-collectible games (e.g., Cryp-

toKitties) and a bunch of decentralized finance (DeFi)

applications [26].

In Fig. 2, we show a typical blockchain-based cloud

application architecture. Like traditional cloud applica-

tion, a BCP also contains components as Frontend,
Middleware, and Backend. Besides, there may be a

separate storage service, or Database, providing nec-

essary persistent storage functionalities. What makes

blockchain-based cloud applications unique is the addi-

tional capability to communicate with Blockchain.
Usually, this capability of interacting with blockchain

is provided by the Blockchain Endpoint, which

might be a dedicated blockchain client (e.g., Geth
and Parity for Ethereum blockchain), or through

cloudalized blockchain endpoint service (e.g., Infura for

Ethereum).

The integration of blockchain to cloud application (aka

blockchain-based cloud application) promises to give

some positive influence on both the provision and anal-

ysis of traditionally cloud applications. In general, the

introduction of blockchain can provide a new universal

platform for processing, preserving, and testifying of tra-

ditionally hidden application logic, in a fully transparent,

decentralized, and trusted way. For example, users of cur-

rent third-party payment system, such as Alipay, WeChat,

and Paypal, may not have access to the critical transfer

functionality dealing with their money, all they can do is to

fully trust these big companies for performing faithfully,

errorless, and timely. By placing critical business logic

onto the blockchain, however, users are now able to touch

the underline infrastructure and processing logic behind

Fig. 2 A typical architecture of a blockchain-based cloud application

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:35 Page 5 of 25

their everyday activities, such as components operating on

their own money and private data.

Typically, there are two variants of blockchain-based

cloud applications, i.e., 1) pure blockchain-based cloud

applications (PBCP); and 2) hybrid blockchain-based

cloud applications (HBCP).

For pure blockchain-based cloud applications, we

require that every component of the application should

be built on top of some decentralized platform or service

(see process (a), (c), and (f) in Fig. 2), so that both users

and developers see the same code base and are confident

of the performance logic their application behaves (since

both code and data of the application are fully decen-

tralized and transparent). For example, a developer may

decide to build an application by using Ethereum as pro-

cessing engine, IPFS as storage service, Ethereum Name

Service (ENS) as name service for both domain names

and blockchain accounts, and so on. While appealing for

its simplicity and transparency, pure blockchain-based

cloud applications are hard to build and maintain using

current techniques for problems as scalability, privacy,

inter-blockchain communication, and etc.

Instead, for hybrid blockchain-based cloud applications,

developers can choose to implement trust-critical func-

tionalities on the blockchain, whereas leave other com-

ponents as in traditional cloud applications (see pro-

cess (a) to (f) in Fig. 2), e.g., using microservices. In

this way, developers can trade transparency and integrity

guarantees with performance and privacy at the mini-

mal level of functions, in the hope to overcome draw-

backs of current blockchain platforms while still adding

enough trust and transparency to their applications. In

fact, most blockchain-based cloud applications seen now

adopt the hybrid architecture, and we think the trend to

a pure blockchain-based cloud application will take a long

time before decentralized platforms and services become

mature and easily accessible.

Ethereum, smart contract, and EVM

Ethereum, in its essence, is a decentralized transaction-

driven deterministic state machine. In particular, it resides

in the public blockchain category, where every block as

well as transaction is publicly available, and users are

free to send transactions to drive a state change. In this

respect, it can be seen as an instantiation of Lamport’s

state machine replication [27] approach, where at the core

of this state machine transition analogy is the so-called

Ethereum Virtual Machine, or EVM.

In Ethereum, all miners (i.e., clients, or network nodes)

join in the same peer-to-peer network, combinedly main-

taining a single view of the so-called world state, where

the world state can be seen as an enumeration of accounts,

which are further divided into EOAs (externally owned

users) and smart contracts. By design, an EOA can send

transactions to other accounts. These transactions may

specify amount of ETH to transfer as well as optional

input data. If the transaction target (denoted by tx.to)
is another EOA, nothing special will happen (other than

ETH transfer). However, if tx.to points to an exist-

ing smart contract, Ethereum will load contract’s code as

well as transaction input data, and send them to EVM

(Ethereum Virtual Machine) for further execution. As

long as no exception occurs during execution, the result

will be persisted and synchronized across the whole net-

work. Besides interacting with an existing smart con-

tract, users can also deploy new contracts by leaving

tx.to to empty, and filling in the transaction input (i.e.,

tx.input) with appropriately encoded init code [28].

The EVM is a simple stack-based machine with access

to a runtime stack and a random access memory. It also

equips with a non-volatile storage, which is persisted by

state database on the blockchain. To facilitate use of

Keccak256 hash function, EVM adopts a large word size

of 256 bits. While the stack and storage are accessible in

slots of words, the memory is byte-addressable, so as to be

read andwritten at any preferable byte position. In default,

all newly accessed memory and storage locations in EVM

are initialized to zero value.

Recall from “Introduction” section, every contract must

be compiled into bytecode before executed in transac-

tion. In this regard, EVM offers an instruction set of size

141 until St. Petersburg hardfork3 in Februray 28th, 2019.

These instructions can be categorized into seven groups:

(1) arithmetic and logic operation, e.g., ADD, EXP; (2) cryp-
tographic primitive, e.g., SHA3; (3) blockchain and envi-

ronmental information, e.g., BALANCE, EXTCODESIZE;
(4) storage manipulation, e.g., MLOAD, SSTORE; (5) con-
trol flow, e.g., JUMP, JUMPI; (6) logging, e.g., LOG0, LOG4;
and (7) system operation, e.g., CALL, SELFDESTRUCT.
In Table 1, we show a selected list of EVM instructions,

covering all seven categories, along with their gas cost (as

of St. Petersburg hardfork) [14]. Note, the value in Table 1

does not include amemory expansion cost, which accounts

for the additional memory footprint used by the instruc-

tion (see “The gas mechanism of Ethereum”section).

During transaction execution, contracts can interact

with each other by calling respective public functions.

Since EVM is designed as a single-threaded machine, this

kind of internal message call will immediately trigger a

new execution frame, and change context to it for fur-

ther execution. After the call returns (whether normally

or exceptionally), execution will resume to where it left

before and continue thereafter. In the bytecode level, this

internal call is realized by a set of CALL instructions, i.e.,

CALL, CALLCODE, DELEGATECALL, and STATICCALL.

3In blockchain terminology, a hardfork is a backward incompatible protocol
update.

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:35 Page 6 of 25

Table 1 A selected list of EVM instructions, along with their gas cost (not including memory expansion cost), as of St. Petersburg
hardfork, February 28th, 2019

Instruction Gas Cost

1) arithmetic and logic operation

ADD/SUB 3

MUL/DIV/MOD 5

EXP

⎧

⎨

⎩

10 if exponent is 0;

10 + 50 × (1 + ⌊log256(EXPexponent)⌋) otherwise.

AND/NOT/OR/XOR 3

LT/GT/EQ/ISZERO 3

2) cryptographic primitive

SHA3 30 + 6 × ⌈SHA3datasize ÷ 32⌉

3) blockchain and environmental information

ADDRESS/CALLER/TIMESTAMP/PC 2

BLOCKHASH 20

BALANCE 400

EXTCODESIZE 700

4) storagemanipulation

MLOAD/MSTORE 3

SLOAD 200

SSTORE
⎧

⎪

⎪

⎨

⎪

⎪

⎩

20000 if sets an empty slot to

a non − empty value ;

5000 otherwise.

PUSH{*}/DUP{*}/SWAP{*}† 3

CALLDATACOPY/CODECOPY/RETURNDATACOPY 3 + 3 × ⌈{*}COPYdatasize ÷ 32⌉ ‡

5) control flow

STOP/RETURN/REVERT 0

JUMPDEST 1

JUMP 8

JUMPI 10

6) logging

LOG{n}♦ 375 + 8 × LOGdatasize + n × 375

7) system operation

CREATE 32000

CALL/CALLCODE/DELEGATECALL > 700�

SELFDESTRUCT

⎧

⎨

⎩

30000 if creates a new account;

5000 otherwise.

† In EVM, there are a spectrum of 32 different PUSH, DUP, and SWAP instructions, each starting from 1 to 32, e.g., PUSH1, DUP8, SWAP32. All of these instructions consume
the same amount of gas, i.e., 3 units.
‡ Here {*}COPY stands for CALLDATACOPY, CODECOPY, or RETURNDATACOPY.
♦ There are five LOG instructions in EVM, from LOG0 to LOG4. The variable “n” (as in LOG{n}) represents the number of topics for this log.
� The gas cost for CALL-like instructions are very complicated, see [14].

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:35 Page 7 of 25

They both expect parameters like ETH value to transfer,

message call data, return data position, as well as gas limit

for the internal call. Sometime, these contract-generated

message calls are also known as internal transactions, as

opposite to external transactions fired directly by EOAs.

As far as EVM concerns, internal and external transac-

tions are of little difference, since both are processed and

executed in exactly the same way. However, for analysis

purpose, the internal transactions are much more difficult

to capture than external ones since they may only reside

during runtime execution.

Like regular programs, contracts in execution may

trigger unexpected behaviours, or runtime exceptions,

e.g., divide a number by zero, lack necessary instruc-

tion parameters, and not enough gas available. In the

bytecode level, EVM provides very little support towards

handling exceptions. Besides, right until the latest ver-

sion of Solidity (i.e., v0.5.11 released in August 13th,

2019), it is still impossible for smart contracts to conduct

common try/catch operations w.r.t. runtime excep-

tions. Thus, the only safe and possible way for excep-

tion handling is to fully revert current call, as well

as all its sub-calls. In default, runtime exceptions will

automatically “bubble up” or be re-thrown, causing the

whole external transaction to revert. A few exceptions

are message calls triggered by low-level functions like

call, delegatecall, and staticcall of the target

contract.

The gas mechanism of Ethereum

To circumvent around the inevitable halting problem

stemming from Turing-completeness, as well as to pro-

vide economic incentive to external users and blockchain

miners, Ethereum defines a systematic expendituremeter-

ing mechanism around the concept of gas. In general,

gas measures the amount of processing resources that are

allowed for or has already been consumed by a specific

transaction (aka gas cost). The latter can be seen as a form

of transaction gas cost (see Definition 1). In Ethereum,

every transactionmust specify a finite number of gas limit,

i.e., tx.gasLimit, which restricts the maximal amount

of gas that can be used by the transaction. The transaction

gas limit, together with a gas price, i.e., tx.gasPrice ,

combinedly decide how much ETH a transaction sender

has to pre-pay (plus additional ETH transferred directly

to the receiver) before his or her transaction accepted as

valid for further processing4. Besides, every valid block

also has to set its own gas limit, i.e., block.gasLimit,
which corresponds to the maximal accumulated gas cost

that are allowed for all the transactions in that block.

4There are other criteria for a valid transaction. One that is related to gas
requires transaction gas limit be greater than or at least equal to intrinsic gas
[14].

In Ethereum, the exact amount of transaction gas cost

can be divided into three parts: 1) intrinsic gas cost; 2)

execution gas cost; and 3) deploy gas cost.

Definition 1 (Transaction Gas Cost). The gas cost for a

specific transaction (denoted by tx) consists of three parts:
1) intrinsic gas cost; 2) execution gas cost; and 3) deploy

gas cost.

C(tx) = Cintrinsic(tx) + Cexecution(tx) + Cdeploy(tx)

(1)

Note, the Eq. 1 does not include a potential gas refund,

since the latter happens after finishing execution and has

nothing to do with an out of gas or otherwise exceptional

transaction.

Note, whereas Ethereum provides a so-called gas refund

mechanism by returning back some part of used gas

during transaction execution [14], this operation actually

takes place after the execution, and thus is not accounted

in the above definition. What’s more, since this refund

happens after finishing execution, any single instance of

out of gas exception will still cause state revert regardless

of the potential refunded gas.

Definition 2 (Intrinsic Gas Cost). The intrinsic gas cost

applies only to external transactions. For a specific exter-

nal transaction (denoted by tx), its intrinsic gas cost can be
divided into: 1) input data cost; 2) contract creation cost;

and 3) basic cost.

Cintrinsic(tx) = Cinput(tx) + Ccreate(tx) + Cbasic(tx)

(2)

Cinput(tx) =
∑

byte∈tx.input

{

4 if byteiszero;

68 otherwise.
(3)

Ccreation(tx) =

⎧

⎨

⎩

32000 if tx.to isempty, i.e.,

creatingnewcontract;

0 otherwise.

(4)

Cbasic(tx) = 21000 (5)

Note, the intrinsic gas cost is only valid for exter-

nal transactions, whereas internal transactions (aka mes-

sage calls) pays nothing for it. In other words, Ethereum

charges intrinsic gas cost only on an external transaction

basis.

Definition 3 (ExecutionGas Cost). The execution gas cost

of a specific transaction (denoted by tx) is the sum of indi-

vidual gas cost for every executed instruction (denoted by

INS).

Cdeploy(tx) =
∑

INS

C(INS) (6)

Note, for each specific instruction, the exact execution

cost is defined by [14] and varies on a case-by-case basis.

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:35 Page 8 of 25

A selected list of instructions and their corresponding

execution gas can be seen in Table 1.

Definition 4 (Deploy Gas Cost). The deploy gas cost

applies only to contract creation transactions (i.e., tx.to
is empty). For a specific contract creation transaction

(denoted by tx), it charges for every byte of data that are

returned (i.e., the newly created contract’s code, denoted by

o) by the execution.

Cdeploy(tx) =

{

200 × |o| if tx.to isempty;

0 otherwise.
(7)

Note, the deploy gas cost is only applicable for contract

creation transactions (both explicit and implicit), and a

deploy gas cost exhaustion will always lead to whole trans-

action out of gas, even if previous execution halts with

remaining gas.

While intrinsic cost and deploy cost are straightfor-

ward to calculate [14], the execution gas cost is rather

complicated. In fact, EVM charges execution cost in a just-

in-time manner, before each instruction execution, until

whether it goes to a normal halt or encounters any kind

of runtime exception. Particularly, if available gas is not

enough to pay for an additional instruction, EVMwill trig-

ger out of gas exception, halt execution immediately, and

revert intermediate state.

One important rationale and design target for Ethereum

gas mechanism is to ensure every transaction as well

as instruction uses a “comparable” amount of gas w.r.t.

resources it spent during execution. Failing to achieve

this goal has proven to be dangerous by previous DoS

attacks [24, 29–32]. To this end, the execution cost of

each instruction can be dividend into three parts w.r.t.

three different critical resources, i.e., computation, run-

time memory, and storage. A complete gas schedule for all

EVM instructions can be seen in [14].

For example, while every instruction pays for a com-

putation cost, only two, i.e., SLOAD/SSTORE, will cause
a storage cost. What’s more, both SLOAD and SSTORE
consumes a significantly larger amount of gas than other

instructions (since storage access is much slower than

computation), and that the cost of SSTORE is even higher

than SLOAD so as to account for the “harder” task of writ-

ing than merely reading. Even the same SSTORE instruc-

tion itself may consume different amount of gas (20000

or 5000), depending on different context. As for mem-

ory execution cost, EVM follows the just-in-time fashion,

i.e., every instruction only pays for the additional active

memory footprint resulted from its execution. This is also

known asmemory expansion cost (see Definition 5) .

Definition 5 (Memory Expansion Cost). The mem-

ory expansion cost (i.e., Cmemory) for a given instruction

(denoted by INS) corresponds to the difference between

active runtime memory cost Cactive(µi) before and after its

execution, where µi is the current active runtime memory

size in words (i.e., 32 bytes or 256 bits). Here, we use m to

represent the current EVM runtime memory.

Cmemory(INS) = Cactive(µ
after
i) − Cactive(µ

before
i) (8)

Cactive(x) = 3 × x + ⌊x2/512⌋ (9)

µi = ⌈mhighestaddress/32⌉ (10)

Note, since currently EVM do not support reducing

active memory size (as of St. Petersburg hardfork), the

memory expansion cost shown in Eq. 8 will never go

below zero. What’s more, the exact value of this memory

cost varies depending on the specificmemory layout (both

before and after execution) as well as instruction param-

eters. In other words, even the same instruction with the

same parameters may cause completely different memory

expansion cost, thus the total execution gas cost, under

different circumstances.

Methodology
Our study consists of three phases (Fig. 3): 1) data collec-

tion; 2) empirical analysis; and 3) tool evaluation. First of

all, we collect data by deploying two full-synced Ethereum

clients (i.e., Geth and Parity with different settings),

and scraping from blockchain explorer like Etherscan. The

collected data are stored into a dedicated offline database

for further analysis. Secondly, we use automatic script and

manual inspection to investigate the overall status of out

of gas exceptions, with a focus on their causing factors

or behind reasons (RQ1 and RQ2). At last, we investigate

the effectiveness of existing tools in helping prevent out

of gas exceptions (RQ3) using historical transactions as

reference.

In particular, we deployed two Ethereum full nodes on

the Mainnet, i.e., one Geth client and one Parity client.

Both nodes are set to sync to the latest block height, i.e.,

8,547,396 as of September 14th, 2019. We instrumented

the Geth by adding code to identify and extract trans-

actions triggering at least one instance of any runtime

exceptions (including out of gas). The Geth node is run-

ning in full syncmode with state pruning on for about

onemonth, on a machine with 2 Intel(R) Xeon(R) E5-2680

v4 CPUs (28 cores, 56 threads), 378 GB RAM, and 2 TB

SSD. After successfully synced to block #8, 547, 396 (i.e., as

of September 14th, 2019) in about 1 month, the datadir
directory takes up about 416 GB of disk space. Besides,

we also maintain a Parity node in archive pruning

mode with tracing on. While this may consumemore than

7× SSD space depending on specific setting 5, Archive

nodes are special as they also provide the unmatched abil-

ity to replay past transactions, retrieve execution traces,

as well as send simulated transactions at any point of time

5As of September 14th, 2019, a typical fully-synced Parity archive node
takes around 3 TB of disk space to operate, which may even double when
turning -fat-db on.

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:35 Page 9 of 25

Fig. 3 An overview of our methodology

in history, which normal full nodes (with state pruning

on) cannot offer. The Parity node we use in this work

is based on QuikNode’s dedicated Ethereum node service,

which exposes standard Web3 JSON-RPC APIs through

both HTTP and WebSocket protocols. It takes about 2

days for this node to fully synchronize.

For analysis and evaluation purpose, we also adopt sev-

eral Web crawlers to extract both historic ETH price as

well as known contract source code from Etherscan. And

in the tool evaluation phase, we investigate the effective-

ness of using native Solidity compiler in helping prevent

these exceptions.

Results
RQ1: status quo

In this section, we investigate the current situation of

out of gas exceptions. First of all, we are exceptionally

interested in comparing gas exception with other runtime

exception types in a macro view. Then, we look at the

collective consequences of gas exceptions using historical

transaction data collected in Section 2. After that, we alter

our attention to the micro cases by focusing on individual

smart contracts as well as transactions, in hope of finding

clues of the mechanism and causes leading to out of gas

exceptions.

Exception taxonomy

We first look at the runtime exceptions of EVM. By

referring to both the design paper [14] as well as canon-

ical client implementation [33], we identify a number of

16 different exception types in EVM, and further group

them into six major categories. In Table 2, we show this

exception taxonomy, as well as the absolute occurrences

and relative scales of each exception type. In particular,

we distinguish between two types of out of gas excep-

tions: those happen during execution (i.e., execute out

of gas, EOG) and those after within code deployment

(i.e., deploy out of gas, DOG). In other words, EOG hap-

pens because of short of execution gas cost, whereas DOG
results from lacking of deploy gas cost (see Definition 4 in

“The gas mechanism of Ethereum” section).
We claim the importance of considering both exter-

nal and internal transactions. According to [34], excep-

tions happened in internal calls may not bubble up if

the invoker uses low-level Solidity call functions [34].

In this case, the invoking contract can choose whether

to revert itself or simply ignore deep exceptions. In

other words, during course of an external transaction,

multiple exceptions triggered in internal transactions,

while the outside external one still appears to be nor-

mal. If not consider these internal exceptions, we may

end up underestimating the scale of runtime excep-

tions and losing sight of some deep factors for their

appearances. This fact is perfectly illustrated by the EOG
type in Table 2, where every external transaction tends

to trigger above 36 instances of exceptions during its

execution.
The data shown in Table 2 are obtained by analyz-

ing every historical transaction on Ethereum mainnet

from the genesis block (i.e., block #0) towards block

#8, 547, 396 (i.e., as of September 14th, 2019). We further

divide table columns into two categories, i.e., occurrence

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:35 Page 10 of 25

Table 2 Comparing out of gas exception with other exception types in EVM

Exception Type Occurence Percentage

All External Ratio All External

1) Explicit Revert

REQUIRE-STYLE REVERT (RR) 14,000,856 11, 456, 103 1.22 8.12% 64.91%

ASSERT-STYLE REVERT (AR) 990,183 925,701 1.07 0.57% 5.24%

2) Out of Gas

DEPLOY OUT OF GAS (DOG) 10,963 10,963 1 0% 0.06%

EXECUTE OUT OF GAS (EOG) 155, 373, 273 4,281,071 36.29 90.09% 24.25%

3) Stack Overflow/Underflow

CALL-STACK OVERFLOW (CSO) 10,032 1,113 9.01 0% 0.01%

DATA-STACK UNDERFLOW (DSU) 153,445 53,501 2.87 0.09% 0.30%

DATA-STACK OVERFLOW (DSO) 152 152 1 0% 0.001%

4) Illegal Instruction

INVALID JUMP DESTINATION (IJD) 1,341,130 1,306,785 1.03 0.78% 7.40%

INVALID OPCODE (IO) 232,226 189,518 1.23 0.13% 1.07%

5) Not Enough Ether

INSUFFICIENT BALANCE (IB) 359,822 356,517 1.01 0.21% 2.02%

6)Miscellanea

CLIENT DECISION, ILLEGAL WRITE, etc. 1,693 1,692 1.00 0% 0.01%

♦ Summary

Out of Gas (DOG+ EOG) 155, 384, 236 4,291,945 36.20 90.09% 24.32%

Explicit Revert (RR+ AR) 14,991,039 12, 137, 417 1.24 8.69% 68.77%

Other Exception Types 2,098,500 1,684,217 1.25 1.22% 9.54%

♦ Summery (excluding DoS attacks)

Out of Gas (DOG+ EOG) 4,666,508 4,233,428 1.10 21.86% 24.10%

Explicit Revert (RR+ AR) 14, 987, 686 12, 134, 192 1.24 70.20% 69.07%

Other Exception Types 1,696,017 1,654,643 1.03 7.94% 9.42%

and percentage. In the Occurrence column, we show

results for three related concepts: 1) number of exception

instances, including external and internal transactions; 2)

number of external transactions; and 3) average num-

ber of exception instances per external transaction. In the

Percentage column, we show numbers for exception

instances and external transactions.

From Table 2, we get the following observations:

• 1) out of gas and explicit revert are two most

commonly seen types of exception in Ethereum,

which combinedly account for more than 90% of the

occurrences in terms of both exception instances (i.e.,

external transactions plus internal message calls) as

well as external transactions.
• 2) When considering all the transactions, out of gas

alone accounts for more than 90% of all exceptions,

with explicit revert only takes another 8%. However,

after excluding the notorious DoS attacks [29, 30] by

eliminating transactions from block #2, 250, 000 till

block #2, 750, 000 (both inclusive), the result swaps,

where gas exception now takes up slightly more than

20%, while explicit revert accounts for another 70%.

A closer look at the DoS interval reveals that only

58,517 external transactions in this section contribute

to a total number of 150,717,728 exception instances,

that’s nearly 2,576 instances per external transaction.

The finding suggests a gigantic influence of the DoS

attacks on our study of gas exception. Hence, in the

following of this work, we always exclude

transactions (and their exception instances) from

block #2, 250, 000 to block #2, 750, 000, in hope of

minimizing unfavourable effects from these attacks.
• 3) On average, all the exception types in Table 2 take

place more than once in a single external transaction.

In other words, there are at least an external

transaction that has witnessed more than one

exception. Or, some contracts tend to ignore or not

fully revert in case of deep runtime exceptions.

Besides, transactions may also trigger more than one

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:35 Page 11 of 25

type of exceptions. This can be checked by adding all

the relative percentage of external transactions for

each exception type, which yields around 105%,

exceeding the normal 100%.

In summary, explicit revert and out of gas together

dominate runtime exceptions, whereas the former appears

even three times more frequently (i.e., 70% vs. 22%) than

the latter, after eliminating the influence internal of DoS

attacks. In this work, we focus on the out of gas excep-

tion, since we believe in the uniqueness of gas exception

for Ethereum smart contracts as compared to regular pro-

grams, and that the existence of gas exception is much

more subtle and trickier than explicit revert in terms of

both the causing factors and the mitigating methods.

Accumulative consequences

Besides popularity, we are also interested in the nega-

tive effects (or losses) of gas exceptions, especially as for

transaction senders and network miners.

In Fig. 4, we present the accumulative losses of both

exceptions, where indices for EOG are shown in full lines,

and indices for DOG are in dashed lines. The results in

Fig. 4 are collected and presented in intervals of 1 mil-

lion blocks, from block #0 till block #8, 547, 396, and we

show each value in their logarithmic scale. To evaluate

losses, we choose three related indices: 1) number of

affected external transactions (shown as Txs); 2) accu-
mulated affected gas units (shown as Gas in units of 109

gas, or giga gas); and 3) corresponding affected ETH values

(shown as ETH).
Here, we define the accumulated affected gas as the

total of transaction gas limits for each exception instance.

In other words, we count the sum of proposed gas limit

for every exception instance. While this index system-

atically overestimates the total losses of gas (as well as

corresponding ETH values) 6 , it is the simplest and most

easily accessible estimator we can get, and we have found

some evidences showing the two indices do not differ

very significantly, e.g., in orders of magnitude. Besides, we

also calculate the corresponding affected ETH values with

respect to accumulated affected gas by taking each trans-

action individually with its designated transaction price,

i.e., tx.gasPrice . Last, the number of accumulated

affected gas does not include intrinsic gas cost (see Def-

inition 2 in “The gas mechanism of Ethereum” section)

as well as mandatory CALL execution cost in some cases,

i.e., when outer transaction does not trigger an out of gas

exception itself. This kind of simplification is reasonable

since we’re more interested in comparing the pure wasted

6Considering an external transaction with deep inter-contract invocation,
where the inner most internal transaction runs out of gas, causing each outer
transaction to gas exception. When calculating accumulated affected gas, the
sum is strictly larger than total loss of gas, since it implicitly adds inner
transaction gas limits some multiple times.

gas for gas exceptions, whereas the aforementioned costs

always exist regardless of any exception.

From Fig. 4, we get the following observations:

• 1) The losses resulted from gas exceptions are huge.

In segments of 1 million blocks, as large as some

hundred thousand external transactions are affected

(that’s slightly less than 1 transaction per block),

causing a number of several hundreds ETH values

wasted, or in US dollars, tens of thousands with a

fairly low average exchange rate of $150/ETH. As for
specific type, EOG dominates DOG in each of the

considered indices (i.e., number of external

transactions, accumulated affected gas units, and

corresponding affected ETH values), and the

differences are often in orders of magnitude large

(i.e., ten times or above).
• 2) In terms of every index, both EOG and DOG

experience similar trends throughout entire

transaction history. For example, consider the

number of external transactions involved in gas

exception, i.e., EOG Txs and DOG Txs shown in

Fig. 4. Both lines begin with a small number, then

quickly climb to reach their maxima, and at last stay

relatively stable 7 , i.e., about 106 external

transactions for EOG and 103 for DOG. What’s more,

both EOG Txs and DOG Txs reach their maximal

value (i.e., 1,254,650 for EOG and 2,796 for DOG) in
between block #5, 000, 000 (Jan, 2018) and

#6, 000, 000 (July, 2018), when blockchain and

cryptocurrency industry experience their latest hype.
• 3) The lines for accumulated affected gas units and

corresponding ETH values match very well in shapes,

a trend that can be tested by both EOG and DOG
exception types. This suggests a relatively stable long

term gas price across large section of blocks.
• 4) In the interval of #2, 000, 000 to #3, 000, 000, we

see a salient rise of both affected gas units and ETH
values for EOG exception, then the same indices soon

descend to around 1/10 of the original level in

interval #3, 000, 000 to #4, 000, 000. Finally, in

interval #4, 000, 000 to #5, 000, 000, the exact two

indices, i.e., EOG Gas and EOG ETH, jump again to

reach their previous high levels. During these three

intervals, we find EOG Gas and EOG ETH are the only

pair of indices showing this kind of trend, i.e., swing

up and down in order of magnitude (i.e., ten times or

above) in consecutive intervals. By comparing with

other indices, we think this results from a sudden

dump of affected gas units and ETH value for EOG
during blocks #3, 000, 000 to #4, 000, 000, instead of

7Note the last bucket only counts from block #8, 000, 000 to block #8, 547, 396,
i.e., slightly more than half of the 1 million blocks interval. If instead using
average data for each index, the steady trend will be more obvious.

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:35 Page 12 of 25

Fig. 4 Transactions, gas units, and ETH values affected by out of gas exceptions

an opposite situation where quick jump between

blocks #2, 000, 000 to #3, 000, 000 happens before.

Smart contracts

In order to further understand gas exception, we alter our

attention to individual accounts, especially those smart

contracts 8 involved in exception transactions.

By grouping exception instances (both external and

internal transactions) according to their sender and

receiver addresses, we manage to figure out the most

“popular” accounts related to out of gas exceptions. More

specifically, we are interested in finding accounts send-

ing and receiving most gas exception transactions (both

EOG and DOG) whether through external transactions or

internal message calls.

In Table 3, we show top 10 accounts sending and

receiving gas exception transactions. The total num-

ber of such accounts for each direction are 1,101,591

and 148,940, respectively. Recall from “Exception taxon-

omy” section, we deliberately ignore transactions between

block #2, 250, 000 and #2, 750, 000 to mitigate the effects

of infamous DoS attacks. For each account, we report the

number of exception instances (denoted as Instance),
accumulated affected gas units (denoted as Gas, see

“Accumulative consequences” sections), and correspond-

ing affected ETH values (denoted as Ether). Besides,
we also estimate the monetary losses of ETH using an

exchange rate of $150/ETH.

8Recall that smart contracts are a kind of accounts with additional code and
storage space.

It is worth noting that all of the accounts shown in

Table 3 are smart contracts encountering only EOG excep-

tions. Whereas the highest ranked accounts with both

EOG and DOG exceptions ranks #54 (i.e., 0x6090∼78Ef)
as transaction sender and #13 (i.e., _, the placeholder

address for contract creation transaction) as receiver.

From Table 3, we observe the following facts:

• 1) Smart contracts tend to see more gas exceptions

than plain EOAs. This can be easily checked by

observing that all the accounts in Table 3 are actually

smart contracts, and recall that we mention before

the highest ranking EOAs for each direction only take

up #54 (as transaction sender) and #13 (as

transaction receiver) respectively. There are at least

two explanations for this phenomenon. On one hand,

smart contracts are more vulnerable to out of gas

exceptions. A smart contract, once deployed on

Ethereum, can never change its execution code

during entire lifetime. This means existing bugs or

inappropriate gas limit settings are hard to be fixed

then. Thus, if a contract sets a too conservative gas

limit for internal message calls, it should have seen

more gas exceptions compared to one with a much

loose gas limit. On the other hand, smart contracts

tend to communicate more frequently between each

other than EOAs, creating a large base for

unexpected gas exceptions. As a rule of thumb,

developers tend to reuse well-tested and verified code

libraries while building new applications, where in

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:35 Page 13 of 25

Table 3 A list of top 10 accounts sending and receiving most out of gas exceptions

Account Address Instance Gas Ether

1) Accounts SendingMost Out of Gas Transactions

0x60bf91ac87fEE5A78c28F7b67701FBCFA79C18EC 1, 213, 760 9,917,594 0.17 ($24.88)

0x4B9e0d224DABCC96191cacE2D367A8d8B75C9C81 68,957 209,168 0.002 ($0.34)

0x68C769478002B2E2Db64fE3Be55C943fE4Fbd6b1 57,257 242,976 0.003 ($0.45)

0xE4c94d45f7Aef7018a5D66f44aF780ec6023378e 56,388 6,134,966 0.12 ($18.26)

0x0000000000085d4780B73119b644AE5ecd22b376 25,079 497,667,177 4.60 ($689.86)

✿✿

0x06012c8cf97BEaD5deAe237070F9587f8E7A266d 22,847 1, 486, 219, 348 40.37 ($6055.3)

0x7c5Cb1220Bd293Ff9cf903915732e51a71292038 15,024 639,357,019 8.29 ($1243.74)

0x0000000000013949F288172bD7E36837bDdC7211 11,212 108,082,558 0.31 ($46.91)

0xd0a6E6C54DbC68Db5db3A091B171A77407Ff7ccf 10,298 96,311,375 2.49 ($373.67)

0x414FBf684A6426cf6012623f51170a5A86161d52 10,041 55,541 0.0006 ($0.09)

2) Accounts ReceivingMost Out of Gas Transactions

0x0000000000000000000000000000000000000004 1, 412, 148 4,236,441 0.06 ($9.30)

0x744d70FDBE2Ba4CF95131626614a1763DF805B9E 81,830 3,826,605,402 49.93 ($7489.45)

0xd0a6E6C54DbC68Db5db3A091B171A77407Ff7ccf 44,721 7, 658, 554, 274 164.20 ($24630.2)

✿✿

0x06012c8cf97BEaD5deAe237070F9587f8E7A266d 38,118 792,031,653 24.70 ($3704.29)

0x8d12A197cB00D4747a1fe03395095ce2A5CC6819 35,300 975,469,855 23.99 ($3598.60)

0xb1690C08E213a35Ed9bAb7B318DE14420FB57d8C 33,486 1,286,027,958 37.60 ($5639.40)

0x419D0d8BdD9aF5e606Ae2232ed285Aff190E711b 30,622 578,076,676 5.94 ($890.97)

0xba7435A4b4C747E0101780073eedA872a69Bdcd4 30,483 1,590,815,838 9.99 ($1498.03)

0x86Fa049857E0209aa7D9e616F7eb3b3B78ECfdb0 26,523 320,330,157 11.43 ($1715.05)

0x5EdC1a266E8b2c5E8086d373725dF0690af7e3Ea 23,943 1,437,343,328 13.30 ($1995.45)

Ethereum the libraries may be previously deployed

contracts which expose the same addresses. Besides,

to mitigate the risk of unknown bugs and facilitate

better maintainability, it is even widely recommended

to build smart contracts using proxy patterns, which

again increase the interactions between these

contracts. All in all, the communications between

smart contracts are much more common than

between EOAs, contributing to a much larger surface

for runtime exceptions, including gas exceptions.
• 2) All the contracts in Table 3 has experienced a large

number of gas exceptions during lifetime, where the

top 1 accounts both see above 1 million exceptions as

transaction sender and receiver respectively.

However, the contracts causing most gas units and

ETH losses, i.e., 0x0601∼266d and

0xd0a6∼7ccf, are not the most frequently

involved. In fact, the underlined contract

0xd0a6∼7ccf (EOSSale) has caused more than

164 ETH losses with only 44,721 transaction calls,

which is much smaller than contract 0x04 of

1,412,148 invocations instead.
• 3) Contracts at the bottom half of Table 3 (i.e.,

receiving the most gas exceptions) has caused far

more losses than the top half (i.e., sending the most

exceptions). Notice that the total amount of losses

(both gas and ETH) are always identical counting
from both directions, which suggests an imbalance or

asymmetry between transaction senders and

receivers. In other words, a large number of ordinary

accounts (both EOAs and smart contracts) tend to

interact with a small set of popular accounts (mostly

smart contracts) which act as celebrities in the world

of smart contracts. For example, EOAs may need to

transfer well-known ERC-20 tokens between each

other by calling the same token transfer function, and

famous contract libraries are often shared for reuse

by a large number of smart contracts.
• 4) Consider the contract with address 0x04 which

ranks first as the most out of gas exception receiver.

According to Ethereum yellow paper [14], this

contract is among a set of 8 special “precompiled”

contracts that are proposed to facilitate common and

preliminary functionalities to the platform, e.g., the

elliptic curve public key recovery function, the SHA2

256-bit hash scheme, the RIPEMD 160-bit hash

scheme, and so forth. As for 0x04, it acts as an
identity function for its input, i.e., by returning the

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:35 Page 14 of 25

same input data as its output value. While not

figuring out the point to call this contract, an even

more appealing fact emerges when we look at the

huge amount of exception instances (i.e., 1,412,148)

versus a nearly negligible affected gas units (i.e.,

4,236,441). Further investigation reveals that all

exceptions result from internal message calls, and all

but one invocations have set a small gas limit of 3

units. Even mysteriously, the Parity trace module

seems unable to identify these internal invocations, as

well as the resulting gas exceptions. After a careful

inspection of relevant traces and contract bytecode,

we are confident to confirm the existence of both

transactions and exceptions. We guess the leading

factor for these large number of small gas limit calls

to contract 0x04 is a subtle compiler bug, however,

we do not know the intention and mechanism behind

currently.
• 5) There are two contracts showing up in both lists

that send and receive most gas exception

transactions, i.e., the underlined contract

0xd0a6∼7ccf (EOSSale) and the tilded contract

0x0601∼266d (KittyCore), which happens to be

implementations of two most popular token

standards in Ethereum, i.e., ERC-20, ERC-7219.

Transactions

In this section, we turn our eyes to individual transaction.

More specifically, we look at top external transactions

with most affected gas units by out of gas exceptions.

In Table 4, we show top 5 external transactions which

has: 1) triggered most out of gas exceptions; 2) seen

most accumulated affected gas units. The columns from

left to right are number of exceptions (denoted as OG),
number of message calls (including the outmost exter-

nal transaction, denoted as Call), accumulated affected

gas units (denoted as Gas), available execution gas limit

(excluding intrinsic gas cost for the outmost external

transaction, denoted as Limit), and whether this exter-

nal transaction runs out of gas itself (denoted as Ext).
As before, we intentionally exclude transactions between

block #2, 250, 000 and #2, 750, 000 to mitigate the influ-

ence of historical DoS attacks on Ethereum, and that we

present wasted gas units as accumulated gas limits of

exception transactions.

From Table 4, we get the following observations:

• 1) While most transactions in Table 4 have triggered

an impressive number of OG exceptions, more than

half of them are not externally out of gas themselves.

In other words, only looking at the external

9Also known as standard fungible and non-fungible token protocols in
Ethereum.

transaction may lead to serious under-estimation of

the frequency for gas exceptions.
• 2) The underlined transaction 0xeffd∼5725 in

block #3, 271, 486 is caught with an extremely large

number of gas exceptions, i.e., 1,562 in a single

external transaction. By further investigation, we find

it a contract creation transaction (with tx.to set to

empty) with 1,561 delegatecalls to the same contract

0x7f6E∼86F3, each time with 0 gas limit (and thus

doomed to failed as EOG). Further study on the

transaction input data, here act as contract initiation

code, reveals that the code performs nothing

meaningful but only continuously generating out of

gas delegatecalls through an infinite loop, and that

the bytecode seems not have been produced by

standard solc compiler, but instead coded manually

to perform the instructed tasks. While we do not

have access to the source code of this init code or of

the delegated contract 0x7f6E∼86F3, we believe it
is not intended to do something good, and may be

linked to previous DoS attacks.
• 3) The last three transactions in the bottom half of

Table 4 (i.e., 0xd0f8∼7458, 0x0180∼b2d8, and
0xf52c∼aa55) each causes a tiny amount of gas

losses, i.e., 3 units per message call in average, whereas

Etherscan seems not reporting any gas exception in

them. However, by carefully inspection of the data, as

well as using online debugger of Etherscan, we are

quite sure about their existence, and that we find all

these exceptions are direct results of invoking the

identity contract (i.e., 0x04) with inadequate gas

limit, as described in “Smart contracts” section.

What’s more, all these exceptions happens to be

triggered by the contract 0x60bf∼18EC, which
appears in the top half of Table 3 as the contract

sending most out of gas exceptions.

Blockchain-based cloud applications

In this section, we investigate the relationship between out

of gas exception and blockchain-based cloud application.

In general, out of gas exception may cause three negative

consequences to the successful of blockchain-based cloud

application.

First of all, as part of the blockchain-based cloud

application, any exception (including gas exception) hap-

pened during smart contract execution means a stop

of the normal application logic, and should eventu-

ally cause the overall operation to revert. This kind

of midway reversion will inevitably lead to a poor

QoS (Quality of Service), especially when the back-

bone blockchain is experiencing a busy traffic and thus

with higher latency. Compared with other types of

exceptions, out of gas exceptions are even more trou-

blesome as few developers could have anticipated the

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:35 Page 15 of 25

Table 4 A list of top 5 external transactions that: 1) triggering the most out of gas exceptions; as well as 2) with the most accumulated
wasted gas

Transaction OG Call Gas Limit Ext

1) Transactions TriggeringMost Gas Exceptions

0xeffd72d2245acd53020c519d2be29bd82f83e184730e3b2dbd0015ea0a425725 1, 562 1562 1,116,188 1,116,188 YES

0x5108feb5a8f8988227a5d107c470828f9174f41aaa9bfd3682988836413eeedd 130 326 1, 737, 970 7, 779, 026 NO

0xd0f8611733461d33df72e8b1561078db4882a681a7299916caf47fb2b72b7458 82 740 246 7,776,764 NO

0x018077d47b8a3b478b8f0ea99baa0e2bbe2cf90fccf6b4c50fa4c5d5b276b2d8 82 739 246 7,601,156 NO

0xf52c87299dd303541436f30093ecb1a28f22629ec6d4ed50da76bb12b168aa55 80 721 240 7,054,030 NO

2) Transactions with Most Accumulated Affected Gas Units

✿✿

0x448b49f72d23ecdb281bf1a92d94ab63ef3efc58937d80f51fa2dadd02591bdb 52 146 43, 741, 354 4,978,408 NO

0x48f47b8f8b3a4b9b169079760d53e1711ad22e6305304fa0d40252c797765e0c 39 83 21,199,332 1,714,298 NO

0xc4f7e0cd07e96e40d0ea47747de1f452bc9ad01d5a3628cce0182a4b3814cc36 2 4 9,649,680 4,978,408 YES

0xaf96bc199f1a041e76c2698ba14f0e3540f6bf3aa981be3961f9468431943e0a 2 2, 999 7,980,206 7,978,728 YES

0x65d8fe350eb49c227d8fb4fa0b86e2a9e179c4cb820ba225040b2204a0248e6b 1 3 7,979,000 7, 979, 000 YES

occurrence of them and enforced the correct protection

accordingly.

Second, blockchain-based cloud applications with hid-

den gas exceptions are difficult to identify, debug, and fix

appropriately. When integrated with browser-side fron-

tend code and/or server-side backend code (see Fig. 2),

developers face increasingly difficulties in testing and

debugging out of gas exception related issues. In addi-

tion, the tamper-proof characteristic of smart contract

often means hard to fix bugs or upgrading contract code.

Hence, blockchain-based cloud application developers

should always follow best-practices like proxy pattern at

first place to prevent from jeopardizing themselves with

hard-to-fix vulnerabilities.

Last, unlike traditional cloud applications, blockchain-

based cloud applications often have to deal with digi-

tal assets that have intrinsic value (i.e., monetary value)

with them. For example, a DEX (decentralized exchange)

blockchain-based cloud application must implement at

least one function for crypto-currency pair exchange,

which will internally call the transfer functions of both

crypto-currencies. If the DEX contract fails to identify and

properly handle gas exceptions during this process, users

may result in losing money while performing exchange.

In fact, according to [35], more than three quarters of the

blockchain-based cloud applications have functionalities

in managing or operating on high monetary value density

data. Thus, developers should always prepare themselves

to unexpected gas exceptions, or they may accidentally

cause monetary loss to their customers.

In the following part, we look at a specific blockchain-

based cloud application, i.e., the very popular CryptoKit-

ties game, and perform a case study on out of gas excep-

tion issues with regard to it. We choose to focus on the

smart contract part of CryptoKitties, as it is the directly

influenced component by gas exceptions, and that other

components (like the server-side backend component) are

not accessible to us at the time of writing.

In Table 5, we present a basic gas exception summary

about smart contract components for CryptoKitties as of

block #8, 547, 396, the list of smart contracts and their

source code are accessible from Etherscan10. For each

smart contract, we provide the contract address (denoted

as Contract), contract name (denoted as Name), and
statistics of both sending and receiving out of gas trans-

actions, denoted as Sending OG and Receiving OG
respectively. For the last two indices, we further divide

them into three sub-indices for each: 1) number of EOG
exceptions; 2) accumulated affected gas units; and 3) cor-

responding affected ETH values.

Note, we do not show number of DOG exceptions for

both transaction direction, i.e., sending and receiving,

since we find no smart contract in Table 5 has ever

triggered such an exception. In fact, there are even no con-

tract creation instructions inside any of these contract’s

source code.

From Table 5, we observe the following facts:

• 1) The distribution of gas exceptions among

contracts is asymmetric. In other words, different

contracts in the same application seem trigger an

uneven number of gas exceptions. Among these 5

smart contracts of CryptoKitties, KittyCore and

SaleClockAuction have triggered the most gas

exceptions, both in terms of exception numbers as

well as affected gas units. In particular, KittyCore
is the most vulnerable contract for sending and

receiving gas exceptions in terms of number, i.e.,

22,847 and 38,118. Whereas KittyCore and

10See https://etherscan.io/accounts/label/cryptokitties.

https://etherscan.io/accounts/label/cryptokitties

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:35 Page 16 of 25

T
a
b
le

5
Ba
si
c
g
as

ex
ce
p
tio

n
su
m
m
ar
y
o
fs
m
ar
t
co
n
tr
ac
ts
fr
o
m

C
ry
p
to
Ki
tt
ie
s
d
A
p
p

C
o
n
tr
a
ct

N
a
m
e

S
e
n
d
in
g
O
G

R
e
ce
iv
in
g
O
G

EO
G

G
a
s

Et
h
er

EO
G

G
a
s

Et
h
er

0
x
0
6
0
1
2
c
8
c
f
9
7
B
E
a
D
5
d
e
A
e
2
3
7
0
7
0
F
9
5
8
7
f
8
E
7
A
2
6
6
d

Ki
tt
yC

o
re

2
2
,
8
4
7

1
,
4
8
6
,
2
1
9
,
3
4
8

4
0
.3
7

3
8
,
1
1
8

79
2,
03
1,
65
3

24
.7
0

0
x
b
7
7
F
e
d
d
B
7
e
6
2
7
a
7
8
1
4
0
a
2
a
3
2
C
A
C
6
5
A
4
9
e
D
1
D
B
a
8
E

G
en

eS
ci
en

ce
0

0
0

23
1,
24
2,
39
9

0.
12

0
x
5
7
8
3
1
A
0
C
7
6
B
a
6
b
4
F
D
c
b
a
d
d
6
c
b
4
8
c
B
2
6
e
8
f
c
1
5
e
9
3

O
ffe

rs
0

0
0

4
11
1,
45
6

0.
00
04

0
x
b
1
6
9
0
C
0
8
E
2
1
3
a
3
5
E
d
9
b
A
b
7
B
3
1
8
D
E
1
4
4
2
0
F
B
5
7
d
8
C

Sa
le
C
lo
ck
A
u
ct
io
n

6,
81
3

13
3,
55
5,
37
4

4.
40

33
,4
86

1
,
2
8
6
,
0
2
7
,
9
5
8

3
7
.6
0

0
x
C
7
a
f
9
9
F
e
5
5
1
3
e
B
6
7
1
0
e
6
D
5
f
4
4
F
9
9
8
9
d
A
4
0
F
2
7
F
2
6

Si
rin

g
C
lo
ck
A
u
ct
io
n

2,
77
0

49
,1
20
,8
89

1.
35

7,
56
6

38
5,
08
0,
22
3

10
.2
8

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:35 Page 17 of 25

SaleClockAuction ranks first in sending and

receiving most gas affected OG transactions,

respectively.
• 2) For a single smart contract, the gas exception

distribution between transaction directions (i.e.,

sending or receiving) is also often imbalanced. For

example, the SaleClockAuction contract has

seen 4 times more gas exceptions for receiving

transaction calls than sending out.
• 3) GeneScience and Offers have seen much less

out of gas exceptions during lifetime than the rest of

contracts in Table 5. Besides, they are not recorded as

sending out a single gas exception transaction. The

reason for this lie in the function decomposition of

different contracts, where GeneScience and

Offers are never expected to invoke other

contract’s functions during course of execution, so

will never trigger exceptions in the outward direction

(i.e., as transaction sender). What’s more, the two

contracts also have relatively fixed behaviour, so it is

much easier to predict or even bound the maximal

gas consumptions before transactions.

RQ2: causing factor

In this section, we study the common causing factors for

out of gas exceptions, in hope to help both developers and

dApp users to prevent potential gas exceptions.

Common causing factors

By manually inspecting exceptional transactions, their

execution traces, as well as related contracts, we have

found some common causing factors for out of gas excep-

tions, as summarized below:

• 1)Misunderstanding Transaction Mechanism This is

a commonly seen and most trivial causing factor for

out of gas exceptions, especially w.r.t. to external

transactions. In particular, according to the

transaction processing mechanism, if the transaction

target/destination (tx.to) is a smart contract,

Ethereum will load that contract’s code and starting

running along with transaction input (tx.input) in
EVM. Note, this process is automatically triggered by

Ethereum without user intervention. Thus if the user

overlooks or ignores the aforementioned contract

execution mechanism, and sets transaction gas limit

to its minimal viable value (i.e., the very basic

intrinsic gas cost for a valid external transaction,

21,000 for normal transfer and 53,000 for contract

creation), there will always be out of gas exception

since not a single gas unit is available for further

contract execution. In our data set, we have found a

total number of 542,193 external transactions having

this kind of problem, accounting for nearly one fifths

of such transactions. Besides, the problem does not

see a clearly decreasing in terms of transaction

numbers as time passes by. In particular, we have

found 41,820 external transactions suffering from the

problem from block #8, 000, 000 to #8, 547, 396,

whereas the highest number per one million blocks is

just 175,204 for interval #4, 000, 000 to #5, 000, 000.
• 2) Conservative Gas Limit This kind of problem

stems from the fact that the transactions can

terminate without any exception but are otherwise

set with a lower gas limit than needed. For example,

the transaction 0xf31d∼9557 in block #8, 547, 387

happens to run out of gas with a relative small gas

limit 30,000. By setting a much higher gas limit, we

find the actual gas needed for the transaction is only

37,112, or 7,112 more units compared to original gas

limit. In other words, the user could have saved a gas

loss of 30,000 units by merely paying 7,112 units

more, that’s a 22,888 units net earning.
• 3) Compiler Derived Bug Sometimes, the problem

for out of gas exception may stem from hidden bugs

or flaws of the contract compiler (in most cases the

solc Solidity compiler.) An example of this kind is

the under-gas call to precompiled identity contract

0x04 [14], where the message call only gets 3 units of

gas for execution. This accounts for about 2% of all

the exception instances found in our data set.

According to [14], the gas cost for identity contract is

15 units plus 3 per input word. In other words, the

cost is always large or equal to 15, where a gas limit of

3 is doomed out of gas. In fact, we have seen a large

number of such instances during our investigation.

(Table 3), like the transaction 0xd0f8∼7458 shown

in “Transactions” section (Table 4). While we do not

know the cause of this problem, and it may not be a

big problem for users, it at least reflects the fact that

Solidity compilers are not mature right now, and

should be carefully checked in production

environment.
• 4) Unbounded Mass Operation The authors of [21]

have revealed several gas-related contract vulnerabili-

ties which may trigger unexpected behaviours, e.g.,

locking specific functions forever, or running into a

doomed out of gas loop. This phenomenon is

confirmed in our investigation by transaction

0x448b49f72d23ecdb281bf1a92d94ab63ef3
efc58937d80f51fa2dadd02591bdb, where
two contracts mutually call each other recursive, lead

to out of gas.
• 5) Others Due to the large size of our dataset, i.e.,

more than 56 million transaction traces from nearly

150,000 unique smart contracts, we are unable to

cover every contract and its execution traces. The

factors shown above are discovered by manual

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:35 Page 18 of 25

inspection of top accounts, transactions, and

contracts involved in out of gas exceptions found in

our data set. We plan to check the rest of our data in

further, looking for both transactions and smart

contracts. We believe there are more hidden factors

waiting for discovery.

RQ3: tool evaluation

Data set

In this section, we are devoted to investigating effective-

ness of existing tools or methods, w.r.t. preventing out

of gas exceptions. For this purpose, we have collected

a data set of 1,596,145 different out of gas transactions

(including internal message calls), belonging to 449 dif-

ferent smart contracts. The data set is built by selecting

smart contracts with most receiving gas exceptions (see

“Smart contracts” section). In particular, we first take

those accounts receiving more than 1,000 gas excep-

tions, then filter out non smart contracts and some

special addresses (e.g., the NULL representing contract

creation and the 0x04 precompiled contract with no

source code available). Since some evaluated tools only

accept source code as input, we further checked and

retrieved source code of these contracts using Etherscan

getsourcecode API, making sure all these contracts

have corresponding verified source code available. In

Table 6, we show a list of 10 example contracts from the

data set, offering information like contract address, con-

tract name, number of exception instances, and important

compiler parameters.

Note, the contracts shown in Table 6 share some similar-

ities, e.g., all of them are token related contracts compiled

with Solidity compiler version v0.4.x. Besides, 6 of the

contracts turn gas optimization option on, and all with an

expected execution run (by -optimize-runs option)

of 200 times.

Gas estimator

Gas estimators are tools or services that can report an

estimated gas cost for proposed transactions or con-

tract functions. Depending on required input data and

action timing, gas estimators can be further divided

into two categories: 1) offline gas estimators that only

need contract’s code as input (depending on specific

tool, the code may be source code or bytecode), and

are only needed to run once, then to be used arbitrage

number of times (provided the contract’s code are not

modified after); 2) online gas estimators which utilize

Ethereum client’s transaction simulation capability to exe-

cute transactions on top of current world state without

writing back, users need to provide both contract code

as well as proposed transactions, and have to run the

tool each time when a new transaction or world state is

available.

In principle, online gas estimators (e.g., the standard

eth_estimateGas JSON-RPC API exposed by Geth)
can return more accurate gas cost estimations as com-

pared to offline gas estimators. After all, the “estimations”

returned by online gas estimators are actually real gas

costs of the transactions, based on the current world state

seen by the tools. If we believe users will always stick to

using online gas estimators before proposing transactions,

the possibility that these transactions running out of gas

will be negligibly low, and thus we should not have found

so many gas exceptions as in our study. The point is that,

it suggests Ethereum users are not always using online gas

estimators before submitting their transactions. The rea-

sons behind are manifold, perhaps they just do not know

of these tools, or maybe users are unable to get accessible

to these tools because they do not have direct control over

their accounts (e.g., users host their accounts on third-

party platforms like cryptocurrency exchanges and do not

possess their own Ethereum clients). In any case, we are

sure there is some room for offline gas estimators.

In this section, we investigate the potential benefits of

using offline gas estimators. In particular, we test the

solc native gas estimator (-gas) on a data set of 10

contracts. We leave other similar tools to further studies.

In Table 7, we show the potential improvements of gas

estimator in two groups: 1) with respect to public func-

tions (Function); and 2) with respect to message calls

(Instance).
For each group, from left to right, the values are read:

1) number of instances in our data set (All); 2) num-

ber of instances solc helps to prevent (Solve); 3) the

extent solc can help (Ratio). In this experiment, we use a

v0.4.25 version solc compiler since both contracts in

Table 7 only accepts compiler version v0.4.x. In doing

this test, we assume the contract code is fixed and we want

to refer to solc gas estimator to properly set transaction

gas limits.

We have the following observations:

• 1) As for public functions, solc can help in

preventing nearly half of the gas exceptions. In other

words, considering an average contract, solc gives

meaningful estimations for about half of the public

functions. Note, the solc gas estimator is so

conservative that it rejects any function with any kind

of loops (e.g., reading from a dynamic array) or

unbounded calls. Thus the results it returns should

be always exact upper bound for certian functions11.
• 2) When considering transaction distribution, solc

seems do not have any applaudable effects. In

particular, as shown by contract 0xd0a6∼7ccf, not

11Except for some corner cases where solcmay return underestimate
readings because it ignores potential gas costs because of additional storage
requirements.

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:35 Page 19 of 25

Table 6 A selected list of 10 smart contracts in our sample data set with verified source code available in Etherscan, ranking by number
of receiving out of gas exceptions

Contract Name Instance Compiler

Version Optimize Run

0x744d70FDBE2Ba4CF95131626614a1763DF805B9E SNT 81,830 v0.4.11 YES 200

0xd0a6E6C54DbC68Db5db3A091B171A77407Ff7ccf EOSSale 44,721 v0.4.11 NO 200

0x06012c8cf97BEaD5deAe237070F9587f8E7A266d KittyCore 38,118 v0.4.18 YES 200

0x8d12A197cB00D4747a1fe03395095ce2A5CC6819 EtherDelta 35,300 v0.4.9 YES 200

0xb1690C08E213a35Ed9bAb7B318DE14420FB57d8C SaleClockAuction 33,486 v0.4.18 YES 200

0x419D0d8BdD9aF5e606Ae2232ed285Aff190E711b Token 30,622 v0.4.11 YES 200

0x86Fa049857E0209aa7D9e616F7eb3b3B78ECfdb0 DSToken 26,523 v0.4.11 NO 200

0x5EdC1a266E8b2c5E8086d373725dF0690af7e3Ea YottaCoin 23,943 v0.4.24 NO 0

0xB68042de5B3dA08a80C20d29aEFab999D0848385 IDAGToken 20,165 v0.4.23 NO 200

0x331d077518216c07C87f4f18bA64cd384c411F84 EToken2 20,079 v0.4.8 YES 200

a single of the exception instance can be saved with

help solc. The reason for this is these instances all

calls to functions that are not covered by solc (so it

cannot give any useful information w.r.t. gas cost).
Note, the test instances are all collected from our

previously found out of gas transactions, so the result

shown here is skewed towards hard cases where

loops and unbounded calls exist, and may not be fair

to solc. However, what is clear is that if we want to

solve those real-world out of gas problems, solc
estimator alone is far from useful, and we need more

powerful tools for this purpose.

Code optimizer

Besides a built-in gas cost estimator, the solc compiler

also provides a native code optimizer which could be

turned on with -optimize option. This optimizer is

designed to work on the assembly level, trying to reduce

redundancies and rearrange bytecode in hope that the

output code could be lighter and more gas efficient.

In general, this smart contract optimization problem is

a multi-objective optimization, so that the result byte-

code is both small in size as well as cheap in execution

(i.e., consumes less gas units when called). To help make

the right balance between these two targets, users can

provide an additional parameter to the optimizer with

-optimize-runs option (which defaults to 200), rep-

resenting the expected average number of invocation for

each function. Thus, by setting larger -optimize-runs
parameters, users expect more frequent function exe-

cutions, and the optimizer should produce code more

suitable for these high-frequency use cases. In contrast,

smaller -optimize-runs parameters represent less

active invocations, and should produce code optimized

to initial deployments (which cost gas units when the

contract is deployed).

In this section, we investigate the use of solc native

optimizer to help prevent out of gas exceptions. In general,

Table 7 solc native gas estimator in use of preventing out of gas exceptions

Address Contract Function Instance

All Solve Ratio All Solve Ratio

0x744d70FDBE2Ba4CF95131626614a1763DF805B9E SNT 26 10 38.5% 81, 830 0 0%

0xd0a6E6C54DbC68Db5db3A091B171A77407Ff7ccf EOSSale 30 17 56.7% 44,651 0 0%

0x06012c8cf97BEaD5deAe237070F9587f8E7A266d KittyCore 60 46 76.7% 38,118 1,899 5.0%

0x8d12A197cB00D4747a1fe03395095ce2A5CC6819 EtherDelta 27 17 63.0% 33,738 2, 187 6.5%

0xb1690C08E213a35Ed9bAb7B318DE14420FB57d8C SaleClockAuction 19 11 57.9% 33,041 0 0%

0x419D0d8BdD9aF5e606Ae2232ed285Aff190E711b Token 28 9 32.1% 30,622 0 0%

0x86Fa049857E0209aa7D9e616F7eb3b3B78ECfdb0 DSToken 22 9 40.9% 26,011 24 0.1%

0x5EdC1a266E8b2c5E8086d373725dF0690af7e3Ea YottaCoin 23 10 43.5% 23,943 0 0%

0xB68042de5B3dA08a80C20d29aEFab999D0848385 IDAGToken 20 12 60.0% 20,165 0 0%

0x1F0480a66883De97d2b054929252aaE8F664c15c NePay 22 12 54.5% 16,333 0 0%

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:35 Page 20 of 25

when configured correstly, the optimizer should provide a

more gas efficient bytecode that consumes less gas when

executed, thus lowering the risk of out of gas excep-

tions. We plan to evaluate other similar contract code

optimizers in future work.

In Table 8, we show the improvements of turning on

-optimize option for the same data set of 10 contracts

as in “Gas estimator” section. The compiler we use is of

version v0.4.25 and the -optimize-runs parameter

is set to 200. Note, in doing this test, we assume the gas

limit of each transaction is fixed, and to see if we can avoid

gas exceptions by using optimized contract code.

As before, we divide the results into two parts:

1) improvements with respect to public functions

(Function); and 2) improvements with respect to indi-

vidual transactions (Instance). In the Function part,

we present three values, i.e., total number of public func-

tions (All), number of public functions with increasing

gas consumptions (Up), and number of public functions

with decreasing gas consumptions (Down). Whereas in

the Instance part, we choose the same format as in

Table 7, reporting total number of exception transactions

(All), number of transactions that can be fixed (Solve),

and the relative scale of fixed transactions (Ratio). Note,

as can be seen in Table 6, six out of the ten contracts in

this test have already turned on -optimize option when

deployed and that the -optimize-runs parameters are

all set to 200 just as in our experiment.

From Table 8, we get the following observations:

• 1) All four smart contract with -optimize option

previously turned off have seen changes of each public

function’s gas cost. For example, the 0xd0a6∼7ccf
contract experience a rise of costs in half of the public

functions, whereas it only sees cost reduction in two

functions. Oppositely, the 0xB680∼8385 contract

will have half of the functions cutting down gas costs,

and with one exception to increase cost. This suggest

that code optimizer can at least modify gas costs for

different functions, and this may lead to a trade-off

between adding costs to some functions and at the

same time reducing to some others.
• 2) While the code optimizer do have some effects in

changing function’s gas cost, it seems have little effect

to really prevent gas exceptions. Again, look the four

underlined contracts, these contracts all have seen

some reduction of gas costs (at least for some

functions), but it turns out that not a single exception

transaction can be fixed just because of gas cost

reduction. The reasons may be that previous

transactions have set a too lower gas limit that out

optimization can not manage to save, or that the

functions with significant cost reduction are just not

those hotspots for out of gas exceptions.
• 3) When look at the Instance part, we find that

only one contract (the 0x06012∼266d) seems to be

sensitive to the use of code optimization techniques.

In fact, not a single function in this contract has seen

changes in gas cost, and the appearance of these

transactions is just a byproduct of the underestimate

of solc gas estimator. In Table 8, we calculate the

Solve of Instance by comparing solc gas

estimations with actual gas limits. Since the estimator

may return underestimated reading in certain cases,

these transactions show up as false positives.

Other approaches

Besides estimating transaction gas cost before submit-

ting, other methods exist to help users prevent out

of gas exceptions. One promising approach is to gen-

erate more gas-optimized bytecode so contracts could

use less gas during their execution. For example, solc

Table 8 solc built-in code optimizer in use of preventing out of gas exceptions, with -optimize option turned on and the
-optimize-runs parameter set to 200

Address Contract Function Instance

All Up Down All Solve Ratio

0x744d70FDBE2Ba4CF95131626614a1763DF805B9E SNT 26 0 0 81,830 0 0%

0xd0a6E6C54DbC68Db5db3A091B171A77407Ff7ccf EOSSale 30 15 ↑ 2 ↓ 44,651 0 0%

0x06012c8cf97BEaD5deAe237070F9587f8E7A266d KittyCore 60 0 0 38,118 375 1.0%

0x8d12A197cB00D4747a1fe03395095ce2A5CC6819 EtherDelta 27 0 0 33,738 0 0%

0xb1690C08E213a35Ed9bAb7B318DE14420FB57d8C SaleClockAuction 19 0 0 33,041 0 0%

0x419D0d8BdD9aF5e606Ae2232ed285Aff190E711b Token 28 0 0 30,622 0 0%

0x86Fa049857E0209aa7D9e616F7eb3b3B78ECfdb0 DSToken 22 4 ↑ 5 ↓ 26,011 0 0%

0x5EdC1a266E8b2c5E8086d373725dF0690af7e3Ea YottaCoin 23 8 ↑ 2 ↓ 23,943 0 0%

0xB68042de5B3dA08a80C20d29aEFab999D0848385 IDAGToken 20 1 ↑ 11 ↓ 20,165 0 0%

0x1F0480a66883De97d2b054929252aaE8F664c15c NePay 22 0 0 16,333 0 0%

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:35 Page 21 of 25

provides an option to perform code optimization, i.e., the

-optimize option, accompany with a modifiable empir-

ical optimization parameter, i.e., the -optimize-runs
which specifies the expected number of invocation for

each contract function. Other useful tools are proposed to

detect and rectify under-optimized code fragments [23],

or to generate gas-optimization-centric code from exists

bytecode [25]. Last but not least, another approach for

defending out of gas exceptions is to find ill-coded con-

tracts before the deployment, so that deployed contracts

will not contain any potential vulnerabilities that may trig-

ger out of gas exceptions [21]. We propose to investigate

these tools in further studies.

Summaries and implications

Based on the prior results and discussions, we summa-

rize the important findings as well as further implications

in Table 9. Besides, we also point out relative parties

or stakeholders who may have interest in each finding

and implication, e.g., BCP developers, BCP end users,

development tool producers, blockchain researchers, etc.

Related work
Decentralized application

Decentralized application (dApp) and blockchain-based

cloud application (BCP) can roughly be seen as the same

type of application, where blockchain and smart contract

implement part of the critical program logic.

The study of decentralized application (dApp), or

blockchain-based cloud application, has recently grown

popular in academia [5, 10, 35–43], a trend accompany

with increasing public interests, extensive social media

exposures, as well as phenomenal applications contin-

uously coming out, where notably popular dApps are

like CryptoKitties, Ethereum Name Service, My Crypto

Heros, MakerDAO, and etc.

Wu et al. [35, 43] conducted an empirical study on

blockchain-based decentralized applications (i.e., dApp)

in Ethereum with 995 dApps across 17 different cate-

gories. According to their study, Ethereum dApps with

financial implications (i.e., Exchange, Finance, and Gam-

bling) are much more popular than others. The same

phenomenon repeatedly occurs considering of both user

accounts as well as transaction communications. The

authors also investigated the degree of open source for

Ethereum dApps. Results show that only a small fraction

of dApps (15.7%) are fully open source in terms of both

project code and smart contracts, whereas slightly less

than half (43.5%) have all smart contracts open sourced.

Even considering smart contracts, we notice that more

than half of dApps do not provide all the source code,

while some may publish part of the code. The fact sug-

gests there are much room for open source movement

in the dApp ecosystem to reach the promising future

of blockchain-based decentralized applications. Last, the

same work also summaried common design patterns for

dApp smart contracts and gas cost related issues involving

dApps.

There are some work considering the development

methodology of dApps. Marchesi et al. [40] proposed an

agile software development methodology for dApps, a

process to gather requirement, analyze, design, develop,

test, and deploy these applications. The authors presented

detailed processes, design considerations, and tooling

amendments with suitable tutorials. Ellul et al. [37] pre-

sented a unified programming model for dApp develop-

ment, allowing developers to build such systems through

a single code artifact.

Other work dedicates the application of dApp in var-

ious use cases. Taş et al. [42] use an example dApp to

explain architectural considerations and useful tools for

dApp development. Tian et al. [10] proposed a secure

decentralized framework for truth discovery in the filed

of crowdsourcing with a privacy preserving and reliable

implementation. Johnson et al. [38] showed a new dApp

solution for secure biomedical data sharing based on the

Oasis Devnet, a privacy preserving blockchain compatible

with EVM. The authors also compared traditional solu-

tions with dApp solution, showing both advantages and

disadvantages of their dApp. Chen et al. [36] presented

a lottery dApp with multiple randomness sources (i.e.,

contract state, blockchain state, and off-chain commit-

ments), which are more secure (in terms of predictabil-

ity of random values) than existing similar dApps. Lee

et al. [39] showed an Android APK forgery discrimination

dApp on Hyperledger Fabric blockchain, leveraging the

tamper-proof characteristic of blockchain Chen et al. [5].

Ethereum gas mechanism and out of gas exception

The gas mechanism is an important feature of Ethereum,

which is designed as a solution to the general liveness

problem of smart contract enabled blockchain system.

By limiting the maximal available gas unit of individual

transaction, this gas mechanism can effectively prevent

Ethereum from being stuck by (whether benign or mali-

cious) slow-running or never-ending transactions. How-

ever, on the other side of the coin, when insufficient gas

units are provided, transactions are doom to a kind of

runtime exceptions, i.e., the out of gas exceptions.

There are a number of related studies concerning the

Ethereum gas mechanism and out of gas exceptions, rang-

ing from code optimization, vulnerability identifying, gas

estimation, and cost adjustment.

Wu et al. [35] investigated the actual gas cost w.r.t. dif-

ferent dApps. Specifically, they found dApps using the

single contract architecture tend to consume less gas in

average, as compared to leader-member, equivalent, and

factory patterns. Besides, as for deployment gas cost,

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:35 Page 22 of 25

Table 9 Summary of important findings and implications

Findings Implications Relevant Parties

I. Out of gas and explicit revert are most
commonly seen exceptions in Ethereum,
which together account for 90% of all occur-
rences both in terms of exception instances
as well as external transactions.

Insufficient gas limit is very common to
encounter, as well as both require and
assert failures. Developers and end users
should pay special attention to potential gas
exceptions.

BCP developers BCP end users

II. During the infamous DoS attacks
between block #2, 250, 000 and #2, 750, 000,
an exploit of 58,517 transactions has trig-
gered 150,717,728 gas exceptions (or 2,576
per transaction), which has significantly
skewed the ordinary distribution of different
exception types.

One transactions may trigger multiple num-
ber of gas exceptions, with use of restricted
gas limit per internal call. Concentration of
gas exceptions may be evidence to delib-
erate attacks against the platform or smart
contracts. Investigation on gas exceptions
should intentionally distinguish between
attack related instances and other cases.

Blockchain Researchers Security Researchers

III. Since inception, out of gas excep-
tions alone have caused more than 3,000
ETH losses, or approximately several hun-
dred thousand US dollars in worth. On aver-
age, every block sees an instance of gas
exception. In other words, precious transac-
tion slots are wasted in a one-slot-per-block
manner.

The accumulated negative effects of gas
exceptions are huge enough that develop-
ers, end users, and operators cannot ignore.
By following appropriate guidance, it is pos-
sible to save money and time for blockchain-
based cloud application participants.

BCP developers BCP end users Blockchain Researchers

IV. Even until very recently (block
#8, 547, 396, or Spet. 14th, 2019), the fre-
quency of gas exceptions do not see
significant changes, especially in the most
recent times. In other words, gas excep-
tions do appear in a relatively steady
rate regardless of new methods or best-
practices proposed for out of gas exception
mitigation.

There may be several explanations. First of
all, new tools or practices in gas exception
mitigation are not applied broadly among
relevant participants, which may results from
lack of acceptance or delayed adoption. Sec-
ond, smart contract code is not frequently
updated, so that existing gas issues take
action again and again. Thus, improve the
acceptance of new approaches as well as
regularly updates of contract code should be
very important.

BCP developers BCP end users Blockchain Researchers

V. By comparing smart contracts with exter-
nally owned accounts, we find the former are
more susceptible to out of gas exceptions,
in the sense that gas exceptions are more
concentrated on smart contracts than exter-
nally owned accounts. Besides, the receivers
of gas exception transactions are more con-
centrated on small set of contracts, whereas
the senders tend to be more diverse.

A few popular smart contracts tend to send
and receive large number of gas excep-
tion transactions, suggesting developers to
pay more attention to gas exception related
issues during contract development, such as
set a larger gas limit to inter-contract invoca-
tions or add additional safeguards to unex-
pected gas exceptions, especially when inte-
grating with popular established libraries.

BCP developers

VI. The precompiled smart contract with
address 0x04 (which act as identity function
for inputs) is responsible for a large number
of gas exceptions, although each with very
little gas units, typically 3 units per (internal)
transaction. Considering the mass scale and
small influence, we believe this is linked to
some issue of the Solidity compiler.

While we do not know the overall mech-
anism of this finding, it still suggests the
critical role of smart contract compilers and
other development tools in the cause and
prevention of gas exceptions. Specifically,
the developers of these tools should pay
more attention to the potentially negative
effect of their decisions on gas consumption
issues.

Dev-tool developers

VII. There are transactions which trigger
a large number of gas exceptions during
execution, whereas the external transactions
themselves do not run out of gas. In other
words, gas exceptions happened deep in
the call stack may not cause a cascading of
exceptions in certain cases, e.g., the calling
contract has set a fixed small gas limit to
internal transactions.

Hidden gas exceptions are of particular inter-
est to developers and researchers. On one
hand, developers should be careful when
calling other contract’s functions, by setting
appropriate gas limits and adding relative
safeguards. On the other hand, hidden gas
exceptions may be byproduct of critical vul-
nerabilities or attacks (like in the infamous
Ethereum DoS attacks [29, 30]).

BCP developers Blockchain researchers

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:35 Page 23 of 25

Table 9 Summary of important findings and implications (Continued)

Findings Implications Relevant Parties

VIII. A recurring reason of gas exceptions
is that the transactions are given too few gas
units. This can further be divided into two
categories: 1) leaving no gas units for any
code execution; 2) setting conservative gas
limits than actual needs.

When calling smart contracts (whether from
EOA or other smart contract), try to provide
more gas units than it seems to consume.
For example, always add an additional 5,000
units to the gas consumption result of trans-
action simulations, or use a sophisticated gas
estimator that is proven to return a strict
overestimate reading for gas consumption.

BCP developers BCP end users

IX. According to experiment, the native
gas estimator of solc tend to provide
estimations of limited use in gas exception
mitigation. The tool fails to produce
meaningful output when encounters loops
or unbounded calls, which however are
the exact causes for many real-world out of
gas transactions. On the other hand, online
estimators should provide satisfactory results
if used before each transaction, which is
unfortunately not strictly followed, as shown
by our results.

Always use Ethereum client’s online gas
estimation functionality before submitting
new transaction, and if possible, consult
more tools in providing gas cost estimations.
Besides, there is a need for developing and
promoting new tools for gas exception mit-
igation, like gas-oriented code optimization
as well as sophisticated gas cost estimators.

BCP developers BCP end users

they found number of functions (NoF) and line of code

(LoC) both contributes to the larger deployment gas cost,

whereas number of functions is more related than line of

code. As for execution gas cost, they reported that half

of the transactions for dApps tend to provide less than

100,000 additional execution gas limit (i.e., these transac-

tions end with 100,000 or less gas units available). And

by setting transaction gas limit to 141,213 units, users

are 80% sure that their transactions with end up with-

out out of gas exceptions. Compared with et al. [35], our

work are different in that we have a much larger dataset,

i.e., all gas exception transactions from genesis block till

very recently, whereas their work only considers a one-

year time segment (i.e., the year of 2018) and the contract

set are limited to those chosen 995 dApps. What’s more,

our work focuses on a comprehensive investigation on gas

exception and related issues (i.e., compared with other

runtime exceptions, identify the causing factors, and test

related tools in prevent of gas exceptions), while [35] is

more about finding the right gas limit in terms of dApp

transactions.

Chen et al. [23] studied the use of Solidity language

in writing smart contract. They identified seven gas-

costly source code level patterns where the official Solidity

compiler (solc) failed to optimize. These patterns are

further classified into two groups: useless-code related

patterns and loop-related patterns. They then built a tool

called GASPER which can find three of these seven pat-

terns using contract bytecode. In [25], the same author

reported 24 bytecode level anti-patterns, and then built

a contract optimizer named GasReducer baed on these

anti-patterns. Unlike [23] and [25], our work focuses on

out of gas exceptions, and we use an empirical analysis

oriented methodology to find their consequences, their

reasons, as well as challenges to existing tools or methods.

While gas-costly patterns or anti-patterns may lead to out

of gas exceptions, they are neither decisive nor complete.

Grech et al. [21] studied three smart contract vulner-

abilities that are directly related to Ethereum gas mech-

anism. In particular, all these three vulnerabilities can

be exploited by hackers to lock a target contract down,

effectively making it unusable forever. The authors then

devised a static analysis tool named MadMax to help find

these gas-related vulnerabilities. Compared with [21], our

work is more focused on out of gas exceptions themselves

and the causing factors, whereas their work deal with

identifying and preventing vulnerabilities stemming from

out of gas exceptions. Besides, we also show that failing to

specify an appropriate tx.gasLimit can also contribute

to gas exceptions.

Albert et al. [22] proposed a gas analyzer for smart con-

tracts named GASTAP, which can infer an upper bound

for each function’s gas cost. Experiments showed that

GASTAP outperforms solc’s native gas estimators as it

can deal with more complex situations where solc lacks

support of. At the same time, Marescotti et al. [44] pro-

posed a worst-case gas consumption estimation technique

inspired by bounded model-checking techniques. Their

method was built on top of the so-called gas consumption

paths (GCPs), then they used SMT solver and EVM’s gas

consumption capabilities to retrieve concrete gas limits.

However, since [44] lacks a tool implementation as well as

subsequent experiments, we do not know its effectiveness

on real world smart contracts.

Ma et al. [45] proposed a fuzzing-based approach to gas

estimation and limit setting, which they give a name Gas-

Fuzz. The same approach can also be used to detect gas-

related vulnerabilities. Compared with general fuzzing

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:35 Page 24 of 25

techniques, GasFuzz build itself on gas weighted control

flow graph (CFG) and gas consumption guided selection

and mutation strategies. Experiments show that GasFuzz

significantly outperforms solc in gas cost estimation

by reducing the risk of underestimation and out of gas

exception. We are interested in GasFuzz as well as other

fuzzing-based approaches to gas exception mitigation

problem, and plan to compare them in the following work.

There is a gas cost alignment problem in Ethereum,

which states that if the gas mechanism assigns much less

gas cost for a certain instruction, then hackers could uti-

lize the instruction to launch a DoS attack against the

Ethereum network. Both Chen et al. [24] and Yang et

al. [32] concluded that Ethereum’s current gas mecha-

nism, despite been changed many times, still left consid-

erable rooms for misuse and DoS attacks. Besides, [24]

also proposed an adaptive gas cost mechanism aiming at

defending these potential DoS attacks.

Conclusion
In this work, we investigate gas exceptions on Ethereum

blockchain-based cloud applications. By using instru-

mented Ethereum client, we collect a large data set of

exception transactions as well as their execution traces.

We then start by looking at the prevalence of differ-

ent exceptions, where out of gas stood out with a large

number of occurrences as well as money losses. More-

over, we summarize common causing factors for out of

gas exceptions, with an emphasis on misunderstanding of

transaction mechanism, conservative gas limit, and com-

piler derived bugs. At last, we investigate the effectiveness

of existing tools in helping prevent out of gas exceptions.

The results suggest further research and study on this

topic.

Abbreviations

BCP: Blockchain-based cloud application; CFG: Control flow graph; dApp:
Decentralized application; DeFi: Decentralized finance; DEX: Decentralized
exchange; DOG: Deploy out of gas; DoS: Denial of service; ENS: Ethereum
name service; EOA: Externally owned account; EOG: Execute out of gas; ETH:
Ethereum (the smart contract platform) or Ether (the native cryptocurrency of
Ethereum); EVM: Ethereum virtual machine; GCP: Gas consumption path;
HBCP: Hybrid blockchain-based cloud application; IoT: Internet-of-things; LoC:
Line of code; NoF: Number of functions; OG: Out of gas; PBCP: Pure
blockchain-based cloud application; QoS: Quality of service; RQ: Research
question; TTP: Trusted third-party; UTXO: Unspent transaction output

Acknowledgments

We thank Zhi Guan and Qingshan Li from Peking University for providing the
computation resources, and for comments and suggestions that greatly
improved this manuscript.

Authors’ contributions

Chao Liu, Huihui Wang, and Zhong Chen conceived, designed, and directed
this research. Chao Liu, Jianbo Gao, and Yue Li implemented the experiments,
collected, analyzed, and checked the presented results. The author(s) read and
approved the final manuscript.

Authors’ information

Chao Liu Ph.D. candidate of Electronics Engineering and Computer Science at
Peking University. He obtained his bachelor’s degree of Computer Science and

Technology at Peking University in 2014. His research interests include
blockchain, program analysis, software engineering, network and information
security, artificial intelligence.
Jianbo Gao Ph.D. student of Electronics Engineering and Computer Science
at Peking University. He obtained his bachelor’s degree of Computer Science
and Technology at Peking University in 2016. His research interests include
blockchain, program analysis, software engineering, network and information
security.
Yue Li Ph.D. student of Electronics Engineering and Computer Science at
Peking University. She obtained her bachelor’s degree of Computer Science
and Technology at University of Electronic Science and Technology of China in
2018. Her research interests include blockchain, program analysis, network
and information security, cryptography.
Huihui Wang received her Ph.D. degree in electrical engineering from the
University of Virginia, Charlottesville, VA, USA, in August 2013. In August 2013,
she joined the Department of Engineering, Jacksonville University,
Jacksonville, FL, USA, where she is currently an Associate Professor and the
Founding Chair of the Department of Engineering. In 2011, she was an
Engineering Intern with Qualcomm, Inc. She is the author of more than 50
articles and holds one U.S. patent. Her research interests include cyber-physical
systems, Internet of Things, healthcare and medical engineering based on
smart materials, robotics, haptics based on smart materials/structures, ionic
polymer metallic composites, and microelectromechanical system.
Zhong Chen Ph.D., Professor of School of Electronics Engineering and
Computer Science at Peking University, and Director of MoE Key Lab of
Network and Software Assurance, Director of Financial Information Research
Center of Peking University. He has awarded Beijing Excellent Teacher Award
in 1996, 1st Prize National Higher Education Teaching Achievements Award in
2005, 2nd Prize National Science and Technology Award in 2010. His research
interests include domain-specifc software engineering, network and
information security, blockchain.

Funding

This work is fully funded by National Natural Science Foundation of China
under the grant No.: 61672060.

Availability of data andmaterials

As described in “Methodology” section, we collected all the exceptional
transactions (i.e., transactions encountering any runtime exceptions) of
Ethereummainnet from genesis block till block #8, 547, 396. The collected
data contains detailed transaction information, e.g., source, destination, value,
input, gas limit, block number, etc. Besides, we also collected transaction traces
as complementary. All these data are stored and analyzed in a MongoDB
instance running on the same server as described in “Methodology” section.
We plan to publish the above data (not including transaction traces) online
later when we finish follow-up tasks like data extraction and uploading.
Besides the above transaction data collected by ourselves, we also consult
historical Ether price data provided by Etherscan which can be downloaded
from link [46]. As for the tested tools, we used solc of version v0.4.25
which can be downloaded from Github through link [47], and the compiling
and installation instructions can be referenced from [48]. The dataset used to
test existing tools will also be available online soon after follow-up tasks.

Competing interests

The authors declare that they have no competing interests.

Author details
1School of Electronics Engineering and Computer Science, Peking University,
No.5 Yiheyuan Road, 100871, Beijing, China. 2Department of Engineering,
Jacksonville University, Jacksonville, FL 32211, USA.

Received: 24 February 2020 Accepted: 21 May 2020

References

1. Butun I, Österberg P, Song H (2019) Security of the internet of things:
vulnerabilities, attacks and countermeasures. In: IEEE Communications
Surveys & Tutorial. https://doi.org/10.1109/COMST.2019.2953364

2. Song H, Srinivasan R, Sookoor T, Jeschke S (2017b) Smart cities:
foundations, principles, and applications. Wiley, Hoboken. pp. 1–106

https://doi.org/10.1109/COMST.2019.2953364

Liu et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:35 Page 25 of 25

3. Song H, Fink GA, Jeschke S (2017) Security and Privacy in Cyber-Physical
Systems: Foundations, Principles and Applications. Wiley-IEEE Press,
Chichester. pp. 1–472

4. Alharby M, Aldweesh A, van Moorsel A (2018) Blockchain-based smart
contracts: A systematic mapping study of academic research 2018. In:
Proceedings of the 2018 International Conference on Cloud Computing,
Big Data and Blockchain. https://doi.org/10.1109/iccbb.2018.8756390

5. Chen J, Lv Z, Song H (2019a) Design of personnel big data management
system based on blockchain. Futur Gener Comput Syst 101:1122–1129.
https://doi.org/10.1016/j.future.2019.07.037

6. Kosba A, Miller A, Shi E, Wen Z, Papamanthou C (2016) Hawk: The
blockchain model of cryptography and privacy-preserving smart
contracts. In: 2016 IEEE symposium on security and privacy (SP). IEEE.
pp 839–858. https://doi.org/10.1109/sp.2016.55

7. Kumaresan R, Bentov I (2014) How to use bitcoin to incentivize correct
computations. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. ACM. pp 30–41. https://doi.
org/10.1145/2660267.2660380

8. Luu L, Chu DH, Olickel H, Saxena P, Hobor A (2016) Making smart
contracts smarter. In: Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security. ACM. pp 254–269. https://
doi.org/10.1145/2976749.2978309

9. Miers I, Garman C, Green M, Rubin AD (2013) Zerocoin: Anonymous
distributed e-cash from bitcoin. In: 2013 IEEE Symposium on Security and
Privacy. IEEE. pp 397–411. https://doi.org/10.1109/sp.2013.34

10. Tian Y, Yuan J, Song H (2019) Secure and reliable decentralized truth
discovery using blockchain. In: 2019 IEEE Conference on Communications
and Network Security (CNS). IEEE. pp 1–8. https://doi.org/10.1109/cns.
2019.8802712

11. (2019b) Home - enterprise ethereum alliance. https://entethalliance.org
12. Androulaki E, Barger A, Bortnikov V, Cachin C, Christidis K, De Caro A,

Enyeart D, Ferris C, Laventman G, Manevich Y, et al. (2018) Hyperledger
fabric: a distributed operating system for permissioned blockchains. In:
Proceedings of the Thirteenth EuroSys Conference. ACM. p 30. https://
doi.org/10.1145/3190508.3190538

13. Cheng R, Zhang F, Kos J, He W, Hynes N, Johnson N, Juels A, Miller A, Song
D (2019) Ekiden: A platform for confidentiality-preserving, trustworthy,
and performant smart contracts. In: 2019 IEEE European Symposium on
Security and Privacy (EuroS&P). IEEE. pp 185–200. https://doi.org/10.1109/
eurosp.2019.00023

14. Wood G, et al. (2014) Ethereum: A secure decentralised generalised
transaction ledger. Ethereum Proj Yellow Pap 151(2014):1–32

15. (2019) Bitcoin cash - peer-to-peer electronic cash. https://www.
bitcoincash.org

16. (2019) Litecoin - open source p2p digital currency. https://litecoin.org
17. (2019) Privacy-protecting digital currency - zcash. https://z.cash
18. (2019) Libra - a new global currency. https://libra.org/en-US/
19. Nakamoto S, et al. (2008) Bitcoin: A peer-to-peer electronic cash system.

https://doi.org/10.2139/ssrn.3440802
20. (2019c) A next-generation smart contract and decentralized application

platform, ethereum white paper. https://github.com/ethereum/wiki/
wiki/White-Paper

21. Grech N, Kong M, Jurisevic A, Brent L, Scholz B, Smaragdakis Y (2018)
Madmax: Surviving out-of-gas conditions in ethereum smart contracts.
Proc ACM Program Lang 2(OOPSLA):116

22. Albert E, Gordillo P, Rubio A, Sergey I (2018) Gastap: A gas analyzer for
smart contracts. arXiv preprint. arXiv:181110403

23. Chen T, Li X, Luo X, Zhang X (2017a) Under-optimized smart contracts
devour your money. In: 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE.
pp 442–446. https://doi.org/10.1109/saner.2017.7884650

24. Chen T, Li X, Wang Y, Chen J, Li Z, Luo X, Au MH, Zhang X (2017b) An
adaptive gas cost mechanism for ethereum to defend against
under-priced dos attacks. In: International Conference on Information
Security Practice and Experience. Springer. pp 3–24. https://doi.org/10.
1007/978-3-319-72359-4_1

25. Chen T, Li Z, Zhou H, Chen J, Luo X, Li X, Zhang X (2018) Towards saving
money in using smart contracts. In: 2018 IEEE/ACM 40th International
Conference on Software Engineering: New Ideas and Emerging
Technologies Results (ICSE-NIER). IEEE. pp 81–84. https://doi.org/10.1145/
3183399.3183420

26. (2019) Defi - best decentralized finance projects | what is defi in crypto.
https://defiprime.com

27. Lamport L (1978) The implementation of reliable distributed multiprocess
systems. Comput Netw (1976) 2(2):95–114

28. (2019a) Contracts - solidity 0.5.11 documentation: Creating contracts.
https://solidity.readthedocs.io/en/v0.5.11/contracts.html#creating-
contracts

29. (2016a) Ethereum continues to suffer from ddos attacks. https://www.
ethnews.com/ethereum-continues-to-suffer-from-ddos-attacks

30. (2016b) Transaction spam attack: Next steps. https://blog.ethereum.org/
2016/09/22/transaction-spam-attack-next-steps/

31. (2019) Security alert: Ethereum constantinople postponement. https://
blog.ethereum.org/2019/01/15/security-alert-ethereum-constantinople-
postponement/

32. Yang R, Murray T, Rimba P, Parampalli U (2019) Empirically analyzing
ethereum’s gas mechanism. arXiv preprint arXiv:190500553. https://doi.
org/10.1109/eurospw.2019.00041

33. (2019) Go ethereum - official go implementation of the ethereum
protocol. https://geth.ethereum.org

34. (2019b) Expressions and control structures - solidity 0.5.11
documentation: Error handling: Assert, require, revert and exceptions.
https://solidity.readthedocs.io/en/v0.5.11/control-structures.html#error-
handling-assert-require-revert-and-exceptions

35. Wu K, Ma Y, Huang G, Liu X (2019) A first look at blockchain-based
decentralized applications. Software: Practice and Experience. https://doi.
org/10.1002/spe.2751

36. Chen YC, Hsu SY, Chang TW, Wu TW (2019b) Lottery dapp from
multi-randomness extraction. In: 2019 IEEE International Conference on
Blockchain and Cryptocurrency (ICBC). IEEE. pp 78–80. https://doi.org/10.
1109/bloc.2019.8751323

37. Ellul J, Pace G (2019) Towards a unified programming model for
blockchain smart contract dapp systems. In: 2019 38th International
Symposium on Reliable Distributed Systems Workshops (SRDSW). IEEE.
pp 55–56. https://doi.org/10.1109/srdsw49218.2019.00017

38. Johnson M, Jones M, Shervey M, Dudley JT, Zimmerman N (2019) Building
a secure biomedical data sharing decentralized app (dapp): Tutorial. J
Med Internet Res 21(10):e13,601

39. Lee HW, Lee H (2019) Consortium blockchain based forgery android apk
discrimination dapp using hyperledger composer. J Internet Comput
Serv 20(5):9–18

40. Marchesi L, Marchesi M, Tonelli R (2019) Abcde–agile block chain dapp
engineering. arXiv preprint arXiv:191209074

41. Scholten OJ, Hughes NGJ, Deterding S, Drachen A, Walker JA, Zendle D
(2019) Ethereum crypto-games: Mechanics, prevalence, and gambling
similarities. In: Proceedings of the Annual Symposium on
Computer-Human Interaction in Play. pp 379–389. https://doi.org/10.
1145/3311350.3347178

42. Taş R, Tanrıöver ÖÖ (2019) Building a decentralized application on the
ethereum blockchain. In: 2019 3rd International Symposium on
Multidisciplinary Studies and Innovative Technologies (ISMSIT). IEEE.
pp 1–4. https://doi.org/10.1109/ismsit.2019.8932806

43. Wu K (2019) An empirical study of blockchain-based decentralized
applications. arXiv preprint arXiv:190204969

44. Marescotti M, Blicha M, Hyvärinen AE, Asadi S, Sharygina N (2018)
Computing exact worst-case gas consumption for smart contracts. In:
International Symposium on Leveraging Applications of Formal Methods.
Springer. pp 450–465. https://doi.org/10.1007/978-3-030-03427-6_33

45. Ma F, Fu Y, Ren M, Sun W, Liu Z, Jiang Y, Sun J, Sun J (2019) Gasfuzz:
Generating high gas consumption inputs to avoid out-of-gas
vulnerability. arXiv preprint arXiv:191002945

46. (2019a) Ether daily price (usd). https://etherscan.io/chart/etherprice?
output=csv

47. (2019c) Github - solidity version 0.4.25. https://github.com/ethereum/
solidity/releases/tag/v0.4.25

48. (2019d) Solidity - solidity 0.4.25 documentation. https://solidity.
readthedocs.io/en/v0.4.25/

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1109/iccbb.2018.8756390
https://doi.org/10.1016/j.future.2019.07.037
https://doi.org/10.1109/sp.2016.55
https://doi.org/10.1145/2660267.2660380
https://doi.org/10.1145/2660267.2660380
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1109/sp.2013.34
https://doi.org/10.1109/cns.2019.8802712
https://doi.org/10.1109/cns.2019.8802712
https://entethalliance.org
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1109/eurosp.2019.00023
https://doi.org/10.1109/eurosp.2019.00023
https://www.bitcoincash.org
https://www.bitcoincash.org
https://litecoin.org
https://z.cash
https://libra.org/en-US/
https://doi.org/10.2139/ssrn.3440802
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://doi.org/10.1109/saner.2017.7884650
https://doi.org/10.1007/978-3-319-72359-4_1
https://doi.org/10.1007/978-3-319-72359-4_1
https://doi.org/10.1145/3183399.3183420
https://doi.org/10.1145/3183399.3183420
https://defiprime.com
https://solidity.readthedocs.io/en/v0.5.11/contracts.html#creating-contracts
https://solidity.readthedocs.io/en/v0.5.11/contracts.html#creating-contracts
https://www.ethnews.com/ethereum-continues-to-suffer-from-ddos-attacks
https://www.ethnews.com/ethereum-continues-to-suffer-from-ddos-attacks
https://blog.ethereum.org/2016/09/22/transaction-spam-attack-next-steps/
https://blog.ethereum.org/2016/09/22/transaction-spam-attack-next-steps/
https://blog.ethereum.org/2019/01/15/security-alert-ethereum-constantinople-postponement/
https://blog.ethereum.org/2019/01/15/security-alert-ethereum-constantinople-postponement/
https://blog.ethereum.org/2019/01/15/security-alert-ethereum-constantinople-postponement/
https://doi.org/10.1109/eurospw.2019.00041
https://doi.org/10.1109/eurospw.2019.00041
https://geth.ethereum.org
https://solidity.readthedocs.io/en/v0.5.11/control-structures.html#error-handling-assert-require-revert-and-exceptions
https://solidity.readthedocs.io/en/v0.5.11/control-structures.html#error-handling-assert-require-revert-and-exceptions
https://doi.org/10.1002/spe.2751
https://doi.org/10.1002/spe.2751
https://doi.org/10.1109/bloc.2019.8751323
https://doi.org/10.1109/bloc.2019.8751323
https://doi.org/10.1109/srdsw49218.2019.00017
https://doi.org/10.1145/3311350.3347178
https://doi.org/10.1145/3311350.3347178
https://doi.org/10.1109/ismsit.2019.8932806
https://doi.org/10.1007/978-3-030-03427-6_33
https://etherscan.io/chart/etherprice?output=csv
https://etherscan.io/chart/etherprice?output=csv
https://github.com/ethereum/solidity/releases/tag/v0.4.25
https://github.com/ethereum/solidity/releases/tag/v0.4.25
https://solidity.readthedocs.io/en/v0.4.25/
https://solidity.readthedocs.io/en/v0.4.25/

	Abstract
	Keywords

	Introduction
	Background
	Blockchain-based cloud application
	Ethereum, smart contract, and EVM
	The gas mechanism of Ethereum

	Methodology
	Results
	RQ1: status quo
	Exception taxonomy
	Accumulative consequences
	Smart contracts
	Transactions
	Blockchain-based cloud applications

	RQ2: causing factor
	Common causing factors

	RQ3: tool evaluation
	Data set
	Gas estimator

	Code optimizer
	Other approaches
	Summaries and implications

	Related work
	Decentralized application
	Ethereum gas mechanism and out of gas exception

	Conclusion
	Abbreviations
	Acknowledgments
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

