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ABSTRACT 

 

Current research on image quality assessment tends to include 

visual attention in objective metrics to further enhance their 

performance. A variety of computational models of visual attention 

are implemented in different metrics, but their accuracy in 

representing human visual attention is not fully proved yet. Thus, 

to provide more accurate evidence on whether and to what extent 

visual attention can be beneficial for objective quality prediction, 

the use of “ground truth” visual attention data is highly desired. In 

this paper, the data of an eye-tracking experiment are integrated in 

two objective metrics well-known in literature. Experimental 

results demonstrate that there is indeed a gain in performance 

including visual attention in objective metrics. The amount of gain 

in performance tends to depend on the type of objective metric and 

image distortion. 

 

Index Terms— Visual attention, eye tracking, natural scene 

saliency, distortion metric, image quality assessment 

 

1. INTRODUCTION 

 

Objective metrics are aimed at predicting perceived image quality 

aspects consistent with subjective human evaluation [1]. Metrics 

based on the human visual system (HVS) are potentially more 

reliable for accurate quality prediction [2]. It has been 

demonstrated that incorporating some lower level aspects of the 

HVS, e.g. frequency sensitivity, luminance masking and texture 

masking improves the performance of an objective metric (see e.g. 

in [2], [3]). Studies evaluating whether also higher level aspects of 

the HVS, such as visual attention, are beneficial for objective 

quality prediction, and if so, how to apply them in metric design 

are still limited, but recently have emerged as an active research 

area [4]–[8]. 

Intuitively one may expect that a distortion occurring in an 

area that gets the viewer’s attention is more annoying than in any 

other area. This idea is recently exploited in e.g. [4]–[6], in which 

the performance of a metric is improved by weighting the 

measured local distortions with the local saliency. The essential 

concept behind the design of these metrics is that saliency driven 

by the original image content (i.e. referred to as natural scene 

saliency) and saliency driven by image distortions are taken into 

account separately, and they are combined to determine the overall 

quality score. Obviously, the latter saliency is kind of addressed by 

the distortion metric itself, and therefore, only the former saliency 

needs to be explicitly considered. 

Before developing an attention based metric, it is worthwhile 

to know exactly whether and to what extent including visual 

attention can improve existing distortion metrics, since in real-life 

implementations the measured gain in metric performance should 

be balanced against the additional costs needed for the rather 

complex attention model. The investigation of the added value of 

saliency largely depends on the reliability of the visual attention 

data used in the metric. Computational attention models are 

available [4]–[6], but they are either specifically designed or 

chosen for a specific domain, or their accuracy in predicting human 

visual attention is not fully proved yet. Therefore, we decided to 

use “ground truth” visual attention data for the evaluation of their 

added value in objective metrics. 

A similar approach was adopted in [7]; they also used eye-

tracking data to investigate the added value of visual attention in 

objective metrics. Their results, however, were inconsistent with 

those found in [4]–[6], i.e. no clear improvement in the 

performance of the objective metric was found by weighting the 

local distortions with the local saliency. It should, however, been 

noted that their eye-tracking data were collected during quality 

assessment. As such, each original image content (having various 

distorted versions) was viewed several times by each observer. 

This might have affected the recorded saliency in the sense that it 

might have been more affected by the image distortions than by the 

natural scene saliency, as was discussed in [8]. As a consequence, 

the visibility of distortions may have been overestimated in the 

approach taken in [7], and that possibly explains the difference 

with the conclusions in [4]–[6]. 

In this paper, we further rely on the approach of [4]–[6] and 

use the natural scene saliency in the design of an attention based 

metric. However, instead of using a computational model for visual 

attention, we performed an eye-tracking experiment to obtain 

“ground truth” visual attention data. The validation process was 

carried out with two well-known objective metrics, and for the 

entire LIVE image quality assessment database [9]. 

 

2. VISUAL ATTENTION DATA 

 

It is generally agreed that under normal circumstances human eye 

movements are tightly coupled to visual attention [10]. Thus, eye 

movement recording is so far the most reliable means for studying 

the human visual attention. To obtain data of natural scene 

saliency, an eye-tracking experiment with unimpaired images 

under natural viewing conditions was conducted. 

 

2.1. Eye-Tracking Experiment 

 



The eye-tracking experiment was carried out in the Experience Lab 

of the Delft University of Technology. Eye movements were 

recorded with an infrared video-based tracking system (iView X 

RED, SensoMotoric Instruments). It has a sampling rate of 50 Hz, 

a spatial resolution of 0.1 , and a gaze position accuracy of 0.5 -

1.0 . Since the system can compensate for head movements within 

a certain range, a chin rest was sufficient to reduce head 

movements and ensure a constant viewing distance of 70 cm. The 

twenty-nine source images of the LIVE image quality assessment 

database [9] were used as stimuli, and were displayed on a 19-inch 

CRT monitor with a resolution of 1024x768 pixels and an active 

screen area of 365x275mm.  

Twenty students, being twelve males and eight females, 

inexperienced with eye-tracking recordings, were recruited as 

participants. Each participant saw all stimuli in a random order. 

Each stimulus was shown for 10s followed by a mid-gray screen 

during 3s. The participants were requested to look at the images in 

a natural way (“view it as you normally would”). Each session (per 

subject) was preceded by a 3x3 point grid calibration for the eye-

tracking equipment. 

 

2.2. Saliency Map 

 

A human saliency map representative for visual attention is usually 

derived from the spatial pattern of fixations in the eye-tracking data 

[10]. To construct this map, each fixation location gives rise to a 

gray-scale patch whose activity is Gaussian distributed. The width 

(σ) of the Gaussian patch approximates the size of the fovea (about 

2  visual angle). A mean saliency map that takes into account all 

fixations of all subjects is calculated as follows: 
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where Si(k, l) indicates the saliency map for stimulus Ii of size 

MxN pixels (i.e. kϵ[1, M] and lϵ[1, N]), (xj, yj) indicates the spatial 

coordinates of the jth fixation (j=1…T), T is the total number of all 

fixations over all subjects, and σ indicates the standard deviation of 

the Gaussian. The intensity of the resulting saliency map is linearly 

normalized to the range [0, 1]. Figure 1 illustrates the saliency map 

of one of the images used in our experiment. 

 
(a)                                                 (b) 

Fig. 1. Illustration of the human saliency map: (a) original image 

and (b) saliency map. 

 

3. OBJECTIVE DISTORTION METRICS 

 

As a starting point, the added value of including visual attention is 

evaluated for two well-known and widely used objective metrics: 

PSNR (peak signal-to-noise ratio) and SSIM (structural similarity 

index) [1]. Both metrics estimate the image distortion locally, 

yielding a quantitative distortion map. Figure 2 illustrates the 

distortion map calculated by PSNR and SSIM, respectively, for the 

image shown in Fig. 1(a). The intensity value of each pixel in the 

distortion map indicates the local degree of distortion, i.e. the 

lower the intensity, the larger the distortion is.  

 
(a)                                                 (b) 

Fig. 2. Illustration of the distortion map calculated for a JPEG 

compressed image (bit rate 0.41bbp) with its original shown in Fig 

1(a): (a) distortion map of PSNR, and (b) distortion map of SSIM. 

The lower the intensity, the larger the distortion is. 

4. EXPERIMENTAL VALIDATION 

 

The added value of including visual attention in objective metrics 

is evaluated by comparing the performance of metrics weighted 

with the saliency map obtained from the eye-tracking experiment 

to the performance of the same metrics without visual attention. 

 

4.1. Objective Metrics based on Human Saliency Map 

 

The human saliency map is included in the PSNR and SSIM 

metrics, by locally weighting the corresponding distortion map. It 

should be noted that the combination strategy used in this paper is 

still a simple weighting function similar to that in [4]–[7]. More 

complex combination strategies may further improve the obtained 

performance (as discussed in [6]), but are not yet investigated here. 

Adding saliency results in two attention based metrics, which 

are referred to as WPSNR and WSSIM, respectively. The metric 

WPSNR is defined as follows: 
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and MAX is the maximum pixel value of the image (MAX=1 in our 

experiments), Di,k indicates the distorted image, Ii indicates the 

original image, and Si indicates the corresponding saliency map 

derived from the eye-tracking experiment. The metric WSSIM is 

defined as: 
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where ssim_map is calculated between the distorted image Di,k and 

its original image Ii, using the SSIM metric. 



4.2. Experimental Results 

 

The experiment was conducted for the entire LIVE database. It 

consists of 779 images distorted with JPEG compression, 

JPEG2000 compression, white noise, Gaussian blur, and simulated 

fast fading Rayleigh (wireless) channel. A difference mean opinion 

score (DMOS) was derived for each distorted image by an 

extensive subjective quality assessment study [9]. 

The four metrics PSNR, SSIM, WPSNR and WSSIM are 

applied to the LIVE database. Figure 3 shows the scatter plots of 

the DMOS versus each of the four metrics for the different 

distortion types. The metrics’ performance is also quantified by the 

Pearson and Spearman correlation coefficients between the DMOS 

and the predictions of the objective metrics, as prescribed by the 

VQEG [11]. As suggested in [11], one may use a nonlinear fitting 

of the metrics’ predictions to the DMOS before computing the 

correlation coefficients. Indeed, the image quality community is 

more accustomed to e.g. a logistic function, to fit the metric’s 

predictions to the DMOS. It may, for example, account for a 

possible saturation effect at high qualities. A non-linear fitting 

usually results in higher correlation coefficients in absolute terms, 

while generally keeping the relative differences between the 

metrics [2]. On the other hand, without a sophisticated non-linear 

fitting (often including various parameters) the correlation 

coefficients cannot mask a bad performance of the metric itself, as 

discussed in [6]. Therefore, the non-linear fitting is omitted here, 

and the correlation coefficients are directly computed between the 

DMOS and the metrics’ predictions. 

Figure 4 gives the corresponding correlation coefficients. It 

demonstrates that there is indeed a gain in performance including 

visual attention in the objective metrics PSNR and SSIM, 

independent of the metric used and of the image distortion type 

tested. There is, however, a difference in the amount of gain in 

performance dependent on the metric. The gain of WPSNR over 

PSNR corresponds to an average increase in the Pearson 

correlation coefficient (over all distortion types for the LIVE 

database) from 0.88 to 0.90 (i.e. P=2%) and in the Spearman 

correlation coefficient from 0.87 to 0.89 (i.e. S=2%). The gain of 

WSSIM over SSIM is P=3% (from 0.91 to 0.94) and S=3% 

(from 0.92 to 0.95). Furthermore, the amount of gain in 

performance also depends on the distortion type. The gain of 

WSSIM over SSIM for Gaussian blur is P=7% (from 0.85 to 

0.92) and S=5% (from 0.89 to 0.94), but for white noise is 

P=1% (from 0.96 to 0.97) and S=1% (from 0.96 to 0.97). 

Analogously, the gain of WPSNR over PSNR yields a P=2% 

(from 0.77 to 0.79) and a S=3% (from 0.78 to 0.81) for Gaussian 

blur, compared to a P=0.01% (from 0.9792 to 0.9793) and a 

S=0% (from 0.985 to 0.985) for white noise. 
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Fig. 3. Scatter plots of DMOS vs. four metrics PSNR, WPSNR, 

SSIM, and WSSIM for JPEG#1, JPEG#2, JPEG2000#1, 

JPEG2000#2, white noise (i.e. WN), Gaussian blur (i.e. GBLUR), 

and fast-fading (i.e. FF), respectively. 
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Fig. 4. Correlation coefficients (without nonlinear regression) of 

four metrics PSNR, WPSNR, SSIM, and WSSIM for JPEG#1, 

JPEG#2, JPEG2000#1, JPEG2000#2, white noise (i.e. WN), 

Gaussian blur (i.e. GBLUR), and fast-fading (i.e. FF), respectively. 

 

5. DISCUSSION AND FUTURE WORK 

 

Our results show that adding visual attention improves the 

performance of the PSNR and SSIM metric. This conclusion is in 

agreement with the results of [4]–[6], but in contradiction to the 

conclusions of [7]. As shown with this paper, the contradiction is 

not a consequence of using saliency from eye-tracking data (as 

used here and in [7]) instead of from a model (as used in [4]–[6]). 

More probably, the contradiction results from the different type of 

visual attention data used: i.e. natural scene saliency here versus 

saliency during scoring in [7]. This, however, still needs to be 

proven. 

The added value of visual attention in terms of a performance 

improvement is shown here for the metrics PSNR and SSIM. 

Although this study is limited in the number of metrics used, we do 

not expect the result to be different for other objective metrics. It 

might, however, be that the added value is more limited in case the 

performance of the metric itself is already high. To better visualize 

differences in performance we propose (as also already stated in 

[2], [6]) to avoid any non-linear fitting and to directly use linear 

correlation between the metric predictions and subjective data. 

It should be noted that the combination strategy between the 

human saliency map and the distortion map of the metric in this 

paper is still a simple weighting function. This may underestimate 

the impact of perceived artifacts on image quality, as already 

discussed in [6], [7]. Therefore, we expect that an advanced 

combination strategy (e.g. in which the weighting function is 

adapted to the features of the image distortions) yields a larger gain 

in performance for some metrics. This should be further 

investigated using the available visual attention data. 

 

6. CONCLUSIONS 

 

In this paper, we provide, based on eye-tracking data, more 

accurate quantitative evidence on whether visual attention is 

beneficial for objective metrics, and if so, to what extent. Our 

results show that there is indeed a gain in the performance of the 

PSNR and SSIM metrics. The amount of gain in performance 

varies between both metrics and for the same metric between 

different image distortion types. 
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