
Noname manuscript No.
(will be inserted by the editor)

Studying Just-In-Time Defect Prediction using Cross-Project

Models

Yasutaka Kamei · Takafumi Fukushima ·

Shane McIntosh · Kazuhiro Yamashita ·

Naoyasu Ubayashi · Ahmed E. Hassan

Author pre-print copy. The final publication is available at Springer via:

http://dx.doi.org/10.1007/s10664-015-9400-x

Abstract Unlike traditional defect prediction models that identify defect-prone mod-

ules, Just-In-Time (JIT) defect prediction models identify defect-inducing changes.

As such, JIT defect models can provide earlier feedback for developers, while design

decisions are still fresh in their minds. Unfortunately, similar to traditional defect

models, JIT models require a large amount of training data, which is not available

when projects are in initial development phases. To address this limitation in tradi-

tional defect prediction, prior work has proposed cross-project models, i.e., models

learned from other projects with sufficient history. However, cross-project models

have not yet been explored in the context of JIT prediction. Therefore, in this study,

we empirically evaluate the performance of JIT models in a cross-project context.

Through an empirical study on 11 open source projects, we find that while JIT mod-

els rarely perform well in a cross-project context, their performance tends to improve

when using approaches that: (1) select models trained using other projects that are

similar to the testing project, (2) combine the data of several other projects to produce

a larger pool of training data, and (3) combine the models of several other projects

to produce an ensemble model. Our findings empirically confirm that JIT models

learned using other projects are a viable solution for projects with limited historical

Yasutaka Kamei · Takafumi Fukushima · Kazuhiro Yamashita · Naoyasu Ubayashi

Principles of Software Languages Group (POSL)

Kyushu University, Japan

E-mail: kamei@ait.kyushu-u.ac.jp, ubayashi@ait.kyushu-u.ac.jp

E-mail: f.taka@posl.ait.kyushu-u.ac.jp, yamashita@posl.ait.kyushu-u.ac.jp

Shane McIntosh

Department of Electrical and Computer Engineering

McGill University, Canada

E-mail: shane.mcintosh@mcgill.ca

Ahmed E. Hassan

Software Analysis and Intelligence Lab (SAIL)

Queen’s University, Canada

E-mail: ahmed@cs.queensu.ca

http://dx.doi.org/10.1007/s10664-015-9400-x

2 Yasutaka Kamei et al.

data. However, JIT models tend to perform best in a cross-project context when the

data used to learn them are carefully selected.

Keywords Empirical study · Defect prediction · Just-In-Time prediction

1 Introduction

Software Quality Assurance (SQA) activities, such as code inspection and unit testing

are standard practices for improving the quality of a software system prior to its

official release. However, software teams have limited testing resources, and must

wisely allocate them to minimize the risk of incurring post-release defects. For this

reason, a plethora of software engineering research is focused on prioritizing SQA

activities (Li et al., 2006; Shihab, 2012). For example, defect prediction techniques

are often used to prioritize modules (i.e., files or packages) based on their likelihood

of containing post-release defects (Basili et al., 1996; Li et al., 2006). Using these

techniques, practitioners can allocate limited SQA resources to the most defect-prone

modules.

However, recent work shows that traditional defect prediction models often make

recommendations at a granularity that is too coarse to be applied in practice (Kamei

et al., 2010, 2013; Shihab et al., 2012). For example, since the largest files or pack-

ages are often the most defect-prone (Koru et al., 2009), they are often suggested by

traditional defect models for further inspection. Yet, carefully inspecting large files

or packages is not practical for two reasons: (1) the design decisions made when the

code was initially produced may be difficult for a developer to recall or recover, and

(2) it may not be clear which developer should perform the inspection tasks, since

many developers often work on the same files or packages (Kim et al., 2008).

To address these limitations in traditional defect prediction, prior work has pro-

posed change-level defect prediction models, i.e., models that predict the code changes

that are likely to introduce defects (Kamei et al., 2013; Kim et al., 2008; Mockus and

Weiss, 2000; Shihab et al., 2012; Śliwerski et al., 2005). The advantages of change-

level predictions are that: (1) the predictions are made at a fine granularity, since

changes often impact only a small region of the code, and (2) the predictions can

be easily assigned, since each change has an author who can perform the inspection

while design decisions are still fresh in their mind. Change-level defect prediction

has been successfully adopted by industrial software teams at Avaya (Mockus and

Weiss, 2000), BlackBerry (Shihab et al., 2012), and Cisco (Tan et al., 2015). We re-

fer to change-level defect prediction as “Just-In-Time (JIT) defect prediction” (Kamei

et al., 2013).

Despite the advantages of JIT defect models, like all prediction models, they re-

quire a large amount of historical data in order to train a model that will perform

well (Zimmermann et al., 2009). However, in practice, training data may not be avail-

able for projects in the initial development phases, or for legacy systems that have not

archived historical data. To overcome the limited availability of training data, prior

work has proposed cross-project defect prediction models, i.e., models trained using

historical data from other projects (Turhan et al., 2009).

Studying Just-In-Time Defect Prediction using Cross-Project Models 3

While studies have shown that cross-project defect prediction models can perform

well at the file-level (Bettenburg et al., 2012; Menzies et al., 2013), cross-project JIT

models remain largely unexplored. We, therefore, set out to empirically study the

performance of JIT models in a cross-project context using data from 11 open source

projects. We find that the within-project performance of a JIT model does not indicate

how well it will perform in a cross-project context (Section 4). Hence, we set out to

study three approaches to optimize the performance of JIT models in a cross-project

context. We structure our study along the following three research questions:

(RQ1) Do JIT models selected using project similarity perform well in a cross-

project context? (Model selection)

Defect prediction models assume that the distributions of the metrics in the

training and testing datasets are similar (Turhan et al., 2009). Since the distri-

bution of metrics can vary among projects, this assumption may be violated

in a cross-project context. In such cases, we would expect that the perfor-

mance of cross-project models would suffer. On the other hand, we expect

that models trained using data from similar projects will have strong cross-

project performance.

(RQ2) Do JIT models built using a pool of data from several projects perform

well in a cross-project context? (Data merging)

A model that was fit using data from only one project may be overfit, i.e.,

too closely related to the training data to apply to other datasets. Conversely,

sampling from a more diverse pool of changes from several other projects

may provide a more robust model fit that will apply better in a cross-project

context. Hence, we want to investigate whether the cross-project performance

of JIT models improve when we train them using changes from a variety of

other projects.

(RQ3) Do ensembles of JIT models built from several projects perform well in

a cross-project context? (Ensembles of models)

Since ensemble classification techniques have recently proven useful in other

areas of software engineering (Kocaguneli et al., 2012), we suspect that they

may also improve the cross-project performance of JIT models. Ensemble

techniques that leverage multiple datasets cover a large variety of project

characteristics, and hence may provide a more general JIT model for cross-

project prediction, i.e., not only those of one project.

Through an empirical study on 11 open source projects, we find that the most

similar projects yield JIT models that are among the 3 top-performing cross-project

models for 6 of the 11 studied systems (RQ1). Although, while similarity helps to

select the top-performing models, these models tend to under-perform with respect

to within-project performance. On the other hand, combining data from (RQ2) and

models trained using (RQ3) several other projects tends to yield JIT models that have

strong cross-project performance, which is indistinguishable from within-project per-

formance. However, when we use similarity to filter away dissimilar project data, it

rarely improves model performance. This suggests that additional training data is a

more important factor for cross-project JIT models than project similarity is.

4 Yasutaka Kamei et al.

This paper is an extended version of our earlier work (Fukushima et al., 2014).

We extend our previous work by:

– Studying domain-aware similarity techniques (RQ1) to combat limitations in our

threshold-dependent, domain-agnostic similarity approach.

– Studying context-aware rank transformation as a means of using data from several

projects simultaneously (RQ2).

– Grounding the cross-project performance of JIT models by normalizing them by

the performance of the corresponding within-project JIT model.

1.1 Paper Organization

The rest of the paper is organized as follows. Section 2 surveys related work. Sec-

tion 3 describes the setting of our empirical study. Section 4 describes a preliminary

study of the relationship between the within-project and cross-project performance

of JIT models, while Section 5 presents the results of our empirical study with re-

spect to our three research questions. Section 6 discusses the broader implications of

our findings. Section 7 discloses the threats to the validity of our findings. Finally,

Section 8 draws conclusions.

2 Background and Related Work

In this section, we describe the related work with respect to JIT and cross-project

defect prediction.

2.1 Just-In-Time Defect Prediction

A traditional defect model classifies each module as either defective or not using

module metrics (e.g., SLOC and McCabe’s Cyclomatic complexity) as predictor vari-

ables. On the other hand, JIT models use change metrics (e.g., # modified files) to

explain the status of a change (i.e., defect-inducing or not).

Prior work suggests that JIT prediction is a more practical alternative to traditional

defect prediction. For example, Mockus and Weiss (2000) predict defect-inducing

changes in a large-scale telecommunication system. Kim et al. (2008) add change

features, such as the terms in added and deleted deltas, modified file and directory

names, change logs, source code, change metadata and complexity metrics to clas-

sify changes as being defect-inducing or not. Kamei et al. (2013) also perform a

large-scale study on the effectiveness of JIT defect prediction, reporting that the ad-

dition of a variety of factors extracted from commits and bug reports helps to effec-

tively predict defect-inducing changes. In addition, the authors show that using their

technique, careful inspection of 20% of the changes could prevent up to 35% of the

defect-inducing changes from impacting users.

The prior work not only establishes that JIT defect prediction is a more practical

alternative to traditional defect prediction, but also that it is viable, yielding actionable

Studying Just-In-Time Defect Prediction using Cross-Project Models 5

results. However, defect models must be trained using a large corpus of data in order

to perform well (Zimmermann et al., 2009). Since new projects and legacy ones may

not have enough historical data available to train effective JIT models, we set out to

study JIT models in a cross-project context.

2.1.1 Building JIT Models

Various techniques are used to build defect models, such as logistic regression and

random forest. Many prior studies focus on the evaluation of prediction performance

for additional modeling techniques (Hall et al., 2012), such as linear discriminant

analysis, decision trees, Naive Bayes and Support Vector Machines (SVM).

Random forest. In this paper, we train our JIT models using the random forest algo-

rithm, since compared to conventional modeling techniques (e.g., logistic regression

and decision trees), random forest produces robust, highly accurate, stable models

that are especially resilient to noisy data (Jiang et al., 2008). Furthermore, our prior

studies have shown that random forest tends to outperform other modeling techniques

for defect prediction (Kamei et al., 2010).

Random forest is a classification (or regression) technique that builds a large num-

ber of decision trees at training time (Breiman, 2001). Each node in the decision tree

is split using a random subset of all of the attributes. Performing this random split

ensures that all of the trees have a low correlation between them (Breiman, 2001).

First, the dataset is split into training and testing corpora. Typically, 90% of the

dataset is allocated to the training corpus, which is used to build the forest. The re-

maining 10% of the dataset is allocated to the testing or Out Of Bag (OOB) corpus,

which is used to test the prediction accuracy of the forest. Since there are many deci-

sion trees that may each report different outcomes, each sample in the OOB corpus is

pushed down all of the trees in the forest and the final class of the sample is decided

by aggregating the votes from all of the trees.

2.2 Cross-Project Defect Prediction

Cross-project defect prediction is also a well-studied research area. Several studies

have explored traditional defect prediction using cross-project models (Menzies et al.,

2013; Minku and Yao, 2014; Nam et al., 2013; Turhan et al., 2009; Zhang et al., 2014;

Zimmermann et al., 2009).

Briand et al. (2002) train a defect prediction model using data from one Java

system, and test it using data from another Java system, reporting lower prediction

performance for the cross-project context than the within-project one. On the other

hand, Turhan et al. (2009) find that cross-project prediction models can actually out-

perform models built using within-project data. However, Turhan et al. (2011) also

find that adding mixed project data to an existing prediction model yields only minor

improvements to prediction performance.

Zimmermann et al. (2009) study cross-project defect prediction models using 28

datasets collected from 12 open source and industrial projects. They find that of the

622 cross-project combinations, only 21 produce acceptable results.

6 Yasutaka Kamei et al.

Rahman et al. (2012) evaluate the prediction performance of cross-project mod-

els by taking into account the cost of software quality assurance effort. They show

that using such a perspective, the performance of cross-project models is comparable

to that of within-project models. He et al. (2012) show that cross-project models out-

perform within-project models if it is possible to pick the best cross-project models

among all available models to predict testing projects.

Menzies et al. (2011, 2013) comparatively evaluate local (within-project) vs.

global (cross-project) lessons learned for defect prediction. They report that a strong

prediction model can be built from projects that are included in the cluster that is

nearest to the testing data. Furthermore, Nam et al. (2013) use the transfer learning

approach (TCA) to make feature distributions in training and testing projects simi-

lar. They also propose a novel transfer learning approach, TCA+, by extending TCA.

They report that TCA+ significantly improves cross-project prediction performance

in eight open source projects.

Recent work has shown that cross-project models can achieve performance sim-

ilar to that of within-project models. Zhang et al. (2014) proposes a context-aware

rank transformation method to preprocess predictors and address the variations in

their distributions. Using 1,398 open source projects, they produce a “universal” de-

fect prediction model that achieves performance that rivals within-project models.

Minku and Yao (2014) investigate how to make best use of cross-project data in

the domain of software effort estimation. Through use of a proposed framework to

map metrics from one context to another, their cross-project effort estimation models

achieve performance similar to within-project ones.

Similar to prior work, we find that cross-project models that use a combination of

ensemble and similarity techniques can outperform within-project models. Further-

more, while prior studies have empirically evaluated cross-project prediction perfor-

mance using traditional models, our study focuses on cross-project prediction using

JIT models.

3 Experimental Setting

3.1 Studied Systems

In order to address our research questions, we conduct an empirical study using data

from 11 open source projects, of which 6 projects (Bugzilla, Columba, Eclipse JDT,

Mozilla, Eclipse Platform, PostgreSQL) are provided by Kamei et al. (2013) and 5

well-known and long-lived projects (Gimp, Maven-2, Perl, Ruby on Rails, Rhino)

needed to be collected. We study projects from various domains in order to combat

potential bias in our results. Table 1 provides an overview of the studied datasets.

3.2 Change Measures

Our previous study of JIT defect prediction uses 14 metrics from 5 categories de-

rived from the Version Control System (VCS) of a project to predict defect-inducing

Studying Just-In-Time Defect Prediction using Cross-Project Models 7

changes (Kamei et al., 2013). Table 2 provides a brief description of each metric and

the rationale behind using it in JIT models. We remove 6 of these metrics in the His-

tory and Experience categories because these metrics are project-specific, and hence

cannot be measured from the software projects that do not have change histories (e.g.,

a new development project). We briefly describe each surviving metric below.

3.2.1 Identify Defect-Inducing Changes

To know whether or not a change introduces a defect, we used the SZZ algorithm (Śliwerski

et al., 2005). This algorithm identifies when a bug was injected into the code and who

injected it using a VCS. We discuss the noise introduced by the heuristic nature of

the SZZ algorithm in Section 7.2.

3.2.2 Diffusion

We expect that the diffusion dimension can be leveraged to determine the likelihood

of a change being defect-inducing. We use four diffusion metrics in our JIT models,

as listed in Table 2.

Prior work has shown that a highly distributed change can be more complex and

harder to understand (Hassan, 2009; Mockus and Weiss, 2000). For example, Mockus

and Weiss (2000) have shown that the number of changed subsystems is related to

defect-proneness. Hassan (2009) has shown that change entropy is a more powerful

predictors of the incidence of defects than the number of prior defects or changes. In

our study, similar to Hassan (2009), we normalize the change entropy by the maxi-

mum entropy log2n to account for differences in the number of files n across changes.

For each change, we count the number of distinct names of modified: (1) sub-

systems (NS, i.e., root directories), (2) directories (ND) and (3) files (NF). To illus-

trate, if a change modifies a file with the path: org.eclipse.jdt.core/jdom/org/

eclipse/jdt/core/dom/Node.java, then the subsystem is org.eclipse.jdt.

core, the directory is org.eclipse.jdt.core/jdom/org/eclipse/jdt/core/

dom and the file name is org.eclipse.jdt.core/jdom/org/eclipse/jdt/core/

dom/Node.java.

Table 1 Summary of project data. Parenthesized values show the percentage of defect-inducing changes.

Project name Period # of changes

Bugzilla (BUG) 08/1998 - 12/2006 4,620 (37%)

Columba (COL) 11/2002 - 07/2006 4,455 (31%)

Gimp (GIP) 01/1997 - 06/2013 32,875 (36%)

Eclipse JDT (JDT) 05/2001 - 12/2007 35,386 (14%)

Maven-2 (MAV) 09/2003 - 05/2012 5,399 (10%)

Mozilla (MOZ) 01/2000 - 12/2006 98,275 (5%)

Perl (PER) 12/1987 - 06/2013 50,485 (24%)

Eclipse Platform (PLA) 05/2001 - 12/2007 64,250 (15%)

PostgreSQL (POS) 07/1996 - 05/2010 20,431 (25%)

Ruby on Rails (RUB) 11/2004 - 06/2013 32,866 (19%)

Rhino (RHI) 04/1999 - 02/2013 2,955 (44%)

Median 32,866(24%)

org.eclipse.jdt.core/jdom/org/eclipse/jdt/core/dom/Node.java
org.eclipse.jdt.core/jdom/org/eclipse/jdt/core/dom/Node.java
org.eclipse.jdt.core
org.eclipse.jdt.core
org.eclipse.jdt.core/jdom/org/eclipse/jdt/core/dom
org.eclipse.jdt.core/jdom/org/eclipse/jdt/core/dom
org.eclipse.jdt.core/jdom/org/eclipse/jdt/core/dom/Node.java
org.eclipse.jdt.core/jdom/org/eclipse/jdt/core/dom/Node.java

8 Yasutaka Kamei et al.

Table 2 Summary of change measures (Kamei et al., 2013).

Dim. Name Definition Rationale Related Work

D
if

fu
si

o
n

NS Number of modi-

fied subsystems

Changes modifying many subsystems are more

likely to be defect-prone.

The defect probability of a

change increases with the number

of modified subsystems (Mockus

and Weiss, 2000).

ND Number of modi-

fied directories

Changes that modify many directories are more

likely to be defect-prone.

The higher the number of mod-

ified directories, the higher the

chance that a change will induce a

defect (Mockus and Weiss, 2000).

NF Number of modi-

fied files

Changes touching many files are more likely to be

defect-prone.

The number of classes in a mod-

ule is a good feature of post-

release defects of a module (Na-

gappan et al., 2006)

Entropy Distribution of

modified code

across each file

Changes with high entropy are more likely to be

defect-prone, because a developer will have to re-

call and track large numbers of scattered changes

across each file.

Scattered changes are more likely

to introduce defects (D’Ambros

et al., 2010; Hassan, 2009).

S
iz

e

LA Lines of code

added

The more lines of code added, the more likely a

defect is introduced.

Relative code churn measures

are good indicators of defect

modules (Moser et al., 2008;

Nagappan and Ball, 2005).

LD Lines of code

deleted

The more lines of code deleted, the higher the

chance of a defect.

LT Lines of code in

a file before the

change

The larger a file, the more likely a change might

introduce a defect.

Larger modules contribute more

defects (Koru et al., 2009).

P
u
rp

o
se

FIX Whether or not the

change is a defect

fix

Fixing a defect means that an error was made in an

earlier implementation, therefore it may indicate

an area where errors are more likely.

Changes that fix defects are more

likely to introduce defects than

changes that implement new func-

tionality (Guo et al., 2010)(Pu-

rushothaman and Perry, 2005).

H
is

to
ry

∗

NDEV The number of

developers that

changed the modi-

fied files

The larger the NDEV, the more likely a defect is

introduced, because files revised by many devel-

opers often contain different design thoughts and

coding styles.

Files previously touched by more

developers contain more defects

(Matsumoto et al., 2010).

AGE The average time

interval between

the last and the

current change

The lower the AGE (i.e., the more recent the last

change), the more likely a defect will be intro-

duced.

More recent changes con-

tribute more defects than older

changes (Graves et al., 2000).

NUC The number of

unique changes to

the modified files

The larger the NUC, the more likely a defect is

introduced, because a developer will have to recall

and track many previous changes.

The larger the spread of modi-

fied files, the higher the complex-

ity (D’Ambros et al., 2010; Has-

san, 2009).

E
x
p
er

ie
n
ce

∗

EXP Developer experi-

ence

More experienced developers are less likely to in-

troduce a defect.

Programmer experience

significantly reduces the

likelihood of introducing a

defect (Mockus and Weiss,

2000). Developer

experience is measured as

the number of changes

made by the developer

before the current change.

REXP Recent developer

experience

A developer that has often modified the files in

recent months is less likely to introduce a defect,

because she will be more familiar with the recent

developments in the system.

SEXP Developer experi-

ence on a subsys-

tem

Developers that are familiar with the subsystems

modified by a change are less likely to introduce a

defect.
∗ These metrics cannot be measured from the software projects that do not have change histories, and hence cannot be used in

cross-project context.

3.2.3 Size

In addition to the diffusion of a change, prior work shows that the size of a change

is a strong indicator of its defect-proneness (Moser et al., 2008; Nagappan and Ball,

2005). Hence, we use the size dimension to identify defect-inducing changes. We

use the lines added (LA), lines deleted (LD), and lines total (LT) metrics to measure

change size as shown in Table 2. We normalize LT by dividing it by NF (relative LT),

similarly to Kamei et al. (2013). These metrics can be extracted directly from a VCS.

Studying Just-In-Time Defect Prediction using Cross-Project Models 9

Table 3 The median of Spearman correlation values among dataset.

NF Entropy Relative

churn

Relative

LT

Fix

NS 0.21 0.11 0.03 -0.05 -0.04

NF - 0.72 0.17 -0.02 -0.14

Entropy - - 0.40 0.16 0.01

Relative churn - - - 0.18 0.08

Relative LT - - - - 0.22

3.2.4 Purpose

A change that fixes a defect is more likely to introduce another defect (Guo et al.,

2010; Purushothaman and Perry, 2005). The intuition being that the defect-prone

modules of the past tend to remain defect-prone in the future (Graves et al., 2000).

To determine whether or not a change fixes a defect, we scan VCS commit mes-

sages that accompany changes for keywords like “bug”, “fix”, “defect” or “patch”,

and for defect identification numbers. A similar approach to determine defect-fixing

changes was used in other work (Kamei et al., 2013; Kim et al., 2008).

3.3 Data Preparation

3.3.1 Minimizing Collinearity

To combat the threat of multicollinearity in our models, we remove highly corre-

lated metrics (Spearman ρ > 0.8). We manually remove the highly correlated factors,

avoiding the use of automatic techniques, such as stepwise variable selection because

they may remove fundamental metrics (e.g., NF), in favour of a non-fundamental

ones (e.g., NS) if the metrics are highly correlated. Since the fundamentality of a

metric is somewhat subjective, we discuss below each metrics that we discarded.

We found that NS and ND are highly correlated (ρ = 0.84). To address this, we

exclude ND and include NS in our prediction models. We also found that LA and

LD are highly correlated (ρ = 0.89). Nagappan and Ball (2005) reported that relative

churn metrics perform better than absolute metrics when predicting defect density.

Therefore, we adopt their normalization approach, i.e., LA and LD are divided by

LT. In short, the NS, NF, Entropy, relative churn (i.e., (LA+LD)/LT), relative LT (=

LT/NF) and FIX metrics survive our correlation analysis (Table 3). Table 4 and 5

provide descriptive statistics of the six studied metrics.

3.3.2 Handling Class Imbalance

Our datasets are imbalanced, i.e., the number of defect-inducing changes represents

only a small proportion of all changes. This imbalance may cause the performance

of the prediction models to degrade if it is not handled properly (Kamei et al., 2007).

Taking this into account, we use a re-sampling approach for our training data. We

reduce the number of majority class instances (i.e., non-defect-inducing changes in

10 Yasutaka Kamei et al.

Table 4 Descriptive statistics of the studied metrics (1/2)

NS NF Entropy Relative churn Relative LT Fix

B
U

G

Minimum 1.000 1.000 0.000 0.000 0.000 −

1st Quartile 1.000 1.000 0.000 0.006 210.000 −

Median 1.000 1.000 0.000 0.017 455.000 −

Mean 1.170 2.288 0.229 0.103 591.400 0.860

3rd Quatile 1.000 2.000 0.551 0.057 799.200 −

Maximum 4.000 63.000 1.000 21.000 2751.000 −

C
O

L

Minimum 1.000 1.000 0.000 0.000 0.000 −

1st Quartile 1.000 1.000 0.000 0.007 38.000 −

Median 1.000 2.000 0.000 0.093 77.000 −

Mean 1.034 6.195 0.277 0.430 114.200 0.328

3rd Quatile 1.000 4.000 0.667 0.384 150.000 −

Maximum 6.000 1297.000 1.000 8.667 1371.000 −

G
IP

Minimum 0.000 0.000 0.000 0.000 0.000 −

1st Quartile 1.000 2.000 0.021 0.001 787.000 −

Median 2.000 2.000 0.625 0.007 2524.000 −

Mean 1.873 6.737 0.513 0.276 5385.000 0.165

3rd Quatile 2.000 5.000 0.863 0.035 7422.000 −

Maximum 39.000 2730.000 1.000 2877.000 74172.000 −

JD
T

Minimum 1.000 1.000 0.000 0.000 0.000 −

1st Quartile 1.000 1.000 0.000 0.011 105.000 −

Median 1.000 1.000 0.000 0.039 238.100 −

Mean 1.011 3.874 0.269 0.167 437.700 0.305

3rd Quatile 1.000 2.000 0.670 0.125 496.000 −

Maximum 4.000 1645.000 1.000 264.000 7140.000 −

M
A

V

Minimum 0.000 0.000 0.000 0.000 0.000 −

1st Quartile 1.000 1.000 0.000 0.013 51.000 −

Median 1.000 1.000 0.000 0.052 156.300 −

Mean 1.691 4.386 0.314 0.399 313.700 0.150

3rd Quatile 1.000 3.000 0.753 0.175 376.900 −

Maximum 32.000 732.000 1.000 295.767 3994.000 −

M
O

Z

Minimum 1.000 1.000 0.000 0.000 0.000 −

1st Quartile 1.000 1.000 0.000 0.004 170.000 −

Median 1.000 1.000 0.000 0.016 521.000 −

Mean 1.199 3.705 0.307 0.136 970.600 0.640

3rd Quatile 1.000 3.000 0.722 0.064 1269.000 −

Maximum 30.000 2817.000 1.000 170.733 38980.000 −

the training data) by deleting instances randomly such that the majority class drops

to the same level as the minority class (i.e., defect-inducing changes). Note that re-

sampling is only performed on the training data – the testing data is not modified.

3.4 Evaluating Model Performance

To evaluate model prediction performance, precision, recall and F-measure are often

used (Kim et al., 2008; Nam et al., 2013). However, as Lessmann et al. (2008) point

out, these criteria depend on the threshold that is used for classification. Choosing a

different threshold may lead to different results.

To evaluate model prediction performance in a threshold-insensitive manner, we

use the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC)

plot. Figure 1 shows an example ROC curve, which plots the false positive rate (i.e.,

Studying Just-In-Time Defect Prediction using Cross-Project Models 11

Table 5 Descriptive statistics of the studied metrics (2/2)

NS NF Entropy Relative churn Relative LT Fix

P
E

R

Minimum 0.000 0.000 0.000 0.000 0.000 −

1st Quartile 1.000 1.000 0.000 0.001 318.000 −

Median 1.000 1.000 0.000 0.005 1196.000 −

Mean 1.851 3.350 0.271 0.079 2772.000 0.201

3rd Quatile 2.000 2.000 0.669 0.023 3379.000 −

Maximum 183.000 974.000 1.000 196.438 92171.000 −

P
L

A

Minimum 1.000 1.000 0.000 0.000 0.000 −

1st Quartile 1.000 1.000 0.000 0.007 62.000 −

Median 1.000 1.000 0.000 0.040 169.000 −

Mean 1.058 3.763 0.274 0.230 354.700 0.400

3rd Quatile 1.000 2.000 0.678 0.152 410.000 −

Maximum 18.000 1569.000 1.000 289.000 8744.000 −

P
O

S

Minimum 1.000 1.000 0.000 0.000 0.000 −

1st Quartile 1.000 1.000 0.000 0.009 254.000 −

Median 1.000 1.000 0.000 0.026 567.000 −

Mean 1.301 4.461 0.282 0.101 853.300 0.437

3rd Quatile 1.000 3.000 0.689 0.075 1136.200 −

Maximum 11.000 990.000 1.000 62.567 11326.000 −

R
U

B

Minimum 0.000 0.000 0.000 0.000 0.000 −

1st Quartile 1.000 1.000 0.000 0.004 60.000 −

Median 1.000 1.000 0.000 0.016 231.000 −

Mean 1.126 2.778 0.369 0.358 486.700 0.192

3rd Quatile 1.000 3.000 0.813 0.060 626.000 −

Maximum 10.000 547.000 1.000 1397.385 13060.000 −

R
H

I

Minimum 1.000 1.000 0.000 0.000 0.000 −

1st Quartile 1.000 1.000 0.000 0.005 217.800 −

Median 1.000 2.000 0.047 0.019 764.000 −

Mean 1.305 3.575 0.402 0.266 1134.300 0.431

3rd Quatile 2.000 3.000 0.872 0.064 1749.100 −

Maximum 12.000 434.000 1.000 431.012 6565.000 −

the proportion of changes that are incorrectly classified as defect-inducing) on the

x-axis and true positive rate (i.e., the proportion of defect-inducing changes that are

classified as such) on the y-axis over all possible classification thresholds. The range

of AUC is [0,1], where a larger AUC indicates better prediction performance. If the

prediction accuracy is higher, the ROC curve becomes more convex in the upper left

and the value of the AUC approaches 1. Any prediction model achieving an AUC

above 0.5 is more effective than random guessing.

4 Preliminary Study of Within-Project Performance

Models that perform well on data within the project have established a strong link be-

tween predictors and defect-proneness within that project. We suspect that properties

of the relationship may still hold if the model is tested on another project.

12 Yasutaka Kamei et al.

4.1 Approach

We test all JIT cross-project model combinations available with our 11 datasets (i.e.,

110 combinations = 11×10). We build JIT models using the historical data from one

project for training and test the prediction performance using the historical data from

each other project.

To measure within-project performance, we select one project as the training

dataset, perform tenfold cross-validation using data from the same project and then

calculate the AUC values. The tenfold cross-validation process randomly divides one

dataset into ten folds of equal sizes. The first nine folds are used to train the model,

and the last fold is used to test it. This process is repeated ten times, using a different

fold for testing each time. The prediction performance results of each fold are then

aggregated. We refer to this aggregated value of within-project model performance

as within-project AUC.

We validate whether or not datasets that have strong within-project prediction per-

formance also perform well in a cross-project context. To measure the cross-project

model performance, we test each within-project model using the data of all of the

other projects. We use all of the data of each project to build the within-project model.

We perform ten combinations of cross-project prediction (11 projects - 1 for training).

Finally, we compare within-project and cross-project AUC values.

4.2 Results

Table 6 shows the AUC values that we obtained. Each row shows the projects that we

used for testing and each column shows the projects that we used for training. Diag-

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False−Positive

T
ru

e
−

P
o
s
it
iv

e

AUC=0.5

AUC=0.8

Fig. 1 An example of ROC curve in the case of AUC=0.8 and AUC=0.5.

Studying Just-In-Time Defect Prediction using Cross-Project Models 13

Table 6 Summary of AUC values for within-project prediction and cross-project prediction.

Training project

BUG COL GIP JDT MAV MOZ PER PLA POS RUB RHI

T
es

ti
n

g
p

ro
je

ct

BUG 0.75 0.55 0.66 0.72 0.66 0.71 0.68 0.68 0.69 0.69 0.69

COL 0.56 0.77 0.63 0.73 0.62 0.74 0.64 0.76 0.71 0.61 0.65

GIP 0.47 0.47 0.79 0.69 0.63 0.58 0.68 0.60 0.66 0.62 0.69

JDT 0.61 0.66 0.68 0.75 0.62 0.73 0.67 0.72 0.70 0.68 0.68

MAV 0.38 0.63 0.76 0.72 0.83 0.76 0.75 0.79 0.72 0.73 0.75

MOZ 0.69 0.64 0.74 0.74 0.69 0.80 0.73 0.74 0.77 0.74 0.75

PER 0.57 0.49 0.69 0.67 0.65 0.63 0.75 0.60 0.66 0.69 0.72

PLA 0.69 0.68 0.69 0.75 0.65 0.74 0.68 0.78 0.70 0.67 0.68

POS 0.50 0.56 0.68 0.71 0.69 0.74 0.72 0.73 0.79 0.72 0.72

RUB 0.51 0.60 0.63 0.65 0.62 0.65 0.70 0.64 0.66 0.74 0.68

RHI 0.55 0.68 0.77 0.62 0.72 0.77 0.79 0.73 0.73 0.72 0.81

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

MAV RHI MOZ GIP POS PLA COL BUG JDT PER RUB

P
e

rc
e

n
ta

g
e

 o
f

W
it
h

in
−

P
ro

je
c
t

A
U

C

Fig. 2 Cross-project performance of models trained on each project. Projects are sorted by within-project

performance along the x-axis. Y-axis shows the cross-project performance (non-gray cells in Table 6)

normalized by the performance of the within-project model.

onal values (gray-colored cells) show the within-project AUC values. For example,

the COL-COL cell is the AUC value of the tenfold cross-validation in the Columba

project. Other cells show the cross-project prediction results. For example, the cell

shown in boldface shows the performance of the JIT model learned using Bugzilla

project data and tested using Columba project data.

Figure 2 shows the cross-project performance (non-gray cells in Table 6) nor-

malized by the performance of the within-project model using beanplots (Kampstra,

2008). Beanplots are boxplots in which the vertical curves summarize the distribution

of the dataset. The solid horizontal lines indicate the median value.

The beanplots are sorted in descending order along the X-axis according to the

AUC value of within-project prediction. If there were truly a relationship between

good within-project and cross-project prediction, one would expect that the bean-

plots should also descend in value from left to right. Since no such pattern emerges,

it seems that there is no relationship between the within-project and cross-project per-

formance of a JIT model. We validate our observation statistically using Spearman

14 Yasutaka Kamei et al.

correlation tests. We calculate the Spearman correlation between the rank of the AUC

value of within-project prediction and the median of the AUC values of cross-project

prediction. The resulting value is ρ = 0.036 (p = 0.924).

The within-project performance of a JIT model is not a strong indicator of its

performance in a cross-project context.

5 Empirical Study Results

In this section, we present the results of our empirical study with respect to our three

research questions.

(RQ1) Do JIT models selected using project similarity perform well in a cross-project

context?

We explore domain-agnostic (RQ1-1) and domain-aware (RQ1-2) types of similarity

between the studied projects. Domain-agnostic similarity is measured using predictor

metric values, whereas domain-aware similarity is measured using project details. We

discuss our results with respect to each style of similarity below.

training dataset

dependent independent

A B C D E F G
Change 1 1 3 0.6 1 0.1 480 1
Change 2 3 52 0.7 0 0.4 283 0

・・・ ・・・ ・・・ ・・・

training dataset

Dependent

A B C D E F

S
p

e
a

rm
a

n

co
e

ff
ic

ie
n

ts

0.22 0.27 0.23 0.17 0.24 0.01

Step.1

training dataset

dependent Independent

A B C D E F G
Change 1 1 3 0.6 1 0.1 480 1
Change 2 3 52 0.7 0 0.4 283 0

・・・ ・・・ ・・・ ・・・ ・・・ ・・・ ・・・ ・・・

Step.2 testing dataset

dependent

A B C D E F
Change 1 1 2 0.9 0 0.2 39
Change 2 1 3 0.7 0 0.4 102

・・・ ・・・ ・・・ ・・・ ・・・ ・・・ ・・・

Step.3

Step.4

(Q1, Q2 and Q3)

(R1, R2 and R3)

Q1 Q2 Q3 R1 R2 R3

Step.5

Euclidean distance

B

3

52

・・・

C

0.6

0.7

・・・

E

0.1

0.4

・・・

C

0.6

0.7

・・・

B

3

52

・・・

E

0.1

0.4

・・・

B

2

3

・・・

C

0.9

0.7

・・・

E

0.2

0.4

・・・

C

0.9

0.7

・・・

B

2

3

・・・

E

0.2

0.4

・・・

q1 q2 q3 r1 r2 r3

Fig. 3 The five steps in the technique for calculating the domain-agnostic similarity between two projects.

Studying Just-In-Time Defect Prediction using Cross-Project Models 15

7
0

8
0

9
0

1
0

0
1

1
0

P
e

rc
e

n
ta

g
e

 o
f

W
it
h

in
−

P
ro

je
c
t

A
U

C

Fig. 4 [RQ1-1] Effect of selecting training data by degree of domain-agnostic similarity.

(RQ1-1) Approach

We first validate whether or not we obtain better prediction performance when we use

the models trained using a project that has similar domain-agnostic characteristics

with a testing project. Figure 3 provides an overview of our approach to calculate the

domain-agnostic similarity between two projects. We describe each step below:

1. We calculate the Spearman correlation between a dependent variable and each

predictor variable in the training dataset (Step 1 of Figure 3).

2. We select the three predictor variables (q1, q2 and q3) that have the highest Spear-

man correlation values (the gray shaded variables in Step 2 of Figure 3). We per-

form this step because we would like to focus on the metrics that have strong

relationships with defect-inducing changes.

3. We then select the same three predictor variables (r1, r2 and r3) from testing

dataset (the grey shaded variables in Step 3 of Figure 3).

4. We calculate the Spearman correlation between q1 and q2 (Q1), q2 and q3 (Q2),

and q3 and q1 (Q3) to obtain a three-dimensional vector (Q1, Q2, Q3). We repeat

these steps using the r1, r2 and r3 to obtain another vector (R1, R2, R3) for testing

dataset.

5. Finally, we obtain our similarity measure by calculating the Euclidean distance

between (Q1, Q2, Q3) and (R1, R2, R3).

In RQ1-1, we select the prediction model of the most similar project with a testing

project. In a prediction scenario, we will not know the value of the dependent variable,

since it is what we aim to predict. Hence, our similarity metric does not rely on the

dependent variable of the testing dataset.

16 Yasutaka Kamei et al.

(RQ1-1) Results

Figure 4 shows the percentage of within-project performance that the model for the

most similar project achieves in a cross-project context. We achieve a minimum of

88% of the within-project performance by selecting similar cross-project models.

These results suggest that our domain-agnostic similarity metric helps to identify

stable JIT models with strong cross-project prediction performance from a list of

candidates.

To further analyze how well our domain-agnostic similarity approach is working,

we check the relationship between similarity ranks and actual ranks. While the sim-

ilarity ranks are measured by ordering projects using our domain-agnostic similarity

metric, the actual ranks are measured by ordering projects according to the AUC

of cross-project prediction (normalized by within-project AUC). When we use our

domain-agnostic similarity metric for model selection, the actual top-ranked project

(i.e., the cross-project model that performs the best for this project) is chosen for 3

of the 11 studied projects (Columba, Gimp and Platform), the second ranked project

is chosen for 1 studied project (Mozilla) and the third ranked project is chosen for

2 studied projects (Bugzilla and Perl). Altogether, 8 projects perform better than the

sixth (median) rank. This result suggests that our domain-agnostic similarity metric

helps to select top-performing JIT models for cross-project prediction.

On the other hand, while our domain-agnostic results are promising, there are

many thresholds that must be carefully selected. A threshold analysis reveals that the

models selected by our domain-agnostic similarity perform best when a small number

of predictor variables (4 or fewer) are used. When we use too many variables (i.e.,

more than 4) in the domain-agnostic similarity calculation, the models identified as

highly similar tend to perform worse.

While our domain-agnostic similarity metric selects JIT models that tend to per-

form better than the median cross-project performance, the metric is sensitive to

threshold values.

(RQ1-2) Approach

In addition to the threshold-sensitivity of our domain-agnostic similarity metric, one

would also require access to the data of all other projects in order to calculate it.

This may not be practical in a cross-company context due to privacy concerns of the

companies involved. To avoid such limitations, we set out to study privacy-preserving

means of selecting similar projects.

Previous work has also explored the use of similarity to select models that will

likely perform well in a cross-project context. For example, Zimmermann et al.

(2009) propose the following project-based metrics (i.e., context factors) to calcu-

late similarity:

Company (Mozilla Corp/Eclipse/Apache foundation/Others): the organization re-

sponsible for developing a system.

Studying Just-In-Time Defect Prediction using Cross-Project Models 17

Intended audience (End user/Developer): whether a system is built for interaction

with end users (e.g., Mozilla) or built for development professionals (e.g., Ruby

on Rails).

User interface (Graphical/Toolkit/Non-interactive): The type of system. For exam-

ple, Gimp has a GUI, while Maven-2 is a toolkit and Perl is non-interactive.

Product uses database (Yes/No): whether or not a system persists data using a database.

Programming language (Java/JavaScript/C/C++/Perl/Ruby): programming language

used in the system development. We identify the programming language using

Linguist.1 Similar to other work (McIntosh et al., 2014), if there are more than

10% of files that are written in a programing language, then that programming

languages is considered used in the system development.

We refer to this style of similarity as “domain-aware”, since it focuses on char-

acteristics of software projects, rather than the data that is produced. In RQ1-2, we

study whether these domain-aware characteristics can also help to select JIT models

that will perform well in a cross-project context.

Due to differences in our experimental settings, we could not adopt all of the

domain-aware metrics of Zimmermann et al. (2009). For example, we do not use

“open source or not” and “global development or not”, since we only study open

source projects with globally distributed development teams.

We calculate the Euclidean distance between each project using the domain-

aware project characteristics described above. A categorical variable (e.g., company)

is transformed into dummy variables (e.g. if the variable has n categories, it is trans-

formed into n− 1 dummy variables). For example, the company column is trans-

formed into Mozilla (Yes:1 or No:0), Eclipse (Yes:1 or No:0) and Apache (Yes:1 or

No:0). If a project is an Eclipse subproject like JDT, each column is 0, 1, 0. If a

project is in others line, then each column is 0, 0, 0. Similar to RQ1-1, we use our

domain-aware similarity score to select the model with the project that is most similar

to the testing project.

(RQ1-2) Results

Figure 5 shows the result of the impact of metrics for calculating project similarity.

For comparison, we also show the beanplot of the domain-agnostic similarity metric

from Figure 4.

The results indicate that, although the beanplot of domain-aware similarity covers

a broader range than the domain-agnostic one, its median values is higher. Similar to

our domain-agnostic approach, we analyze the relationship between similarity ranks

and actual ranks. The actual top-ranked project (i.e., the project whose model per-

forms the best) is chosen for 3 of the 11 studied projects (Maven-2, Platform and

Rhino), the second ranked project is chosen for 2 studied projects (Columba and

Eclipse JDT) and the third ranked project is chosen for 1 studied project (Ruby on

Rails). Altogether, the model selected by our domain-aware similarity metric is in the

top 3 ranks according to actual model performance in 6 of the 11 studied projects, and

above the sixth (median) rank in 7 of the 11 studied projects. This result suggests that

1 https://github.com/github/linguist

https://github.com/github/linguist

18 Yasutaka Kamei et al.

7
0

8
0

9
0

1
0
0

1
1
0

Domain−agnostic Domain−aware

P
e

rc
e

n
ta

g
e

 o
f

W
it
h

in
−

P
ro

je
c
t

A
U

C

Fig. 5 The impact of metrics for calculating domain-aware similarity.

the domain-aware metrics also help to select JIT models that tend to perform well in

a cross-project context.

Domain-aware similarity measures are preferred over domain-agnostic ones, since

the domain-agnostic similarity is highly sensitive to threshold selection, while

domain-aware similarity is not. Furthermore, we find that models selected using

either similarity technique have similar cross-project performance.

(RQ2) Do JIT models built using a pool of data from several projects perform well

in a cross-project context?

A model that was fit using data from only one project may be overfit, i.e., too spe-

cialized for the project from which the model was fit that it would not apply to other

projects. It would be useful to use the data of several projects from the entire set of

diverse projects to build a JIT model, since such diversity would likely improve the

robustness of the model (Turhan et al., 2009; Zhang et al., 2014).

We evaluate three approaches that leverage the entire pool of training datasets

(RQ2-1, RQ2-2 and RQ2-3). First, we simply merge the datasets of all of the other

projects into a single pool of data, and use it to train a single model (RQ2-1). Next,

we train a model using a dataset assembled by drawing more instances from similar

projects (RQ2-2). Finally, we transform the data of each project using a rank trans-

formation as proposed by Zhang et al. (2014) for cross-project models (RQ2-3).

(RQ2-1) Approach

In RQ2-1, we set aside one project for testing and merge the datasets of the other

projects together to make one large training dataset. Next, we train one model using

the merged training dataset. Finally, we test the model using the dataset we left out

of the merge operation.

Studying Just-In-Time Defect Prediction using Cross-Project Models 19

7
0

8
0

9
0

1
0

0
1

1
0

P
e

rc
e

n
ta

g
e

 o
f

W
it
h

in
−

P
ro

je
c
t

A
U

C

Fig. 6 [RQ2-1] The result of a dataset merging approach.

(RQ2-1) Results

Figure 6 shows the results of our simple merging technique. The models trained using

these large datasets yields strong cross-project performance ranging between 85%-

96% of the within-project AUC. These results suggest that even a simple approach

to combine the data of multiple projects yields JIT models that perform well in a

cross-project context.

(RQ2-2) Approach

While JIT models trained using a combined pool of data from the other studied

projects yields models that perform nearly as well as within-project ones, our re-

sult from RQ1 suggests that datasets from similar projects may prove more useful

than others. Therefore, we set out to evaluate two approaches to apply the similarity

concept to our merging of training datasets:

1. For each testing dataset, we use our metrics from RQ1 to select similar datasets to

be merged into a larger training dataset. We select the top n most similar projects

for the training dataset.

2. As a threshold-independent alternative to the above approach, we randomly sam-

ple
(10−(r−1))

10
× 100 % of the changes from each training dataset, where r is the

project rank based on our similarity metric. For example, 100% of changes are

picked up from the most similar project, while 90% of changes are picked up

from the second most similar project, and so on.

(RQ2-2) Results

Figure 7 shows the results of applying our similarity-inspired approaches to merging

training datasets. Similarity Merge (3) and Similarity Merge (5) show the results of

20 Yasutaka Kamei et al.

7
0

8
0

9
0

1
0

0
1

1
0

Simple Merge Similarity Merge (3) Similarity Merge (5) Weighted Similarity Merge

P
e

rc
e

n
ta

g
e

 o
f

W
it
h

in
−

P
ro

je
c
t

A
U

C

(a) Domain-agnostic

7
0

8
0

9
0

1
0

0
1

1
0

Simple Merge Similarity Merge (3) Similarity Merge (5) Weighted Similarity Merge

P
e

rc
e

n
ta

g
e

 o
f

W
it
h

in
−

P
ro

je
c
t

A
U

C

(b) Domain-aware

Fig. 7 [RQ2-2] The results of our dataset merging approaches that leverage project similarity.

using a threshold of 3 and 5 projects respectively, while Weighted Similarity Merge

shows the result of a weighing approach. To reduce clutter, we only show the Simi-

larity Merge with threshold values of 3 and 5. However, we provide online access to

the figure showing all of the possible threshold values, i.e., between 2 and 10.2

When focusing on domain-agnostic similarity, Figure 7a shows that Similarity

Merge (3) slightly outperforms the other RQ2 models (i.e., Simple Merge, Similar-

ity Merge (3), Similarity Merge (5) and Weighted Similarity Merge) in terms of the

median value. However, the range of the beanplot in Similarity Merge (3) is slightly

broader than the other three approaches. We check the difference of the median values

among the four models using Tukey’s HSD, which is a single-step multiple compar-

ison procedure and statistical test (Coolidge, 2012). The test results indicate that the

difference between the four result sets are not statistically significant (p = 0.941).

2 http://posl.ait.kyushu-u.ac.jp/Disclosure/emse_jit.html

http://posl.ait.kyushu-u.ac.jp/Disclosure/emse_jit.html

Studying Just-In-Time Defect Prediction using Cross-Project Models 21

Similarly, when we focus on domain-aware similarity, Figure 7b shows that Sim-

ilarity Merge (5) is the strongest performer. Indeed, the Similarity Merge (5) models

even outperform the within-project models of Columba, Mozilla, PostgreSQL and

Ruby on Rails (> 100% in Figure 7b). On the other hand, the performance of the

Weighted Similarity Merge models appear lower due to its poor performance on the

Rhino project where it only achieved 71% of the within-project AUC. Table 6 shows

that the Rhino project is our second strongest within-project performer, with an AUC

of 0.81. Hence, the poor performance of our Weighted Similarity Merge model is

likely inflated due to Rhino’s high within-project performance.

Our findings suggests that a simple merging approach as was used in RQ2-1

would likely suffice for future work. The benefit of training models using all of the

projects tend to outweigh the benefits of narrowing the training dataset down to a

smaller set of similar projects.

JIT models that are trained by merging multiple training datasets tend to perform

well in a cross-project context. However, JIT models trained using the merged data

of similar projects rarely outperform models trained by blindly merging all of the

available training datasets.

(RQ2-3) Approach

RQ2-1 and RQ2-2 have shown that larger pools of training data tend to produce

more accurate cross-project prediction models. This complements recent findings that

“universal” defect prediction models may be an attainable goal (Zhang et al., 2014).

However, in order to build a versatile “universal” defect model, Zhang et al. (2014)

propose context-aware rank transformation of predictor variables. Hence, we suspect

that applying such transformations to our pool of training datasets may improve the

performance of JIT cross-project models.

We briefly explain how we build a universal defect prediction model (details

in Zhang et al. (2014)). The main idea of the universal model is to cluster projects

based on the similarity of the distributions of each predictor and to derive rank trans-

formations using quantiles of predictors for a cluster.

Figure 8 shows the steps that we followed to build a universal model. Each project

is classified into one group based on context factors that have similar distributions of

software metrics. Then, for each metric, we compare the distribution of the metric be-

tween groups. If there are few differences (i.e., similar projects) between two groups

using statistical tests (i.e., Mann-Whitney U test, Bonferroni correction and Cohen’s

standards), we merge them into one cluster. This step is conducted for each metric.

Therefore, two groups may be in the same cluster according to one metric, but differ-

ent clusters according to another. Then, in each cluster, we transform the raw metrics

value to the k × 10% quantiles to make the distributions fit on the same scale across

projects. For example, given a metric with values 11, 22, 33, 44, 55, 66, 77, 88 and

99 in one cluster, a new raw value of 25 would be transformed to the 3rd quantile,

since 25 ≥ 22 (i.e., the 2nd quantile), 25 < 33 (i.e., the 3rd quantile).

22 Yasutaka Kamei et al.

Context Factor 1

C
o

n
te

x
t F

a
cto

r 2

G1 G2 G3

G4 G5 G6

Grouping Clustering Ranking

Project

Group

Ranked commit

M1 G2
G5

G6

G1

C1 C2

… … …

Mn

G4

G2

G5G1
G4

C2

C3

M2 C1 G2G1
G4

C2
G5

G6

G6

C1

M1

Mn

M2

C1 C2

C1 C2

… … …

C3

C2

C1

Fig. 8 Steps to train a universal defect prediction model.

After the above steps, the metrics are transformed such that they range between 1

and 10. Finally, we set aside the data of one project for testing, and use the remaining

data to train a “universal” prediction model.

We adopt the same context factors as Zhang et al. (2013, 2014). We briefly outline

these factors.

Programming language (Java/JavaScript/C/C++/Perl/Ruby): programming language

used in the system development. We identify the programming language using

Linguist.3 We choose the most frequently used programming language in the sys-

tem (i.e., the programming language with the largest number of files).

Issue Tracking (True/False): whether or not a project uses an issue tracking system.

Total Lines of Code (least, less, more, most): total lines of code of source code in

the system. Based on the first, second and third quartiles, we separate the set of

projects into four groups (i.e., least, less, more and most).

Total Number of Files (least, less, more, most): total number of files in the system.

Based on the first, second and third quartiles, we separate the set of projects into

four groups (i.e., least, less, more and most).

Total Number of Commits (least, less, more, most): total number of commits in

the system. Based on the first, second and third quartiles, we separate the set of

projects into four groups (i.e., least, less, more and most).

Total Number of Developers (least, less, more, most): total number of unique de-

velopers in the system. Based on the first, second and third quartiles, we separate

the set of projects into four groups (i.e., least, less, more and most).

We exclude the issue tracking context factor, since all of the studied projects use

an issue tracking system.

(RQ2-3) Results

Figure 9 shows the performance of universal JIT defect prediction models. The results

show that the universal model achieves 56%-84% of the AUC of the within-project

models. This is well below the results that we observed in the prior sections.

3 https://github.com/github/linguist

https://github.com/github/linguist

Studying Just-In-Time Defect Prediction using Cross-Project Models 23

6
0

7
0

8
0

9
0

1
0
0

P
e
rc

e
n
ta

g
e
 o

f
W

it
h
in

−
P

ro
je

c
t
A

U
C

Fig. 9 [RQ2-3] The results of “universal” defect prediction (Zhang et al., 2014) in a JIT cross-project

context.

Our sample of 11 projects is similar in size to prior work on cross-project pre-

diction, which focuses on samples of 8-12 projects (Nam et al., 2013; Zimmer-

mann et al., 2009). However, this sample size may not be large enough to build a

reliable universal defect prediction model. Indeed, Zhang et al. (2014) used 1,398

projects (937 SourceForge projects and 461 GoogleCode projects) initially collected

by Mockus (2009) to build a universal defect prediction model at the file-level. Future

work is needed to evaluate the performance of such universal modeling in the context

of JIT prediction using a large sample of projects.

Since a “universal” defect prediction model likely needs to be trained on a large

sample of projects, context-aware rank transformations do not tend to perform well

in our context of JIT cross-project prediction in a sample of 11 projects.

(RQ3) Do ensembles of JIT models built from several projects perform well in a

cross-project context?

In RQ2, we leveraged our collection of training datasets by training a single model

using a pool of their collective data. Alternatively, in RQ3, we combine our training

projects by training a model on each project individually (Mısırlı et al., 2011; Thomas

et al., 2013). Then, each change in the testing project is passed through each of the

24 Yasutaka Kamei et al.

7
0

8
0

9
0

1
0

0
1

1
0

P
e

rc
e

n
ta

g
e

 o
f

W
it
h

in
−

P
ro

je
c
t

A
U

C

Fig. 10 [RQ3-1] The results of our simple voting approach.

project-specific models. Thus, for each change in the testing project, we receive sev-

eral “votes”, one from each of the project-specific models. We evaluate an approach

that treats the votes of each of the project-specific models in training datasets equally

(RQ3-1), and an approach that gives more weight to the votes of models trained using

similar projects (RQ3-2).

(RQ3-1) Approach

In RQ3-1, we build separate prediction models using each training dataset. To cal-

culate the likelihood of a change being defect-inducing, we push the change through

each model, and take the mean of the predicted probabilities.

We illustrate the voting method using an example in the case of Mozilla below.

First, we select the 10 models of the other (non-Mozilla) projects. Given a change

from Mozilla project, we obtain 10 predicted probabilities from the 10 models. Fi-

nally, we calculate the mean of the 10 probabilities.

(RQ3-1) Results

Figure 10 shows that the simple voting approach that we propose performs well,

achieving 85%-99% of the within-project AUC values. Indeed, in Mozilla, the voting

approach performs almost as well as the within-project model (99%).

Even simple ensemble techniques that combine the predictions of JIT models

trained on each training dataset tend to perform well in a cross-project context.

Studying Just-In-Time Defect Prediction using Cross-Project Models 25

(RQ3-2) Approach

Similar to RQ2-1 and RQ2-2, we suspect that applying similarity heuristics to our

voting approaches may improve the performance of our ensemble models. We again

evaluate two approaches to apply similarity to our JIT models:

1. For each testing dataset, we use our similarity metrics to select n training datasets,

and then build prediction models for each selected training dataset. Then, we push

a change through each prediction model and then take the mean of the predicted

probabilities.

2. We evaluate a threshold-independent approach that provides more weight to the

votes of the models of similar projects. Similar to RQ2, we use
10−(r−1)

10
×100 %

to calculate the weight of a project’s vote, where r is the project rank based on

our similarity metric. For example, the vote of the most similar project is given

full (100%) weight, while the vote of the second most similar project is given a

weight of 90%, and so on.

(RQ3-2) Results

Figure 11 shows the results of applying our similarity-driven voting approaches.

Again, to reduce clutter, we only show the Similarity Voting with threshold values

of 3 and 5, and provide online access to the figure showing all possible threshold

values between 2 and 10.4

We find that models trained using either of our similarity metrics do not tend to

outperform the simple voting approach of RQ3-1. Tukey’s HSD test results indicate

that the difference between the result sets are not statistically significant in either of

the cases (pagnostic = 0.765, paware = 0.661). Hence, we the simple voting approach

will likely suffice for future work.

Ensemble voting techniques also tends to yield JIT models perform well in a cross-

project context. Similar to RQ2, dampening the impact of dissimilar projects does

not improve the performance of our ensembles of JIT models.

6 Discussion

6.1 Summary of results

Below, we use statistical tests to provide yes/no answers for our research questions.

(Section 4) The within-project performance of a JIT model is not a strong indicator

of its performance in a cross-project context.

We calculate the Spearman correlation between the rank of the AUC value of

within-project prediction and the median of the AUC values of cross-project pre-

diction. The value of Spearman correlation is ρ = 0.036 (p = 0.924).

4 http://posl.ait.kyushu-u.ac.jp/Disclosure/emse_jit.html

http://posl.ait.kyushu-u.ac.jp/Disclosure/emse_jit.html

26 Yasutaka Kamei et al.

7
0

8
0

9
0

1
0

0
1

1
0

Simple Voting Similarity Voting (3) Similarity Voting (5) Weighted Similarity Voting

P
e

rc
e

n
ta

g
e

 o
f

W
it
h

in
−

P
ro

je
c
t

A
U

C

(a) Domain-agnostic

7
0

8
0

9
0

1
0

0
1

1
0

Simple Voting Similarity Voting (3) Similarity Voting (5) Weighted Similarity Voting

P
e

rc
e

n
ta

g
e

 o
f

W
it
h

in
−

P
ro

je
c
t

A
U

C

(b) Domain-aware

Fig. 11 The result of similarity-driven voting approaches.

(RQ1) Do JIT models selected using project similarity perform well in a cross-

project context?

The answer is no. Within-project JIT models significantly outperform domain-

aware similarity techniques (p = 0.005).5 Prediction performance was not im-

proved by selecting datasets for training that are highly similar to the testing

dataset.

(RQ2) Do JIT models built using a pool of data from several projects perform well

in a cross-project context?

We find no evidence of a difference in the performance of within- and cross-

5 We choose domain-aware similarity techniques, similarity merge (5) using domain-aware similarity

and weighted similarity voting using domain-aware similarity, which show the best median value in each

RQ, and within-project JIT models as ideal models. We check the difference of the median values among

the four models using Tukey’s HSD. If we find that there is not statistically significant difference between

within- and one cross-project JIT models, we find no evidence of a difference in the performance of within-

and cross-project models in those cases (i.e., the cross-project model perform well).

Studying Just-In-Time Defect Prediction using Cross-Project Models 27

project models in RQ2. We find no statistically significant difference in the per-

formance of within-project JIT models and similarity merge (5) using domain-

aware similarity (p = 0.967).5 Several datasets can be used in tandem to produce

more accurate cross-project JIT models by sampling from a larger pool of training

data.

(RQ3) Do ensembles of JIT models built from several projects perform well in a

cross-project context?

We find no evidence of a difference in the performance of within- and cross-

project models in RQ3. We find no statistically significant difference in the perfor-

mance of within-project JIT models and weighted similarity voting using domain-

aware similarity (p= 0.825).5 Combining the predictions of several models could

contribute to building more accurate cross-project JIT models.

6.2 Practical Guidelines

We propose the following guidelines to assist in future work:

Guideline 1: Future work should not use the within-project performance of a

JIT model as a indicator of its performance in a cross-project context.

The value of Spearman correlation is ρ = 0.036 (Please see Section 6.1). In ad-

dition, even if we build the cross-project JIT models using the top project (i.e.,

MAV) and the bottom project (i.e., RUB) in Figure 2, we obtain the models of

similar prediction performance.

Guideline 2: Future work should not use similarity to filter away dissimilar

project data or models.

Our domain-agnostic and domain-aware similarity select JIT models that tend

to perform better than the median cross-project performance. However, within-

project JIT models outperform similarity-selected cross-project models to a sta-

tistically significant degree.

Guideline 3: Future work should consider data and models from other projects

in tandem with one another to produce more accurate cross-project JIT

models.

In practical settings, a simple merge approach (RQ2-1) might be the best choice

that we evaluated in our experiments. We illustrate the advantages of the simple

merge approach using the following example: Alice is a manager and Bob is a

developer of a new system. Alice wants to use JIT models to promote risk aware-

ness, but the system has not accrued sufficient historical data to train such models.

She decides to use a cross-project approach. If Alice adopts the simple merge ap-

proach, she only needs to build one prediction model. On the other hand, if she

adopts the voting method, she needs to build several prediction models (i.e., one

model for every selected dataset). Thus, the simple merge approach may require

less effort in the building phrase.

28 Yasutaka Kamei et al.

Table 7 Summary of precision values for within-project prediction and cross-project prediction.

Training project

BUG COL GIP JDT MAV MOZ PER PLA POS RUB RHI

T
es

ti
n

g
p

ro
je

ct

BUG 0.62 0.38 0.53 0.51 0.47 0.67 0.58 0.55 0.61 0.56 0.55

COL 0.38 0.53 0.45 0.38 0.41 0.55 0.46 0.48 0.42 0.41 0.42

GIP 0.43 0.33 0.58 0.50 0.43 0.47 0.44 0.42 0.47 0.48 0.46

JDT 0.23 0.18 0.24 0.28 0.20 0.30 0.24 0.24 0.27 0.24 0.23

MAV 0.13 0.13 0.23 0.18 0.26 0.26 0.20 0.21 0.19 0.19 0.19

MOZ 0.10 0.06 0.10 0.09 0.08 0.14 0.10 0.09 0.12 0.10 0.10

PER 0.48 0.21 0.42 0.41 0.36 0.47 0.44 0.30 0.42 0.45 0.41

PLA 0.26 0.20 0.26 0.23 0.21 0.32 0.25 0.30 0.26 0.24 0.23

POS 0.32 0.27 0.36 0.38 0.31 0.50 0.39 0.36 0.51 0.42 0.36

RUB 0.27 0.23 0.34 0.30 0.27 0.40 0.33 0.30 0.36 0.34 0.32

RHI 0.59 0.55 0.69 0.54 0.57 0.73 0.66 0.60 0.69 0.64 0.70

Table 8 Summary of recall values for within-project prediction and cross-project prediction.

Training project

BUG COL GIP JDT MAV MOZ PER PLA POS RUB RHI

T
es

ti
n

g
p

ro
je

ct

BUG 0.63 0.64 0.54 0.72 0.67 0.39 0.51 0.52 0.35 0.50 0.58

COL 0.48 0.66 0.50 0.91 0.36 0.53 0.53 0.74 0.76 0.61 0.59

GIP 0.10 0.44 0.73 0.62 0.60 0.38 0.80 0.86 0.56 0.49 0.76

JDT 0.48 0.69 0.60 0.64 0.60 0.53 0.60 0.71 0.56 0.61 0.66

MAV 0.19 0.45 0.61 0.70 0.74 0.45 0.70 0.73 0.59 0.72 0.75

MOZ 0.67 0.71 0.72 0.82 0.78 0.67 0.75 0.82 0.70 0.72 0.78

PER 0.17 0.44 0.50 0.43 0.59 0.25 0.63 0.72 0.42 0.38 0.62

PLA 0.62 0.66 0.58 0.80 0.57 0.50 0.58 0.68 0.56 0.62 0.64

POS 0.40 0.65 0.65 0.74 0.79 0.57 0.72 0.81 0.65 0.66 0.75

RUB 0.22 0.57 0.37 0.46 0.58 0.32 0.59 0.56 0.44 0.63 0.54

RHI 0.32 0.65 0.54 0.50 0.81 0.49 0.72 0.77 0.50 0.58 0.70

6.3 Additional Analysis

Do other performance metrics provide different results?

To avoid the impact of the threshold that is used for classification, we used AUC.

However, there are several studies that use threshold-dependent performance metrics

(e.g., precision, recall and F-measure) (Kamei et al., 2013; Kim et al., 2008). To

better understand the prediction performance we obtained, we also show the results

using threshold-dependent metrics.

The JIT models that we train using Random forest produce a risk probability for

each change, i.e., a value between 0 and 1. We use a threshold value of 0.5, which

means that if a change has a risk probability greater than 0.5, the change is classified

as defect-inducing, otherwise it is classified as clean. Table 7, 8 and 9 show precision,

recall and F-measure of our JIT models, similar to the AUC of Table 6.

In addition to AUC, within-project JIT models also outperform cross-project

JIT models in terms of f-measure, precision and recall. While the median of the

f-measures of cross-project models (0.419) is higher than that of random guessing

Studying Just-In-Time Defect Prediction using Cross-Project Models 29

Table 9 Summary of F-measure values for within-project prediction and cross-project prediction.

Training project

BUG COL GIP JDT MAV MOZ PER PLA POS RUB RHI

T
es

ti
n

g
p

ro
je

ct

BUG 0.63 0.48 0.54 0.59 0.55 0.49 0.54 0.54 0.45 0.53 0.56

COL 0.43 0.59 0.48 0.54 0.38 0.54 0.49 0.58 0.54 0.49 0.49

GIP 0.16 0.38 0.65 0.55 0.50 0.42 0.57 0.57 0.51 0.48 0.57

JDT 0.31 0.29 0.34 0.39 0.29 0.38 0.34 0.36 0.36 0.34 0.34

MAV 0.15 0.20 0.33 0.28 0.38 0.33 0.31 0.33 0.29 0.29 0.30

MOZ 0.17 0.12 0.17 0.16 0.14 0.23 0.17 0.16 0.20 0.18 0.17

PER 0.25 0.28 0.45 0.42 0.45 0.33 0.52 0.42 0.42 0.41 0.49

PLA 0.37 0.31 0.36 0.36 0.31 0.39 0.35 0.42 0.35 0.35 0.34

POS 0.35 0.38 0.46 0.50 0.45 0.53 0.51 0.49 0.57 0.51 0.49

RUB 0.24 0.33 0.35 0.36 0.37 0.36 0.43 0.39 0.39 0.44 0.40

RHI 0.42 0.60 0.60 0.52 0.67 0.59 0.69 0.67 0.58 0.61 0.70

(0.324), the median of the f-measures of within-project models is still higher than

cross-project models (0.521). Similar observations hold for precision and recall.

Does a sampling approach provide different results?

Similar to Kamei et al. (2007); Menzies et al. (2008), we use a re-sampling approach

for our training data to deal with the imbalance of defect-inducing and clean classes

in our dataset. On the other hand, Turhan (2012) points out that such sampling ap-

proaches make the distributions of the training and testing sets incongruent. There-

fore, we reevaluate our experiment from Section 4 without re-sampling the training

dataset. Table 10, Table 11, 12 and 13 show AUC, precision, recall and F-measure of

our JIT models.

We find that there are negligible differences between the models that are trained

with and without re-sampling the training data in terms of AUC. The median AUC

values for cross-project prediction are 0.71 with re-sampling and 0.69 without.

On the other hand, re-sampling tends to provides better model performance in

terms of f-measure and recall. We find that cross-project f-measure values are 0.42

with re-sampling and 0.25 without. Recall values show a similar trend to the f-

measure values. We also found that re-sampling tends to decrease the prediction

performance in terms of precision. These results are consistent with the results of

our previous work (Kamei et al., 2007).

7 Threats to Validity

In this section, we discuss the threats to the validity of our empirical study.

7.1 Construct Validity

We estimate within-project prediction performance using tenfold cross validation.

However, tenfold cross validation may not be representative of the actual cross-

version model performance. In reality, training data is always younger than the testing

30 Yasutaka Kamei et al.

Table 10 Summary of AUC values for models using the training data without re-sampling.

Training project

BUG COL GIP JDT MAV MOZ PER PLA POS RUB RHI

T
es

ti
n

g
p

ro
je

ct

BUG 0.76 0.70 0.70 0.73 0.66 0.71 0.70 0.73 0.70 0.70 0.68

COL 0.60 0.77 0.62 0.75 0.63 0.72 0.67 0.73 0.75 0.66 0.63

GIP 0.46 0.67 0.80 0.72 0.70 0.71 0.68 0.71 0.72 0.66 0.67

JDT 0.63 0.72 0.68 0.75 0.63 0.73 0.70 0.75 0.72 0.70 0.67

MAV 0.42 0.75 0.76 0.75 0.82 0.76 0.71 0.78 0.75 0.73 0.76

MOZ 0.72 0.76 0.75 0.79 0.70 0.80 0.75 0.80 0.78 0.75 0.74

PER 0.59 0.64 0.70 0.70 0.69 0.69 0.76 0.70 0.68 0.69 0.71

PLA 0.71 0.73 0.69 0.77 0.64 0.76 0.70 0.78 0.72 0.69 0.68

POS 0.52 0.76 0.73 0.75 0.71 0.75 0.71 0.75 0.79 0.74 0.72

RUB 0.55 0.67 0.66 0.70 0.62 0.65 0.71 0.66 0.69 0.74 0.68

RHI 0.61 0.73 0.74 0.73 0.74 0.77 0.78 0.74 0.73 0.71 0.81

Table 11 Summary of precision values for models using the training data without re-sampling.

Training project

BUG COL GIP JDT MAV MOZ PER PLA POS RUB RHI

T
es

ti
n

g
p

ro
je

ct

BUG 0.70 0.66 0.68 0.74 0.50 0.45 0.69 0.71 0.63 0.63 0.58

COL 0.49 0.67 0.59 0.72 0.33 0.57 0.58 0.65 0.65 0.60 0.42

GIP 0.48 0.52 0.66 0.67 0.64 0.88 0.57 0.79 0.58 0.54 0.48

JDT 0.30 0.37 0.48 0.57 0.38 0.76 0.37 0.54 0.38 0.37 0.24

MAV 0.18 0.23 0.52 0.46 0.68 0.75 0.29 0.53 0.35 0.29 0.23

MOZ 0.14 0.16 0.24 0.26 0.26 0.57 0.17 0.28 0.20 0.19 0.11

PER 0.60 0.51 0.50 0.55 0.57 0.75 0.64 0.57 0.51 0.50 0.46

PLA 0.36 0.38 0.50 0.53 0.52 0.77 0.37 0.62 0.40 0.37 0.25

POS 0.43 0.58 0.68 0.66 0.72 0.90 0.56 0.69 0.68 0.69 0.41

RUB 0.33 0.46 0.49 0.60 0.48 0.83 0.50 0.57 0.52 0.56 0.36

RHI 0.70 0.79 0.77 0.79 0.82 0.86 0.79 0.83 0.82 0.86 0.74

data. When using tenfold cross validation, folds are constructed randomly, which may

produce folds that use older changes for training than testing. While tenfold cross-

validation is a popular performance estimation technique (Kim et al., 2008; Moser

et al., 2008), other performance estimation techniques (e.g., using training and test-

ing data based on releases) may yield different results.

Although we study eight metrics spanning three categories, there are likely other

features of defect-inducing changes that we did not measure. For example, we suspect

that the type of a change (e.g., refactoring (Moser et al., 2008; Ratzinger et al., 2008))

might influence the likelihood of introducing a defect. We plan to expand our metric

set to include additional categories in future work.

7.2 Internal Validity

We use defect datasets provided by prior work (Kamei et al., 2013) that identify

defect-inducing changes using the SZZ algorithm (Śliwerski et al., 2005). The SZZ

algorithm is commonly used in defect prediction research (Kim et al., 2008; Moser

et al., 2008), yet has known limitations. For example, if a defect is not recorded in the

Studying Just-In-Time Defect Prediction using Cross-Project Models 31

Table 12 Summary of recall values for models using the training data without re-sampling.

Training project

BUG COL GIP JDT MAV MOZ PER PLA POS RUB RHI

T
es

ti
n

g
p

ro
je

ct

BUG 0.43 0.14 0.11 0.13 0.03 0.00 0.21 0.13 0.13 0.13 0.46

COL 0.30 0.40 0.05 0.11 0.00 0.00 0.23 0.09 0.32 0.25 0.38

GIP 0.07 0.11 0.55 0.14 0.25 0.01 0.35 0.11 0.40 0.16 0.65

JDT 0.31 0.25 0.06 0.08 0.01 0.00 0.20 0.08 0.26 0.22 0.50

MAV 0.11 0.12 0.22 0.15 0.22 0.03 0.23 0.21 0.38 0.27 0.66

MOZ 0.57 0.34 0.27 0.30 0.13 0.06 0.47 0.30 0.46 0.39 0.69

PER 0.12 0.06 0.24 0.09 0.12 0.01 0.25 0.06 0.25 0.09 0.47

PLA 0.42 0.24 0.08 0.13 0.01 0.01 0.22 0.16 0.25 0.22 0.47

POS 0.30 0.24 0.29 0.20 0.18 0.02 0.30 0.21 0.37 0.28 0.66

RUB 0.13 0.12 0.04 0.04 0.03 0.00 0.12 0.03 0.15 0.17 0.41

RHI 0.23 0.17 0.12 0.11 0.07 0.00 0.29 0.08 0.24 0.21 0.64

Table 13 Summary of F-measure values for models using the training data without re-sampling.

Training project

BUG COL GIP JDT MAV MOZ PER PLA POS RUB RHI

T
es

ti
n

g
p

ro
je

ct

BUG 0.53 0.23 0.19 0.22 0.06 0.01 0.32 0.22 0.21 0.22 0.52

COL 0.37 0.50 0.09 0.19 0.00 0.01 0.33 0.16 0.43 0.35 0.40

GIP 0.12 0.19 0.60 0.24 0.36 0.02 0.43 0.20 0.48 0.25 0.56

JDT 0.30 0.30 0.11 0.13 0.01 0.01 0.26 0.14 0.31 0.28 0.33

MAV 0.14 0.16 0.31 0.22 0.33 0.05 0.25 0.30 0.36 0.28 0.34

MOZ 0.22 0.22 0.25 0.28 0.17 0.11 0.25 0.29 0.28 0.25 0.19

PER 0.19 0.11 0.32 0.16 0.20 0.02 0.36 0.11 0.34 0.15 0.46

PLA 0.39 0.29 0.13 0.21 0.03 0.01 0.27 0.25 0.31 0.27 0.33

POS 0.35 0.34 0.41 0.31 0.29 0.03 0.39 0.32 0.48 0.40 0.51

RUB 0.19 0.19 0.07 0.07 0.05 0.00 0.19 0.06 0.24 0.26 0.38

RHI 0.35 0.27 0.20 0.19 0.13 0.01 0.42 0.15 0.37 0.34 0.68

VCS commit message or the keywords used defect identifiers differ from those used

in the previous study (e.g., “Bug” or “Fix” (Kamei et al., 2007)), such a change will

not be tagged as defect-inducing. The use of an approach to recover missing links

that improve the accuracy of the SZZ algorithm (Wu et al., 2011) may improve the

accuracy of our results.

7.3 External Validity

We only study 11 open source systems, and hence, our results may not generalize

to all software systems. However, we study large, long-lived systems from various

domains in order to combat potential bias in our results. Nonetheless, replication of

our study using additional systems may prove fruitful.

We use random forest to evaluate the effect of the JIT prediction across projects,

since this modeling technique is known to perform well for defect prediction. How-

ever, using other modeling techniques may produce different results.

32 Yasutaka Kamei et al.

8 Conclusions

In this paper, we study approaches for constructing Just-In-Time (JIT) defect predic-

tion models that identify source code changes that have a high risk of introducing a

defect. Since one cannot produce JIT models if insufficient training data is available,

e.g., a project does not archive change histories in a VCS repository, we empirically

evaluated the use of datasets collected from other projects (i.e., cross-project pre-

diction). We evaluate the use of conventional data mining and software engineering

context to produce JIT models that perform well in a cross-project context. Through

an empirical study on 11 open source projects, we make the following observations:

– The within-project performance of a JIT model is not a strong indicator of its

performance in a cross-project context (Section 4).

– Although using similarity to select JIT models from a collection of choices tends

to identify the best-performing option for a cross-project context, the performance

of these models is significantly lower than within-project model performance

(RQ1).

– Several datasets can be used in tandem to produce more accurate cross-project

JIT models by sampling from a larger pool of training data (RQ2) or combining

the predictions of several models (RQ3). The performance of these models is

statistically indistinguishable from within-project JIT model performance.

– However, using project similarity to filter away dissimilar project data (RQ2) or

models (RQ3) does not tend to improve the cross-project performance of JIT

models that use all available training data.

9 Acknowledgments

This research was partially supported by JSPS KAKENHI Grant Numbers 15H05306

and 24680003 and the Natural Sciences and Engineering Research Council of Canada

(NSERC).

References

Basili VR, Briand LC, Melo WL (1996) A validation of object-oriented design met-

rics as quality indicators. IEEE Trans Softw Eng 22(10):751–761

Bettenburg N, Nagappan M, Hassan AE (2012) Think locally, act globally: Improv-

ing defect and effort prediction models. In: Proc. Int’l Working Conf. on Mining

Software Repositories (MSR’12), pp 60–69

Breiman L (2001) Random forests. Machine learning 45(1):5–32

Briand LC, Melo WL, Wüst J (2002) Assessing the applicability of fault-

proneness models across object-oriented software projects. IEEE Trans Softw Eng

28(7):706–720

Coolidge FL (2012) Statistics: A Gentle Introduction. SAGE Publications (3rd ed.)

Studying Just-In-Time Defect Prediction using Cross-Project Models 33

D’Ambros M, Lanza M, Robbes R (2010) An extensive comparison of bug predic-

tion approaches. In: Proc. Int’l Working Conf. on Mining Software Repositories

(MSR’10), pp 31–41

Fukushima T, Kamei Y, McIntosh S, Yamashita K, Ubayashi N (2014) An empirical

study of just-in-time defect prediction using cross-project models. In: Proc. Int’l

Working Conf. on Mining Software Repositories (MSR’14), pp 172–181

Graves TL, Karr AF, Marron JS, Siy H (2000) Predicting fault incidence using soft-

ware change history. IEEE Trans Softw Eng 26(7):653–661

Guo PJ, Zimmermann T, Nagappan N, Murphy B (2010) Characterizing and predict-

ing which bugs get fixed: An empirical study of microsoft windows. In: Proc. Int’l

Conf. on Softw. Eng. (ICSE’10), vol 1, pp 495–504

Hall T, Beecham S, Bowes D, Gray D, Counsell S (2012) A systematic literature

review on fault prediction performance in software engineering. IEEE Trans Softw

Eng 38(6):1276–1304

Hassan AE (2009) Predicting faults using the complexity of code changes. In: Proc.

Int’l Conf. on Softw. Eng. (ICSE’09), pp 78–88

He Z, Shu F, Yang Y, Li M, Wang Q (2012) An investigation on the feasibility of

cross-project defect prediction. Automated Software Engg 19(2):167–199

Jiang Y, Cukic B, Menzies T (2008) Can data transformation help in the detection of

fault-prone modules? In: Proc. Workshop on Defects in Large Software Systems

(DEFECTS’08), pp 16–20

Kamei Y, Monden A, Matsumoto S, Kakimoto T, Matsumoto Ki (2007) The effects

of over and under sampling on fault-prone module detection. In: Proc. Int’l Sym-

posium on Empirical Softw. Eng. and Measurement (ESEM’07), pp 196–204

Kamei Y, Matsumoto S, Monden A, Matsumoto K, Adams B, Hassan AE (2010)

Revisiting common bug prediction findings using effort aware models. In: Proc.

Int’l Conf. on Software Maintenance (ICSM’10), pp 1–10

Kamei Y, Shihab E, Adams B, Hassan AE, Mockus A, Sinha A, Ubayashi N (2013)

A large-scale empirical study of just-in-time quality assurance. IEEE Trans Softw

Eng 39(6):757–773

Kampstra P (2008) Beanplot: A boxplot alternative for visual comparison of distri-

butions. Journal of Statistical Software, Code Snippets 28(1):1–9

Kim S, Whitehead EJ, Zhang Y (2008) Classifying software changes: Clean or

buggy? IEEE Trans Softw Eng 34(2):181–196

Kocaguneli E, Menzies T, Keung J (2012) On the value of ensemble effort estimation.

IEEE Trans Softw Eng 38(6):1403–1416

Koru AG, Zhang D, El Emam K, Liu H (2009) An investigation into the functional

form of the size-defect relationship for software modules. IEEE Trans Softw Eng

35(2):293–304

Lessmann S, Baesens B, Mues C, Pietsch S (2008) Benchmarking classification mod-

els for software defect prediction: A proposed framework and novel findings. IEEE

Trans Softw Eng 34(4):485–496

Li PL, Herbsleb J, Shaw M, Robinson B (2006) Experiences and results from initi-

ating field defect prediction and product test prioritization efforts at ABB Inc. In:

Proc. Int’l Conf. on Softw. Eng. (ICSE’06), pp 413–422

34 Yasutaka Kamei et al.

Matsumoto S, Kamei Y, Monden A, Matsumoto K (2010) An analysis of developer

metrics for fault prediction. In: Proc. Int’l Conf. on Predictive Models in Softw.

Eng. (PROMISE’10), pp 18:1–18:9

McIntosh S, Nagappan M, Adams B, Mockus A, Hassan AE (2014) A large-scale

empirical study of the relationship between build technology and build mainte-

nance. Empirical Software Engineering DOI 10.1.1/jpb001, URL http://link.

springer.com/article/10.1007%2Fs10664-014-9324-x

Menzies T, Turhan B, Bener A, Gay G, Cukic B, Jiang Y (2008) Implications of

ceiling effects in defect predictors. In: Proc. Int’l Conf. on Predictive Models in

Softw. Eng. (PROMISE’10), pp 47–54

Menzies T, Butcher A, Marcus A, Zimmermann T, Cok D (2011) Local vs. global

models for effort estimation and defect prediction. In: Proc. Int’l Conf. on Auto-

mated Software Engineering (ASE’11), pp 343–351

Menzies T, Butcher A, Cok D, Marcus A, Layman L, Shull F, Turhan B, Zimmermann

T (2013) Local versus global lessons for defect prediction and effort estimation.

IEEE Trans Softw Eng 39(6):822–834

Minku LL, Yao X (2014) How to make best use of cross-company data in software

effort estimation? In: Proc. Int’l Conf. on Software Engineering (ICSE’14), pp

446–456

Mısırlı AT, Bener AB, Turhan B (2011) An industrial case study of classifier ensem-

bles for locating software defects. Software Quality Journal 19(3):515–536

Mockus A (2009) Amassing and indexing a large sample of version control systems:

Towards the census of public source code history. In: Proc. Int’l Working Conf. on

Mining Software Repositories (MSR’09), pp 11–20

Mockus A, Weiss DM (2000) Predicting risk of software changes. Bell Labs Techni-

cal Journal 5(2):169–180

Moser R, Pedrycz W, Succi G (2008) A comparative analysis of the efficiency of

change metrics and static code attributes for defect prediction. In: Proc. Int’l Conf.

on Softw. Eng. (ICSE’08), pp 181–190

Nagappan N, Ball T (2005) Use of relative code churn measures to predict system

defect density. In: Proc. Int’l Conf. on Softw. Eng. (ICSE’05), pp 284–292

Nagappan N, Ball T, Zeller A (2006) Mining metrics to predict component failures.

In: Proc. Int’l Conf. on Softw. Eng. (ICSE’06), pp 452–461

Nam J, Pan SJ, Kim S (2013) Transfer defect learning. In: Proc. Int’l Conf. on Softw.

Eng. (ICSE’13), pp 382–391

Purushothaman R, Perry DE (2005) Toward understanding the rhetoric of small

source code changes. IEEE Trans Softw Eng 31(6):511–526

Rahman F, Posnett D, Devanbu P (2012) Recalling the ”imprecision” of cross-project

defect prediction. In: Proc. Int’l Symposium on the Foundations of Softw. Eng.

(FSE’12), pp 61:1–61:11

Ratzinger J, Sigmund T, Gall HC (2008) On the relation of refactorings and software

defect prediction. In: Proc. Int’l Working Conf. on Mining Software Repositories

(MSR’08), pp 35–38

Shihab E (2012) An exploration of challenges limiting pragmatic software defect

prediction. PhD thesis, Queen’s University

http://link.springer.com/article/10.1007%2Fs10664-014-9324-x
http://link.springer.com/article/10.1007%2Fs10664-014-9324-x

Studying Just-In-Time Defect Prediction using Cross-Project Models 35

Shihab E, Hassan AE, Adams B, Jiang ZM (2012) An industrial study on the risk

of software changes. In: Proc. Int’l Symposium on the Foundations of Softw. Eng.

(FSE’12), pp 62:1–62:11

Śliwerski J, Zimmermann T, Zeller A (2005) When do changes induce fixes? In: Proc.

Int’l Working Conf. on Mining Software Repositories (MSR’05), pp 1–5

Tan M, Tan L, Dara S, Mayuex C (2015) Online defect prediction for imbalanced

data. In: Proc. Int’l Conf. on Softw. Eng. (ICSE’13 SEIP), p (To appear)

Thomas SW, Nagappan M, Blostein D, Hassan AE (2013) The impact of classifier

configuration and classifier combination on bug localization. IEEE Trans Softw

Eng 39(10):1427–1443

Turhan B (2012) On the dataset shift problem in software engineering prediction

models. Empirical Softw Engg 17(1-2):62–74

Turhan B, Menzies T, Bener AB, Di Stefano J (2009) On the relative value of cross-

company and within-company data for defect prediction. Empirical Software En-

gineering 14(5):540–578

Turhan B, Tosun A, Bener A (2011) Empirical evaluation of mixed-project defect

prediction models. In: Proc. EUROMICRO Conf. on Software Engineering and

Advanced Applications (SEAA’11), pp 396–403

Wu R, Zhang H, Kim S, Cheung SC (2011) Relink: recovering links between bugs

and changes. In: Proc. European Softw. Eng. Conf. and Symposium on the Foun-

dations of Softw. Eng. (ESEC/FSE’11), pp 15–25

Zhang F, Mockus A, Zou Y, Khomh F, Hassan AE (2013) How does context affect the

distribution of software maintainability metrics? In: Proc. Int’l Conf. on Software

Maintenance (ICSM’13), pp 350–359

Zhang F, Mockus A, Keivanloo I, Zou Y (2014) Towards building a universal defect

prediction model. In: Proc. Int’l Working Conf. on Mining Software Repositories

(MSR’14), pp 182–191

Zimmermann T, Nagappan N, Gall H, Giger E, Murphy B (2009) Cross-project de-

fect prediction: a large scale experiment on data vs. domain vs. process. In: Proc.

European Softw. Eng. Conf. and Symposium on the Foundations of Softw. Eng.

(ESEC/FSE’09), pp 91–100

	Introduction
	Background and Related Work
	Experimental Setting
	Preliminary Study of Within-Project Performance
	Empirical Study Results
	Discussion
	Threats to Validity
	Conclusions
	Acknowledgments

