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Abstract

The study of tumorigenic rewiring of metabolic flux is
at the heart of cancer metabolic research. Here, we
review two widely used computational flux inference
approaches: isotope tracing coupled with Metabolic
Flux Analysis (13C-MFA) and COnstraint-Based
Reconstruction and Analysis (COBRA). We describe the
applications of these complementary modeling
techniques for studying metabolic adaptations in
cancer cells due to genetic mutations and the tumor
microenvironment, as well as for identifying novel
enzymatic targets for anti-cancer drugs. We further
highlight the advantages and limitations of COBRA
and 13C-MFA and the main challenges ahead.
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Inferring metabolic flux in cancer research
Cellular metabolism is a dynamic system in which meta-

bolic nutrients are being constantly consumed and catabo-

lized to generate energy (Fig. 1a). Proliferating cancer cells

further activate anabolic pathways to produce metabolic

precursors for synthesizing macromolecules, including

DNA, RNA, proteins, and lipids [1, 2]. This is facilitated

via a complex metabolic network consisting of thousands

of biochemical reactions [3, 4]. The dynamics of metabol-

ism can be described in terms of the rate of metabolic

reactions, typically referred to as metabolic flux (denoting

the rate of transformation of a substrate to product me-

tabolites in units of moles per unit of time per cell). A

major goal of cancer metabolic research is understanding
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how metabolic flux is rewired by tumors to support

energetic and biosynthetic demands [5, 6]. Understand-

ing tumor-specific alterations in metabolic flux facili-

tates the identification of induced dependency on specific

enzymes whose pharmacological inhibition selectively tar-

gets cancer cells [7].

A major complication in cancer metabolic research is

that, unlike the concentration of mRNA, proteins, and

metabolites, metabolic flux, which reflects the cellular

metabolic phenotype, is not a directly measurable quan-

tity (Fig. 1b). However, it can be inferred through a com-

bination of experimental and computational techniques.

The most direct approach for interrogating intracellular

metabolic flux in cancer cells is isotope tracing [8–10].

This works by feeding cancer cells with isotopically labeled

nutrients and measuring the isotopic labeling pattern of

metabolites via mass spectrometry or nuclear magnetic

resonance (NMR). We discuss here the common applica-

tion of this approach in cancer cells grown in culture,

though it is also utilized for in vivo studies [11, 12]. The

isotopic labeling pattern of metabolites is indicative of the

relative contribution of different pathways to their biosyn-

thesis. While a manual inspection of measured metabolite

isotope distributions facilitates the qualitative assessment

of metabolic activities, computational interpretation via

13C-Metabolic Flux Analysis (13C-MFA) further enables

quantitative inference of fluxes.

Another commonly used flux inference approach is

COnstraint-Based Reconstruction and Analysis (COBRA),

enabling flux assessment through genome-scale metabolic

networks. COBRA has traditionally been utilized to model

microbial metabolism for biotechnological and bioengin-

eering purposes [13–15]. More recent reconstructions of

genome-scale human metabolic network models enabled

applying this approach for large-scale modeling of nor-

mal tissues and various human diseases, including can-

cer [3, 16–19]. COBRA predicts fluxes under metabolic

steady state by taking into account physicochemical
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considerations, specifically stoichiometric mass-balance,

requiring metabolite total production and consumption

rates to be equal under steady state conditions. An im-

portant feature of COBRA is its ability to predict flux and

metabolic rewiring by incorporating various ‘omics’ data-

sets, such as transcriptomics, proteomics, and metabolo-

mics. This enables flux prediction for large collections of

cell lines and tumors via existing functional genomics and

metabolomics datasets, including TCGA [20], NCI60 [21],

CCLE [22–24], and Connectivity Map [25].

Here, we provide a brief overview of how COBRA and

13C-MFA work (readers are referred to comprehensive

reviews on COBRA [26] and 13C-MFA [27] for further

technical information), recent usage of these approaches

in cancer research studies, and the limitations and open

challenges with each flux inference approach.

Isotope tracing coupled with MFA
13C-MFA calculations require a metabolic network

model consisting of a set of biochemical reactions, with

information on the mapping of atoms between the sub-

strate and product metabolites (and specifically carbon

atom mappings for 13C tracing; Fig. 2). 13C-MFA works

by searching for the most plausible steady-state fluxes

satisfying stoichiometric mass-balance for intracellular

metabolites (i.e., metabolite total production rate equals

total consumption rate) for which a simulated isotopic

labeling pattern of metabolites optimally matches experi-

mental measurements [8, 27]. From an algorithmic per-

spective, 13C-MFA is computationally hard, requiring

solving of a non-convex optimization [29]. Hence, 13C-

MFA calculations are typically performed via heuristic

solving of optimization problems; e.g., using Sequential

Quadratic Programming (SQP) or interior-point, which

do not guarantee convergence to an optimal solution.

To speed up the heuristic solving, various methods were

proposed to efficiently simulate metabolite isotope label-

ing given a possible set of fluxes [30, 31]. The most com-

monly used method is the Elementary Metabolite Unit

(EMU) [30], implemented in a variety of user-friendly

software tools, including INCA, Metran, and 13CFlux2

[32–34]. These tools enable straightforward inference of

flux through a given metabolic network based on isotope

tracing measurements. Additional measurements of me-

tabolite uptake and byproduct secretion rates from and

to media can be utilized by the above computational

tools to improve 13C-MFA flux estimation. Estimates of

cellular flux demands for biomass production, determined

based on the macromolecular composition of cells, can be

incorporated in 13C-MFA to further constrain estimated

fluxes. A rigorous statistical framework enables computing

flux confidence intervals, representing the extent of the

uncertainty of inferred fluxes [35, 36]. Integration of mea-

surements from multiple isotope tracing experiments is

an especially useful feature of 13C-MFA that reduces the

uncertainty in estimated fluxes [37].

The most common 13C-MFA approach, stationary 13C-

MFA, is based on measuring metabolite labeling patterns

once metabolite labeling converges to isotopic steady state.

In some cases, however, this is not possible due to metabol-

ite secretion from cells gradually changing the labeling of

metabolite pools in the culture media (which in turn alters

intracellular metabolite labeling) [38]. When an isotopic

steady state cannot be reached, non-stationary 13C-MFA

can be used to infer fluxes based on measurements of me-

tabolite labeling kinetics [39]. Acquiring and analyzing iso-

tope labeling kinetic data is more demanding from both

experimental and computational perspectives [40]. Data

a

b

Fig. 1 Metabolic flux describes the dynamics of cellular metabolism. a Metabolic nutrients are constantly consumed and metabolized to generate
energy and synthesize biomass to support cell replication. b Metabolic fluxes provide a direct view of the cellular metabolic phenotype that is
not readily evident by widely accessible ‘omics’ technologies
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analysis is performed similarly as in stationary 13C-MFA

via non-convex optimizations searching for optimal fluxes,

though utilizing ordinary differential equation (ODE)

models to simulate metabolite isotope labeling kinetics.

The simulation of metabolite isotopic labeling kinetics fur-

ther requires the measurement of absolute concentrations

of intracellular metabolites. In some cases, kinetic iso-

tope tracing measurements can be directly utilized to

infer flux without ODE-based simulations utilizing

Kinetic Flux Profiling (KFP) [41] or cumulative isoto-

pomer balance equations [42]. While being experimen-

tally and computationally demanding, non-stationary

13C-MFA is advantageous in terms of being able to infer

fluxes via linear pathways based on the labeling kinetics of

subsequent metabolic intermediates, as compared to sta-

tionary 13C-MFA only estimating flux ratios through con-

verging pathways producing a certain metabolite (based

on the characteristic isotopic labeling pattern produced by

each pathway).

13C-MFA has been frequently used for investigating

cellular metabolic rewiring in response to genetic muta-

tions in cancer, revealing the link between signaling cir-

cuitry and cancer metabolism. For example, oncogenic

activations of Ras [43, 44], Akt [44], and Myc [45] were

found to induce aerobic glycolysis (in accordance with

the Warburg effect), glutamine consumption, and oxida-

tion in the TCA cycle. In addition, KEAP1 mutations

were shown to alter cancer redox network and oxidative

pentose phosphate pathway flux [46].

Employing 13C-MFA to probe flux alterations follow-

ing genetic silencing of metabolic enzymes provided

means to explore enzyme importance and mechanisms:

depletion of MTHFD1L, an enzyme in the mitochondrial

folate cycle that produces formate, was shown to repress

mitochondrial one-carbon metabolism and lead to re-

duced cancer invasion [47]. Deletion of Hexokinase 2 in

hepatocellular carcinoma inhibits glycolysis and induces

oxidative phosphorylation flux [48]. PDH deletion in

Fig. 2 Both 13C-MFA and COBRA rely on measurements of metabolite uptake and secretion, cell biomass composition and growth rate, and
information on reaction reversibility based on thermodynamic considerations. 13C-MFA further requires isotope tracing measurements and
absolute concentrations of intracellular metabolites in a case of non-stationary 13C-MFA; COBRA relies on a variety of ‘omics’ datasets (genomics,
transcriptomics, proteomics, and metabolomics). Inset COBRA image taken from [28]
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lung cancer cells induces scavenging of extracellular

lipids and lipogenesis through increased reductive IDH1

flux [49]. Flux rewiring due to compromised metabolite

transporters was also investigated using 13C-MFA: the de-

pletion of the mitochondrial pyruvate carrier (MPC) in-

creased the oxidation of fatty acids and glutaminolytic flux

[50]; and ablation of mitochondrial citrate transport pro-

tein (CTP) increased glucose-dependent anaplerotic flux

and cytosolic reductive carboxylation for lipogenesis [51].

This suggests novel therapeutic targets, inhibiting cancer

cell-specific utilization of the above nutrients or enzymes.

Metabolic rewiring due to non-genetic factors such as

the tumor microenvironment has also been investigated

utilizing 13C-MFA. Hypoxia promotes tumor cell reliance

on reductive glutamine metabolism for lipogenesis [52, 53]

and malic enzyme for NADPH production [54]. Increased

reductive glutamine flux also promotes anchorage-

independent growth [55]. 13C-MFA was recently employed

to examine how metabolic flux in tumors differs between

in vitro and in vivo conditions; e.g., human NSCLCs were

shown to depend on increased PC and PDH flux and rely

extensively on lactate catabolism in vivo [56, 57].

Identifying and characterizing metabolic rewiring with

13C-MFA in specific cancer cells not only contributes to

our understanding of metabolic regulation but can also

lead to the discovery of novel targets for anticancer

drugs. For example, applied to studying the effect of

PHGDH amplification in breast cancer cells, 13C-MFA

revealed that de novo serine biosynthesis is responsible

for up to half of the total anaplerotic flux of glutamine

into the TCA cycle, suggesting that targeting the serine

synthesis pathway may be therapeutically valuable in

breast cancers with elevated PHGDH expression [58].

Likewise, 13C-MFA identified induced essentiality of

oxidative mitochondrial metabolism in IDH1-mutant

cells that can be therapeutically exploited [59].

A major limitation of flux inference via isotope tra-

cing coupled with 13C-MFA regards the inference of

metabolic flux in specific organelles (Fig. 3a, b). Sub-

cellular compartmentalization is a defining character-

istic of eukaryotic cells, with metabolic enzymes being

localized and operating in specific organelles. For example,

mitochondrial metabolism is highly inter-linked to cyto-

solic metabolism via the shuttling of energy and redox

b

a

c

Fig. 3 Spatial and temporal compartmentalization of cellular metabolism may bias the estimation of whole-cell level fluxes. a Consider the case
of a metabolite synthesized from two nutrients in media: A and B. Let us assume that feeding the cells with an isotopic form of B leads to an
isotopic steady-state in which a small fraction of the intracellular metabolite pool is labeled. In this case, 13C-MFA would infer that the relative
contribution of nutrient B to producing the metabolite is smaller than that of A. However, this might not be the case when considering spatial
(b) and temporal (c) compartmentalization of metabolic activities. b Consider the case where the metabolite is synthesized mostly from nutrient
B in mitochondria and at a lower rate from nutrient A in the cytosol. If the metabolite pool size is markedly larger in the cytosol, feeding cells
with labeled nutrient B would lead to a small fraction of the whole-cell total metabolite pool to be isotopically labeled. c Consider the case
where in a certain cell cycle phase (e.g., G2/M) the metabolite is rapidly synthesized and mostly from nutrient B, while in other phases (G1/S) it is
slowly produced and mostly from A. now, if the metabolite pool size is markedly larger in G1/S, feeding a population of cells (homogenous in
terms of cell cycle phase) with labeled nutrient B would lead to a small fraction of the total metabolite pool to be labeled
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equivalents through the mitochondrial membrane. Fur-

thermore, numerous isozymes catalyze the same meta-

bolic transformation in both compartments, in some cases

utilizing distinct energy and redox cofactors. Considering

that mass spectrometry approaches typically measure the

average whole-cell level metabolite concentrations and

isotopic labeling, 13C-MFA methods are generally limited

to inferring whole-cell level fluxes. Notably, not account-

ing for distinct metabolite isotopic labeling patterns and

concentrations in different cell compartments can bias the

interpretation of isotope tracing experiments and result in

a false estimate of metabolic flux. This can be partially

overcome by considering a metabolic network model in

which metabolite pools and reactions are localized in dif-

ferent compartments, and inferring the isotope labeling of

metabolites in specific subcellular compartments based on

specific metabolite markers known to be synthesized in a

specific compartment. For example, fatty acid labeling can

be measured to infer cytosolic acetyl-CoA, considering

that this biosynthetic activity takes place in the cytosol

[60]. Mass spectrometry-based measurement of metabolic

byproducts secreted to media provides information on the

isotopic labeling of cytosolic metabolite pools [61]. In

some cases, compartment-specific enzymes were engi-

neered to produce reporter metabolites to infer mitochon-

drial and cytosolic NADPH labeling [54, 62]. Gene

expression measurements and in vitro enzymatic assays

were performed in specific cell lines to determine that

some metabolic transformations occur solely in one com-

partment [61]. The expression level of alanine amino-

transferase isozymes in breast cancer cell lines indicated

that only the mitochondrial isoform is active, suggesting

that the whole-cell level isotopic labeling pattern of

alanine reflects mitochondrial pyruvate labeling [63]. To

address the challenge of inferring compartment-specific

metabolic flux, isotope tracing has been applied to iso-

lated mitochondria [55, 64, 65]. However, isolation and

purification of mitochondria typically involve a lengthy

and perturbative process, potentially resulting in non-

physiological conditions. More recently, a method was

suggested to infer mitochondrial and cytosolic fluxes by

rapidly fractionating isotopically labeled cells in a man-

ner of seconds. This is shown to enable flux inference

through isozymes catalyzing the same metabolic trans-

formation in mitochondria and cytosol, and even be-

tween distinct isozymes within mitochondria, based on

co-factor specificity [66].

Metabolic activities are not only spatially compartmen-

talized within cells but also vary with time (Fig. 3c). For

example, as cells progress through different cell cycle

phases, their metabolism adapts to the changing metabolic

and energetic demands. Temporal compartmentalization

is typically not accounted for by 13C-MFA studies relying

on isotope tracing experiments performed on a population

of cells that are heterogeneous in their cell cycle stage.

Instead, 13C-MFA typically estimates the “average” flux

through the cell population. Recently, a temporal-

fluxomics method was developed for inferring metabolic

flux dynamics throughout the cell cycle by performing iso-

tope tracing experiments on a growth-synchronized popu-

lation of cells [67]. This involved computational modeling

of single-cell level metabolite isotopic labeling dynamics

throughout the cell cycle as well as non-stationary 13C-

MFA techniques. This study presented, for the first time,

metabolic flux dynamics throughout the cell cycle in the

central energy metabolism of proliferating cancer cells.

Genome-scale metabolic network modeling in
cancer with COBRA
COBRA predicts metabolic fluxes by considering physi-

cochemical constraints, including stoichiometric mass-

balance of intracellular metabolites, reaction reversibility

based on thermodynamic considerations, and bounds on

nutrient consumption and byproduct secretion rates

(Fig. 2). Nutrient consumption and byproduct secretion

rates in cells grown in culture are readily measurable via

mass spectrometry-based analysis of metabolite accumula-

tion and depletion from the growth media [68]. These

measurements can be directly incorporated with COBRA

to facilitate flux prediction. Another useful constraint is

on the production rate of biomass constituents needed for

synthesizing DNA, RNA, proteins, and fatty acids required

to support experimentally observed cell doubling time

(typically incorporated in the model via a pseudo cell-

growth reaction) [69].

The high level of redundancy in the metabolic network

in terms of alternative pathways typically prevents the in-

ference of a unique set of fluxes. This is typically ad-

dressed by exploring the flux solution space via methods

such as flux variability analysis [70, 71], flux coupling ana-

lysis [72], or flux sampling [73]. Alternatively, assumptions

of metabolic efficiency can reduce the space of possible

fluxes and predict likely metabolic phenotypes. For ex-

ample, Flux-Balance Analysis (FBA) assumes biomass pro-

duction with a high yield [74]; or parsimonious FBA,

assuming a minimization of total fluxes needed to realize

a certain metabolic objective [75]. The identification of

such optimized fluxes is typically performed via efficient

linear or quadratic programming algorithms. The COBRA

Toolbox is a widely used MATLAB software package

implementing many of the methods described in this

review and others [76].

COBRA modeling of hallmark metabolic
adaptations in cancer cells via measured nutrient
and uptake secretion rates
Several studies have utilized COBRA to explore the pro-

duction and consumption of central energy (ATP) and
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redox cofactors (NAD(P)+/NAD(P)H). Metabolite uptake

and secretion rates across the NCI-60 cancer cell lines

collection were used to model fluxes in these cells, ex-

ploring different metabolic strategies used by cells to

generate energy and redox cofactors and explaining the

abilities of different cell lines to support respiration [77].

An analysis of fluxes in NCI-60 using uptake and secre-

tion rates, cell proliferation rates, and DNA content

showed an important contribution of one-carbon metab-

olism to NADPH and ATP biosynthesis [78]. The poten-

tial importance of serine and glycine metabolism to ATP

production was further noted based on a molecular

crowding effect in mitochondria—i.e., a limit on the total

mitochondrial enzyme content per cell volume [79]. Fan

et al. [80] demonstrated the importance of the cytosolic

one-carbon metabolic pathway as an efficient way of pro-

ducing NADPH, providing biochemical and genetic evi-

dence for the role of this pathway in NADPH production.

Several studies used COBRA to explore overflow me-

tabolism in cancer—i.e., excess consumption and non-

efficient utilization of metabolic nutrients, including for

glucose [81], glutamine [82], and serine [47]. Induced

glucose consumption and fermentation into lactate

under the presence of oxygen by cancer cells is known

as the Warburg effect [83, 84]. This phenomenon is

counter-intuitive as it provides a markedly lower ATP

yield per molecule of glucose than through complete

oxidation in mitochondria coupled with oxidative phos-

phorylation. However, utilizing FBA and considering the

effect of molecular crowding (also referred to as the ef-

fect of solvent capacity), it was shown that switching to

aerobic glycolysis, although of a low ATP yield, enables

induced biomass production to support an increased

proliferation rate [85] (as also shown by [86] using a tai-

lored mechanistic model). In a recent study, overflow

metabolism of glucose, glutamine, and serine were inves-

tigated via flux analysis of NCI-60 cell lines (utilizing

measured metabolite uptake and secretion rates) [87].

This study shows that overflow glucose and glutamine

metabolism is due to a constraint on the maximal cata-

bolic capacity of mitochondria, providing excess redox

and energy production that facilitates resistance to meta-

bolic stress.

Construction of cell line-specific metabolic models
via omics data predicts metabolic gene
essentiality
While measured metabolite uptake and secretion rates

in a given cell line provide readily usable constraints for

flux analysis by COBRA, utilizing abundant transcrip-

tomic, proteomics, and metabolomics datasets (available

for large collections of cell lines) as input for flux predic-

tion is highly challenging. This is due to metabolic flux

being regulated at multiple levels and depending on the

concentration of the active enzyme (which is affected by

multiple post-translational modifications), the concentra-

tion of reactants and allosteric regulators, and complex

enzyme kinetic mechanisms (requiring knowledge of kin-

etics constants that are rarely known under physiological

cellular conditions). Numerous computational techniques

have been proposed to generate metabolic network

models for specific tumors (i.e., context-specific models).

Specifically, these methods aim to identify a subset of

enzymes from a genome-scale metabolic network that is

expected to be active based on the mRNA, protein, and

metabolite concentrations, enzyme-specific biochemical

or genetic measurements, and known cell line-specific

metabolic functions. Various methods such as GIMME

[88], iMAT [89, 90], MBA [91], mCADRE [92], INIT [93],

PRIME [94], and FASTCORE [95] differ in terms of the

specific criteria used to select the relevant set of enzymes

per cell line (see review and comparison in [96, 97]).

Predictions of cell line-specific gene essentiality de-

rived with cell line-specific metabolic network models

were shown to correlate significantly with measured

growth response to CRISPR-based gene knockouts [98],

achieving a stronger correlation than that expected by

chance or obtained for predictions made with a generic

genome-scale metabolic network model. However, while

various methods for predicting the effects of gene

knockouts in cell lines were comprehensively compared

to one another [97], the actual predictive performance of

most of these methods remain somewhat unclear as in-

formation on the correlation between model predictions

and measured growth inhibition effect (or sensitivity and

specificity) is typically not available.

While predicting cell line-specific response to genetic

silencing or chemical inhibition is technically difficult, iden-

tifying enzymes whose inhibition selectively affects cancer

cells while sparing normal cells is even more challenging.

This was previously addressed by searching for enzymes

whose inhibition would prevent cell proliferation, while not

affecting basic metabolic functionality such as ATP produc-

tion [99]. Additional studies generated cell line-specific

metabolic models for normal and cancer tissues, identifying

cancer liabilities and predicting the response for drug inhib-

ition of metabolic enzymes [92, 94, 100]. Yizhak et al. sug-

gested an algorithm, Metabolic Transformation Algorithm

(MTA), for identifying metabolic genes whose perturbation

has a tumorigenic effect [101]; searching for genes whose

change in expression in tumors is predicted to drive meta-

bolic adaptations consistent with observed alterations in

gene expression patterns. This was used to uncover FUT9

as a metabolic driver of colorectal cancer, which was vali-

dated in vitro and in mouse xenografts [102].

Another appealing approach for identifying selective anti-

cancer metabolic targets is based on the concept of syn-

thetic lethality [103]. Specifically, two genes are considered
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to be synthetically lethal if the perturbation of each of them

separately has no effect on cell viability while their com-

bined perturbation is lethal. In cancer cells, somatic inacti-

vation of one gene makes its synthetic lethal partner an

attractive target for selective eradication of cancer cells.

This concept was used to predict synthetic lethal partners

of the known metabolic tumor suppressors fumarate hydra-

tase (FH) and succinate dehydrogenase (SDH). It success-

fully identified heme oxygenase (HMOX) as a synthetic

lethal partner of FH, as was validated in HLRCC cells with

a loss-of-function mutation in FH [104], and pyruvate carb-

oxylase (PC) as a synthetic lethal partner of SDH, which

was also later experimentally validated [105]. An extended

framework was proposed for finding sets of synthetic lethal

genes such that the combined knock out of which blocks a

desired metabolic task, utilizing the concept of minimal cut

sets [106]. A related concept of synthetic dosage lethality

(SDL) represents the case where increased expression of

one gene is indicative of induced dependency on another.

A COBRA method developed for identifying dosage lethal-

ity effects (IDLE) revealed that the expression pattern of

SDL genes is predictive of tumor size and patient survival

[107]. To summarize, cell line-specific metabolic models

were utilized for a wide variety of applications, including

the identification of cancer vulnerabilities and synthetic le-

thal targets.

Advantages and limitations of 13C-MFA and
COBRA
Isotope tracing is widely used to probe intracellular

metabolic activities in cancer cells. However, most stud-

ies still rely on manual assessment of measured metabol-

ite isotopic labeling to qualitatively infer metabolic

activities [8], while 13C-MFA is typically performed in a

small number of labs that have expertise in these ap-

proaches. Manual inspection of isotopic labeling mea-

surements is highly complicated and may bias the

assessment of metabolic activities. For example, an in-

crease in the fractional labeling of a metabolite under

isotopic steady state may be falsely interpreted as an in-

crease in flux through a producing pathway, although

this may merely result from a change in the labeling of

an upstream metabolic intermediate. With kinetic iso-

topic labeling measurements, faster labeling kinetics of a

metabolite may be interpreted as increased flux, though

this may result from a drop in the concentration of the

metabolite. Isotope exchange effects also complicate man-

ual interpretation of metabolic activities, with reactions

close to chemical equilibrium simultaneously carrying flux

in opposite directions [108, 109]. A comprehensive and

quantitative view of metabolic fluxes derived by 13C-MFA

enables us to evaluate how well we understand the work-

ing of complex metabolic systems and leads to important

discoveries. For example, quantitative flux analysis of

NADPH metabolism revealed that a major fraction of

NADPH turnover is not explainable by the canonical

NADPH-producing pathways, leading to the finding of a

major contribution of folic acid metabolism to NADPH

production [80]. Another example is with quantitative

modeling of flux in cancer cells during anchorage-inde-

pendent growth, showing that measured isotope labeling

patterns of metabolites cannot be explained without tak-

ing into account subcellular compartmentalization effects,

revealing citrate shuttling from the cytosol to mitochon-

dria [55].

While both 13C-MFA and COBRA were demonstrated

to be highly useful in cancer metabolic research, there are

inherent limitations and complications with each ap-

proach. We provide a brief comparison of the two model-

ing approaches in terms of scope, required experimental

data, and possible output (Table 1).

In terms of the scope of metabolic systems analyzed,

COBRA is typically applied to infer flux via genome-scale

metabolic networks, while 13C-MFA is applied to inspect

central metabolism (typically spanning glycolysis, TCA

cycle, and the pentose phosphate pathway). Analyzing

genome-scale metabolic networks enables COBRA to re-

veal non-canonical pathways with an important contribu-

tion to some cancer cells. However, it can falsely predict

flux through enzymatic reactions that were included in

the model based on weak biochemical evidence. Further

work by the metabolic modeling community is needed to

further refine and extend the existing genome-scale meta-

bolic network reconstructions based on accumulating

knowledge of enzymatic activities in human cells. An im-

portant future challenge for COBRA methods is improv-

ing the reliability of biochemical enzymatic activities that

are included in the model. With 13C-MFA, on the other

hand, it is challenging to determine the boundaries of the

analyzed metabolic system, while reactions that are left

out of the model could potentially bias flux estimation.

Applying 13C-MFA for larger scale networks is an experi-

mentally challenging task which requires the measure-

ment of metabolite isotopic labeling outside the central

metabolism. Furthermore, it is highly computationally

challenging to apply 13C-MFA for genome-scale net-

works, though some attempts in this direction have been

made [110, 111]. Further work is required to make such

genome-scale 13C-MFA methods more accessible for the

research community.

While both 13C-MFA and COBRA rely on measure-

ments of metabolite uptake and secretion rates for flux

estimation, 13C-MFA that relies on isotope tracing mea-

surements is more experimentally demanding. Omics

data, and specifically genomics, transcriptomics, proteo-

mics, and metabolomics, can be utilized as input by

COBRA methods, though this typically relies on simpli-

fied heuristics that do not account for the complexity of
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regulatory and enzyme kinetic mechanisms. A major

open challenge in COBRA is developing improved

methods for utilizing quantitative proteomics and meta-

bolomics data for flux inference via enzyme-mechanistic

models accounting for kinetic and thermodynamic

considerations.

In terms of the ability to uniquely infer flux, this is

typically possible with 13C-MFA applied to analyze flux

in central metabolism, rigorously evaluating flux confi-

dence intervals. With COBRA, over-simplified optimal-

ity assumptions are typically employed to derive unique

fluxes (e.g., parsimonious FBA [75]). Subcellular

compartmentalization is typically accounted for in

genome-scale metabolic network models analyzed by

COBRA (though the prediction of flux by mitochondrial

versus cytosolic enzymes is based on simplifying

optimization criteria rather than concrete measure-

ments). With 13C-MFA, inferring subcellular flux is

technically challenging and typically not accounted for.

While several approaches have recently been proposed

to infer compartmentalized fluxes via specific isotopic

tracers or rapid cell fractionation, this remains as a

major challenge.

In terms of common applications, both COBRA and

13C-MFA enable the inference of flux in cells based on

measurements performed under a specific genetic and

cell culture condition. Derived flux maps by these ap-

proaches provide a holistic understanding of metabolic

processes, while changes in flux due to genetic or envir-

onmental perturbations provide means to examine meta-

bolic regulation. The identification of induced flux

through specific enzymes in cancer cells reveals the in-

creased dependence on metabolic transformations that

could be therapeutically targeted. Note that unlike 13C-

MFA, COBRA can further address the more challenging

task of predicting how metabolic flux will be rewired in

response to genetic or pharmacological interventions in

silico, providing means to investigate potential anti-

cancer drug targets.

Concluding remarks
Overall, COBRA and 13C-MFA provide complementary

capabilities for understanding the rewiring of metabolic

flux in cancer. While 13C-MFA analyzes isotopic tracing

measurements to provide an accurate quantitative view

of flux through central metabolic pathways, COBRA an-

alyzes flux through genome-scale metabolic networks

based on physicochemical constraints and ‘omics’ data

integration. In some cases, isotope tracing is used to

quantify specific fluxes in human tissues under different

physiological conditions, while these are used as inputs

for COBRA-based flux analysis on a genome scale [112,

113]. In others, COBRA flux predictions are validated by

comparison with 13C-MFA inferred fluxes [80]. Given

the ever-growing interest in probing cellular metabolic

fluxes, we expect COBRA and 13C-MFA to continue

playing an important role in cancer metabolic research.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Acknowledgements

Not applicable.

Authors’ contributions

All authors read and approved the final manuscript.

Table 1 A comparison between 13C-MFA and COBRA

13C-MFA COBRA

Network size Small-scale (typically central metabolism)
Difficult to determine network model boundaries
Experimentally and computationally hard to extend for
larger networks

Genome-scale
Enables finding activity of non-canonical metabolic pathways
Potential false prediction of non-canonical metabolic activities
due to the inclusion of reactions with weak biochemical
evidence in the network model

Typical experimental inputs Biomass composition, growth rate, and metabolite uptake and secretion rates

Computational
requirements

Isotope tracing measurements; potentially absolute
metabolite concentrations

A variety of ‘omics’ datasets
Requires simplifying assumptions for integrative analysis

Mostly hard non-convex optimization problems
solved heuristically

Mostly computationally tractable optimizations (linear or
quadratic programming)

Determining a unique flux
solution

Typically possible
Assessing uncertainty with confidence intervals

Requires simplifying optimizations (e.g., maximal growth rate)

Compartmentalization Partially addressed with specific tracers, compartment-
specific markers, cell fractionation

Addressed via simplifying optimization assumptions

Applicability Inferring fluxes in a specific condition

– Predict flux adaptation following chemical/genetic alterations

Lagziel et al. BMC Biology           (2019) 17:51 Page 8 of 11



Funding

TS was supported by a grant from the Israel Ministry of Science and
Technology (MOST-DKFZ) #3–13167 and the European Research Council/ERC
grant agreement #714738.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details
1Faculty of Computer Science, Technion, Haifa, Israel. 2Faculty of Biology,
Technion, Haifa, Israel. 3Lokey Center for Life Science and Engineering,
Technion, Haifa, Israel.

References

1. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism.
Cell Metab. 2016;23(1):27–47.

2. DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv.
2016;2(5):e1600200.

3. Thiele I, Swainston N, Fleming RMT, Hoppe A, Sahoo S, Aurich MK, et al. A
community-driven global reconstruction of human metabolism. Nat
Biotechnol. 2013;31(5):419–25.

4. Brunk E, Sahoo S, Zielinski DC, Altunkaya A, Dräger A, Mih N, et al. Recon3D
enables a three-dimensional view of gene variation in human metabolism.
Nat Biotechnol. 2018;36(3):272–81.

5. Metallo CM, Vander Heiden MG. Understanding metabolic regulation and its
influence on cell physiology. Mol Cell. 2013;49(3):388–98.

6. Vander Heiden MG, DeBerardinis RJ. Understanding the intersections
between metabolism and cancer biology. Cell. 2017;168(4):657–69.

7. Galluzzi L, Kepp O, Vander HMG, Kroemer G. Metabolic targets for cancer
therapy. Nat Rev Drug Discov. 2013;12:829–46.

8. Buescher JM, Antoniewicz MR, Boros LG, Burgess SC, Brunengraber H, Clish
CB, et al. A roadmap for interpreting 13C metabolite labeling patterns from
cells. Curr Opin Biotechnol. 2015;34:189–201.

9. Zamboni N, Sauer U. Novel biological insights through metabolomics
and13C-flux analysis. Curr Opin Microbiol. 2009;12(5):553–8.

10. Dong W, Keibler MA, Stephanopoulos G. Review of metabolic pathways
activated in cancer cells as determined through isotopic labeling and
network analysis. Metab Eng. 2017;43(September 2016):113–24.

11. Kim IY, Suh SH, Lee IK, Wolfe RR. Applications of stable, nonradioactive
isotope tracers in in vivo human metabolic research. Exp Mol Med. 2016;
48(1):e203–10.

12. Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, et al. Glucose
feeds the TCA cycle via circulating lactate. Nature. 2017;551(7678):115–8.

13. Patil KR, Åkesson M, Nielsen J. Use of genome-scale microbial models for
metabolic engineering. Curr Opin Biotechnol. 2004;15(1):64–9.

14. Price ND, Reed JL, Palsson B. Genome-scale models of microbial cells:
evaluating the consequences of constraints. Nat Rev Microbiol. 2004;2(11):
886–97.

15. Feist AM, Palsson B. The growing scope of applications of genome-scale
metabolic reconstructions using Escherichia coli. Nat Biotechnol. 2008;26(6):
659–67.

16. Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, et al. Global
reconstruction of the human metabolic network based on genomic and
bibliomic data. Proc Natl Acad Sci U S A. 2007;104(6):1777–82.

17. Ma H, Sorokin A, Mazein A, Selkov A, Selkov E, Demin O, et al. The
Edinburgh human metabolic network reconstruction and its functional
analysis. Mol Syst Biol. 2007;3(135):1–8.

18. Mardinoglu A, Gatto F, Nielsen J. Genome-scale modeling of human
metabolism - a systems biology approach. Biotechnol J. 2013;8(9):985–96.

19. Yizhak K, Chaneton B, Gottlieb E, Ruppin E. Modeling cancer metabolism on
a genome scale. Mol Syst Biol. 2015;11(6):817.

20. Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer genome atlas
(TCGA): an immeasurable source of knowledge. Wspolczesna Onkol.
2015;1A:A68–77.

21. Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen.
Nat Rev Cancer. 2006;6:813.

22. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al.
The Cancer cell line encyclopedia enables predictive modelling of
anticancer drug sensitivity. Nature. 2012;483(7391):603–7.

23. Ghandi M, Huang FW, Jané-Valbuena J, Kryukov GV, Lo CC, McDonald ER,
et al. Next-generation characterization of the Cancer cell line encyclopedia.
Nature. 2019;569(7757):503–8.

24. Li H, Ning S, Ghandi M, Kryukov GV, Gopal S, Deik A, et al. The landscape of
cancer cell line metabolism. Nat Med. 2019;25(May):1–11.

25. Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, et al.
A next generation connectivity map: L1000 platform and the first 1,000,000
profiles. Cell. 2017;171(6):1437–52 e17.

26. Bordbar A, Monk JM, King ZA, Palsson BO. Constraint-based models
predict metabolic and associated cellular functions. Nat Rev Genet.
2014;15(2):107–20.

27. Antoniewicz MR. A guide to 13C metabolic flux analysis for the cancer
biologist. Exp Mol Med. 2018;50(4):19.

28. Lewis NE, Nagarajan H, Palsson BO. Constraining the metabolic genotype-
phenotype relationship using a phylogeny of in silico methods. Nat Rev
Microbiol. 2012;10(4):291–305.

29. Dai Z, Locasale JW. Understanding metabolism with flux analysis: from
theory to application. Metab Eng. 2017;43(September 2016):94–102.

30. Antoniewicz MR, Kelleher JK, Stephanopoulos G. Elementary metabolite
units (EMU): a novel framework for modeling isotopic distributions. Metab
Eng. 2007;9(1):68–86.

31. Wiechert W, Möllney M, Isermann N, Wurzel M, De Graaf AA. Bidirectional
reaction steps in metabolic networks: III. Explicit solution and analysis of
isotopomer labeling systems. Biotechnol Bioeng. 1999;66(2):69–85.

32. Young JD. INCA: a computational platform for isotopically non-stationary
metabolic flux analysis. Bioinformatics. 2014;30(9):1333–5.

33. Yoo H, Antoniewicz MR, Stephanopoulos G, Kelleher JK. Quantifying
reductive carboxylation flux of glutamine to lipid in a brown adipocyte cell
line. J Biol Chem. 2008;283(30):20621–7.

34. Weitzel M, Nöh K, Dalman T, Niedenführ S, Stute B, Wiechert W. 13CFLUX2 -
high-performance software suite for 13C-metabolic flux analysis.
Bioinformatics. 2013;29(1):143–5.

35. Antoniewicz MR, Kelleher JK, Stephanopoulos G. Determination of
confidence intervals of metabolic fluxes estimated from stable isotope
measurements. Metab Eng. 2006;8(4):324–37.

36. Theorell A, Leweke S, Wiechert W, Nöh K. To be certain about the
uncertainty: Bayesian statistics for 13C metabolic flux analysis. Biotechnol
Bioeng. 2017;114(11):2668–84.

37. Crown SB, Long CP, Antoniewicz MR. Optimal tracers for parallel labeling
experiments and 13C metabolic flux analysis: a new precision and synergy
scoring system. Metab Eng. 2016;38:10–8.

38. Quek LE, Liu M, Joshi S, Turner N. Fast exchange fluxes around the
pyruvate node: a leaky cell model to explain the gain and loss of
unlabelled and labelled metabolites in a tracer experiment. Cancer
Metab. 2016;4(1):1–14.

39. Wiechert W, Nöh K. Isotopically non-stationary metabolic flux analysis:
complex yet highly informative. Curr Opin Biotechnol. 2013;24(6):979–86.

40. Noack S, Nöh K, Moch M, Oldiges M, Wiechert W. Stationary versus non-
stationary 13C-MFA: a comparison using a consistent dataset. J Biotechnol.
2011;154(2–3):179–90.

41. Yuan J, Bennett BD, Rabinowitz JD. Kinetic flux profiling for quantitation of
cellular metabolic fluxes. Nat Protoc. 2008;3:1328.

42. Shlomi T, Fan J, Tang B, Kruger WD, Rabinowitz JD. Quantitation of cellular
metabolic fluxes of methionine. Anal Chem. 2014;86(3):1583–91.

43. Gaglio D, Metallo CM, Gameiro PA, Hiller K, Danna LS, Balestrieri C, et al.
Oncogenic K-Ras decouples glucose and glutamine metabolism to support
cancer cell growth. Mol Syst Biol. 2011;7(523):1–15.

44. Fan J, Kamphorst JJ, Mathew R, Chung MK, White E, Shlomi T, et al.
Glutamine-driven oxidative phosphorylation is a major ATP source in
transformed mammalian cells in both normoxia and hypoxia. Mol Syst Biol.
2013;9(712):1–11.

45. Murphy TA, Dang CV, Young JD. Isotopically nonstationary13C flux analysis
of Myc-induced metabolic reprogramming in B-cells. Metab Eng. 2013;15(1):
206–17.

46. Zhao D, Badur MG, Luebeck J, Magaña JH, Birmingham A, Sasik R, et al.
Combinatorial CRISPR-Cas9 metabolic screens reveal critical redox control
points dependent on the KEAP1-NRF2 regulatory axis. Mol Cell. 2018;69(4):
648–63 e7.

Lagziel et al. BMC Biology           (2019) 17:51 Page 9 of 11



47. Meiser J, Schuster A, Pietzke M, Vande VJ, Athineos D, Oizel K, et al.
Increased formate overflow is a hallmark of oxidative cancer. Nat Commun.
2018;9(1):1368.

48. DeWaal D, Nogueira V, Terry AR, Patra KC, Jeon SM, Guzman G, et al.
Hexokinase-2 depletion inhibits glycolysis and induces oxidative
phosphorylation in hepatocellular carcinoma and sensitizes to metformin.
Nat Commun. 2018;9(1):1–14.

49. Rajagopalan KN, Egnatchik RA, Calvaruso MA, Wasti AT, Padanad MS,
Boroughs LK, et al. Metabolic plasticity maintains proliferation in pyruvate
dehydrogenase deficient cells. Cancer Metab. 2015;3(1):7.

50. Vacanti NM, Divakaruni AS, Green CR, Parker SJ, Henry RR, Ciaraldi TP, et al.
Regulation of substrate utilization by the mitochondrial pyruvate carrier. Mol
Cell. 2014;56(3):425–35.

51. Jiang L, Boufersaoui A, Yang C, Ko B, Rakheja D, Guevara G, et al.
Quantitative metabolic flux analysis reveals an unconventional pathway of
fatty acid synthesis in cancer cells deficient for the mitochondrial citrate
transport protein. Metab Eng. 2017;43:198–207.

52. Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, et al.
Reductive glutamine metabolism by IDH1 mediates lipogenesis under
hypoxia. Nature. 2012;481(7381):380–4.

53. Fendt SM, Bell EL, Keibler MA, Olenchock BA, Mayers JR, Wasylenko TM, et
al. Reductive glutamine metabolism is a function of the α-ketoglutarate to
citrate ratio in cells. Nat Commun. 2013;4:1–11.

54. Liu L, Shah S, Fan J, Park JO, Wellen KE, Rabinowitz JD. Malic enzyme tracers
reveal hypoxia-induced switch in adipocyte NADPH pathway usage. Nat
Chem Biol. 2016;12(5):345–52.

55. Jiang L, Shestov AA, Swain P, Yang C, Parker SJ, Wang QA, et al. Reductive
carboxylation supports redox homeostasis during anchorage-independent
growth. Nature. 2016;532(7598):255–8.

56. Faubert B, Li KY, Cai L, Hensley CT, Kim J, Zacharias LG, et al. Lactate
metabolism in human lung tumors. Cell. 2017;171(2):358–71 e9.

57. Davidson SM, Papagiannakopoulos T, Olenchock BA, Heyman JE, Keibler
MA, Luengo A, et al. Environment impacts the metabolic dependencies of
ras-driven non-small cell lung cancer. Cell Metab. 2016;23(3):517–28.

58. Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, et al.
Functional genomics reveal that the serine synthesis pathway is essential in
breast cancer. Nature. 2011;476(7360):346–50.

59. Grassian AR, Parker SJ, Davidson SM, Divakaruni AS, Green CR, Zhang X, et
al. IDH1 mutations alter citric acid cycle metabolism and increase
dependence on oxidative mitochondrial metabolism. Cancer Res. 2014;
74(12):3317–31.

60. Kelleher JK, Masterson TM. Model equations for condensation biosynthesis
using stable isotopes and radioisotopes. Am J Phys. 1992;262(1 Pt 1):E118–
25.

61. Nicolae A, Wahrheit J, Bahnemann J, Zeng AP, Heinzle E. Non-stationary 13C
metabolic flux analysis of Chinese hamster ovary cells in batch culture using
extracellular labeling highlights metabolic reversibility and
compartmentation. BMC Syst Biol. 2014;8(1):1–15.

62. Lewis CA, Parker SJ, Fiske BP, McCloskey D, Gui DY, Green CR, et al. Tracing
compartmentalized NADPH metabolism in the cytosol and mitochondria of
mammalian cells. Mol Cell. 2014;55(2):253–63.

63. Christen S, Lorendeau D, Schmieder R, Broekaert D, Metzger K, Veys K, et al.
Breast cancer-derived lung metastases show increased pyruvate
carboxylase-dependent anaplerosis. Cell Rep. 2016;17(3):837–48.

64. Gravel S-P, Andrzejewski S, Avizonis D, St-Pierre J. Stable isotope tracer
analysis in isolated mitochondria from mammalian systems. Metabolites.
2014;4(2):166–83.

65. Nicolae A, Wahrheit J, Nonnenmacher Y, Weyler C, Heinzle E. Identification
of active elementary flux modes in mitochondria using selectively
permeabilized CHO cells. Metab Eng. 2015;32:95–105.

66. Lee WD, Mukha D, Aizenshtein E, Shlomi T. Spatial-fluxomics provides a
subcellular-compartmentalized view of reductive glutamine metabolism in
cancer cells. Nat Commun. 2019;10(1):1351.

67. Ahn E, Kumar P, Mukha D, Tzur A, Shlomi T. Temporal fluxomics reveals
oscillations in TCA cycle flux throughout the mammalian cell cycle. Mol Syst
Biol. 2017;13(11):953.

68. Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL, et al.
Metabolite profiling identifies a key role for glycine in rapid cancer cell
proliferation. Science. 2012;336(6084):1040–4.

69. Feist AM, Palsson BO. The biomass objective function. Curr Opin Microbiol.
2010;13(3):344–9.

70. Mahadevan R, Schilling CH. The effects of alternate optimal solutions in
constraint-based genome-scale metabolic models. Metab Eng. 2003;5(4):
264–76.

71. Gudmundsson S, Thiele I. Computationally efficient flux variability analysis.
BMC Bioinformatics. 2010;11(2):2–4.

72. Burgard AP, Nikolaev EV, Schilling CH, Maranas CD. Flux coupling analysis of
genome-scale metabolic network reconstructions. Genome Res. 2004;14(2):
301–12.

73. Barrett CL, Herrgard MJ, Palsson B. Decomposing complex reaction
networks using random sampling, principal component analysis and basis
rotation. BMC Syst Biol. 2009;3:1–8.

74. Orth JD, Thiele I, Palsson BO. What is flux balance analysis? Nat Biotechnol.
2010;28(3):245–8.

75. Lewis NE, Hixson KK, Conrad TM, Lerman JA, Charusanti P, Polpitiya AD, et
al. Omic data from evolved E. coli are consistent with computed optimal
growth from genome-scale models. Mol Syst Biol. 2010;6:390.

76. Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, et al.
Quantitative prediction of cellular metabolism with constraint-based
models: the COBRA toolbox v2.0. Nat Protoc. 2011;6:1290.

77. Aurich MK, Fleming RMT, Thiele I. A systems approach reveals distinct
metabolic strategies among the NCI-60 cancer cell lines. PLoS Comput Biol.
2017;13(8):e1005698.

78. Tedeschi PM, Markert EK, Gounder M, Lin H, Dvorzhinski D, Dolfi SC, et al.
Contribution of serine, folate and glycine metabolism to the ATP, NADPH
and purine requirements of cancer cells. Cell Death Dis. 2013;4(10):e877–12.

79. Dolfi SC, Chan LL-Y, Qiu J, Tedeschi PM, Bertino JR, Hirshfield KM, et al. The
metabolic demands of cancer cells are coupled to their size and protein
synthesis rates. Cancer Metab. 2013;1(1):20.

80. Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD.
Quantitative flux analysis reveals folate-dependent NADPH production.
Nature. 2014;510(7504):298–302.

81. Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer
cells? Trends Biochem Sci. 2016;41(3):211–8.

82. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, et al.
Beyond aerobic glycolysis: transformed cells can engage in glutamine
metabolism that exceeds the requirement for protein and nucleotide
synthesis. Proc Natl Acad Sci U S A. 2007;104(49):19345–50.

83. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14.
84. Vander HMG, Cantley LC, Thompson CB, Mammalian P, Exhibit C,

Metabolism A. Understanding the Warburg effect: cell proliferation. Science.
2009;324:1029.

85. Shlomi T, Benyamini T, Gottlieb E, Sharan R, Ruppin E. Genome-scale
metabolic modeling elucidates the role of proliferative adaptation in
causing the Warburg effect. PLoS Comput Biol. 2011;7(3):1–8.

86. Vazquez A, Oltvai ZN. Molecular crowding defines a common origin for the
Warburg effect in proliferating cells and the lactate threshold in muscle
physiology. PLoS One. 2011;6(4):1–9.

87. Zielinski DC, Jamshidi N, Corbett AJ, Bordbar A, Thomas A, Palsson BO.
Systems biology analysis of drivers underlying hallmarks of cancer cell
metabolism. Sci Rep. 2017;7:1–14.

88. Becker SA, Palsson BO. Context-specific metabolic networks are consistent
with experiments. PLoS Comput Biol. 2008;4(5):e1000082.

89. Zur H, Ruppin E, Shlomi T. iMAT: an integrative metabolic analysis tool.
Bioinformatics. 2010;26(24):3140–2.

90. Shlomi T, Cabili MN, Herrgård MJ, Palsson B, Ruppin E. Network-based
prediction of human tissue-specific metabolism. Nat Biotechnol. 2008;26(9):
1003–10.

91. Jerby L, Shlomi T, Ruppin E. Computational reconstruction of tissue-specific
metabolic models: application to human liver metabolism. Mol Syst Biol.
2010;6(401):1–9.

92. Wang Y, Eddy JA, Price ND. Reconstruction of genome-scale metabolic
models for 126 human tissues using mCADRE. BMC Syst Biol. 2012;6:153.

93. Agren R, Bordel S, Mardinoglu A, Pornputtapong N, Nookaew I, Nielsen J.
Reconstruction of genome-scale active metabolic networks for 69 human
cell types and 16 cancer types using INIT. PLoS Comput Biol. 2012;8(5):
e1002518.

94. Yizhak K, Gaude E, Le Dévédec S, Waldman YY, Stein GY, van de Water B, et
al. Phenotype-based cell-specific metabolic modeling reveals metabolic
liabilities of cancer. Elife. 2014;3:1–23.

95. Vlassis N, Pacheco MP, Sauter T. Fast reconstruction of compact context-
specific metabolic network models. PLoS Comput Biol. 2014;10(1):e1003424.

Lagziel et al. BMC Biology           (2019) 17:51 Page 10 of 11



96. Blazier AS, Papin JA. Integration of expression data in genome-scale
metabolic network reconstructions. Front Physiol. 2012;3:299.

97. Opdam S, Richelle A, Kellman B, Li S, Zielinski DC, Lewis NE. A systematic
evaluation of methods for tailoring genome-scale metabolic models. Cell
Syst. 2017;4(3):318–29 e6.

98. Zhang C, Bidkhori G, Benfeitas R, Lee S, Arif M, Uhlén M, et al. ESS: a tool for
genome-scale quantification of essentiality score for reaction/genes in
constraint-based modeling. Front Physiol. 2018;9:1–6.

99. Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, Shlomi T. Predicting
selective drug targets in cancer through metabolic networks. Mol Syst Biol.
2011;7(501):1–10.

100. Bordel S. Constraint based modeling of metabolism allows finding
metabolic cancer hallmarks and identifying personalized therapeutic
windows. Oncotarget. 2018;9(28):19716–29.

101. Yizhak K, Gabay O, Cohen H, Ruppin E. Model-based identification of drug
targets that revert disrupted metabolism and its application to ageing. Nat
Commun. 2013;4:1–11.

102. Auslander N, Cunningham CE, Toosi BM, McEwen EJ, Yizhak K, Vizeacoumar
FS, et al. An integrated computational and experimental study uncovers
FUT9 as a metabolic driver of colorectal cancer. Mol Syst Biol. 2017;13(12):
956.

103. O’Neil NJ, Bailey ML, Hieter P. Synthetic lethality and cancer. Nat Rev Genet.
2017;18(10):613–23.

104. Frezza C, Zheng L, Folger O, Rajagopalan KN, MacKenzie ED, Jerby L, et al.
Haem oxygenase is synthetically lethal with the tumour suppressor
fumarate hydratase. Nature. 2011;477(7363):225–8.

105. Smestad J, Hamidi O, Wang L, Nelson Holte M, Al Khazal F, Erber L, et al.
Characterization and metabolic synthetic lethal testing in a new model of
SDH-loss familial pheochromocytoma and paraganglioma. Oncotarget.
2017;9(5):6109–27.

106. Apaolaza I, San José-Eneriz E, Tobalina L, Miranda E, Garate L, Agirre X, et al.
An in-silico approach to predict and exploit synthetic lethality in cancer
metabolism. Nat Commun. 2017;8(1):1–9.

107. Megchelenbrink W, Katzir R, Lu X, Ruppin E, Notebaart RA. Synthetic dosage
lethality in the human metabolic network is highly predictive of tumor
growth and cancer patient survival. Proc Natl Acad Sci U S A. 2015;112(39):
12217–22.

108. Park JO, Rubin SA, Xu YF, Amador-Noguez D, Fan J, Shlomi T, et al.
Metabolite concentrations, fluxes and free energies imply efficient enzyme
usage. Nat Chem Biol. 2016;12(7):482–9.

109. Fan J, Kamphorst JJ, Rabinowitz JD, Shlomi T. Fatty acid labeling from
glutamine in hypoxia can be explained by isotope exchange without net
reductive isocitrate dehydrogenase (IDH) flux. J Biol Chem. 2013;288(43):
31363–9.

110. Gopalakrishnan S, Maranas CD. 13C metabolic flux analysis at a genome-
scale. Metab Eng. 2015;32:12–22.

111. García Martín H, Kumar VS, Weaver D, Ghosh A, Chubukov V,
Mukhopadhyay A, et al. A method to constrain genome-scale models with
13C labeling data. PLoS Comput Biol. 2015;11(9):1–34.

112. Mardinoglu A, Bjornson E, Zhang C, Klevstig M, Söderlund S, Ståhlman M, et
al. Personal model-assisted identification of NAD + and glutathione
metabolism as intervention target in NAFLD. Mol Syst Biol. 2017;13(3):916.

113. Hyötyläinen T, Jerby L, Petäjä EM, Mattila I, Jäntti S, Auvinen P, et al.
Genome-scale study reveals reduced metabolic adaptability in patients with
non-alcoholic fatty liver disease. Nat Commun. 2016;7:1–9.

Lagziel et al. BMC Biology           (2019) 17:51 Page 11 of 11


	Abstract
	Inferring metabolic flux in cancer research
	Isotope tracing coupled with MFA
	Genome-scale metabolic network modeling in cancer with COBRA
	COBRA modeling of hallmark metabolic adaptations in cancer cells via measured nutrient and uptake secretion rates
	Construction of cell line-specific metabolic models via omics data predicts metabolic gene essentiality
	Advantages and limitations of 13C-MFA and COBRA
	Concluding remarks
	Publisher’s Note
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References

