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Abstract

Background: Patients with COVID-19 have increased sleep disturbances and decreased sleep quality during and after the
infection. The current published literature focuses mainly on qualitative analyses based on surveys and subjective measurements
rather than quantitative data.

Objective: In this paper, we assessed the long-term effects of COVID-19 through sleep patterns from continuous signals collected
via wearable wristbands.

Methods: Patients with a history of COVID-19 were compared to a control arm of individuals who never had COVID-19.
Baseline demographics were collected for each subject. Linear correlations among the mean duration of each sleep phase and the
mean daily biometrics were performed. The average duration for each subject’s total sleep time and sleep phases per night was
calculated and compared between the 2 groups.

Results: This study includes 122 patients with COVID-19 and 588 controls (N=710). Total sleep time was positively correlated
with respiratory rate (RR) and oxygen saturation (SpO2). Increased awake sleep phase was correlated with increased heart rate,
decreased RR, heart rate variability (HRV), and SpO2. Increased light sleep time was correlated with increased RR and SpO2 in
the group with COVID-19. Deep sleep duration was correlated with decreased heart rate as well as increased RR and SpO2. When
comparing different sleep phases, patients with long COVID-19 had decreased light sleep (244, SD 67 vs 258, SD 67; P=.003)
and decreased deep sleep time (123, SD 66 vs 128, SD 58; P=.02).

Conclusions: Regardless of the demographic background and symptom levels, patients with a history of COVID-19 infection
demonstrated altered sleep architecture when compared to matched controls. The sleep of patients with COVID-19 was characterized
by decreased total sleep and deep sleep.

(J Med Internet Res 2022;24(7):e38000) doi: 10.2196/38000
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Introduction

Although COVID-19 is primarily known as a pulmonary disease
[1], literature suggests significant consequences regarding daily

activities and mental health due to the infection itself or
associated quarantine [2]. Moreover, reports indicate increased
incidences of psychologic and psychiatric conditions during the
pandemic such as sleep disturbances and decreased accessibility
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to health care [3,4]. Thus, there is a need for remote continuous
monitoring, telemedicine, and digital health monitoring systems
to bridge the gap between patients and physicians [5].

The sleep cycle is traditionally divided in two phases: rapid eye
movement (REM) sleep and nonrapid eye movement (NREM).
Furthermore, NREM sleep is divided into the three subphases
of (1) awake, (2) light, and (3) deep sleep. Human body usually
cycles through these phases 4 to 6 times per night with 90
minutes in each stage [6]. Initially, sleep has been studied using
polysomnography, which is a multisensor system that has been
the gold standard for analyzing sleep stages and sleep-related
disorders [7]. However, polysomnography has many drawbacks,
such as the need for a hospital stay and its high-cost logistics
such as the use of complex hardware needed for
electroencephalographic, electromyographic, and
electrooculographic assessments. All those factors can alter
physiological sleep architecture and bias the results.
Consequently, less than half of sleep studies nowadays are
conducted in formal sleep facilities [8]. Having said that,
wearable technology has been developed in the last decade,
which consists of smart devices or gadgets worn close to or in
contact with the skin used to capture biometric data [9]. With
the recent trend of wearables, we have seen the development
of photoplethysmography (PPG) technology to analyze different
sleep phases, avoiding challenges that accompany the traditional
polysomnography exam. In fact, reflective light emitted by the
wearable device allows to measure blood volume changes in
the vessels, which allows for the accurate measurement of heart
rate (HR) and heart rate variability (HRV) [10]. HRV serves as
a surrogate to estimate the effect of both sympathetic and
parasympathetic nervous systems on the cardiovascular system.
In addition, activities of both parasympathetic and sympathetic
nervous systems vary in different sleep phases. For example,
increased parasympathetic nervous system activity and therefore
decreased HR was noticed in deeper stages of sleep [11,12].
Consequently, machine learning algorithms have been developed

using the relationship between biometrics (such as HR and
HRV) and sleep cycle to define sleep phases using PPG [13-16].

Long COVID-19 syndrome is defined as symptoms that persist
after acute COVID-19 infection; however, the definitions vary
by literature [17-19]. Previous studies have shown increased
sleep disturbances and decreased sleep quality during and after
COVID-19 infection [20,21]. However, those studies focused
on qualitative analyses based on subjective measurements and
survey responses rather than quantitative data [22,23]. Hence,
in this paper, we study and evaluate the long-term effects of
COVID-19 on sleep patterns using the continuously monitored
metrics from wristband devices.

Methods

Study Design
Wearables to Investigate the Long Term Cardiovascular and
Behavioral Impacts of COVID-19 (WEAICOR) is a prospective
observational study of subjects 18 years or older who were
monitored using the Biostrap wearable or wristband device.
The study aims to identify the impact of long COVID-19
infection on sleep using wearables. In this analysis, we sought
to compare continuous data recorded using a wearable device
between patients who were diagnosed and recovered from
COVID-19 and controls who were never diagnosed with the
disease.

Patient’s enrollment flowchart is represented in Figure 1. After
eligibility screening and signing electronic consent forms, all
subjects were sent a Biostrap device by mail to continuously
monitor their biometric data. Biometric parameters included
HR, HRV, respiratory rate (RR), and oxygen saturation (SpO2).
Device Instructions tailored to the study were provided by phone
call by the study coordinator, along with a recorded video
detailing the steps to activate the device with the mobile app.

Figure 1. Study flowchart.
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Ethics Approval
WEAICOR study was approved by Tulane University Institution
Review Board on June 09, 2020 (Study #2020-678).

Study Population
In this analysis, patients who had COVID-19 and recovered
(study arm) will be compared to a control arm of participants
who never had COVID-19 or associated symptoms. The study
arm recruitment was carried out through flyers and
advertisements on different platforms of social media along
with mass emails generated to the Tulane staff and student body.
A total of 200 participants were assessed for eligibility by
September 2021. The control data were collected from a group
of participants who opted in to an internal Biostrap study from
April 12, 202, to July 31, 2020, as a part of their COVID-19
initiative. The participants received a baseline questionnaire
collecting demographic and medical history data. Additionally,
a daily survey was sent to all individuals to identify any
COVID-19 symptom or positive COVID-19 case in each
participant’s household. Only individuals who consistently
answered “No” regarding a positive COVID-19 diagnosis and
denied related symptoms were included in the control group.
Additionally, the existing users were willing to contribute their
deidentified data for research. We secured informed consent
forms and listed Tulane University as an organization with data
access.

Biostrap Device
Biostrap is a PPG-based smartband that records patients’ vitals
at rest with 5-minute intervals and generates graphic results and
reports on the Biostrap mobile app. PPG is an optical technique
for detecting blood volume changes within the blood vessels
by the changes in the light received from the photodiode to
estimate physiological parameters. Biometrics such as HR,
HRV, RR, and SpO2 along with others related to the
cardiovascular and autonomic nervous systems can be computed
noninvasively using collected infrared signals. When paired
with infrared signals, a red-light signal enables SpO2 estimation.
The combination of all those parameters along with arm
movement enables us to classify sleep cycle into the 3 different
phases of awake sleep, light sleep, and deep sleep. Example of
biometric recordings (Figure 2) and sleep analysis recordings
(Figure 3) are provided for simplification. Figure 2 shows
biometrics recordings during a single night for a patient with
COVID-19. Figure 3 describes the summary report and time
spent in different sleep phases in a single night for a patient
with COVID-19. PPG and accelerometer data collected from
the wrist are transferred by the mobile app to the Biostrap cloud
server, where they undergo signal processing and machine
learning algorithms to generate physiological data at rest and
transfer it to Tulane’s data warehouse server. The accuracy and
reproducibility of the Biostrap device in assessing basic
physiological data have already been reported in previously
published studies [24,25].

Figure 2. Recording example of biometrics during a night for a patient with long COVID-19. (a) RESP: respiratory rate (respirations per minute); (b)
SpO2: saturation of oxygen (%); (c) HR: heart rate (beats per minute); and (d) HRV: heart rate variability (beats per minute).
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Figure 3. Recording example of sleep summary and sleep phases during a night for a patient with long COVID-19. HR: heart rate; HRV: heart rate
variability.

Patient Follow-up
The research nurse and coordinator assigned to the study used
Biostrap’s remote data to ensure adequate data generation,
patient compliance, and technical troubleshooting. Throughout
the study, they actively followed up with the patients through
phone calls and emails to address any problem or concern.

Data Analysis
The following baseline characteristics were collected for each
participant: age, gender, BMI, comorbidities, educational level,
and COVID-19 symptoms severity level. The means of these
baseline characteristics were calculated for COVID-19 and
controls and compared using 2-sample t test (2-tailed).

For each participant, the average duration in different sleep
phases per night (awake, light, deep, and total) was calculated.
For each sleep phase, we took the number of minutes per phase
per day and calculated the average over the total number of
days. Pearson bivariate linear correlations among the mean
duration in sleep phases and means of biometrics (HR, HRV,
RR, and SpO2) were performed for COVID-19, controls, and
the whole study population (specified as “Cohort” in the results
section) to evaluate the association between the different
components of the autonomic system and sleep cycle (Figure
4). The direction of changes in biometrics and duration of sleep

phases will allow us to understand more the interaction between
these 2 systems.

In addition, the participants from the whole cohort were divided
into groups depending on their biometrics average during sleep
(higher HR: >80 beats per minute vs lower HR: <80 beats per
minute [26]; higher HRV: >20 milliseconds vs lower HRV: <20
milliseconds; and higher RR: >20 breaths per minute vs lower
RR: <20 breaths per minute). Sleep phases (total, awake, light,
and deep sleep) between the different groups were compared
using Mann-Whitney U test. Patients with low HRV (n=27) and
high RR (n=0) were little in number, and therefore the analysis
was not statically significant for HRV and was not feasible for
RR.

The mean measurements for each participant’s total sleep time
and sleep phases per night (awake, light, deep, and total) were
calculated and weighted proportionally to the number of days
each participant submitted data. For example, a participant with
25 nights of sleep data would have half of the weight of one
with 50 nights of sleep data. From that weighted set, the median
of each group’s sleep times was taken and recorded, as the
distributions of mean sleep times across both groups departed
significantly from normality according to the Shapiro Wilk test.
Distributions of sleep times in the control group and the group
with COVID-19 were compared using the 2-Sample Wilcoxon
(Mann-Whitney U) test. The same analysis was conducted in
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an unweighted manner, where, for example, a subject with 25
nights of sleep data had just as much an effect on the test as a
subject with 50 nights of sleep data. Two-sided P values of less
than .05 were considered significant.

To mitigate potential selection bias arising from the
observational nonrandomized study design, we applied
propensity score matching and achieved a more balanced control

group. During the matching process, the study participants with
a history of COVID-19 were matched 1:1 to the participants
without any history of COVID-19 by calculating the propensity
score of the participants having COVID-19. The propensity
score was carried out by estimating the probability of each
participant having a history of COVID-19 based on age, BMI,
and gender through multivariable logistic classifier.

Figure 4. Correlations between different sleep phases and biometrics. Corr: correlation with the whole cohort; HR: heart rate; HRV: heart rate variability;
RR: respiratory rate; SpO2: oxygen saturation. *P<.05; **P<.01; ***P<.001.

Results

Baseline Characteristics
We included 122 patients in the group with COVID-19 and 588
participants in the control group. Patients in the COVID-19 arm
were younger than controls (of 42.8, SD 15.5 vs 46.0, SD 14.0
years; P=.02). Patients with COVID-19 were 32% (39/122)
female, and the controls were 22% (129/588) female (P=.33).

There were no other significant differences in baseline
characteristics and comorbidities between the 2 arms. Notably,
both populations tended to be young and healthy, with most
participants having few or no comorbidities. In the group with
COVID-19, most of the patients considered (n=112, 92%) were
not hospitalized during their COVID-19 diagnosis. Data were
collected 171 (SD 114) days after their COVID-19 diagnosis.
All baseline characteristics for both COVID-19 and control
groups are represented in Table 1.
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Table 1. Baseline demographic and clinical characteristics of COVID-19 and control arms.

P valueControl (n=588)COVID-19 (n=122)Characteristics

.00145.99 (14.0)41.32 (15.7)Age (years) mean (SD)

.33Gender, n (%)

453 (77)76 (62)Male

135 (23)46 (38)Female

.00127.1 (5.7)28.7 (8.6)BMI (kg/m2)

.36Race or ethnicity, n (%)

465 (79)71 (58)White

3 (0.5)20 (16.5)African American or Black

29 (5)12 (10)Asian

41 (7)5 (4.5)Latino or Hispanic

50 (8.5)13 (11)Others

.96Comorbidity, n (%)

506 (86)88 (72)None

12 (2)6 (5)Diabetes

12 (2)1 (1)Immune system deficiencies or HIV

12 (2)4 (3)Heart conditions

24 (4)15 (12)Asthma or chronic lung disease

18 (3)5 (4)Extreme obesity

6 (1)4 (3)Cancer treatment

.21Education level, n (%)

247 (42)27 (22)Bachelor’s degree

65 (11)30 (24)Some college

41 (7)16 (13)Associate degree

112 (19)28 (23)Master’s degree

35 (6)1 (1)Doctorate

59 (10)10 (8)Professional

29 (5)11 (9)Others

Average Follow-up of the 2 Groups Using the Biostrap
Device
Controls were followed up for 64 (SD 28) days and patients
with long COVID-19 were followed up for 55 (SD 66) days.
For the weighted analysis, 37,709 recorded days (103.2 years)
were collected for the control group and 7228 recorded days
(19.8 years) were collected for patients with COVID-19.

Correlations Between Biometrics and the Different
Phases of the Sleeping Cycle
All the correlations between sleep phases and biometrics are
summarized in Figure 4.

Total Sleep Cycle
Total sleep time was correlated with RR (r=0.084, P≤.05 for
cohort and r=0.119, P≤.01 for controls) and SpO2 (r=0.076,
P≤.05 for cohort and r=0.123, P≤.01 for controls). Total sleep

time was not significantly correlated with HR (P>.05) and HRV
(P>.05).

Awake Sleep Phase
Significant correlations were found between HR (r=0.109, P≤.01
for cohort and r=0.148, P<.001 for controls), RR (r=–0.201,
P<.001 for cohort and r=–0.161, P<.001 for controls), HRV
(r=–0.099, P≤.01 for cohort and r=–0.105, P≤.05 for controls),
SpO2 (r=–0.205, P<.001 for cohort and r=–0.162, P<.001 for
controls), and awake sleep phase.

Light Sleep Phase
For light sleep phase, only RR (r=0.358, P<.001) and SpO2

(r=0.249, P<.001) in the COVID-19 group were found to be
correlated with the time spent in this phase. There was no
significant correlation between light sleep and HR nor between
light sleep and HRV (P>.05).
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Deep Sleep Phase
As for deep sleep, the time spent in this phase was correlated
with HR (r=–0.093, P≤.05 for cohort and r=–0.098, P≤.05 for
controls), RR (r=0.121, P≤.01 for cohort and r=0.108, P≤.01
for controls), and SpO2 (r=0.106, P<.001 for cohort and r=0.094,
P≤.01 for controls). However, it did not significantly correlate
with HRV (P>.05). As seen in Figure 4, awake sleep
significantly correlates with HR in all participants (r=0.121,
P<.01), in the control group (r=0.148, P<.001), but not in
patients with COVID-19 (r=0.097, P>.05); awake sleep also
significantly correlates with RR in all participants (r=–0.205,
P<.001), in the control group (r=–0.161, P<.001), and in patients
with COVID-19 (r=–0.252, P<.01); awake sleep also correlates
with HRV in all participants (r=–0.094, P<.05), in the control
group (r=–0.094, P<.05), but not in patients with COVID-19

(r=–0.010, P>.05); awake sleep correlates with SpO2 in all
participants (r=–0.200, P<.001), in the control group (r=–0.162,
P<.001), and in patients with COVID-19 (r=–0.187, P<.05).
The same interpretation can be drawn from Figure 4 for light
sleep, deep sleep, and total sleep.

Comparison of Sleep Cycle in Patients With Lower vs
Higher HR
After dividing the cohort into patients with higher HR (50/710
patients, 7%) and lower HR (660/710 patients, 93%), patients
with higher HR had more time in awake sleep (65 minutes vs
55 minutes, P=.02) and less time in light (232 minutes vs 258
minutes, P=.001), deep (128 minutes vs 135 minutes, P=.1),
and total sleep (425 minutes vs 449 minutes, P=.006; Figure
5). The number of patients and the different results are listed in
Table 2.

Figure 5. Summary representation of propensity score matching for age, BMI, and gender. F: Female; M: Male. BMI: body mass index.
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Table 2. Different biometric groups with respective number of patients.

Total sleep phase

(min)d
Deep sleep phase

(min)c
Light sleep phase

(min)b
Awake sleep phase

(min)a
Number of patientsGroup

4251282326550Higher HRe (>80 beats/min)

44913525855660Lower HR (<80 beats/min)

————g0Higher RRf (>20 respirations per
minute)

————710Lower RR (<20 respirations per
minute)

————683Higher HRVh (>20ms)

————27Lower HRV (<20ms)

aP=.02.
bP=.001.
cP=.1.
dP=.006.
eHR: heart rate.
fRR: respiratory rate.
gStatistical analysis was not performed to assess the differences between these groups because of the low number of patients in Higher RR and Lower
HRV groups.
hHRV: heart rate variability.

Comparison of Sleep Length Between Patients With
COVID-19 and Controls

Unweighted Analysis
In the unweighted analysis, patients with long COVID-19 had
less total sleep time when compared to controls (433, SD 85 vs
450, SD 68; P<.001).

Weighted Analysis
In the weighted analysis, patients with long COVID-19 had
statistically but not clinically significant increased total sleep
time when compared to control group (451.4, SD 65 vs 451.7,
SD 87 minutes, P<.001).

Propensity Match Analysis
After performing a propensity match analysis, 122 patients with
COVID-19 were compared to 122 matched controls. Total sleep

time was found to be decreased in the group with COVID-19
compared to controls (433, SD 85 vs 450, SD 68; P=.004). A
schematic representation of the data distribution before and after
propensity score matching was shown for better visualization
(Figure 5).

Comparison of Sleep Cycle Phases Between Patients
With COVID-19 and Controls

Unweighted Analysis
In the unweighted analysis, there was no statistical awake sleep
time difference between the 2 groups (52, SD 32 for controls
vs 56, SD 31 for cohort; P=.4). However, patients with long
COVID-19 had decreased light sleep (244, SD 67 vs 258, SD
67; P=.003) and decreased deep sleep (123, SD 66 vs 128, SD
58; P=.02; Figure 6).
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Figure 6. Difference in weighted sleep phases between different groups. High heart rate (HR): >80 beats per minute. Low HR: <80 beats per minute;
*P<.05.

Weighted Analysis
When comparing weighted different sleep phases, patients with
long COVID-19 had increased awake sleep time (62, SD 25 vs
52, SD 32; P<.001) decreased light sleep time (251, SD 82 vs
260, SD 64; P<.001), and decreased deep sleep (126, SD 71 vs
131, SD 59; P<.001).

Propensity Score Matching
After matching the 2 groups for age, sex, and BMI, patients
with COVID-19 have decreased deep sleep when compared to
controls (123, SD 66 vs 128, SD 57; P<.004). However, the
differences in light sleep (244, SD 67 vs 259, SD 67; P=.39)
and awake sleep (56, SD 31 vs 57, SD 32; P=.71) were no longer
significant.

Discussion

Overview
In our study, we report 2 major findings. First, increased total
sleep time and time spent in deep sleep were associated with
increased RR and SpO2, and decreased HR in the full cohort.
Second, the group with long COVID-19 had altered sleep
architecture characterized by decreased total and deep sleep
times when compared to matched controls.

Association Between Biometrics and Sleep Phases
Decreased oxygen saturation during sleep can be due to different
pathologies and has the potential to inflict significant negative
physiological and psychological consequences [27]. In our
cohort, decreased RR and SpO2 were associated with increased

time in awake sleep phase. Moreover, increased RR and SpO2

were associated with increased total sleep time and deep sleep.
Our findings suggest difficulty transitioning into deep sleep of
patients with decreased respiratory function and thus the need
for good oxygenation and respiratory function to maintain a
physiological sleep cycle. This is in line with the increased
sleeping disturbances noticed in patients with severe COVID-19.
Huang et al [28] showed that the risk of severe infection was 6
to 8 times more associated with decreased sleep status and
reduced sleeping hours [28]. Additionally, the reduction in
average daily sleep time significantly increased the likelihood
of infection severity, stressing on the intertwined relationship
between sleep and respiratory function [28]. However, the
results reported in this study were extracted from self-reported
questionnaires in comparison to our quantitative results.
Moreover, increased RR and SpO2 in the group with COVID-19
was correlated with increased time spent in light sleep. Light
sleep, which is one of the different phases of NREM sleep, was
found to have an important role in memory formation and
consolidation as well as in motor skill speed and performance
[29,30]. Therefore, the association of optimal respiratory
function during sleep and improved sleep quality may improve
activities of daily living and quality of life in addition to
immunity and response to infections.

As for the autonomous system, increased HR and decreased
HRV were correlated with increased time in awake phase,
whereas decreased HR was correlated with increased time in
deep sleep. Increased HR during sleep was associated with
increased cardiovascular comorbidities [31]. This was widely
studied in night-shift workers, who had misalignment between
the endogenous circadian clock and the sleep schedule, leading
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to increased cardiovascular events [32]. Our data showing that
participants with increased HR have increased time in awake
sleep and less time in deep sleep might indicate a difficulty in
transitioning from light to deep sleep among patients with
increased HR. Disturbances in the configuration of these 2
systems may lead to adverse repercussions and clinical
outcomes.

The key benefit of continuous monitoring with wearables lies
in the capability to detect these vulnerable populations who may
have early sleep or biometric disturbances. The collection of
real-time data from wearables can allow the physician to manage
patients at a very early stage. By combining data from biometrics
and sleep phases, physicians will be able to have an overview
on patients’ autonomic system activity. These findings,
sometimes subclinical, will be useful as a significant decision
support tool for physicians to employ preventative and
personalized medicine even before diagnosing the problem.

Long COVID-19’s Effect on Sleep
Previous studies have shown increased psychological
disturbances in addition to the physical component associated
with COVID-19 infection [22,33]. In fact, decreased sleep
quality and insomnia problems have been reported during the
pandemic. However, most sleep-related studies focused
primarily on health care workers rather than the general
population [34,35]. For example, Zhang et al [35] found that
almost one-third of health care workers had insomnia symptoms
during the pandemic, and that the related factors included
education level, isolation environment, and psychological
stressors [35]. However, most of these studies were qualitative
and survey-based rather than quantitative [22,23]. Thus, there
was a need for a quantitative approach to assess long
COVID-19’s effect on sleep.

In our study, participants in the group with long COVID-19 had
increased awake sleep time and decreased light and deep sleep

time. During sleep, the body secures restorative functions related
to immunity [36], the cardiovascular system [37], and metabolic
functions [38]. Alterations in non-REM sleep phases may
therefore predispose health-related problems. In addition, altered
sleep architecture was shown to increase stress levels by
increasing stress hormones [39-42]. These findings especially
after recovering from the infection support the fact that
COVID-19 may present with long-standing symptoms such as
autonomic and neurologic disturbances. This is in alignment
with what is called “Long COVID-19” syndrome or “COVID-19
Brain fog,” which is characterized by fatigue, difficulty
concentrating, and sleep disorders even after the acute infection
[43].

Limitations
Our study has several limitations. First, this is a single-center
study, limiting the reproducibility of the results among a wider
population. Second, baseline data regarding physiological state
of participants with COVID-19 is not available as they did not
have the device before COVID-19 infection. Third, the PPG
technology used was not developed to accurately characterize
REM sleep, and thus, REM sleep has been omitted from the
analysis. Finally, the controls were recruited based on a
patient-reported survey, and therefore they might have had
COVID-19 without knowing.

Conclusion
Study participants with improved cardiovascular and respiratory
functions had better sleep architecture. Moreover, patients who
were diagnosed with COVID-19, including young and healthy
patients, demonstrated altered sleep architecture when compared
to matched controls. The sleeping data of patients with
COVID-19 were characterized by decreased total sleep and
deep sleep times. Future studies should evaluate the physical
and psychological impact of sleep disturbance among patients
with long COVID-19.
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