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Abstract Many software production processes advocate rigorous development test-
ing alongside functional code writing, which implies that both test code and produc-
tion code should co-evolve. To gain insight in the nature of this co-evolution, this
paper proposes three views (realized by a tool called TeMo) that combine informa-
tion from a software project’s versioning system, the size of the various artifacts and
the test coverage reports. We validate these views against two open source and one
industrial software project and evaluate our results both with the help of log mes-
sages, code inspections and the original developers of the software system. With these
views we could recognize different co-evolution scenarios (i.e., synchronous and
phased) and make relevant observations for both developers as well as test engineers.
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1 Introduction

Lehman has taught us that a software system must evolve, or it becomes progressively
less useful (Lehman 1980). When evolving software, the source code is the main arte-
fact typically considered, as this concept stands central when thinking of software.
Software, however, is multi-dimensional, and so is the development process behind
it. This multi-dimensionality lies in the fact that to develop high-quality source code,
other artifacts are needed, e.g., requirements, documentation, tests, etc. (Mens et al.
2005). A software development process aiming for quality should thus allow these
artifacts to co-evolve gracefully alongside their respective dimensions.

One artifact which is of primary importance when developing high-quality soft-
ware, is the so-called developer test (i.e., a codified unit or integration test written by
developers (Meszaros 2007)). Indeed, a 2002 report from the NIST indicates that
catching defects early during (unit) testing lowers the total development cost sig-
nificantly (Tassey 2002). Consequently, newly added functionality should be tested as
soon as possible in the development process, to provide quick feedback to the de-
velopers (Runeson 2006). Moreover, when a software system evolves (e.g., through
refactoring), developers should run the persistent tests to verify whether the external
behavior is preserved (Demeyer et al. 2002, p. 159). In this context, Moonen et al.
have shown that even while refactorings are behavior preserving, they potentially
invalidate tests (Moonen et al. 2008). In the same vein, Elbaum et al. concluded that
even minor changes in production code can significantly affect test coverage (Elbaum
et al. 2001).

This leads to the almost paradoxical situation whereby tests are important for the
success of the software and its evolution, while they are also a serious burden during
evolution, because they need to be maintained as well. Writing test-code that co-
evolves gracefully alongside the production code is not an easy task, and software
engineers need tools and methods that help to assess the nature of the co-evolution
relationship.

In this paper we retrospectively explore the co-evolution of production and test
code by mining a version control system (VCS) such as Subversion (SVN) or the
Concurrent Versions System (CVS) (Kagdi et al. 2007). Our exploration of these
version control systems is aided by the use of lightweight techniques and visualiza-
tions, which, as Storey et al. observed, are common to the field of studying software
evolution (Storey et al. 2005).

Our research is driven by the following research question: Is it possible to establish

the co-evolution process between developer tests and the corresponding production

code by mining a version control system (VCS)? In order to answer that question, we
refine it into a number of subsidiary research questions:

RQ1 Does co-evolution between test and production code happen synchronously
or is it phased?

RQ2 Can an increased test-writing activity be witnessed right before a major
release or other event in the project’s lifetime?

RQ3 Can we detect testing strategies, such as test-driven development (Maximilien
and Williams 2003)?

RQ4 Is there a relation between test-writing activity and test coverage?
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These questions are particularly relevant during quality assessments of the de-
veloper testing process. Certainly when such quality assessment is performed by
external consultants, where a quick analysis using tools is a good way to get an insight
into the testing process. For instance during “first-contact” situations (Demeyer et al.
2002, p. 39), in which you want to do an initial assessment of the software system
in a short period of time, knowing how tightly the testing is interwoven with the
normal development process (RQ1 and RQ2) is an indicator for the reliability and
effectiveness of the developer tests. But they are equally relevant for the quality engi-
neers inside the development team who need convincing arguments to persuade their
colleagues to increase test activities. For instance, a quality engineer might monitor
the testing activities, to verify whether procedures are followed (RQ3) or to detect
trends that may hamper future testing or product quality (RQ2, RQ4) (Slaughter
et al. 1998).

In order to answer these research questions we set up an experiment in which
we study the co-evolution of production and test code of two open source software
systems and one industrial software system. This experiment will allow us to validate
the visualizations that we use and the results that we have obtained from them. We
evaluate our findings (i) internally, by inspection of the code and the log messages
that were written during development; and (ii) externally, by presenting our obser-
vations to the original developers and analyzing their remarks.

This paper extends our previous work (Zaidman et al. 2008) with a new industrial
case study, clearly contrasting the open source testing strategies that we have wit-
nessed in our two other case studies. Furthermore, we have significantly extended the
discussion of our proposed techniques.

The structure of this paper is as follows. The next section introduces three views on
the two-dimensional software evolution space, followed by Section 3 describing the
implementation of our Test Monitor (TeMo) tool suite. Section 4 clarifies the ex-
perimental setup. Sections 5, 6 and 7 present our three case studies on respectively
CheckStyle, ArgoUML and the industrial case. In Section 8 we discuss our findings
and in Section 9 we identify threats to validity. Section 10 then relates our work
to other work in the field and we finish with our conclusions and future work in
Section 11.

2 Test Co-Evolution Views

As studying the history of software projects involves large amounts of data, visualiza-
tion can help to deal with the resulting complexity and to understand aspects of either
product or process (Ball and Eick 1996; Van Rysselberghe and Demeyer 2004). The
alternate strategy which does not make use of visualization, would involve tedious
manual analysis of log messages and source code, which, for real-world systems is
next to impossible. In this work, we make use of visualizations to answer test co-
evolution related questions. More specifically, we introduce three distinct, yet com-
plementary views, namely:

1. The Change History View, wherein we visualize the commit-behavior of produc-
tion and test code by the developers over time.

2. The Growth History View that shows the relative growth of production code and
test code over time.
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3. The Test Coverage Evolution View, where we plot the test coverage of a system
against the fraction of test code (versus the complete source code base) in a
system at key points in a project’s timeline.

The three views are inspired by related work (see Section 10), but have been
adapted to fit the specific needs for studying the co-evolution of production and
test code. As such, the Change History View is loosely based on work of Gîrba
and Ducasse (2006) and Van Rysselberghe and Demeyer (2004), while the Growth
History View has its roots in work of, e.g., Godfrey and Tu (2000).

2.1 Change History View

Goal With the Change History View, we aim to learn whether (i) production code
has an associated (unit) test; and (ii) whether these are added and modified at the
same time. As such, we seek to answer RQ1 and RQ3.

Description In this view:

– We use an XY-chart wherein the X-axis represents time and the Y-axis source
code entities.

– The files are sorted according to time of introduction into the VCS.
– We make a distinction between production files and test files. A unit test is placed

on the same horizontal line as its corresponding unit under test. Furthermore,
we also distinguish between files that are introduced and files that are modified
based upon the data obtained from the VCS.

– We use colors to differentiate between newly added (black square) and modified
production code (blue dot); newly added (red triangle) and modified tests
(yellow diamond).1,2

– Vertical lines represent release points of the system.

We create the plot by default for changes in the the main development line. Note
that developers can create branches in the VCS, i.e., development lines parallel
to the main development line typically used for experimental development, rapid
prototyping, bug fixing, etc.

Interpretation Consider the example view in Fig. 1, created from synthetic data.
We are looking for patterns in the plotted dots that signify co-evolution. Test files
introduced together with the associated production units are represented as red
triangles plotted on top of black squares. Test files that are changed alongside
production code show as yellow diamonds on top of blue dots. Vertical red (commit
1 in Fig. 1) or yellow (commit 9 in Fig. 1) bars indicate many changes to test code
files, i.e., more than would be expected during an iterative development process.
Horizontal bars in the Change History View on the other hand stand for frequently

1Please note that symbols that we use—square, dot, triangle, ...—are not all the same size. When
drawing this in the right order, we prevent overplotting.
2We have chosen these colors as to make sure that people with red-green color blindness would not
be hampered (Prevalence and incidence of color blindness 2010).
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Fig. 1 Example Change History View

changed files. Other patterns not specifically involving the tests, e.g., vertical or
horizontal blue bars, have been studied by others (Van Rysselberghe and Demeyer
2004; Gall et al. 1998).

Limitations The Change History View is mainly aimed at investigating develop-
ment behavior, however, it provides no information regarding, e.g., the total size of
the system (throughout time) or the proportion of test code in the system. It also does
not show the size-impact of a change. For these reasons, we introduce the Growth
History View in the next section to complement the Change History View.

2.2 Growth History View

Goal The aim of the Growth History View is to identify growth patterns indicating
(non-)synchronous test and production code development (RQ1), increased test-
writing activity just before a major release (RQ2) and evidence of test-driven de-
velopment (RQ3).

Description In this view:

– We use an XY-chart to plot the co-evolution of a number of size metrics over
time. The X-axis shows the time and is annotated with release points at the
bottom and time stamps at the top. The Y-axis shows metrics presented as a
relative percentage chart up to the last considered version (which is depicted at
100%), as we are particularly interested in the co-evolution and not so much in
the absolute growth.
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– The five metrics that we take into consideration are: Lines of production code
(pLOC), Lines of test code (tLOC), Number of production classes (pClasses),
Number of test classes (tClasses) and Number of test commands (tCommands—
a test command is a container for a single test (Van Rompaey et al. 2007); in
terms of xUnit these are the methods that start with test (Meszaros 2007)).

We apply this view to the main development line as well.

Interpretation First of all, we can observe phases of relatively weaker—e.g., the
perfectioning of existing functionality—or stronger—e.g., the addition of new
functionality—growth throughout a system’s history. Typically, in iterative software
development new functionality is added during a certain period after a major re-
lease, after which a “feature freeze” (Hindle et al. 2007a) prevents new functionality
from being added. At that point, bugs get fixed, testing activity is increased and
documentation written.

Secondly, the view allows us to study growth co-evolution. We observe (lack of)
synchronization by studying how the measurements do or do not evolve together in
a similar direction. The production and test code is written synchronously when the
two curves are similar in shape (see Fig. 2a). A horizontal translation indicates a time
delay between one activity and a related one (Fig. 2b), whereas a vertical translation
signifies that a historical testing or development backlog has been accumulated over
time (Fig. 2c). Such a situation occurs, e.g., when the test-writing is delayed com-
pared to writing production code for many subsequent releases. In the last version
considered in the view, both activities reach the 100% mark, which is because we are
measuring relative activity for both test and production code.

Thirdly, the interaction between measurements yields valuable information as
well. In Table 1 a number of these interactions are outlined. For example, the first
line in Table 1 states that an increase in production code and a constant level of
test code (with the other metrics being unspecified) points towards a “intense devel-
opment” phase. The sixth line represents the introduction of test case skeletons, i.e.,
empty test classes that serve as placeholder for the eventual test cases. Of importance
to note in the context of Table 1 is that a “→” indicates a strict requirement of staying
constant, while an empty cell does not indicate a strict requirement, i.e., the value
may change.

Limitations Both the Change History and Growth History View are deduced from
quantitative data on the development process, hence do not incorporate any infor-
mation about the quality of the test. Therefore, we introduce a view incorporating
test coverage as an indicator for the test quality.

Fig. 2 Example patterns of
synchronous co-evolution

(a) Synchronous (b) Time Delay (c) Test Backlog
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Table 1 Co-evolution scenarios

Scenario pLOC tLOC pClasses tClasses tCommands Interpretation

1 ր → intense development

2 → ր intense testing

3 ր ր co-evolution

4 → ր → → test refinement

5 → → ր ր skeleton co-evolution

6 → ր test case skeletons

7 → ր test command skeletons

8 → ց test refactoring

2.3 Test Coverage Evolution View

Goal Test coverage is widely used as an indicator of under-tested software compo-
nents and is often seen as an indicator of “test quality” (Zhu et al. 1997). While we
are not claiming that a high level of test coverage implies good test quality (Glover
2006; Berner et al. 2007), because of, e.g, the fact that doing good boundary testing is
not reflected in coverage measures, we are interested in observing how test coverage
relates to other test-related metrics. In particular, we are interested in observing
(i) how much test code is actually being written for reaching a particular level of
test coverage and (ii) whether fluctuations in the test code base in terms of lines of
code are reflected in the test coverage levels of the system. Such fluctuations might
indicate a (future) maintenance problem, e.g., if we signal dropping levels of test
coverage.

Description In this view:

– We use an XY-chart representing tRatio = tLOC/(tLOC + pLOC) on the X-
axis and the overall test coverage percentage on the Y-axis. Individual dots
represent releases over time.

– We plot four coverage measures (distinguished by shape and color of the dots):
class, method, statement and branch/block coverage.

Interpretation Constant or growing levels of coverage over time indicate good
testing health, as such a trend indicates that the testing-process is under control.
The fraction of test code, however, is expected to remain constant or increase slowly
alongside coverage increases. As such, we expect that new dots appear to the upper
right area in Fig. 3 as new releases are created. Test reinforcements in subsequent
releases should show as dots that shift more over the vertical axis than over the
horizontal axis. Efforts to reduce the size of a test suite, e.g., to improve regression
test time and maintenance cost due to duplicated tests (Bible et al. 2001) should
result in a shift to the left on the horizontal axis. Hopefully, scenarios where new dots
appear to the down right do not appear, as this would indicate that additional tests
for new development are adding to the tRatio, without at least maintaining the level
of test coverage. Severe fluctuations between consecutive releases imply weaker test
health, i.e., a degrading quality of the test suite in the long term.
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Fig. 3 Example patterns in the
Test Coverage Evolution View

Limitations For now we only compute the test coverage for the major and minor
releases of a software system, as computing test coverage (for a single release) is
quite time-consuming and difficult to automate. Since the Test Coverage Evolution
View is mainly aimed towards detecting long-term trends in test-coverage, such an
approach is typically good enough.

3 The TeMo toolchain

In order to instantiate the views that we have described in the previous section, we
have built the Test Monitor (TeMo) tool suite. This Java-built tool-suite is available
for download.3 In this section we expand on the technologies that we have used for
this set of tools, the level of automation and the limitations of TeMo.

Change History View In order to create a Change History View (Section 2.1) we use
the SVNKit library (SVNKit 2010) to extract the entire history of changes and log
messages from a project’s history. We store this information in XML, after which we
are able to query it with XQuery (2010). Through querying we relate production
and test code to each other: the connection between production and test code is
established on the basis of file naming conventions (e.g., a test case that corresponds
to a certain production class has the same file name with postfix “Test”). Test classes
that cannot be correlated in this way are considered to be integration tests and are
placed on the top lines of the view. We render the view with JFreeChart (2010).

Note that the number of units shown in this visualization is often higher than
the number of classes present in the latest version of the software system. This is
due to when a file gets deleted at a certain point in time, it remains present in the
visualization. Similarly, a renamed file shows up as a new line at the top of the chart
at the time of its introduction, yet the original file line remains (and is not changed
anymore). The same goes for a file that is moved within the repository. Moreover, a
test is associated with both instances in such a case.

3http://swerl.tudelft.nl/testhistory

http://swerl.tudelft.nl/testhistory
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Growth History View The Growth History View (Section 2.2) is created with the
use of the SVNKit library. For each version of the software project that we consider
in our analysis, we check out the entire ‘working copy’ of the project, after which
we apply the Lines of Code Counter (LOCC 2010) tool to determine the number and
size of artifacts. We render the resulting metric data into a chart using gnuplot (2010).

Our current implementation of TeMo is targeted towards a combination of
JUnit/Java. More specifically, in order to separate production classes from test
classes we use regular expressions to detect JUnit 3.x test case classes. As a first
check, we look whether the class extends junit.framework.TestCase. If this
fails, e.g., because of an indirect generic test case (Van Rompaey et al. 2007),
we search for a combination of org.junit.* imports and setUp() methods.
Counting the number of test commands is done on the basis of naming conventions.
More specifically, when we find a class to be a test case, we look for methods that
start with test. We are aware that with the introduction of JUnit 4.x, this naming
convention is no longer necessary, but the projects we consider in our case studies
still adhere to them. In JUnit 4.x, a similar approach to identify the test cases would
consist of searching for the @Test annotation.

Test Coverage Evolution View Generating the Test Coverage Evolution View is
mainly a manual effort, due to the challenges involved in computing coverage for
historical software releases. These challenges include:

– Integration of a coverage tool into the build system proved difficult to automate
(i) due to varying build systems across projects and (ii) due to changing build
configurations over time within the same project.

– Building a historical release sometimes proved difficult due to missing external
dependencies in the VCS.

We limit ourselves to computing the test coverage for the major and minor releases
of a software system, as computing test coverage for a single revision can be time-
consuming. This supports our interest of studying long-term trends in contrast to
fluctuations between releases due to the development process.

For generating the view, we use Emma (2010), an open source test coverage mea-
surement solution. We have integrated Emma in the Ant (2010) build process of the
open source case studies with the help of scripts and manual tweaking, as completely
automating this process proved difficult. Once we have integrated Emma into the
build process of a particular version of one of our open source case studies, we are
able to generate the coverage report by running the already present unit tests.

For the industrial case study we made use of the fact that the company is already
using the Clover test coverage tool (Clover 2010). As Clover is integrated into the
Maven build system (Maven 2010) we did not have any problems with missing
external dependencies. Obtaining the coverage reports from the industrial case study
thus proved relatively easy.

Note that Emma and Clover do not always calculate the same coverage levels,
as Emma determines block coverage (Mathur 2008), while Clover computes branch
coverage (Binder 2000).
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4 Experimental Setup

To evaluate the value of the three aforementioned test co-evolution views we use
an explorative case study with multiple cases (Runeson and Höst 2009; Yin 2002).
That is, we apply our three views to three realistic cases (two open source software
projects and one industrial system) which result in a number of observations about
the project’s history. To validate whether these observations correspond with actual
events, we cross-validate from an internal (inspection of VCS log messages and
source code) and external perspective (feedback from the original developers).
Below we give a detailed account and motivation for the design of the case study.

Selection of Cases Our main prerequisites when selecting the cases were: (i) written
in Java, as our tool is currently targeted towards Java, (ii) the availability of
JUnit tests, (iii) the presence of the project history in a version control system
(SVN or CVS). The open source projects Checkstyle and ArgoUML matched these
prerequisites. Furthermore, the Software Improvement Group (SIG)4 provided us
with a third (industrial) case, which adheres to these prerequisites as well.

These cases are representative for software systems produced in smaller teams (5
to 10 core developers) where team members take up varying roles (analyst-designer,
programmer, tester, debugger) and where quality assurance is mostly integrated
into the daily activities of the team members. In such a context, our lightweight
visualizations are easily adoptable into the normal practices of the team. Neverthe-
less, interviews with the developers involved reveals that these cases showed quite
different test cultures, and hence represent relevant samples in the universe of small
team software development.

Units of Analysis Given the research questions, the unit of analysis for each case
correspond to events in the project’s history that are representative of co-evolution
between developer tests and the corresponding source code. Consequently, for each
of the cases, we generated the three visualisations and made a number of observa-
tions about relevant events (see Sections 5.1, 6.1 and 7.1). To confirm or reject these
observations, we used a combination of internal and external perspectives.

Internal evaluation Since the observations are our interpretation of the project’s
history, we need to evaluate whether they correspond with actual events, hence we
first inspect the log messages that were written during development, and when we
needed more details, we also checked the corresponding source code. To avoid bias
during this inspection, we first look for evidence that contradicts our interpretation
and we reject the observation if we found any such evidence. Next, we try to find
evidence that confirms our interpretation and if we do, we accept the observation. If
we do not find contradicting or supporting evidence, we classify the observation as
“undecided”. Again, to avoid any bias, all pieces of evidence were discussed among
the first two authors of the paper.

External evaluation To complement the internal evaluation we also verify our
findings with team members of the organization producing the system under study.

4Software Improvement Group (SIG), Amsterdam, The Netherlands (http://www.sig.nl).

http://www.sig.nl
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Table 2 Developer survey

Part 1: Questions on the developer’s view of the project’s test history.

– How would you summarize the test history of the project (which kind of tests, when to test)?

– Within your project, do you have a policy regarding (codified) tests? Has this policy been

modified over time?

– When do developers commit? Is there a variation in commit style (in time, in size?)

– Which testing tools do you use (testing framework, coverage measurements, mutation testing,

lint-style code checkers)? When have such tools been introduced?

– Is there an interplay between reported/fixed bugs and associated tests? E.g., do developers write

a codified test to demonstrate the bug or is a test written afterwards to demonstrate that

a bug has been fixed?

Part 2: Questions on the evaluation of our observations.

– Which observations correspond with your experience-based expectations?

Which ones are new to you? Which ones are not true?

– Which interesting events during the project’s history did we miss?

Part 3: Concluding questions.

– How could you as developer or team lead benefit from such visualizations?

– Which additional aspects would you like to see in visualizations like these that

try to summarize the project’s history?

The questionnaire that we use features open-ended questions, aimed at gathering (i)
qualitative data that supports or rejects our observations and (ii) anecdotal evidence
on the usefulness of our visualizations.

We sent a survey to lead developers of the considered projects as outlined in
Table 2. First, we ask them to chronicle the system’s (test) evolution (Part 1); af-
terwards, we encourage them to read about the proposed views and to accept or
reject the corresponding observations (Part 2). Finally, we ask them to give feedback
about the usefulness and possible improvements (Part 3).

5 Case 1: Checkstyle

Checkstyle5 is a tool that checks whether Java code adheres to a certain coding
standard. Six developers made 2,260 commits in the interval between June 2001 and
March 2007, resulting in 738 classes and 47 kSLOC (kSLOC = thousand source lines
of code).

5.1 Observations

Change History View The Change History View of Checkstyle (Fig. 4)6 results in
the following observations with regard to the testing behavior of the developers. At
the very beginning of the project up until commit #280 (which comes after release

5http://checkstyle.sourceforge.net/
6Ideally, these visualizations should be seen in color. High-resolution color images are also available
at http://swerl.tudelft.nl/testhistory.

http://checkstyle.sourceforge.net/
http://swerl.tudelft.nl/testhistory
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Fig. 4 Checkstyle Change History View

2.2), there is only one test (with file ID 11), which is changed very frequently (visible
through the yellow horizontal bar). This is our observation Checkstyle.O.1. At that
point, a number of new tests are introduced. From commit #440 (comes after release
2.4) onwards, a new testing strategy is followed, whereby the introduction of new
production code (a black square) almost always entails the immediate addition of a
new unit test (a red triangle). While the first integration test appears around #220,
more unit tests only start to appear from #670 onwards, integration tests appear
(visible by red triangles and the yellow diamonds at the top of the chart). This
commit is also interesting because it shows a vertical yellow bar, indicating that a
large number of unit tests are modified (Checkstyle.O.2), suggesting that several of
the unit test files are affected by the adoption of integration tests. This pattern of
phased testing returns around commit #780 (Checkstyle.O.2). Furthermore, around
#870 and #1375 test additions can be seen through the vertical bar of red triangles.
Due to the several tens of unit tests involved this might indicate (i) a “phased testing
approach”, where an increased test activity is taking place at certain points in time
(with little or no testing in between); or (ii) shallow changes to the test code (e.g.,
import statement optimization).

Creating Fig. 4 also provided us with the following statistics of Checkstyle’s
evolution: in total 776 classes were added to the system over time, of which 181 have
an associated unit test. We also counted 23 integration tests.

Growth History View From the Change History View we learned that Checkstyle’s
classes and test classes are usually changed together, apart from a series of edit
sequences to the test files specifically. What cannot be seen from the Change History
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View, is how much of the code was affected by the actual changes made. For that
purpose, the Growth History View can be used.

The Growth History View for Checkstyle, shown in Fig. 5, displays curves that
show the same trends most of the time. This indicates a relatively synchronous co-
evolution. In general, increases as well as decreases in the number of files and code
in production are immediately reflected in the tests. During certain time periods
however, development or testing activities take the upper hand.

In particular, the figure confirms the initial single test code file that gradually
grows and extensively gets reinforced after release 2.2 (during a phase of intense
testing; see Checkstyle.O.3 – annotation 1 in Fig. 5). Another period of test re-
inforcement happens before release 3.0 (Checkstyle.O.3): the amount of test code
increases while the number of test cases barely changes (ann. 2). In the period from
release 2.2 until beyond 2.4, development and testing happen synchronously (Check-

style.O.4), with an additional effort to distribute test code over multiple classes. This
development approach is maintained until approximately halfway between release
3.1 and 3.2, where a development-intensive period results in a testing time backlog
(Checkstyle.O.5 – ann. 3). Shortly after that there is some additional test activity
(increases in test code, test classes as well as test commands). Thereafter, testing
happens more phased until 3.5 (step-wise increases; Checkstyle.O.6 – ann. 4). In the
last period, the co-evolution is again synchronous, with a gradually decreasing time
delay towards the last considered version.
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When relating our observations to the Change History View, we see how certain
vertical bars (see Fig. 4) representing work on the tests do not result in growth of
artifacts (#780), while others do impact system size (#870 and #1,375). The former
category represents more shallow changes such as refactoring or code beautification;
the latter category concerns periods of reinforcement of tests.

Test Coverage Evolution View The test coverage evolution view in Fig. 6 shows a
generally relatively high level of test coverage, with class coverage around 80%,
climbing towards 95% in the later versions of the software. For the other levels of
coverage, a similar steady increase can be seen. Throughout the evolution, the frac-
tion of test code grows as well. The measurements for the different levels of coverage
grow closer to each other over time, suggesting that additional activity went to
increasing the coverage at finer levels of granularity (e.g., block and statement cov-
erage). This makes us assume that test coverage is considered an attention point that
is monitored carefully.

Two other observations stand out. First, release 2.2 has an interesting phenom-
enon: a sudden sharp decline in class and method coverage, with a mild drop of block
coverage (Checkstyle.O.7). Secondly, there is a decline in coverage (at all levels)
between release 2.4 and 3.0, yet the tRatio increases by more than 10%. This indicates
that new test code being written in this period does not maintain the previous level
of test coverage. The shift in release number may indicate that a major restructuring
has been applied to the system.
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5.2 Internal Evaluation

To evaluate these observations, we first contrasted them with log messages at key
points.

“Up until #280 there is a single unit test” (Checkstyle.O.1). The single test with file
ID 11 is called CheckerTest, which provided us with a first clue. Subsequently, we
used regular expressions to search through the source code to find test-related ter-
minology (e.g., the phrases “test” and “import junit.”. We found that CheckerTest
was indeed the only test, hence we accepted the observation. However, we must point
out that this actually was not a typical unit test, but rather a system test (Binder 2000).
Indeed, CheckerTest receives a number of input files and checks the output of the
tool against the expected output.

“Testing has been neglected before the release 2.2” (Checkstyle.O.7). Inspection
reveals that this coverage drop is due to the introduction of a large number (39) of
anonymous classes, that are not tested. These new classes are relatively simple and
only introduce a limited number of blocks per class. Therefore, their introduction has
a limited effect on the block coverage level. Class coverage however, is more affected
because the number of classes (29) has more than doubled. In-depth inspection
teaches us that the methods called by the anonymous classes are tested separately. In
the next version, all coverage levels increase because of the removal of most of the
anonymous classes. The drop is thus due to irregularities in the coverage measure-
ment, rejecting the observation.

“There is a period of intense testing right after release 2.2 and before 3.0” (Check-

style.O.3). In order to try and reject this observation, we first sought for evidence
that tests are neglected during this period, but instead we encountered log messages
around revision 2.2 such as Added [6 tests] to improve code coverage (#285), up-

dating/improving the coverage of tests (#286 and #308) and even Added test that

gets 100% code coverage (#309). The assumption of a test reinforcement period
before 3.0 is backed up by several messages between #700 and #725 mentioning
improving test coverage and adding or updating tests. Therefore we accepted the
observation.

“From version v2.2 until beyond v2.4, synchronous co-evolution happens” (Check-

style.O.4). Again we tried to reject this observation by looking for signs that intense
development was happening, e.g., through new features being added. Investigation
of the log messages around that time however showed that it concerns a period of bug
fixing or patching (#354,#356,#357,#369,#370,#371,#415) and refactoring (#373,#374,
#379,#397,#398,#412). Moreover, during this period production classes and test cases
were committed together. Hence, we accept the observation.

“Around #670 and #780, developers were performing phased testing.” (Check-

style.O.2) The message of #687 mentions “Upgrading to JUnit 3.8.1”, which makes us
conclude that it concerns shallow changes. For the period around #780, the test cases
are (i) modified to use a new test helper function; and (ii) rearranged across packages.
As such, these changes concern the test design, but are not really test reinforcements.
As such, we reject the observation.

“Halfway between release 3.1 and 3.2 is a period of intense development” (Check-

style.O.5). For this period, we could not find any traces of new test cases for the
newly created production classes. Rather, a couple of large commits consisting of
batches of production files occur, with log messages reporting the addition of certain
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functionality (#1410–#1420). Shortly after that, developers mention the addition of
new tests (#143x and #1457). Thus we accept the observation.

“Between 3.4 and 3.5 testing happens more phased (ann. 4, Fig. 5), followed by

more synchronicity again” (Checkstyle.O.6). We could not really accept nor reject
both phases by means of the log messages or code inspections. We do notice that
this period mainly concerns fixes of bugs, code style, spelling, build system and
documentation.

5.3 External Evaluation

Two Checkstyle developers have completed the survey from Table 2, sharing their
opinions about our observations. As an answer to questions about the system’s
evolution and test process, they indicate that automated tests have always been
valued very highly. The JUnit suite is integrated in the build system as a test target.
Coverage measurements (with Emma) as well as code checks (using Checkstyle on
itself) have regularly been performed since Checkstyle’s origin. There is however no
formal policy regarding their use.

The JUnit tests are implemented as I/O tests focused towards a specific module.
Especially while changing Checkstyle’s internal architecture—between versions 2.4
and 3.0—the presence of the test suite was deemed invaluable. Regarding the
synchronicity of development and test writing activity, one developer confirms that
code and regression tests are typically committed at the same time. Even more, both
developers indicate that they try to write a failing test documenting the bug, before
fixing it and making the test pass.

Currently, the code base is considered mature and stable. As a result, changes are
smaller yet “self-contained”, i.e., contain all code, tests and documentation for a unit
of change.

6 Case 2: ArgoUML

ArgoUML7 is an open source UML modeling tool that includes support for all
standard UML 1.4 diagrams. The first contributions to ArgoUML go back to the
beginning of 1998, and up to December 2005, 7,477 subversion commits were reg-
istered. The final release we considered for this study was built by 42 developers who
wrote 1,533 classes totaling 130 kSLOC.

6.1 Observations

Change History View We observe that around commit 600 the first tests appear
(Fig. 7; ArgoUML.O.1). The introduction of these first test cases does not coincide
with the introduction of new production code, a trend that we witness throughout the
project’s history. Moreover, tests are typically also not changed together with their
corresponding production classes. In addition, we observe periods of phased testing
(ArgoUML.O.2), e.g., the vertical red and yellow bars around commits #2,700 and

7http://argouml.tigris.org/

http://argouml.tigris.org/
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#4,900. Certain tests appear to change frequently throughout ArgoUML’s history,
evidenced by horizontal yellow bars.

Of interest to note in ArgoUML’s development history is the fact that a white
band exists at the bottom of the visualization, corresponding to fileIDs 0 to 725
(ArgoUML.0.3). The vertical black addition line at commit #289 seems to indicate
that the VCS structure has been modified.

The derived statistics count 2,976 Java production classes, 126 of which have a
associated test. In addition, there are 127 integration tests.

Growth History View In the Growth History View in Fig. 8 we see that many test
classes are introduced around v0.10, which still contain relatively little code, sug-
gesting the introduction of test skeletons (ArgoUML.O.1). Next, the developers
follow a more consistent use of codified tests from v0.12 onward: tests are added and
extended periodically (in phases, see the stepwise growth: ann. 1), confirming the
change-observations in the Change History View. We tag these as periods of intense
testing, as most of the time these steps do not correspond with increases in production
code (ann. 1; ArgoUML.O.2). Besides these periods of testing, the test code is
barely modified, except for some test skeleton introductions early on (between
v0.10 and v0.12—ann. 2) and periodic test refinements (ann. 3) and test refactorings
(ann. 4). From v0.16 on, coding and testing happens in smaller increments, yet not
synchronous as the curves are not moving in similar directions (ArgoUML.O.4).

Note that the initial “hill” in the production code curve is probably due to archi-
tectural changes which are reflected in a changed layout in the versioning system, re-
sulting in the source code residing in two locations at the same time. Later on, before
release 0.10, the old layout structure and code-remains get deleted (ArgoUML.O.3).



342 Empir Software Eng (2011) 16:325–364

 0

 20

 40

 60

 80

100

v
0

.9

v
0

.1
0

v
0

.1
2

v
0

.1
4

v
0

.1
6

v
0

.1
8

v
0

.2
0

a
4

Dec’01 May’02 Oct’02 Aug’03 Jul’04 Apr’05 Dec’05

(1)

(2)

(3)

(4)

Production Code
Test Code

Production Classes
Test Classes

Test Command

Fig. 8 Growth History View of ArgoUML

Test Coverage Evolution View Even without this side-effect, we see in Fig. 9 that the
initial test-writing activity is rather low (ArgoUML.O.1) and only slowly increasing—
mind that we use a different scale compared to the previous case study. ArgoUML’s
view shows an increasing coverage as the test code fraction grows over time between
v0.10 and v0.18 to 37% block coverage for 9% test code. The last considered version
of ArgoUML, v0.20, is characterized by a sudden drop in test coverage (Argo

UML.O.5).

6.2 Internal Evaluation

We again first contrasted our observations with log messages from key points in the
development history.

“The initial test-writing activity is rather low and only slowly increasing.” (Ar-

goUML.O.1) We looked for test case additions in the early phases of the project, but
could not find many. The fact that the first release of JUnit (beginning of 1998) more
or less coincides with the start of the ArgoUML project might explain why the test-
writing activity was rather low in the earlier phases, as JUnit was not yet well known
at that time. According to the change log, a first JUnit test has been introduced in
September 2001 (without JUnit being included in the repository). Follow up log
messages mention the introduction of first version (#781) and simple (#824) test
cases, indicating the adoption of JUnit-style tests. Significant test reinforcements
happen from release 0.12 onward. Around commit #1,750 the development branch
0.13 containing test cases is merged with the main development line. At that time, a
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test suite as well as build targets for testing are first introduced. Therefore we accept
this observation.

First we tried to reject the observation “There are regular periods of phased test-

ing” (ArgoUML.O.2) by searching the log for commits where code and tests are
changed together. We only found those during merges of branches to the main de-
velopment line. The log indicates (e.g., #1,991 and #2,782) that tests are reinforced
before the commit (and where the actual development has been done before the
merge). Other test commit logs confirm the phased nature of testing (e.g., #1,796,
#2,166, #2,411, #2,811) and thus we accept the observation.

“The VCS structure has been heavily modif ied around commit #289” (Ar-

goUML.O.3). Looking at this period in the logs, we note how the original code is
mainly stored in a src/ directory of the main development line, while later additions
and moves all happen in src_new/. Thus, we accept the observation.

“From 0.16 on, coding and testing happens in smaller increments, yet not synchro-

nous.” (ArgoUML.O.4) First we tried to reject this observation by looking for log
messages indicating synchronous co-evolution in the period #6,100–#6,800, yet we
could only detect a few bug fixes with corresponding test case adaptations. Smaller
coding commits happened in between test commits of limited size thus we accept this
observation.

“Version v0.20 of ArgoUML is characterized by a sudden drop in test coverage.”

(ArgoUML.O.5) During the coverage measurement, we discovered that ArgoUML’s
mdr component, a storage backend, was extracted into a separate project. As a
backend, this component was better tested than the remainder of the project,
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resulting in the coverage drop. We accept the observation, yet the explanation reveals
that this is not due to a change in coding style but rather the result of an architectural
decision.

6.3 External Evaluation

As a reaction to our inquiry, the ArgoUML project leader and a developer com-
pleted the survey. They indicate that codified testing within the project is done by
developers in an informal way. Before a release, the policy requires the codified
tests not to signal any problem. Furthermore, users are involved in ad hoc testing
of the application during alpha and beta testing. Over the project’s lifetime, many
development tools have been adopted (and sometimes abandoned again). JUnit has
been introduced in October 2002, JCoverage has been used as coverage tool during
the period that we studied. Test-driven development is not a habit.

The developers acknowledge the limited early testing as well as the phased testing
approach, which they identify as periods where the focus of dif ferent developers was

periodically moving between testing and code. However, these testing activities were
not coordinated. Addressing the lower coverage compared to Checkstyle, the project
leader adds that ArgoUML being a desktop GUI application implies that most
of the code is meant to control graphical components. They perceive that writing,
maintaining and deploying test code for such systems requires a larger effort than for
batch-oriented applications.

7 Case 3: Software Improvement Group

The industrial case study that we performed pertains to a software project from
the Software Improvement Group (SIG). The SIG is a tool-based consultancy firm
that is specialized in the area of quality improvement, complexity reduction and soft-
ware renovation. The SIG performs static source code analysis to analyze software
portfolios and to derive hard facts from software to assess the quality and complexity
of a system.

For our study we investigate the development history of one of the SIG tools
between March 2005 and January 2008. Over time 20 developers worked on this
software project, which after around 3,500 commits results in 2,399 classes and 181
kSLOC.

As the build system of this case has built-in support for measuring coverage using
the Clover coverage tool (Clover 2010), we opted to use those results rather than
using Emma. Note however that different terminology is used (conditional coverage
instead of block coverage) and that coverage measurements may differ for certain
Java constructs (e.g., inner classes). Therefore one should not directly compare the
results between this case and the previous two.

7.1 Observations

Change History View At first sight, the Change History View of the SIG case is
characterized by the large number of test dots (yellow and red). A new production
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class is typically introduced together with the corresponding test case, which can be
seen in Fig. 10 through the fact that the “addition line”, which is normally black,
is almost completely covered by red triangles. Furthermore, changes to production
code are very frequently backed up by a change to the associated unit test. The steady
growth of the code base over time happens incrementally, with no major jumps. Some
larger increments occur right after v0.4 and v1.12 and before v1.5. Changes to many
files occur seldomly, e.g., between v1.1 and v1.2, before v1.10 and v1.15.

From our analysis, we have also obtained some statistical info, namely that during
the development of 1,859 production classes, 962 unit tests and 58 integration tests
were written.

Growth History View The Growth History View of the SIG case shows a contin-
uously synchronous development style, where coding and testing activities follow
each other closely all the time (SIG.O.1—see Fig. 11). At no point during the con-
sidered time frame can we speak of testing time delays or backlogs. We interpret
this as a development method where low-level testing happens alongside (or even
before) development, such as eXtreme Programming (XP) (Beck 1999) or test-
driven development (Beck 2003).

There do exist some larger increments during particular revisions that correspond
timewise to somewhat larger commits in the Change History View (SIG.O.2). In the
Change History View these larger increments are characterized by a vertical jump in
the (black) addition line. These larger commits may be due to developer style or a
merge from a branch. Even in those cases, all artifact entities grow together.

At certain points, the size of the artifacts drops. We expect that the developers of
the SIG are refactoring or are deleting redundant, old or unused code fragments at
revisions #1,981, #2,708, #3,105, #3,161 and #3,743 (SIG.O.3).
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Fig. 11 Growth History View of the SIG case

To note in Fig. 11 is the bump just before release 0.5, which only exists for a lim-
ited number of revisions. This is probably due to some restructuring within the VCS
system (SIG.O.4).

Test Coverage Evolution View Figure 12 shows a stable development process over
time as well as what looks like a linear relationship between coverage and tRatio.
The (statement) coverage stays at a high level between 86% and 94% throughout the
studied period, with tRatio only slightly varying between 57% and 60%. We observe
a minor drop in coverage (−5%) at the time the project is reaching the 1.0 release.
The coverage (as well as tRatio) remains at that somewhat lower level during the
first 1.x releases, but increases again to above 90% later on. We derive from the
figure that the unit testing approach being followed is uniform over time, based on
the observation that statement coverage and tRatio increase and decrease together.

7.2 Internal Evaluation

“The spike around #1,500 (just before v0.5) is due to restructurings in the version

control system” (SIG.O.4). Indeed, the log message at this points speaks about “CVS
troubles”.

“Larger increments in development happen at revisions #1,503, #2,218 and #3,489”

(SIG.O.2). The log entries for these revisions mention that files are imported from a
branch and that a new analysis module is added, hence we confirm the observation.
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“Old or redundant code is removed from the repository at revisions #1,981, #2,708,

#3,105, #3,161 and #3,743.” (SIG.O.3). The logs mention that untested source code
and old analysis modules are being removed, hence we accept this observation.

7.3 External Evaluation

To evaluate our findings, we presented the results of our analysis to developers and
managers of the company, followed by a general discussion. Afterwards, we inter-
viewed two experienced developers of the SIG case in depth. For this interview, we
used the survey questions of Table 2 as a starting point. However, as a result of the
interactive discussion additional questions popped up.

The developers told us about the development strategy that they follow, which is
a combination of Scrum (Schwaber and Beedle 2002) and eXtreme Programming.
Test driven development is encouraged, yet not enforced. From the start, JUnit
tests have been written to serve for verification as well as documentation purposes.
Tests are written to demonstrate how classes are used as well as to document bugs,
first to show their presence, next to show that they are fixed. This confirms our
observation SIG.O.1. This approach, the developers claim, works well to integrate
newcomers into the team. Other XP practices that are adopted at the SIG, such
as pair programming, the shared code ownership, and a large, running test suite
furthermore put social pressure on the developers to continue this strategy.

Unit tests are considered the responsibility of the individual developers. De-
velopers commit feature-complete changes, containing code and tests directly into
the main branch of the VCS. Daily builds report on the internal quality, including
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test success and coverage results. Test coverage is desired to exceed 80%, which is
perceived as feasible when testing happens right from the start. Developers avoid to
build up a test backlog.

The tests are separated from production classes, and are tied to them using the
“Test” suffix naming convention. These tests focus on single production methods.
They sometimes grow large, as isolation from other tests is considered important and
as such a lot of (recurring) setup is typically required.

Besides unit tests, the development team uses a front-end testing framework,
as well as testing scripts that are part of the build system, to verify compilation,
deployment and system launch. These tests were not considered in our analysis.

When presented with the results of the analysis, the audience was delighted to
see the synchronous co-evolution patterns as well as the frequent test changes, as
this reflects the test process that they intend to follow. Changes to the production
code may only be committed together with the modified corresponding test code.
The stability of the test process over time as seen in the views is due to the careful
and continuous application of their development method.

Last but not least, the discussions at the SIG resulted in various small improve-
ments to the TeMo tool and views, such as displaying time stamps, in addition to
revision numbers, in the Growth History View. These additions make it easier for
them to interpret the results in relation to time and releases. The SIG was quite
happy with the potential of TeMo and asked an intern to apply TeMo on a number
of other projects.

8 Discussion

8.1 Overall Evaluation of the Observations

For each of the cases, we generated the three visualisations and made a number of
observations (see Sections 5.1, 6.1 and 7.1). As explained in the experimental set-
up (Section 4) we then tried to confirm or reject these observations using the log
messages and inspections of the source code. Furthermore, we have also shown all
our observations to the original developers and hence have been subject to external
validation. Some of the more relevant remarks of the developers are discussed below.

Table 3 shows an overview of these results (internal and external validation),
illustrating that for two of the cases all observations are confirmed. Checkstyle is
an exception and the rejected observations there are due to a variety of reasons,
including unexpected side-effects of anonymous classes in Java (O.7) and changes in
the JUnit test framework (O.2). Also in the case of Checkstyle observation O.6 could
not be confirmed nor rejected, as the log messages are not explicitly mentioning the

Table 3 Evaluation of the
observations made

Case Confirmed Rejected Undecided

Checkstyle O.1, O.3, O.4, O.5 O.2, O.7 O.6

ArgoUML O.1, O.2, O.3, O.4, O.5 — —

Software O.1, O.2, O.3, O.4 — —

Improvement

Group
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testing strategy around that time and the developer that we sent the questionnaire to
did not respond to our specific remark.

However, as is typical during quality assessments, the relevance of the observation
is much more important than the fact whether it is right or wrong, as even wrong ob-
servations can lead to interesting insights. The answers to the questionnaires we sent
to the developers are particularly interesting in that respect as they give an indication
about the relevance of the observations and below we give some examples.

Checkstyle As an example of a wrong observation which is interesting anyway we
comment on observation Checkstyle.O.7. This observation was rejected because it
was not so much a matter of neglecting tests, but rather a matter of the introduction
and subsequent removal of anonymous classes. Yet, for a consultant, this is still very
interesting information, because it clearly showed that when the anonymous classes
were present in the system, they were not tested directly. As a consequence, he could
formulate a recommendation that if the developers were to use anonymous classes
again, they should ideally be tested in a direct way.

Also, the Checkstyle developer mentions that in principle they apply test-driven
development, but a quality engineer making observation Checkstyle.O.5 (a period
of intense development) knows that he will have to warn his team members about
decreasing testing vigilance. On the other hand, the Checkstyle.O.4 (synchronous co-
evolution) observation would allow the quality engineer to congratulate the team
members.

ArgoUML At a certain point in time, the ArgoUML team was making a conscious
decision to adopt JUnit tests. A quality engineer within the ArgoUML team can use
the Change History View and observations like ArgoUML.O.1 (slowly increasing
test activity) to demonstrate to the team members the progress that is made. On the
other hand, an external consultant making observation ArgoUML.O.5 (dropping test
coverage revealing a component extracted from the core) can use this information
nugget to start a discussion on the current architecture of the system and the rationale
behind it. In the same vein, an external consultant might question—just as we did—
the relatively low test coverage over the project’s history and would see that this
is again a conscious decision by the project team motivated by the nature of the
system (desktop GUI application). Such discussions are important during an external
quality assessment, as they expose the tacit knowledge surrounding the development
practices within the group.

Software Improvement Group An external consultant making observations
SIG.O.2 (larger increments of development) and SIG.O.4 (removal of old or redun-
dant code) can use these restructurings to trigger a discussion on the architecture and
the rationale behind it. The quality engineer in the SIG development team can use
the Growth History View to monitor the test activity and conclude that no extra en-
couragement is needed for test-driven development, a practice which is (as said
during the interviews) “encouraged, yet not enforced”. The quality engineer can
however congratulate the team, because the team is following test-driven develop-
ment very well.

Overall The three case studies that we have selected are quite diverse in their take
on testing. For instance, ArgoUML introduced developer testing quite late in the
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project’s history, after which they have followed a phased testing approach. The SIG
case on the other hand is an example of a synchronous co-evolution activity right
from the start. Checkstyle meanwhile, started off with a single developer test, evolv-
ing into a test suite that was maintained in a phased manner, which in turn evolved
into a synchronous test/development process.

8.2 The Research Questions Revisited

We now address the research questions that we have defined in Section 1.

RQ1 Does co-evolution always happen synchronously or is it phased? From the
Change History View, we deduce whether production code and test code are modi-
fied together. Specifically, we witness:

– Red or yellow vertical bars indicating periods of intense testing in Checkstyle
and ArgoUML. These periods of intense testing were often separated from each
other by several months.

– Test dots on top of production dots as indicators for the simultaneous introduc-
tion and modification of production code with corresponding unit tests (e.g., the
SIG case and during certain periods for Checkstyle).

By means of the Growth History View, we can see how the production and test
artifacts do or do not grow together over time:

– We observe testing backlogs in ArgoUML and Checkstyle, where development
takes the upper hand during the early stages of a system’s evolution.

– We observe a phased testing approach in ArgoUML, as evidenced by the
continuous growth in production artifacts and the stepwise growth in testing
artifacts.

– Synchronous co-evolution can be seen in the SIG case, by means of a continuous,
steady growth of all artifacts.

RQ2 Can an increased test-writing activity be witnessed right before a major release

or other event in the project’s lifetime? In the case studies that we performed, we saw
no evidence of a testing phase preceding a release. We attribute this to the nature of
the chosen case studies. The developers of both open source projects contribute in
their free time. There are no strict schedules nor formal policies in use. Checkstyle’s
developers apply a continuous testing activity alongside development. ArgoUML’s
development process does prescribe a user testing phase before a release. As this
approach does not result in codified tests, it can as such not be observed in these
views.

In the industrial case study, developers practice continuous integration (a key XP
practice) and Scrum sprints to yield frequent releases. As a result, there are no major
additional test activities before releases.

However, even though we did not observe any increases in test writing activity
before a release, our views are capable of detecting periods of increased testing, e.g.,
by red or yellow vertical bars in the Change History View and sharp increases in test
artifacts in the Growth History View. In Hindle et al.’s work on release patterns, an
increase in test-writing and documentation activity is reported before releases of the
MySQL database system (Hindle et al. 2007b).
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RQ3 Can we detect testing strategies, e.g., test-driven development? From a commit
perspective, test-driven development is translated as a simultaneous commit of a
production source file alongside its unit test. We found indications of test-driven
development in the SIG case and during certain periods of Checkstyle, by means of
“test” dots on top of “code” dots in the Change History View, signifying concurrent
introduction as well as co-evolution. These observations are backed-up by the results
of the developer surveys: later on during Checkstyle’s evolution, commits are self-
contained, which is also a required practice among the SIG developers.

RQ4 Is there a relation between test-writing activity and test coverage? For the three
considered case studies we observe that test coverage grows alongside test code
fraction, especially during periods of steady, incremental development. During major
restructurings however, e.g., as we see for the 2.x Checkstyle releases, this relation
can be disturbed.

We furthermore observe how both coverage and tRatio seem to increase as the
project matures, except the SIG case where both metrics remain stable from the
start.

While we do not want to make a direct comparison between cases, of interest
to note is the difference between Checkstyle and the SIG case. In particular, when
comparing the test coverage of the later versions of Checkstyle and the SIG case,
we observe similar coverage levels of between 80 and 90%. All the while, the
amount of test code needed to reach that level of coverage is strikingly different. For
Checkstyle, the amount of test code approaches 25% of the total source code, while
the tRatio observed in the SIG case varies between 58 and 60%. This is surprising as
it surmounts the contribution of test code to the overall source code that is described
in literature, where numbers between 10 and 50% are mentioned (Yamaura 1998;
Beck 2003; Gaelli et al. 2004; Sangwan and Laplante 2006; Moonen et al. 2008; Van
Rompaey and Demeyer 2008).

These numbers might suggest that one project is tested more efficiently in terms of
amount of test code necessary to reach a certain level of test coverage. However, code
inspection and developer interviews revealed that a different test strategy is being
used. More specifically, the SIG developers concentrate on writing isolated, self-
contained unit tests. Checkstyle developers on the other hand see their tests more
as I/O integration tests, yet associate individual test cases with a single production
class by name. The former type of tests typically run faster and are better at defect
localization (Meszaros 2007), while the latter can also serve as acceptance tests. As a
consequence of these different testing strategies, the Test Coverage Evolution View
cannot be used to compare across projects. Difference in testing strategy and the
consequences on test coverage have also been described by Kanstrén, who proposes
to measure test coverage separately for each level of testing (Kanstrén 2008).

During our own study, we found that ArgoUML has, next to the unit test suite, a
separate suite of automated GUI tests. These GUI tests are not part of the version
control system.

Also, the quality focus of the developers of the respective projects can play a
major role in the test coverage that is obtained. Developers that actively measure
and act upon test coverage are more likely to detect opportunities for increases in
test coverage and refactoring of the tests. We have witnessed log messages about
such activities in Checkstyle and the SIG case.
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Another factor of influence is the testability of the software system under test.
Bruntink and Van Deursen observed a relation between class level metrics (espe-
cially Fan Out, Lines Of Code per Class and Response For Class) and test level
metrics (Bruntink and van Deursen 2006). This means that the design of the system
under test has an influence on the test-writing activity required to reach a certain
coverage criterion.

Main research question “Can we establish the developer testing process that is being

followed by mining a version control system (VCS)?” By answering RQ1 through
RQ4, we have shown that our approach is capable of providing a significant level
of insight into the developer testing process. In particular, our approach is able to
detect whether production and test code are being developed and/or maintained at
the same time and whether increased periods of test writing activities are taking
place (before a release or at another point in time). Furthermore, we have been
able to observe a test-driven development style and we have seen indications that
as a software project’s development matures, the fraction of test code present in the
source code base increases (or stabilizes) alongside test coverage.

8.3 Post-Mortem Analysis of the Visualization Approach

Characteristics of the visualizations used From our experiences using the visualiza-
tions that we created for the purposes of studying the co-evolution of production and
test code, we made the following observations:

– The visualizations allowed us to quickly gain insight into the testing process
of the software system under study, to witness changes in development and
testing patterns and to make an initial assessment as to how much we could
rely on the existing testing suite. Gathering the same level of insight without
the visualizations, e.g., by browsing the log files and/or interviewing the devel-
opers/maintainers, is much more time-intensive and would not have allowed us
to obtain a broad overview of development and testing practices over a consid-
erable period of time.

– The visualizations scale reasonably well. In particular, the Change History View
scales well to large projects, due to its relative lightweightedness – it only
needs a dump of VCS activities – and the view itself is easy to navigate and
allows for zooming, thus giving it a limited form of interactivity (Lanza 2010).
The Growth History View takes quite some time to generate (ranging from
several hours to several days, depending on the size of the project and time
period under consideration), but once generated is intuitive to use. The current
implementation has no zooming capabilities, rendering this view more difficult
to use in very large scale projects. The Test Coverage Evolution View is created
manually, mainly due to the difficulties that we had in obtaining test coverage
data automatically from 2 out of our 3 projects. Due to the limited number of
data points that we collected manually, the visualization is easy to interpret,
however, it is not so easy to generate.

Complementarity of the three evolution views When performing our case studies,
we experienced that our three views are complementary when trying to assess the
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“test health” of a software process. Firstly, when the Change History View indicates
a change to a large number of artifacts, we need the Growth History View to
determine whether the change actually entails the addition of new production or test
code, or whether the changes are more shallow, of which typical examples are code
beautification or import-statement optimization. Secondly, while the Change History
View and Growth History View tell something about the test-writing activity of the
developers, they tell little to nothing about the potential of the test suite to detect
defects. This is where the Test Coverage Evolution View comes in and relates the
test writing activity to the test coverage.

9 Threats to Validity

In this section we identify factors that may jeopardize the validity of our results and
the actions we took to reduce or alleviate the risk. Consistent with the guidelines for
case studies research (see Runeson and Höst 2009, Yin 2002) we organize them into
four categories.

Construct validity: does the case study investigate what was intended? For the exter-
nal evaluation we have either sent a survey to the developers or we have interviewed
the developers ourselves. In order to mitigate the leading question bias—i.e., the
pressure participants might feel to answer positively, we have explicitly asked the
developers who responded to our survey or participated in our interview to have
an open and honest discussion. We also let them see and approve our text before
publication; nobody made any objections to the text.

We have identified two variation factors of the development process with regard
to the use of the version control system (namely the commit style and the use of
branching) which may affect the visualizations. The individual commit style—short
cycles, one commit per day, ...—has an effect on the granularity of the commits, hence
on the number of dots in the visualizations. Moreover, the Checkstyle developers
have informed us about a change in commit style over time: as the project has become
more mature, it has become a habit to make commits self-contained, i.e., all changes
to code, tests and documentation are added in a single commit. Secondly, developers
can use branching. In ArgoUML, developers use branches to fix certain bugs. In the
SIG case however, branching is not a common practice. In the Change and Growth
History Views, merging a branch back into the main development line gives a similar
result as a large commit. If a large part of a project’s development effort happens in
branches, it can be useful to specifically apply the views to these branches. Since the
views are mainly used to look for general trends, we expect this effect of the commit
style and branching to be minimal. However, this is certainly something that needs
to be considered when replicating the case study.

Finally, we note that when a production class is moved within the repository,
e.g., when the class changes package, a new horizontal line is introduced in the
Change History View. The associated test class—if any—however, is now associated
with both the old and the new instance of the class in the Change History View.
This is because the strategy that we follow cannot determine with certainty that the
old instance is in fact deleted (this is related to a technicality that originates from
a sometimes faulty cvs2svn conversion script). As a consequence we also cannot
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determine whether the old instance will never be changed again. As a result, the
Change History View can sometimes feature more yellow dots for a particular
revision than would be expected. We have investigated this phenomenon with regard
to our case studies and the number of times this has happened seems low, thus
limiting its impact on the results.

Internal validity: are there unknown factors which might af fect the causal relationship?

Since this is an exploratory case study, we did not seek for causal relationships,
hence this category of risks is less important. However, the way we set up our cross-
validation—with an internal (inspection of the log-messages) and external evaluation
(interviews with the developers)—might miss certain context information that may
provide a better explanation of some of the observations.

Concretely, for the internal evaluation we use the versioning system’s log mes-
sages to confirm or reject our observations. As no strict conventions are in place for
what should be specified in such messages, there are large differences in the content
and quality of log messages across projects, tasks and developers. Hence there is
a risk that the developers did not bother to record important context information
into their log message and that we consequently misclassified an observation into
confirmed/rejected/undecided. In response to findings by Bachmann and Bernstein,
who report that 20% of the log messages in the Eclipse version control system
remained empty (Bachmann and Bernstein 2010), we performed a similar analysis
for our three case studies. The results can be found in Table 4. Our readings suggest
that the developers filled in the log messages rather conciously. Although, these
readings provide no guarantees as to the quality of the log messages, they do provide
an indication that the log messages can be used for validation purposes.

Concerning the external evaluation, the number of persons that cooperated in the
survey or interview was limited to one or two individuals per case study. As such, we
concede that their view on the project’s history and crucial events is limited and that
they might miss crucial context information.

External validity: to what extent it is possible to generalize the f indings? First of all,
we must point out the inherent limitations of studying the testing process by
analyzing the contents of a VCS. The focus of our approach is on testing activities
that are performed by the developers themselves, i.e., unit testing and integration
testing, as these tests are typically codified and stored into the VCS alongside the
production code. We acknowledge that the testing process is much more than only
unit and integration testing. However, when the tests are not code and not stored in
the VCS, we have no means of involving these tests in our VCS-based approach.

We have selected the cases as being representative for software systems produced
in smaller teams (5 to 10 core developers) where team members take up varying
roles (analyst-designer, programmer, tester, debugger) and were quality assurance is

Table 4 Number of empty log
messages

Checkstyle ArgoUML SIG

Total log messages 2,258 7,477 2,838

Empty log messages 2 162 98

Percentage empty 0.09% 2.17% 3.45%

log messages
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mostly integrated into the daily activities of the team members. We cannot make any
claims about the use of the views in larger teams with a separate quality assurance
department. Also, the three cases cover three quite distinct testing cultures and the
tool has been able to detect symptoms of an XP/Scrum-like development process.
Nevertheless, for the moment we do not make any claims regarding the capability of
detecting other development processes.

Reliability: is the result dependent on the researchers and tools? The observations
made on each of the views were collected and analyzed by the developers of the
co-evolution views themselves. The same holds for the cross-validation against an
internal and external perspective. Therefore, there is the risk that other researchers
would make other observations or find other supporting or contradicting evidence.
We reduced this risk by having a systematic procedure for both the interpreting of the
diagrams (described in Section 2) and the cross-validation (described in Section 4).

The TeMo toolchain might contain faults which explain the results of the case
studies. As a countermeasure, we thoroughly tested the tool and we relied as much
as possible on widely used components with a reputation of reliability (JFreeChart,
Emma, Clover, XQuery, etc.).

In order to create the Change History View (see Section 2.1) we use a simple
heuristic that matches the classname of the unit of production code to the classname
of the unit test, e.g., we matched String.java to StringTest.java. This
naming convention is promoted in literature and tutorials (Gamma and Beck 1998;
Fewster and Graham 1999; Feathers 2005) and all of our case studies adhered to this
naming convention quite strictly. Nevertheless, to ensure that the matching is indeed
correct, we have investigated the generated production/test code pairs and we found
two false positives (over all of the three case studies), which we have removed with
an exception list in our configuration.

10 Related Work

D’Ambros et al. provide an overview of the research performed in the area of
Analyzing Software Repositories to Understand Software Evolution (D’Ambros et al.
2008). Their work gives a good overview of software evolution related work that is
being done in the Mining Software Repositories community (Hassan et al. 2005).

Within this area, we have identified three research subdomains that are relevant in
the context of this work: (i) software visualization (targeting software evolution) and
(ii) research on traceability and co-changes and (iii) empirical studies that investigate
the efficacy of testing strategies. This section highlights some of the contributions in
these areas that lie closest to our research.

Visualizing software evolution Visualizing the revision history of a set of source
code entities has been used to study how these entities co-evolve. Van Rysselberghe
and Demeyer (2004) use a very simple, yet effective visualization of the history of
a software system in order to identify the most valuable and problematic parts of
a software system. Their approach allows them to identify unstable components,
design evolutions and fluctuations in team productivity.

Wu et al. (2004) use the concept of spectographs to visualize how metric-values
for software entities evolve over time. Spectrographs allow to visualize the decay
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of a particular property over time, e.g., an entity that has just been changed can be
colored red, while a component that has been changed a little while longer ago, can
be colored orange.

Lanza (2001) and Lanza and Ducasse (2002) extend on the previous idea of poly-
metric views (Lanza and Ducasse 2003) by using a visualization they call the evolution

matrix. This visualization depicts time on the X axis, entities of the software system
on the Y axis and they use polymetric views, i.e., boxes of different colors and shapes
to express properties of the entities over time.

The aforementioned visualizations are similar through the fact that they all use
one axis to represent time, while the other axis represents the source code entities.
This visualization-approach has been used to detect logical coupling between files,
determine the stability of classes over time, developer expertise and interaction, etc.
These approaches however, do not make a clear distinction between different types
of source code entities, e.g., between production code and test code.

The Evolution Radar by D’Ambros et al. (2009) on the other hand does not use
the typical XY-chart visualization. Rather, it uses the idea of a radar to visualize
the historical information of a software system. The evolution radar can be used to
analyze change couplings to detect architectural decay and coupled components.

Evolens is a graph-based visualization technique developed by Ratzinger et al.
(2005). It represents the directory structure and source files as nested graphs. Change
coupling dependencies between source files are visualized as arcs between nodes,
where the width of the arcs is determined by the number of times two source files
are committed together. A focal point, a user-selectable entity of interest, is used to
focus the analysis on the change coupling relationships of a specific entity.

The use of source code metrics to characterize the evolution of a system has for
example been used by Godfrey and Tu to investigate whether open source software
and commercial software have different growth rates (Godfrey and Tu 2000). To a
certain degree, our research interests are similar as we investigate whether produc-
tion code and test code grow at similar or different points in time during a project’s
history in our Growth History View.

Telea and Auber present Code Flows (Telea and Auber 2008), a visualization
technique that allows to analyze the structural evolution of source-code at a level
higher than the line level, but below the file level.

Voinea and Telea developed a framework for visual data mining of version control
repositories (Voinea and Telea 2006). Their framework delivers a basic toolbox for
data acquisition, analysis and visualization of historical data. Of particular interest,
is that they also propose a new technique for identifying cluster of files with similar
evolution, which can help users to perform a logical decomposition of the system and
to predict future changes.

Other work by Voinea et al. is CVSScan (Voinea et al. 2005). CVSScan is an
interactive tool that makes use of dense pixel displays to show the overall evolution
of code structure, semantics and attributes. A user study with CVSScan revealed that
users were able to easily spot issues at a high-level and then drill down to get more
information. In Voinea and Telea (2007) continued and refined their work.

Co-changes Another branch of research in the same area does not rely on visu-
alization but identify logical coupling, i.e., coupling that might not be immediately
noticeable from analyzing the source code, but coupling that is visible through the
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fact that certain entities are frequently committed together. Seminal work in this
area is the work of Gall et al. (1998) and Ball et al. (1997).

In the domain of co-changes, Beyer and Noack visualize the software history by
displaying sequences of cluster layouts based upon co-change graphs (Beyer and
Noack 2005). These graphs consist of files as nodes and the level of co-change as
weighted edges. Beyer and Hassan continued on this idea and added animation to
follow the evolution of software throughout time (Beyer and Hassan 2006).

To identify co-changing lines, Zimmermann et al. (2006) build an annotation
graph based upon the identification of lines across several versions of a file.

Kagdi et al. (2007) apply sequential pattern mining to file commits in software
repositories to discover traceability links between software artifacts. The frequent
co-changing sets are subsequently used to predict changes in newer versions of the
system.

Hindle et al. (2007a) studied the release-time activities for a number of software
artifacts: source code files, test files, build files and documentation. In particular,
they examine four open source systems by counting and comparing the number of
revisions in the period before and after a release. They summarize the observed
behavior in a condensed notation. In contrast to our own study, Hindle et al. (2007b)
report an increased test writing activity just before releases of the MySQL database
system. Even though we did not observe any increases in test writing activity before
a release in our three case studies, our views are capable of detecting periods of
increased testing, e.g., by red or yellow vertical bars in the Change History View and
sharp increases in test artifacts in the Growth History View.

Fluri et al. examine whether source code and associated comments are changed
together alongside the evolutionary history of a software system (Fluri et al. 2007).
This work is similar in its (technical) approach to ours, i.e., mining the versioning
repository and refining file changes into categories to quantify changes and observe
(lack of) co-evolution. Conceptually, the main difference is of course that Fluri et al.
concentrate on a different kind of co-evolution, namely that of source code and
documentation instead of production and test code.

Bouktif et al. propose an approach based on dynamic time-warping to answer the
question: given a software system and one file under modification, what other files
must be changed (Bouktif et al. 2006)? Their approach, called Synchrony, obtains
high recall and precision levels when compared to the opinion of experts.

There have also been efforts to use co-change information for aspect mining.
In particular, Breu and Zimmermann (2006), Adams et al. (2010) and Mulder and
Zaidman (2010) have made efforts in this area.

Empirical studies Bhat and Nagappan investigate whether applying test-driven
development improves the code quality of software (Bhat and Nagappan 2006).
They studied two projects at Microsoft and found that while applying test-driven
development takes more time up front, there is a significant increase in code quality.
As a side note, they also note that one of the additional benefits of early testing is
the availability of documentation in the form of tests.

Siniaalto and Abrahamsson report on a comparative case study in which they
measure the effect of test-driven development with regard to program design and test
coverage (Siniaalto and Abrahamsson 2007). While they did not find a conclusive
effect of test-driven development on the design of the software systems, their
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research does indicate that the test coverage obtained with test-driven development
is superior to iterative test-last development.

Relation to our own work The work described in this paper builds upon many of the
aforementioned ideas, e.g., it uses simple XY-chart visualizations to depict the evo-
lution of a software system. While the visualizations we use are quite similar to those
previously presented, the actual subject of investigation, namely the co-evolution of
production and test code is a unique new angle of research in the domain.

11 Conclusion & Future Work

In this paper we study the co-evolution between production code and test code.
In this context, we make the following contributions:

1. We introduce three views: (i) the Change History; (ii) the Growth History; and
(iii) the Test Coverage Evolution View; and combine them to study how test
code co-evolves over time.

2. We demonstrate and validate the use of these views on two open source cases
and one industrial case by making several relevant observations about the testing
processes used in the development.

In particular, across our cases we witness phased testing approaches and more
synchronous co-evolution, corresponding to what is to be expected from the devel-
opment style that is being followed by the developers (RQ1). Our case studies do
not show an increase in testing activity before major releases, but we did recognize
periods of intense testing in the development’s history (RQ2). We found evidence
of test-driven development in two of our case studies, which showed up as tests
being committed alongside production code (RQ3). The fraction of test code in the
source code tends to increase with increasing coverage, yet, we have to be careful
to compare the Test Coverage Evolution View across projects due to differences in
testing strategies. Coming back to our central research question, we find that mining
a version control system provides us with a significant level of insight into the testing
process.

Some future directions that we have identified for this line of work are: (i) to apply
our analysis to additional (larger) cases to characterize other development methods,
(ii) to refine our analysis so that we can discern between artifacts of different testing
levels, e.g., unit tests, integration tests, etc., (iii) to automatically filter out shallow
changes to code in the Change History View, (iv) to perform a user study with
the TeMo tool (similar to Cornelissen et al. 2009) (v) to continue investigating
statistical techniques to the change history data so that phenomena like test-driven
development or phased testing no longer have to be visually recognized (Lubsen et al.
2009) and (vi) to continue investigating the relationship between the testing strategy
followed and the efficiency of the issue handling process (Luijten et al. 2010).
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