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Saccharomyces cerevisiae, commonly known as baker’s yeast, is one of the most 
comprehensively studied model organisms in science. Yeast has been used to study a 
wide variety of human diseases, and the yeast model system has proved to be an especially 
amenable tool for the study of lipids and lipid-related pathophysiologies, a topic that has 
gained considerable attention in recent years. This review focuses on how yeast has 
contributed to our understanding of the mitochondrial phospholipid cardiolipin (CL) and 
its role in Barth syndrome (BTHS), a genetic disorder characterized by partial or complete 
loss of function of the CL remodeling enzyme tafazzin. Defective tafazzin causes 
perturbation of CL metabolism, resulting in many downstream cellular consequences and 
clinical pathologies that are discussed herein. The influence of yeast research in the lipid-
related pathophysiologies of Alzheimer’s and Parkinson’s diseases is also summarized.
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INTRODUCTION

Saccharomyces cerevisiae is a powerful model system used to study biological processes and 
human diseases. In addition to investigating the pathophysiology of diseases, yeast is also used 
as a model for developing and testing potential treatments. An excellent example of the power 
of the yeast model is the use of yeast cardiolipin (CL) synthesis mutants to understand the 
metabolic abnormalities in Barth syndrome (BTHS), a rare genetic disorder caused by mutations 
in the CL-remodeling enzyme tafazzin (Bione et  al., 1996; Vreken et  al., 2000). CL is a unique 
phospholipid localized primarily in the inner mitochondrial membrane (IMM). Yeast CL mutants 
have been pivotal in elucidating the role of this lipid in bioenergetics (Paradies et  al., 2014; 
Ren et  al., 2014; Raja et  al., 2017a), mitochondrial metabolism (Houtkooper and Vaz, 2008; 
Raja et  al., 2019), and programmed cell death (Manon, 2004; Eisenberg and Buttner, 2014; 
Lou et  al., 2018b) among other cellular functions. This review aims to demonstrate how the 
yeast model has led the way for BTHS studies and contributed to recent advances in our 
understanding of other human diseases.
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THE MITOCHONDRIAL DISORDER 
BARTH SYNDROME

History
In 1983, physician Peter Barth reported the first description 
of the disorder that bears his name, describing it as “an X-linked 
mitochondrial disease affecting cardiac muscle, skeletal muscle, 
and neutrophil leukocytes” (Barth et  al., 1983). It was not 
until 1996 that the cause of BTHS was linked to mutations 
in the TAZ gene (Bione et  al., 1996). Vreken et  al. (2000) 
discovered that TAZ mutations lead to a profound defect in 
CL remodeling. During 2003–2004, the first research model 
for studying BTHS – yeast taz1Δ – was constructed (Vaz et al., 
2003; Gu et  al., 2004; Ma et  al., 2004).

Since the emergence of the yeast taz1Δ model, numerous 
other BTHS model systems have been developed in different 
organisms through targeted disruption of the tafazzin gene. 
In 2006, the first whole-animal models were generated in fruit 
flies (Xu et  al., 2006) and zebrafish (Khuchua et  al., 2006). 
Subsequent efforts in 2011–2012 led to the development of 
the first mouse models of BTHS, facilitating tissue-specific 
studies of tafazzin deficiency in organs such as the heart and 
skeletal muscle (Acehan et al., 2011; Soustek et al., 2011; Phoon 
et  al., 2012). More recently, BTHS cell models have been 
developed in immortalized mammalian cell lines, including 
mouse C2C12 myoblasts (Lou et al., 2018a) and human HEK293 
kidney cells, which provide the added experimental benefit of 
having isogenic control cells.

Epidemiology
As an X-linked recessive disorder, BTHS is predominantly 
diagnosed in male patients. It has been suggested that females 
carrying single-allele TAZ mutations exhibit a skewed pattern 
of X chromosome inactivation, resulting in a normal clinical 
presentation (Orstavik et al., 1998). BTHS is exceptionally rare, 
with only 151 living patients identified worldwide in 2012 
(Clarke et  al., 2013). Approximately 10 new BTHS cases are 
diagnosed each year in the United  States, which translates to 
a prevalence of 1:300,000–400,000 live births (Clarke et  al., 
2013). However, it is likely that BTHS is underdiagnosed due 
to premature infant mortality and misdiagnosis of children 
presenting with cardiomyopathies.

Genetic Basis of BTHS
BTHS results from mutations in the Tafazzin (TAZ) gene 
(originally referred to as G4.5). TAZ is a mitochondrial 
transacylase that re-acylates monolysocardiolipin (MLCL) by 
adding predominantly unsaturated acyl chains (Barth et  al., 
2004; Schlame and Xu, 2020). It is the primary enzyme that 
conducts this function, and as such, TAZ mutations result in 
elevated MLCL levels, decreased overall CL, and increased 
saturated fatty acid content in CL (Vreken et al., 2000; Schlame 
et  al., 2003; Gu et  al., 2004; Valianpour et  al., 2005).

TAZ is located on chromosome Xq28 and contains 11 exons 
(Bolhuis et  al., 1991; Bione et  al., 1996). Although multiple 
mRNA splice variants exist, the only detectable form of TAZ 

protein in human fibroblasts lacks exon 5 (Lu et  al., 2016). 
However, BTHS-associated mutations have been identified in 
all TAZ exons, including exon 5, suggesting that full-length 
TAZ protein is also physiologically relevant in vivo (Cantlay 
et al., 1999; Gonzalez, 2005). To date, more than 180 pathogenic 
TAZ gene mutations have been identified, ranging from single 
nucleotide polymorphisms to whole-gene deletion (Singh et al., 
2009). A major enigma in BTHS research is the apparent 
discrepancy between specific TAZ mutations and the clinical 
phenotypes they result in. For example, individuals sharing 
an identical mutation can have contrasting clinical presentations 
that range from severe heart failure and hypotonia to being 
nearly asymptomatic (Ronvelia et  al., 2012).

Pathology
Cardiomyopathy
BTHS and its clinical manifestations have been previously 
discussed in other reviews (Raja et  al., 2017b; Ghosh et  al., 
2019; Taylor et  al., 2021; Zegallai and Hatch, 2021). 
Cardiomyopathy is the major clinical manifestation of BTHS, 
and all identified patients have developed cardiomyopathy at 
some point in their lives. Dilated cardiomyopathy is the most 
common form in BTHS patients and is often associated with 
hypertrophy, left-ventricular noncompaction, arrhythmia, 
conduction defects, and endocardial fibroelastosis (a heart 
disorder in children characterized by diffuse thickening of the 
endocardium; Brady et al., 2006; Raja et al., 2017b). Hypertrophic 
and dilated phases can be  recurring over a patient’s lifetime 
(Ferreira et  al., 2014). Cardiomyopathy increases the risk of 
arrhythmia, conduction defects, and congestive heart failure 
and may lead to sudden cardiac death (Spencer et  al., 2006; 
Yen et  al., 2008). In addition, cardiomyopathy in BTHS can 
be  diagnosed late or misdiagnosed, leading to cardiac failure 
(Spencer et  al., 2006; Mangat et  al., 2007).

Fortunately, BTHS patient outcomes have improved 
significantly in the past two decades. Patients born after the 
year 2000 have a 5-year survival rate of 70% compared to 
22% for those born before 2000 (Rigaud et  al., 2013). This 
change suggests that early identification and management of 
heart dysfunction can significantly improve survival rates for 
BTHS patients. Although the molecular mechanisms are not 
known, studies have suggested that several factors, including 
mitochondrial dysfunction, defective mitochondrial protein 
import, autophagy, lipid storage myopathy, reduced glucose 
oxidation, and deficient muscle development, can all contribute 
to the onset of cardiomyopathy in BTHS (Shen et  al., 2015; 
Greenwell et  al., 2021).

Skeletal Myopathy
Skeletal myopathy is widely observed in BTHS, and patients 
often present with a combination of muscle weakness and 
wasting, delayed gross motor development, pre-pubescent growth 
delay, and/or hypotonia (Spencer et al., 2006, 2011; Bittel et al., 
2018). In BTHS, this condition is usually non-progressive and 
mainly affects proximal skeletal muscle (Clarke et  al., 2013; 
Ferreira et  al., 2014; Mazar et  al., 2019) Growth delay usually 
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regresses over time and is often followed by accelerated growth 
during mid and late puberty (Reynolds et  al., 2015). Similar 
to cardiomyopathy, the mechanism underlying development of 
skeletal myopathy in BTHS is not well understood.

Exercise Intolerance
In a self-assessment, BTHS patients identified exercise intolerance 
as the clinical feature that most negatively impacts their daily 
life. The reduced capacity for physical activity in BTHS is 
thought to result from both cardiac impairment (i.e., overall 
endurance) and diminished skeletal muscle oxygen utilization 
(Spencer et  al., 2011). Not only does exercise intolerance pose 
a physical limitation on the ability of patients to independently 
perform everyday tasks, but it also serves as a psychosocial 
barrier that likely contributes to reports of lower quality of 
life ratings from BTHS patients relative to their peers (Storch 
et  al., 2009; Mazar et  al., 2019).

Neutropenia
The severity of neutropenia in BTHS ranges from mild (benign, 
transient neutropenia) to severe (congenital neutropenia affecting 
multiple organs; Folsi et  al., 2014). Bacterial or viral infections 
resulting from neutropenia can cause significant complications 
throughout a patient’s life, including the risk of death by sepsis 
in the most extreme cases. According to the first report by 
Barth et al. (1983) three out of his seven patients died prematurely 
due to septicemia. The molecular mechanisms underlying the 
development of neutropenia in BTHS are still largely unknown.

Other Clinical Manifestations
While the above pathologies constitute the core clinical features 
of BTHS, a range of other clinical manifestations have been 
reported. Some patients develop facial dysmorphism characterized 
by a tall, broad forehead, round face, full cheeks, and large 
ears (Ferreira et  al., 2014). Additionally, dysmorphism of the 
feet resulting in talipes equinovarus (clubfoot) has been reported 
at a higher incidence in BTHS patients (Ades et  al., 1993; 
Spencer et  al., 2011). Cognitive and neurological phenotypes 
have also been described. For example, a study of 15 adolescent 
BTHS patients found reduced abilities in mathematics and 
visual spatial tasks (Mazzocco et  al., 2007), and a recent study 
also identified deficiencies in balance and motion reaction time 
in a group of 33 BTHS patients relative to age-matched controls 
(Hornby et  al., 2019). Other phenotypes include a strong gag 
reflex (Reynolds et  al., 2012), sideways curvature of the spine 
(Roberts et  al., 2012), and increased male fetal loss, stillbirth, 
and neonatal death (Marziliano et al., 2007; Steward et al., 2010).

CARDIOLIPIN AND BARTH SYNDROME

The Cardiolipin Biosynthetic Pathway
CL Synthesis
In order to comprehend how the yeast model has furthered 
our understanding of BTHS pathophysiology, it is necessary 
to understand the details of the CL biosynthetic pathway, many 

of which were first discovered in yeast. CL is a dimeric 
phospholipid in which two phosphatidyl groups are connected 
by a central glycerol molecule (Lecocq and Ballou, 1964). It 
is synthesized and localized predominantly in the inner leaflet 
of the IMM (Hostetler and van den Bosch, 1972; Krebs et  al., 
1979; Schlame and Haldar, 1993; Gebert et  al., 2009; Joshi 
et  al., 2009; Schlame and Ren, 2009; Sparagna and Lesnefsky, 
2009; Osman et  al., 2011).

CL biosynthesis is a four-step process that utilizes phosphatidic 
acid (PA) as substrate (Figure  1). PA is synthesized in both 
the endoplasmic reticulum (ER) and the outer leaflet of the 
outer mitochondrial membrane (OMM; Chakraborty et  al., 
1999). In both cases, the translocation of PA from the OMM 
to the inner leaflet of the IMM via the yeast Ups1/Mdm35 
lipid transport complex (PRELID1/TRIAP1  in humans) is 
essential for CL synthesis (Potting et  al., 2010; Tamura et  al., 
2010; Connerth et al., 2012). In the first step of the biosynthetic 
pathway, PA in the IMM is converted into cytidine diphosphate 
diacylglycerol (CDP-DAG) by Tam41  in yeast (TAM41  in 
humans; Blunsom et  al., 2018). Next, the yeast mitochondrial 
enzyme Pgs1 or its human homolog, PGS1, converts CDP-DAG 
into phosphatidylglycerol phosphate (PGP) by transferring a 
phosphatidyl group from CDP-DAG onto glycerol-3-phosphate 
(G3P; Chang et  al., 1998a). PGP is then dephosphorylated to 
phosphatidylglycerol (PG) by the yeast enzyme Gep4 
(PTPMT1  in humans; Osman et  al., 2010; Zhang et  al., 2011). 
Finally, a phosphatidyl group from CDP-DAG is transferred 
to PG by the yeast enzyme Crd1 (hCLS1  in humans) to 
synthesize nascent CL (Schlame and Greenberg, 1997; Chang 
et  al., 1998b).

CL Remodeling
Newly synthesized CL undergoes a unique remodeling process 
in which saturated acyl chains are replaced with unsaturated 
acyl chains through several cycles of deacylation and reacylation. 
The yeast enzyme Cld1 is responsible for the first step in CL 
remodeling by deacylating CL to form MLCL (Beranek et  al., 
2009). In the second step, MLCL is reacylated by tafazzin 
(Taz1 in yeast or TAZ in humans) to form primarily unsaturated 
CL (Figure  1; Xu et  al., 2006).

In mammals, multiple enzymes are capable of deacylating 
CL, though none of them are direct homologs of the yeast 
enzyme Cld1. These include iPLA2γ, iPLA2β, cPLA2, and 
sPLA2 (Buckland et  al., 1998; Mancuso et  al., 2007; Dennis 
et  al., 2011; Hsu et  al., 2013). In addition to TAZ, MLCLAT1 
and ALCAT1 can also catalyze the reacylation of MLCL in 
mammalian cells, while there are no direct homologs of these 
two enzymes in yeast (Ma et  al., 1999; Cao et  al., 2004; Li 
et  al., 2010; Mejia et  al., 2018). As a result of diminished 
tafazzin function, BTHS is characterized by an increase in 
MLCL levels, along with a decrease in unsaturated and total 
CL (Jiang et  al., 1997; Xu et  al., 2006; Lou et  al., 2018a; Wang 
et  al., 2020). The fact that these phenotypes arise despite the 
presence of MLCLAT1 and ALCAT1 suggests that TAZ is the 
primary enzyme responsible for reacylation of MLCL under 
physiological conditions (Saric et  al., 2015).
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STUDYING CL-RELATED PATHOLOGIES 
USING YEAST MUTANTS

Yeast is an excellent model for studying genetic disorders. In 
1996, S. cerevisiae was the first eukaryote for which a full 
genome sequence was assembled (Goffeau et  al., 1996; Giaever 
and Nislow, 2014). Subsequently, researchers generated a deletion 
collection containing representative mutant strains for each 
nonessential gene in the yeast genome (~4,800 genes; Giaever 
and Nislow, 2014). Using these tools, homologs of over 23% 
of all human genes have been identified and studied in yeast 
(Kachroo et  al., 2015). One of the most striking discoveries 
from these endeavors was that many genes encoding lipid 
pathways are conserved from yeast to humans, thus making 
yeast a useful model to interrogate human diseases of lipid 
metabolism. The ability of yeast to grow both as haploid or 
diploid cells allows for the construction of double mutants by 
crossing single mutants, inducing sporulation, and screening 
the resulting haploids. In addition to being genetically tractable, 
yeast cells are nonpathogenic, have a short generation time, 
and are easy and inexpensive to culture in the laboratory.

The CL biosynthetic pathway is conserved from yeast to 
humans, and yeast mutants have been constructed for each 
step of this pathway. Among these, the crd1Δ mutant (Jiang 
et  al., 1997; Tuller et  al., 1998; Chang et  al., 1998b), which 
lacks CL synthase and cannot synthesize CL, and the taz1Δ 
mutant (Vaz et  al., 2003; Gu et  al., 2004; Ma et  al., 2004), 
lacking tafazzin, have been pivotal in elucidating the cellular 
roles of CL and understanding BTHS pathology. Yeast mutants 

have also been generated to recapitulate and test the functional 
significance of human TAZ mutations identified in BTHS 
patients (Claypool et  al., 2006, 2011). The following sections 
detail pioneering discoveries relevant to BTHS pathophysiology 
that were first made using yeast mutants.

CL and Bioenergetics
CL comprises 15–20% of the phospholipid content in the IMM 
where it plays a pivotal role in energy metabolism (Pennington 
et  al., 2019). The mitochondrial III2IV2 supercomplex forms 
the terminal part of the electron transport chain and is essential 
for maintaining mitochondrial membrane potential and ATP 
synthesis (Schagger and Pfeiffer, 2000). In crd1Δ yeast, the 
III2IV2 supercomplex is less stable than in wildtype cells, 
suggesting that CL is critical for mitochondrial homeostasis 
and bioenergetics (Pfeiffer et  al., 2003; Mileykovskaya et  al., 
2005; Zhang et  al., 2005; Claypool et  al., 2008; Bottinger et  al., 
2012; Bazan et  al., 2013; Peyta et  al., 2016; Petit et  al., 2020). 
A deficiency in CL remodeling is also associated with reduced 
bioenergetics (Brandner et  al., 2005; Li et  al., 2007). Using 
taz1Δ yeast, Brandner et  al. (2005) demonstrated that the 
absence of tafazzin results in increased dissociation of the 
III2IV2 supercomplex, causing the release of a complex IV 
monomer (Brandner et  al., 2005; Claypool et  al., 2008).

The initial yeast studies implicating CL and CL remodeling 
in bioenergetics were subsequently corroborated using 
mammalian BTHS models. Gonzalvez et al. (2013) and McKenzie 
et  al. (2006) reported decreased respiratory supercomplex 
formation and stability in lymphoblast cells isolated from two 

FIGURE 1 | Cardiolipin (CL) biosynthesis in yeast. CL is synthesized from phosphatidic acid (PA) through a four-step process. PA is translocated from the outer 
mitochondrial membrane (OMM) to the IMM via the Ups1/Mdm35 protein complex (Potting et al., 2010; Tamura et al., 2010; Connerth et al., 2012). PA is converted 
into cytidine diphosphate diacylglycerol (CDP-DAG), phosphatidylglycerol phosphate (PGP), and then phosphatidylglycerol (PG) by Tam41, Pgs1, and Gep4, 
respectively (Chang et al., 1998a; Osman et al., 2010; Blunsom et al., 2018). Finally, PG is converted to nascent CL by the enzymatic activity of Crd1. Nascent CL, 
which contains predominantly saturated acyl chains, is remodeled through several cycles of deacylation and reacylation catalyzed by Cld1 and Taz1 to form primarily 
unsaturated CL (Xu et al., 2006; Beranek et al., 2009). This figure was created with BioRender.com.
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BTHS patients relative to non-BTHS control cells. More recently, 
Petit et al. (2020) showed that shRNA-mediated Taz knockdown 
in HeLa cells results in decreased ATP synthase activity and 
overall ATP level, with a concomitant decrease in maximal 
respiratory capacity and an increase in basal oxygen consumption. 
Similarly, Dudek et al. (2013, 2016) showed reduced respiratory 
complex formation in cardiac tissue isolated from the BTHS 
mouse model and increased basal oxygen consumption coupled 
with decreased maximal respiratory capacity in induced 
pluripotent stem cells (iPSCs) derived from BTHS patients. 
Ma et  al. (2004) reported a decrease in basal respiration in 
taz1∆ yeast, a study corroborated by Lou et  al. (2018a) in 
C2C12 TAZ KO (Ma et al., 2004). The increased basal respiration 
observed in iPSC-derived cardiomyocytes could be  due to 
increased F1F0 ATP synthase oxygen consumption and proton 
leak. The authors further showed that the aberrant respiration 
in iPSCs could be  attributed to reduced respiratory complex 
stability, reiterating what was previously concluded from yeast. 
These findings underscore the power of the yeast model for 
interrogating the relationship between CL deficiency and the 
bioenergetic defects that characterize BTHS.

CL and Iron Homeostasis
Iron–sulfur clusters (ISCs) are molecular assemblages of iron 
and sulfur atoms that act as co-factors in many cellular processes, 
including electron transfer within the electron transport chain 
and enzymatic conversion of substrate within the TCA cycle 
(Paul et  al., 2017; Braymer et  al., 2021). ISCs can exist in 
many configurations based on the number of iron and sulfur 
atoms involved (e.g., 2Fe-2S, 3Fe-4S, and 4Fe-4S). ISC biogenesis 
occurs in three steps within mitochondria (Lill and Freibert, 
2020). The first step involves donation of sulfur from the 
NFS1-ISD11-ACP1 subcomplex and transfer of imported iron 
to the ISCU2 scaffold protein by frataxin (FXN). This forms 
an initial 2Fe-2S cluster. In the second step, chaperone proteins 
(HSC20, HSPA9, and GRPE1) bind to the 2Fe-2S cluster and 
transfer it first to the monothiol glutaredoxin GLRX5 and 
subsequently to mitochondrial ISC recipient proteins. The third 
step involves conversion of 2Fe-2S clusters into 4Fe-4S clusters 
and their delivery to recipient apoproteins (Lill and Freibert, 
2020; Maio et  al., 2020).

The first indication of a relationship between CL and ISC 
homeostasis was described in yeast. Using crd1Δ yeast, Patil 
et al. (2013) demonstrated that CL deficiency results in elevated 
mitochondrial iron and increased sensitivity to ROS and 
exogenously supplied iron sulfate. These phenotypes are associated 
with defective ISC biogenesis, and the authors subsequently 
showed that crd1Δ cells exhibit decreased enzymatic activity 
of the ISC-requiring enzymes ubiquinol-cytochrome c 
oxidoreductase, succinate dehydrogenase, aconitase, 
isopropylmalate isomerase, and sulfite reductase. Additionally, 
deletion of the ISC biosynthetic gene ISU1  in the crd1Δ 
background resulted in a synthetically sick phenotype, further 
supporting a role for CL in iron homeostasis (Patil et al., 2013).

These initial findings from yeast were subsequently validated 
in mammalian cells using the TAZ-KO C2C12 BTHS cell 

model. Similar to what was observed in yeast, Li et  al. (2020) 
demonstrated that the activities of the ISC-requiring enzymes 
aconitase, NADH dehydrogenase, succinate dehydrogenase, and 
ubiquinol-cytochrome c reductase were all decreased by ~50% 
in TAZ-KO cells while their respective protein levels remained 
unchanged. TAZ-KO cells also showed increased mitochondrial 
iron content and elevated sensitivity to ROS and iron 
supplementation, mirroring the findings from yeast. This study 
went on to further corroborate the role of CL in ISC biogenesis 
by showing that the mature form of the ISC biosynthetic 
protein FXN is reduced in TAZ-KO cells (Li et  al., 2020).

CL and Energy Metabolism
Raja et al. (2017a) provided the first evidence of a link between 
CL and energy metabolism by showing that crd1Δ exhibits 
decreased synthesis of acetyl-CoA, and that deletion of CRD1 
is synthetically lethal in pyruvate dehydrogenase (PDH) mutants. 
Acetyl-CoA is a primary substrate utilized by the tricarboxylic 
acid (TCA) cycle to fuel intermediary metabolism, and under 
respiratory conditions it is synthesized predominantly in 
mitochondria through the enzymatic conversion of pyruvate 
by PDH (Guest et  al., 1989; Raja et  al., 2017a). Synthetic 
lethality between crd1Δ and PDH complex mutants suggests 
that CL plays a role in promoting acetyl-CoA synthesis and 
TCA cycle function. Interestingly, PDH complex mRNA and 
protein levels are increased in crd1Δ, but net activity of PDH 
is not altered (Raja et  al., 2017a). This suggests that CL is 
required for optimal PDH function, and that in the absence 
of CL, upregulation of PDH cannot compensate for diminished 
acetyl-CoA synthesis.

Building on the findings in yeast, Li et  al. (2019) found 
that TAZ-KO mouse C2C12 cells also show reduced carbon 
flux to acetyl-CoA, and this is linked to a reduction in PDH 
activity. PDH is regulated through phosphorylation, and the 
authors showed that both the inhibitory phosphorylation and 
enzymatic activity in mitochondrial extracts are rescued by 
the addition of exogenous CL. Although production of acetyl-CoA 
through the activity of PDH serves as an important input for 
the TCA cycle, the cycle itself is comprised of many steps 
that are each catalyzed by distinct enzymes, some of which 
require Fe-S cofactors for optimal activity. Li et  al. (2019, 
2020) identified a second way in which CL deficiency negatively 
impacts TCA cycle function by showing that activity of the 
Fe-S-requiring TCA cycle enzymes succinate dehydrogenase 
and aconitase are also reduced in TAZ-KO cells.

CL Enhances the Stability of the 
Mitochondrial Calcium Uniporter
The mitochondrial calcium uniporter (MCU) is a holo-complex 
protein consisting of pore-forming subunit MCU, transmembrane 
subunit EMRE, and regulatory subunits MICU1, MICU2, and 
MCUb (Baughman et  al., 2011; De Stefani et  al., 2011; Sancak 
et  al., 2013). MCU transports calcium from the cytosol into 
the mitochondria where it serves as a signal for regulating 
ATP synthesis and, when in excess, activating the apoptotic 
pathway (Carraro et  al., 2020). MCU is localized in the IMM 
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where CL is enriched, suggesting that its function could 
be  influenced by CL (Ghosh et  al., 2020).

The first evidence for CL playing a role in MCU function 
came from a recent study in yeast, where Ghosh et  al. (2020) 
reported that MCU levels are decreased by 50% in CL-deficient 
crd1Δ cells. In this study, MCU was heterologously expressed 
under a strong promoter. Therefore, the authors argue that CL 
influences MCU stability but not expression, which is supported 
by the finding that the MCU turnover rate is substantially higher 
in crd1Δ compared to wildtype cells. As a functional consequence, 
mitochondrial uptake of calcium is also decreased in crd1Δ mutants. 
The authors further validated these yeast findings in both the 
TAZ-KO C2C12 mouse model and in BTHS patient-derived 
lymphoblasts and heart tissue. In a similar study, Ghosh et  al. 
(2021) showed that only the MICU1 component of the mitochondrial 
calcium uniporter complex is decreased in crd1Δ cells. In this 
study, human MICU1 and Mitochondrial Calcium Uniporter 
Regulator 1 (MCUR1) proteins were expressed in both wildtype 
and crd1Δ yeast cells. The authors showed that MICU1 levels 
were 50% lower in crd1Δ cells compared to the wildtype, while 
MCUR1 levels were unaltered (Ghosh et  al., 2021). This work 
serves as yet another example of how yeast research has led to 
pioneering discoveries regarding CL function and its relationship 
to BTHS.

USING YEAST TO STUDY OTHER 
LIPID-RELATED DISEASES

The yeast model has proven to be  indispensable not only in 
the study of CL-related pathologies, but in other lipid-related 
pathologies as well. In addition, the genetic tractability, rapid 
doubling time, and low cost often make the use of yeast 
preferable to other models. When modeling human diseases 
in yeast there are two general approaches. The first method 
is referred to as an orthologous approach, in which a yeast 
ortholog of a human gene is modified to have the same mutation 
as in the human disease (e.g., the crd1Δ and taz1Δ strains 
used to study BTHS). Using this approach researchers can 
identify interactions between other genes, proteins, and molecules 
that may interact with the aberrant disease pathway. However, 
this is not always possible, as the discrepancy in genome size 
between yeast and humans means that not all human genes 
have a yeast homolog. The second method, referred to as 
humanization, involves expressing a human disease gene in 
yeast. Although some tissue-wide aspects of human diseases 
are difficult to model in the unicellular yeast system, cellular 
phenotypes can often be  recapitulated and studied in yeast 
cells. The following sections detail ways in which yeast have 
been used to study the lipid-related pathophysiology of two 
prevalent human neurodegenerative diseases, Alzheimer’s and 
Parkinson’s.

Alzheimer’s Disease
Alzheimer’s disease (AD) is the most common neurodegenerative 
disease in the world and is characterized by the extracellular 

accumulation of amyloid-β (Ab) peptide in senile plaques and 
the intracellular accumulation of neurofibrillary tangles (Masters 
et  al., 1985; Alzheimer et  al., 1995; Scheltens et  al., 2016). 
These aggregations lead to neurodegeneration, with the main 
clinical manifestation being severe memory impairment and 
memory loss that often results in chronic dementia (Masliah 
et  al., 1989; Bancher et  al., 1997; Scheltens et  al., 2016). While 
the molecular phenotypes of AD have been well cataloged, 
the exact pathophysiology of the disease is not well understood.

In order to gain insight into the pathophysiology of AD, 
Nair et  al. (2014) conducted a genome-wide screen to identify 
cellular processes that influence Ab aggregation in yeast. In 
this study, the authors compared mutants from the yeast deletion 
collection expressing a GFP-tagged Ab construct (Ab-GFP) 
with wild-type cells to identify genes that influence the size 
or localization of Ab aggregations. Out of ~4,600 mutants 
tested, the screen identified 110 relevant genes corresponding 
predominantly to four major cellular processes, including 
phospholipid metabolism, gene expression, chromatin 
remodeling, and mitochondrial function. This study has been 
foundational in guiding subsequent AD research efforts.

In particular, dysregulation of lipid metabolism has been 
increasingly recognized as a contributing factor to AD 
pathophysiology, and the yeast model has been indispensable 
for exploring this link (Kao et  al., 2020). One example of the 
link between lipid metabolism and AD pathology involves a 
neurotoxic species of phosphatidylcholine, referred to as PC(O-
16:0/2:0), that is elevated in human AD tissue (Ryan et  al., 
2009). Kennedy et  al. (2016) used yeast to better understand 
the role of this lipid species in AD pathology by combining 
gene expression profiling with a genome-wide chemogenomic 
screen. They found that elevated PC(O-16:0/2:0) causes an 
accumulation of ceramide that ultimately results in increased 
reactive oxygen species (ROS) production and mitochondrial 
dysfunction, cellular phenotypes that are commonly seen in 
AD patient cells and AD cell models (Agrawal and Jha, 2020).

Another example of the link between lipid metabolism and 
AD relates to tau protein phosphorylation. Tau hyperphosphorylation 
has been implicated as a major part of AD neurodegeneration, 
but the mechanism of hyperphosphorylation is not well understood 
(Simic et al., 2016). Using yeast, Randez-Gil et al. (2020) identified 
a potential mechanism wherein dysregulation of inositol phosphate 
signaling leads to defective sphingolipid production and a resultant 
increase in tau protein hyperphosphorylation. Although sphingolipid 
metabolism had been previously linked to neurodegenerative 
diseases (Alaamery et  al., 2021), this was one of the first studies 
to suggest a role for SLs in tau hyperphosphorylation.

The previous studies directly link lipid metabolism to AD, 
but other aspects of lipid homeostasis have also been shown 
to contribute to AD pathology. Apolipoprotein E (APOE) is 
a lipid transporter that transports lipids between cells and 
tissues (Huang and Mahley, 2014). APOE is polyallelic, and 
the E4 allele (APOE4) is a known risk factor for AD (Farrer 
et  al., 1997). It is well characterized that APOE4 plays a role 
in AD, but the mechanism by which it contributes to AD is 
largely unknown. Using genome-wide screens and lipidomic 
analysis in yeast, Sienski et  al. (2021) determined that APOE4 
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is responsible for altered fatty acid (FA) metabolism which is 
commonly seen in AD cells. They found that when human 
APOE4 is expressed in yeast there is an increase in the degree 
of unsaturation in FAs accompanied by the accumulation of 
lipid droplets. Furthermore, they also demonstrated that choline 
supplementation ameliorates the aberrant FA metabolism (Sienski 
et  al., 2021). When choline was supplemented, synthesis of 
the membrane phospholipid phosphatidylcholine was stimulated. 
This abolished APOE4 lipid-related defects and suggests an 
important role for phosphatidylcholine in the pathophysiology 
of AD. This study demonstrated not only a novel role of 
APOE4  in AD, but also identified a key modulator of this 
process, choline homeostasis.

Yeast has proved to be  a powerful tool for studying lipid-
related pathology in AD. By combining the genetic tractability 
of yeast with high-throughput screening techniques, researchers 
have uncovered novel mechanisms into the influence of lipid 
homeostasis on Ab aggregation, ROS production, tau 
hyperphosphorylation, and FA metabolism.

Parkinson’s Disease
Parkinson’s disease (PD) is the second most common 
neurodegenerative disease world-wide. PD is characterized by 
degeneration of nigrostriatal dopaminergic neurons in the 
substantia nigra pars compacta region of the brain and the 
presence of intraneuronal α-synuclein (aS) inclusions known 
as Lewy bodies (Antony et  al., 2013; Leao et  al., 2015; 
Sveinbjornsdottir, 2016). Degradation of dopaminergic neurons 
in this region of the brain decreases dopamine release in the 
striatum, altering motor control in afflicted individuals (Antony 
et al., 2013; Leao et al., 2015; Sveinbjornsdottir, 2016). Common 
motor symptoms include bradykinesia, rigidity, tremors, and 
postural instability, and these presentations are often accompanied 
by depression, anosmia, dementia, and sleep disorders (Moustafa 
et  al., 2016; Pfeiffer, 2016). The molecular hallmarks of PD 
are well characterized, but just as in AD, the exact cause of 
PD is not known.

One of the major molecular hallmarks of PD is the aggregation 
of aS, a protein commonly expressed in neurons and enriched 
in presynaptic terminals (Maroteaux et al., 1988; Taguchi et al., 
2016). It is well known that aS aggregation has a central role 
in PD pathogenesis, but the mechanism by which aS aggregates 
form is not known. Wang et  al. (2014) used the yeast model 
to test a potential mechanism for aS aggregation and found 
that phosphatidylethanolamine (PE) deficiency in yeast cells 
causes ER stress, vesicle defects, aS aggregation, and cells death. 
Subsequently, the authors demonstrated that the effects of PE 
deficiency can be  mitigated by ethanolamine supplementation 
(Wang et  al., 2014). This study highlights the importance of 
lipid homeostasis on aS aggregation.

A study by Fanning et al. (2019) sought to further interrogate 
the relationship between aS aggregation, lipid homeostasis, and 
cellular toxicity. The authors performed lipidomic profiling in 
yeast displaying aS aggregation to monitor changes in specific 
lipid classes. They determined that dysfunctional lipid 
homeostasis, induced by aS aggregation, leads to cytotoxicity 

due to the accumulation of oleic acid (OA) and diglycerides 
(DG) in lipid droplets of aS-expressing yeast (Fanning et  al., 
2019). Of particular interest from a therapeutic standpoint, 
they found that either preventing the conversion of triglycerides 
(TG) to DG or inhibiting stearoyl-CoA desaturase (SCD; the 
rate-limiting enzyme in the production of OA) ameliorates aS 
aggregation and its associated cytotoxicity.

Yeast is not only an excellent model for identifying novel 
pathophysiological mechanisms but also for probing and testing 
chemical and genetic modifiers of a disease (Griffioen et  al., 
2006; Williams et  al., 2007; Su et  al., 2010). For example, 
Soste et  al. (2019) conducted a screen for genetic modifiers 
of aS aggregation and identified 33 genes that modulate aS 
aggregation and cytotoxicity. One of these modifiers, Pah1, is 
an enzyme that converts PA to DG in yeast. In accordance 
with the findings of Fanning et  al. (2019), Soste et  al. (2019) 
found that decreasing DG levels through the inhibition of 
Pah1 ameliorates aS aggregation and cytotoxicity. This suggests 
a key role for DG and lipid droplet homeostasis in aS aggregation 
and cytotoxicity in PD.

Collectively, these studies demonstrate the power of the 
yeast system for investigating the lipid-related pathophysiology 
of two prominent neurodegenerative disorders. The unicellular 
nature of yeast makes it particularly straightforward to track 
biochemical changes in molecules such as lipids.

CONCLUSION

This review outlines some of the major contributions the yeast 
model has made to our understanding of the lipid-related 
pathologies observed in BTHS, AD, and PD. Lipid homeostasis 
has been shown to play key roles in other diseases, including 
cancer (Snaebjornsson et  al., 2020), heart disease (Poss et  al., 
2020; Richardson et  al., 2020), diabetes mellitus (Katsiki et  al., 
2017; Bjornstad and Eckel, 2018), and other chronic conditions 
(Leuti et  al., 2020). The multifaceted roles of lipids in human 
disease are only beginning to be uncovered, and as technologies 
such as mass spectrometry continue to evolve, the yeast model 
system promises to continue facilitating progress in this rapidly 
growing field (Zullig and Kofeler, 2021).
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