
Distribution Category:
Mathematics and

Computer Science (UC-405)

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, IL 60439-4801

ANL--91/15

DE91 019072

ANL-91/15

Studying Parallel Program Behavior with Upshot

by

Virginia Herrarte and Ewing Lusk

Mathematics and Computer Science Division

August 1991

This work was supported by the Applied Mathematical Sciences subprogram of the Office of Energy

Research, U.S. Department of Energy, under Contract W-31-109-Eng-38. M ASTER
D TF'SUT 0N OF THIS DOCUMENT IS UNLIMITED

Contents

Abstract 1

1 Visualizing Parallel Program Behavior 1

2 Obtaining and Installing Upshot 2

3 File Formats 2

4 Using Upshot 5

5 Implementation 8

6 Future Work 10

References 10

iii

Studying Parallel Program Behavior with Upshot

Virginia Herrarte

Ewing Lusk

Abstract

This is a description of and a user's manual for upshot, an X-based graphics tool

for viewing log files produced by parallel programs.

1 Visualizing Parallel Program Behavior

Whereas one can often .predict the behavior of sequential programs by understanding the

algorithm employed, the behavior of parallel programs is notoriously difficult to predict.

Even more than sequential programs, parallel programs are subject to "performance bugs,"

in which the program computes the correct answer, but more slowly than anticipated.

One tool that we at Argonne National Laboratory have found useful over the years is the

logfile, which is a list of certain types of significa.t events in the order in which they have

occurred during the execution of a parallel program[1, 3]. Given such a logfile, regardless of

how it is created during execution, we may wish to examine it in a variety of ways. Upshot

provides one type of view of a logfile, in which events are aligned on the parallel time lines

of individual processes. States of processes can be defined and displayed in terms of these

events. Other useful views of logfiles, not shown by upshot, are animations and statistical

analyses; we treat these views elsewhere.

Upshot was inspired by (and takes its name from) gist, a proprietary tool that was

developed to study logfiles produced on BBN parallel computers and runs only on BBN

systems. Compared to gist, upshot provides fewer features; on the other hand, upshot

uses color more effectively, provides a smoother scrolling mechanism, is portable, and is

freely available. Upshot, combined with a suitable logging package, provides some of the

same functionality as the graphics display part of PICL[5], which displays events associated

with message passing in a great variety of ways. Compared with the display facilities of

PICL, upshot performs fewer functions but in greater depth and generality.

2 Obtaining and Installing Upshot

Upshot can be obtained by anonymous ftp from anagram.mcs.anl.gov (look in the pub/p4

directory for the file upshot.tar.Z). Upshot is installed with a simple make in the src

subdirectory. The logfiles subdirectory contains some examples of logfiles and statefiles.

To obtain the display shown in Figure 1, go to the logfiles subdirectory and execute the

command

.. /bin/upshot -1 samhyp.16.log -s roo.sts

UPS HOT
Zoom-out Zoom-in Display Options State Definition Reset Quit

Page view Log file:
Graph view

Zooustep:

,NT KEY

1: Start A

2: EndA

3: Start B

4: En~dB

5: Start C

6: End C

7: Start D

8: End D P
r

9: Proof 0
C
e

s

se
s

Is

Ii

S

I

13

14

II

I

2

3

7

[Samhyp. 16

State file:

coo . st s.bw
. ..:.:...:..... .:...:........ :::....... :.... :...... ::....... : I _roo.:.sts:. Lb w

. :::..::::.:::.:........::....: .:.... .: ::....ta k a
i.............................::::...: ::.......... :...:: . taskab

..........

task-c.. :.t k

task _c

I I
1 se 11 !u s
time in milliseconds

File pages:

Figure 1: Upshot view of log file data

3 File Formats

In this section we describe the format of logfiles and statefiles. A logfile contains one event
per line, made up of the following fields, all in character format and separated by whitespace.

2

Field Meaning

event type a nonnegative integer representing a user-defined event type

process id an integer representing the process in which the event oc-

curred
task id an integer representing a different notion of task. This field

is ignored unless the -t command-line option is used.

integer data an integer representing user data for the event

clock cycle an integer representing a timer cycle, used to distinguish be-
tween times returned by a timer that "rolls over" during the
run

timestamp an integer representing (when considered in conjunction with
the cycle number) a time for the event. Upshot treats the

units as microseconds.
string data a character string representing user data (12 characters max-

imum)

In addition, upshot expects to find at the beginning of a logfile a number of pseudo-
events, which are indicated by having negative event type. The pseudo-events and the

interpretations of their fields are given in the following table:

Type Proc. Task Integer Data Cycle Timestamp String Data

-1 creator and date
-2 # events

-3 # procs
-4 # tasks

-5 # event types
-6 start time
-7 end time
-8 # timer cycles
-9 event type description

-10 event type printf string
-11 rollover point

The blank spaces in the above table are of no significance. Thus, the first few lines of
the example logfile sam-hyp. 16. log are as follows (the line numbers are not in the file):

1. -2 0 0 593 0 0
2. -300 1600
3. -400100
4. -500700

5. -6 0 0 0 0 2025436865

6. -7 0 0 0 0 2028176869

7. -800100
8. -1 0 0 0 0 2023363901 P4 May-9-90
9. -11 0 0 0 0 4294967295

10. -9 0 0 1 0 2023364078 Start A

11. -10 0 0 1 0 2023364137

3

12. -9 0 0 2 0 2023364187 End A

28. 1 15 0 1 0 2025436865

29. 1 9 0 2 0 2025438268

30. 1 12 0 3 0 2025440600

The meanings of these lines are as follows:

Line Number Meaning

1. This file contains 593 events.
2. Sixteen different processes logged events.

3. There was only one task (actually, the concept of task is not
used by the logging package that produced this file).

4. There were 7 event types.

5. The first event occurred at time 2025436865.
6. The last event occurred at time 2028176869.

7. There is only one timer cycle. (The clock did not roll over
during the run.)

8. The log was created by a p4 program on May 9, 1990.

9. The clock rollover point on the machine this was run on is

4294967295.
10. Thy meaning of event type 1 is "Start A". This is used in the

event type key appearing along the left side of the upshot
display.

11. There is no printf format string associated with event type 1.

12. The meaning of event type 2 is "End A".

2f>. At time 2025436865 process 15 logged an event of type 1 with
integer data 1.

29. At time 2025438268 process 9 logged an event of type 1 with
integer data 2.

Logfiles in this format can be generated with the alog package, distributed separately.

Versions of both Strand[4] and PCN[2] also generate such logfiles, which can thus be exam-

ined with upshot.

A user may define a statefile to accompany a set of logfiles. Such a file defines a collection
of process states by identifying an entry and exit event type for each state. As an example,
the file roo.sts, used to produce Figure 1, contains

1 1 2 blue task~a

4

2 3 4 red task..b
3 5 6 cyan task.c
4 7 8 magenta task

There is one line for each state, containing a state number, entry and exit event types,
a color (from the rgb.txt file of colors known to X), and a state name to be used as a key.
The existence of statefiles is optional, although they are very useful. Currently, states may

not overlap, nor can an event type start or end more than one state.

The above state file defines four states. The first state starts with an event of type 1
and ends with an event of type 2. It will be shown in blue on the display and labeled as
"task-a" along the right edge of the upshot display.

Upshot is written using the Xt toolkit and Athena widget set, making many of its
attributes user-configurable via the resource database. The app-defaults file supplied
with upshot contains some choices for colors. These can easily be changed by the user.

4 Using Upshot

Figure 1 shows a typical upshot display. It was the result of issuing the command

../bin/upshot -1 sam.hyp.16.log -s roo.sts

as described in Section 2. More generally, the command line operations and their meanings
are as follows:

Flag Meaning Valid Range
-l log file name string up to 250 characters
-logfile log file name string up to 250 characters

-s state file name string up to 250 characters
-statefile state file name string up to 250 characters

-ch canvas height 480 to 1000
-cheight canvas height 480 to 1000
-t graph tasks no value necessary
-tasks graph tasks no value necessary

In addition, upshot accepts the usual Xt resource options. For example, to bring it up

on a color display with black background, one might say

.. /bin/upshot -1 sam.hyp.16.log -s roo.sts -bg black -fg white -bd yellow

The main object in the upshot window is the central viewport onto the canvas showing
the time lines of the processes. Each line represents events logged by and states of the

process whose identifier appears along the left edge. Time elapsed since the time of the first
event is shown along the bottom edge, with units described based on the assumption that

5

UPSHOT
Zoom-out | Zoom-in Display Options State Definition Reset Quit

Page view Log file:
Graph view ,_________

g -- ridlogiG
Z tep: iState file:

L2 prid. sts

5WHTI(Y 2 Load

100: arat A

10 : sunds s
wai t_rg

101: receiveD
PRO0C 6 IDAT I--fl

4: worknT 7 EVENT 102 10 row m g working
TIME rkn

5: "dwork I

6: wit receive 9
1"

r
0
C 13

s 14
s
e Is

16

PROC: 13 DATA
EVENT:6 works 14
TIME: 3168513 colors

I I I I I
1 MM M 31M 31WSI 3 32 29 3 3 3>M

time in milliseconds

File pages:

Figure 2: Upshot view with events and popup data boxes

6

the units given in the timestamp field in the logfile are microseconds. The current logfile
and statefile are shown at the right.

One can scroll forward and backward in time using the two scrollbars at the top of
the viewport and the buttons along the bottom edge of the window. The entire logfile is
partitioned into pages, each consisting of a fixed number of events. Short files (like the one
displayed in Figure 1) have only one page. A page is selected by clicking the left mouse
button on its page number. Once a page is selected, it can be scrolled using the middle
mouse button on either of the two scrollbars above the display. The page view scrollbar
indicates the portion (both size and position) of the visible part of the page. The graph
view scrollbar indicates the portion of the part of the canvas visible in the viewport, which
is usually about ten times the width of the visible part. These two scrollbars behave the
same unless the view has been zoomed in or out. Zooming changes the percentage of the
page that is shown, thus changing the size of the page view scrollbar's thumb, but does not
change the lower scrollbar, which remains a convenient size for scrolling back and forth in
the canvas.

The buttons across the top provide further control of upshot's view. The [Z'om-out and

Zoom-in buttons shrink or stretch the canvas along the horizontal axis, al'.wing detailed
separation of events down to the microsecond level. When the horizontal scale changes, the
left edge of the viewport remains fixed. It is ossible to zoom in or out too far, in which case
the initial scales can be restored by the Reset button. The zoom factor can be modified

by editing the Zoomstep box. The zoom factor should always be a positive integer.

The Display Options button brings up a menu of display options. The default is to
display only states. Alternatives are to display only events and to dis lay both events and
states. Events are displayed as in Figure 2. The State Definition button brings up a

window for adding a new state. The Quit button exits from upshot.

Selecting a specific event with the left mouse button pops up a small window containing
all of the information in the logfile for the event, including the integer and string data items.

The integer data item is additionally formatted with the format string logged as event type
-10. If one uses the middle or right buttons instead, the data box will remain on the screen
and can be moved around. It will disappear when selected with any mouse button.

Thus the first few lines of the logfile displayed by upshot in Figure 2 are as follows:

-2 0 0 8769 0 0
-3 0 0 17 0 0
-4 0 0 1 0 0
-5 0 0 6 0 0

-6 0 0 0 0 2781263066

-7 0 0 0 0 2791364419
-8 0 0 1 0 0
-1 0 0 0 0 2779321478 May21-90

-11 0 0 0 0 4294967295
-9 0 0 100 0 2779321670 create

-10 0 0 100 0 2779321734

-9 0 0 102 0 277921791 sends

7

0 2779321855
0 2779321911 receive

0 2779321970

2779322027 working

2779322090

2779322148 end work

2779322207

2779322266 wait receive

2779322328 works ?.d

-10
-9

-10
-9

-10
-9

-10
-9

-1 .

0
0
0
0
0
0
0
0
0

Note that integer data and character data for an event are shown in popup data boxes,
with the integer data formatted with the appropriate printf string.

5 Implementation

Upshot is an X Window application implemented in C using the Athena Widget set. The
widget hierarchy is shown in Figure 3.

8

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0

w init msg
w init msg
s init msg

w init msg
working

w init msg
w init msg

r init msg

w init msg
w init msg
s init msg

done work

row msg

102
101
101
4 0
4 0
5 0
5 0
6 0
6 0

2783527807
2783544696

2783546175
2783561310
2783570823

2783577774
2783594067

2783608861

2783610683

2783627479

2783642790

2783664655

2783665466

6 15
6 14

102 0
6 12
4 1
6 7
6 2

101 2
6 5
6 13

102 0

5 1
X02 1

0
0
2

0
0
0
0
0
0
0
3

0
5

0
0
0
0
0
0
0
0
0
0
0
0
0

toplevel

outline

Panelform DisplayMenu title PgButtonsLabel PgButtonsFomr Statelefwindow

StatesOnly EventsOnlybth button *g " gg pq" r->button

StateDefForm

EntryForm Clear SDQuit tnor

StateName StartEv EndEv StateColor ButtonsForm Save Set

ColorButtons [1] " " " " " ColorButtonsiJ

Buttonform Zoomstep Eventkey TaxisLabel CanvasForm Bscrolllabel CscrollLabel StateKeyfora Statefie Loglile

Bscroll Cscrool canvas its StatePtr->colorKey StatePtr->colorKey

[colortabel nameLabel 0 0 0 colorLabel nameLabel
Fg :in dgoomoue aDMenuButtonh oStateDefr

Figure 3: Widget hierarchy for upshot

9

6 Future Work

Upshot is one of a family of X-based graphics programs for displaying the information
captured in a logfile during the execution of a parallel program. It emphasizes the static

display of detailed information. Two other approaches currently under development are
animation- and statistics-based.

Upshot has proven useful in tuning parallel programs running on a moderate number
of processors. Further research is needed in order to understand how to gather and display
similar information from programs running on hundreds of processors.

References

[1] James Boyle, Ralph Butler, Terrence Disz, Barnett Glickfeld, Ewing Lusk, Ross Over-
beek, James Patterson, and Rick Stevens. Portable Programs for Parallel Processors.

Holt, Rinehart, and Winston, 1987.

[2] M. Chandy and S. Taylor. An Introduction to Parallel Programming. Jones and Bartlett,
1991.

[3] Terrence Disz and Ewing Lusk. A graphical tool for observing the behavior of parallel
logic programs. In Proceedings of the 1987 Symposium on Logic Programming, pages

46-53, 1987.

[4] Ian Foster and Stephen Taylor. Strand: New Concepts in Parallel Programming.

Prentice-Hall, 1990.

[5] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley. PICL: A portable in-
strumented communications library. Technical Report ORNL TM-11130, Oak Ridge
National Laboratory, 1990.

10

Distribution for ANL-91/15

Internal:

J. M. Beumer (75)
F. Y. Fradin

V. Herrarte (20)

H. G. Kaper

E. L. Lusk (50)

G. W. Pieper

D. P. Weber

C. L. Wilkinson

ANL Patent Department

ANL Contract File

TIS Files (3)

External:

DOE-OSTI, for distribution per UC-405 (58)

ANL Libraries

Manager, Chicago Operations Office, DOE

Mathematics and Computer Science Division Review Committee:

W. W. Bledsoe, The University of Texas, Austin

P. Concus, Lawrence Berkeley Laboratory

E. F. Infante, University of Minnesota

M. J. O'Donnell, University of Chicago

D. O'Leary, University of Maryland

R. E. O'Malley, Rensselaer Polytechnic Institute

M. H. Schultz, Yale University

J. Cavallini, Department of Energy - Energy Research

F. Howes, Department of Energy - Energy Research

11

