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Abstract. The study of diurnal and seasonal variations in to-

tal electron content (TEC) over Nigeria has been prompted

by the recent increase in the number of GPS continuously

operating reference stations (CORSs) across Nigeria as well

as the reduced costs of microcomputing. The GPS data en-

gaged in this study were recorded in the year 2012 at nine

stations in Nigeria located between geomagnetic latitudes –

4.33 and 0.72◦ N. The GPS data were used to derive GPS

TEC, which was analysed for diurnal and seasonal variations.

The results obtained were used to produce local GPS TEC

maps and bar charts. The derived GPS TEC across all the

stations demonstrates consistent minimum diurnal variations

during the pre-sunrise hours 04:00 to 06:00 LT, increases

with sharp gradient during the sunrise period (∼ 07:00 to

09:00 LT), attains postnoon maximum at about 14:00 LT, and

then falls to a minimum just before sunset. Generally, day-

time variations are found to be greater than nighttime vari-

ations, which range between 0 and 5 TECU. The seasonal

variation depicts a semi-annual distribution with higher val-

ues (∼ 25–30 TECU) around equinoxes and lower values

(∼ 20–25 TECU) around solstices. The December Solstice

magnitude is slightly higher than the June Solstice magni-

tude at all stations, while March Equinox magnitude is also

slightly higher than September Equinox magnitude at all sta-

tions. Thus, the seasonal variation shows an asymmetry in

equinoxes and solstices, with the month of October display-

ing the highest values of GPS TEC across the latitudes.

Keywords. Ionosphere (equatorial ionosphere)

1 Introduction

The global age-long interest in the ionosphere is apparently

being sustained due to its tremendous applications in radio

communications (Rama Rao et al., 1997; Rabiu et al., 2013).

The variation in ionosphere with time and location on earth

necessitates its study at several points on earth for a long

time. The equatorial and low-latitude ionosphere manifests a

number of unique phenomena, such as the equatorial electro-

jet (EEJ), equatorial spread F (ESF), equatorial plasma bub-

ble (EPB), and equatorial ionization anomaly (EIA) among

others, and is characterized by large transient variations

(Bagiya et al., 2009; Mukherjee et al., 2010; Chauhan et al.,

2011; Bolaji et al., 2012). The equatorial ionosphere is highly

dynamic and consequently poses serious threats to commu-

nication and navigation systems (Akala et al., 2010, 2011,

2012).

The ionospheric parameter that has an overbearing influ-

ence on GPS-based communication and navigation systems

is the total electron content (TEC) (Akala et al., 2013). TEC

is the number of electrons in the column of 1 m2 cross sec-

tion that extends from a GPS satellite to a GPS receiver. This

important parameter is a by-product of GPS data, which can

also be used to survey the ionosphere and can be used to pro-

vide an overall description of the ionosphere (Mukherjee et

al., 2010).

Bilitza (2001) rightly noted that a good description of the

variability in ionospheric magnitudes is a necessary prereq-

uisite for improvement of the performance of the ionospheric

models. Studies on diurnal variation in TEC reveal useful in-

formation about the physical processes responsible for the

ionospheric behaviour and TEC is fast becoming an impor-
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tant parameter for both geophysical and engineering applica-

tions (Pandey et al., 2001; Mukherjee et al., 2010). In Nige-

ria, Bolaji et al. (2012) reported that during low solar activity

the TEC over Ilorin, a station close to the trough of the EIA,

exhibits consistent minimum diurnal variation during pre-

sunrise hours between 05:00 and 06:00 LT, rises steeply dur-

ing the sunrise period (07:00–09:00 LT), and subsequently

rises very slowly from 10:00 LT to the peak during the day-

time, mostly around 12:00–16:00 LT. Bagiya et al. (2009)

had earlier reported similar diurnal variation patterns during

low solar activity periods near the crest region of the EIA in

India and confirmed that the diurnal characteristics of TEC

depend on season, solar activity, geomagnetic activity, and

latitude.

The F2 layer in the vicinity of the magnetic dip equator

is characterized by a depression, or trough, in the ionization

density at the equator and two humps, one on each side of

the equator (at about ±17◦ magnetic latitude) during the day

that lasts for several hours after sunset. This interesting phe-

nomenon is called the equatorial ionospheric anomaly (EIA)

or the Appleton anomaly (Appleton, 1946). The cause of

the anomaly is often attributed to the so-called fountain ef-

fect, whereby an eastward electric field at the equator gives

rise to an upward E × B drift during the daytime. After the

plasma is lifted to greater heights it is able to diffuse down-

ward along magnetic field lines under the influence of grav-

ity and pressure gradient forces. The net result is the for-

mation of a plasma fountain, which produces an enhanced

plasma concentration (crest) at higher latitudes and a reduced

plasma concentration (trough) at the equator. The daytime

dynamo-generated eastward electric field combined with the

northward geomagnetic field lifts the equatorial ionosphere

from 700 km up to over 1000 km. After losing momentum,

the electrons diffuse along the field lines to either side of the

equator to form two crests (Yeh et al., 2001).

Rama Rao et al. (2006a) studied the temporal and spatial

variations in GPS TEC using simultaneous measurements

from the Indian GPS network of receivers during the low so-

lar activity period and observed that the diurnal variation in

the EIA region reaches its maximum value between 13:00

and 16:00 LT, whereas near the equator the daytime max-

imum is broad and its peak is delayed and occurs around

16:00 LT. Similarly, the daytime minimum in GPS TEC oc-

curs between 05:00 and 06:00 LT at all stations from the

equator to the EIA crest region. However, beyond the crest

region an extended day minimum is found to occur, which

is flat during most of the nighttime hours, a feature that is

similar to that at mid-latitudes. The diurnal variation in GPS

TEC shows a minimum to maximum variation in about 5–

50 TECU at the equator and from 5 to 90 TECU at the EIA

crest region.

The seasonal variations in vertical TEC are higher during

the equinox than the solstice during low solar activity (Wu et

al., 2004; Bagiya et al., 2009; Chauhan et al., 2011) and high

solar activity (Natali and Meza, 2011) at different stations.

Rama Rao et al. (2006a) observed that the seasonal variation

in TEC reaches a maximum during the equinoctial months

followed by winter and is at a minimum in the summer, a

feature similar to that observed by Rabiu et al. (2013) in the

Indian EEJ strength for the corresponding seasons. Scher-

liess and Fejer (1999) had earlier inferred that daytime E×B

drift velocities are larger in the equinoctial months and winter

months than in the summer months, and this could result in

semi-annual variation. Olatunji (1967), Bailey et al. (2000),

and Liu et al. (2006, 2009) found that this semi-annual varia-

tion is related to the variation in the noon solar zenith angle,

which is an important factor in ionization. Wu et al. (2004),

Rama Rao et al. (2006a, b), and Lee et al. (2010) attributed

the semi-annual variation to a combined effect of solar zenith

angle and geomagnetic field geometry.

Quantitative study of transient variations in GPS TEC,

involving simultaneously measured data from multiple sta-

tions in Nigeria, has been hindered over the years due to the

dearth of distributed GPS facilities. Recent deployment of a

network of Nigerian GNSS Reference Network (NIGNET)

CORS by the Nigerian Office of the Surveyor General, as

well as the reduced costs of microcomputing, provided an es-

sential foundation for this study. The present study attempts

to investigate the diurnal and seasonal variations in GPS TEC

obtained from simultaneous GPS measurements from nine

locations in Nigeria, a region under the equatorial anomaly

region, covering geomagnetic coordinates bounded between

geomagnetic longitudes 75.45 and 84.31◦ E and geomagnetic

latitudes −4.33 and 0.72◦ N.

2 Data and method of analysis

The study locations consisted of nine stations distributed

over Nigeria, a region within the equatorial and low latitudes.

The selected locations and their details, including their geo-

graphical and geomagnetic coordinates, are shown in Table 1

in order of increasing latitude.

A Nigerian map showing the locations of the various se-

lected stations is shown in Fig. 1. Raw GPS (observable) data

in RINEX format for these nine stations were used for this re-

search work. The Ionospheric GPS TEC was obtained from

the ground-based GPS receiver stations of NIGNET equip-

ment being operated by the Office of the Surveyor General

of the Federation (OSGoF) of Nigeria for the year 2012. De-

scription of the NIGNET network and the managing agency

is given in Rabiu et al. (2014) and Ayorinde et al. (2016).

The slant TEC (STEC) records obtained from GPS are pol-

luted with satellite differential delay (bS, satellite bias) and

receiver differential delay (bR, receiver bias), coupled with

receiver inter-channel bias (bRX). This uncorrected STEC

measured at every 1 min interval from the GPS receiver de-

rived from all the visible satellites at all the stations is con-

verted to vertical TEC (VTEC). VTEC can be expressed as
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Table 1. The list of stations used in the study with their respective geographical and geomagnetic coordinates.

ID Location Geo. lat (◦ N) Geo. long (◦ E) Mag. lat (◦ N) Mag. long (◦ E)

RUST Port Harcourt 4.80 6.98 −4.33 78.76

CLBR Cross River 4.95 8.35 −4.30 80.09

FPNO Imo 5.43 7.03 −3.90 78.85

UNEC Enugu 6.42 7.50 −3.25 79.36

ULAG Lagos 6.52 3.40 −3.03 75.45

OSGF FCT 9.03 7.49 −1.64 79.50

FUTY Yola 9.35 12.50 −1.32 84.31

ABUZ Kaduna 11.15 7.65 −0.13 79.75

BKFP Kebbi 12.47 4.23 0.72 76.62

Geo: geographical co-ordinate. Mag: geomagnetic co-ordinate. Lat: latitude. Long: longitude.

Figure 1. The distribution of the NIGNET GPS stations used for

the study. The axes shows the geographical coordinates in degrees;

the red solid line crossing near ABUZ is the magnetic equator.

VTEC = STEC − [bR + bS + bRX]/S (E), (1)

where STEC is the uncorrected slant TEC measured by the

receiver, S(E) is the obliquity factor with zenith angle (z) at

the ionospheric pierce point (IPP), E is the elevation angle

of the satellites in degrees, and VTEC is the vertical TEC at

the IPP. The S(E) is defined by Mannucci et al. (1993) and

Langley et al. (2002) as follows:

S (E) =
1

cos(z)
=

{

1 −

(

RE × cos(E)

RE + hS

)2
}−0.5

. (2)

RE is the mean radius of the earth measured in km and

hs is the height of the ionosphere from the surface of the

earth, which is approximately equal to 350 km. These analy-

ses from Eqs. (1) and (2) were implemented in the GPS TEC

analysis software developed and freely distributed by the In-

stitute for Scientific Research, Boston College, MA, USA.

The GPS TEC software runs on a Windows operating sys-

tem with the availability of internet. The raw RINEX GPS

data were processed using this GPS TEC analysis software.

This software reads raw data, processes cycle slips in phase

data, reads satellite biases from International GNSS Service

(IGS) code file (if not available, it calculates them), calcu-

lates receiver bias, and calculates the inter-channel biases for

different satellites in the receiver. To eliminate the effect due

to multipath, a minimum elevation angle of 20◦ is used. The

VTEC data estimated are then subjected to a two-sigma (2σ )

iteration, which is a measure of GPS point positioning accu-

racy (95 % confidence level). Research efforts that have uti-

lized this GPS TEC software include the works of Bolaji et

al. (2012, 2013), Olwendo et al. (2013), Rabiu et al. (2014),

and Ayorinde et al. (2016), among others.

3 Results and discussion

3.1 Diurnal variation in total electron content of the

ionosphere over Nigeria

The processed TEC data obtained from GPS TEC analysis

software developed by the Institute of Scientific Research,

Boston College, USA, gave GPS TEC data at minute inter-

vals in ASCII format. These minute GPS TEC data were

scaled down to hourly values for all the stations used. The

time convention for these analyses is in local time (LT). Nige-

ria is 1 h ahead of Greenwich meridian time GMT; 01:00 UT

is 02:00 LT in Nigeria. The hourly values of GPS TEC for

each individual hour for all the days of the year from 1 Jan-

uary to 31 December 2012 were collated together to obtain

the diurnal variation. The hourly values of GPS TEC were

plotted against local time to examine the hourly variation

(diurnal) and this was done for the entire nine stations us-

ing surfer software package to generate the local TEC maps

for each station as shown in Fig. 2. Surfer software has a

built-in kriging function that enables it to account for miss-
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Figure 2. Contour plots of the diurnal variation in GPS TEC measured at the study areas in Nigeria. The white sections in the plots show

unavailability of data.

ing data using appropriate interpolation techniques. How-

ever, only six stations out of the nine stations had consis-

tent data that could translate to meaningful GPS TEC maps.

The other three stations were afflicted with missing data due

mainly to occasional power outages and so are not reported

in Fig. 2. The diurnal variations in GPS TEC in all stations in

Nigeria show characteristics typical of the low-latitude iono-

sphere (e.g. Rama Rao et al., 2006a, b and Rabiu et al., 2014).

It is clearly shown from the plots that TEC exhibits consis-

tent minimum diurnal variation during the pre-sunrise hours

04:00 to 05:00 LT with magnitude of 0 to 5 TECU, rises

steeply during the sunrise period (07:00 to 09:00 LT), and

then rises very slowly from 10:00 LT with the intensity of the

sun to an afternoon maximum between 12:00 and 16:00 LT.

It then falls to its minimum just before sunset. Large varia-

tions in GPS TEC are observed in daytime, while nighttime

variations are found to be minimal at all the stations.

Fig. 2 shows that the magnitude of GPS TEC is generally

high during daytime at all locations. The early morning in-

crease in GPS TEC is relatively faster at all stations than the

evening decrease in GPS TEC. The daytime GPS TEC val-

ues are generally greater than the nighttime values. This can

be attributed to the absence of solar radiation at nighttime.

It is observed that during the equinoctial days the late after-

noon decrease in GPS TEC is equally steep, with occasional

post sunset peaks at all the stations. Likewise, during night-

time, the ionosphere maintains an average GPS TEC value

of about 15 to 20 TECU. During the solstice days, similar

features are also seen but with a reduced intensity of 10 to

15 TECU. It can be concluded that TEC increases as the in-

tensity of the sun increases with the time of day. Also, mini-

mum TEC occur around the same time (05:00 LT) on all the

days at all the stations, which shows that as the intensity of

the sun decreases, TEC decreases. The trend of this result is

in accordance with the diurnal variation in TEC at some other

locations in the earlier works of Rastogi et al. (1971), War-

nant (2000), Rama Rao et al. (2006a, b), Bagiya et al. (2009),

Bolaji et al. (2012), and others, which showed that the diur-

nal variation in TEC shows a short-lived predawn minimum,

a steady early morning increase, followed by an afternoon

maximum and gradual fall after sunset.

3.2 Hourly variation in total electron content

along latitude

An interesting feature in the geographic location of Nigeria is

the magnetic equator that passes through the northern part of

the entire country providing a unique opportunity for study-

ing important ionospheric phenomena, such as TEC varia-

tion, the EEJ, the EIA, the equatorial ionization and temper-

ature anomaly (EITA), and the occurrence of intense scintil-

lations.

Figure 3, which displays the hourly variation in TEC as a

function of latitude, reveals an occurrence of obvious vari-

ation in the hourly plots of TEC along latitudes in all the

months in year 2012. Figure 3 was also obtained using surfer

software package to generate the local TEC maps for each

month. The hourly variation shows a short, steep increase

of about 10 to 16 TECU of TEC occurring between 01:00

Ann. Geophys., 35, 701–710, 2017 www.ann-geophys.net/35/701/2017/
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Figure 3. Hourly variation in GPS TEC in all the months along latitude. Data from all stations were used in this figure, except RSUT, CLBR,

and FPNO, which were not used to derive maps for the months of March Equinox. Also, RSUT and FPNO were not used to derive maps for

the months of December Solstice due to poor data quality.

and 02:00 LT, a sharp and short-lived daytime minimum of

about 0 to 2 TECU occurring between 04:00 and 06:00 LT,

and a daily maximum of TEC occurring between 12:00 and

14:00 LT. A similar variation was observed for all the months

of the year except for the equinox months of March, April,

September, and October, which had a sharp and rapid de-

crease in TEC observed at 20:00 LT with subsequent en-

hancement at 23:00 LT. After the occurrence of post-sunset

enhancement at 23:00 LT, TEC across all the geomagnetic

latitudes further gradually and smoothly decayed through

midnight until the pre-sunrise hours. The magnitude of TEC

post-sunset variation is always greater than its sunrise vari-

ation. This post-sunset decrease and enhancement could be

attributed to abrupt onset scintillations, plasma bubbles, and

the spread-F phenomenon, which was also observed in the

work of Bolaji et al. (2012).

However, the spread of GPS TEC at the low-latitude sta-

tions in Nigeria is at a minimum during the nighttime and

at a maximum during the daytime, which may be attributed

to the high ionization due to intense solar radiation. In all

the months, a comparatively high value of GPS TEC above

40 TECU was observed between 12:00 and 16:00 LT at all

the latitudes except in the month of December when the

recorded GPS TEC value was below 40 TECU. This could

www.ann-geophys.net/35/701/2017/ Ann. Geophys., 35, 701–710, 2017
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Figure 4. Hourly variation in GPS TEC in all the months along longitude. Data from all stations were used in this figure, except RSUT,

CLBR, and FPNO, which were not used to derive maps for the months of March Equinox. Also, RSUT and FPNO were not used to derive

maps for the months of December Solstice due to poor data quality.

be due to inhibition of EIA, which is completely inhibited

on the day of the counter electrojet, resulting in a lower TEC

value. Dabas et al. (1984) and Aravindan and Iyer (1990)

reported that the EEJ has a pronounced influence on TEC

over a large latitudinal belt from the equator to the 25◦ N

dip latitude. Rama Rao et al. (2006a) have shown that the

EEJ controls the altitude of lifted plasma and the location of

the crest of the equatorial ionization anomaly. It can be con-

cluded that during the daytime the GPS TEC variability at

low latitudes is mainly driven by variations in the equatorial

electric fields. The equatorial ionization anomaly is a result

of the so-called fountain effect, which gives rise to lifting of

the equatorial plasma to higher altitudes, during most of the

daytime hours. This plasma subsequently diffuses along the

geomagnetic field lines to either side of the magnetic equa-

tor, owing to the effects of ambipolar diffusion, gravity, and

pressure gradients and giving rise to an accumulation of ion-

ization at the F-region altitudes around ±15◦ geomagnetic

latitudes. This results in the formation of crests of ionization,

while simultaneously depleting the ionization over the mag-

netic equator.

3.3 Hourly variation in GPS TEC across longitudes

The hourly variations in GPS TEC across geomagnetic longi-

tudes in all the months of the year 2012 were examined using

contour plots as shown in Fig. 4. Figure 4 was obtained using

the Surfer software package to generate the local TEC maps

for each month. The hourly variation shows an early morn-

Ann. Geophys., 35, 701–710, 2017 www.ann-geophys.net/35/701/2017/
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ing steep of about 12 to 14 TECU occurring between 01:00

and 02:00 LT in longitudes 75.45–80.09◦ E and a short-lived

predawn minimum of 0–2 TECU occurring between 04:00

and 06:00 LT at all the longitudes. TEC increases with time

across all the longitudes until noontime; a postnoon maxi-

mum is observed in all the months at about 14:00 LT. TEC

decreases gradually as intensity of the solar radiation de-

creases along all the longitudes. Generally, the hourly varia-

tions in TEC along the longitudes show a predawn minimum

followed by an early morning steady increase, an afternoon

maximum, and then a post-sunset gradual reduction in TEC,

with the equinoctial months of March and April depicting

nighttime enhancement more prominently at 23:00 LT. The

gradual increase in TEC to a maximum value at peak hours

of the day at equatorial and low latitudes has been attributed

to solar extreme ultraviolet (EUV) ionization coupled with

the vertical E × B drift (Bolaji et al., 2012).

The nighttime decrease is due to the size of the mag-

netic flux tubes, which are so small that electron content

in these tubes collapses rapidly after sunset in response to

the low temperatures in the thermosphere at night, lead-

ing to low GPS TEC values. During sunrise, the magnetic

flux tubes again filled up because of their small volume,

resulting in a sudden increase in ionization due to increas-

ing thermospheric temperatures during sunrise (Oron et al.,

2013). The observed nighttime GPS TEC enhancement could

be attributed to the tidal winds, which blow the ioniza-

tion across the geomagnetic field. According to Hanson and

Mofett (1966), a large-scale electrostatic field is produced at

the low latitudes. The electrostatic field is primarily eastward

during the day and westward, with the eastward fields being

responsible for the upward plasma drift motion and the west-

ward fields during the night, causing the downward drift mo-

tion. This plasma fountain reverses during nighttime hours

and the northward motion of the crest of ionization during

the daytime reverses to a southward motion during the night.

The downward motion at the geomagnetic dip equator and

the southward motion of ionization could be responsible for

the nighttime enhancement of GPS TEC observed in these

months.

The GPS TEC depletions, followed by GPS TEC enhance-

ments, as shown in March and April, are associated with

small-scale plasma density irregularities. Such irregularities,

which result in ionospheric scintillations, can cause trans-

ionospheric signal fading, a potential threat to GNSS sys-

tems. According to Burke et al. (2004), this behaviour could

be attributed to plasma bubbles generated from sunset un-

til sunrise. These plasma irregularities are due to the tur-

bulent ionospheric conditions that give rise to the equato-

rial spread F (Paznukhov et al., 2012). Factors responsible

for these spread-F occurrences have been reported to be ei-

ther due to the variations in the linear growth rate of the

Rayleigh–Taylor instabilities as a result of the electrodynam-

ics of the ionosphere, or to the atmospheric gravity waves. It

is furthermore reported that for the African equatorial region,

Figure 5. Seasonal TEC variations across some of the study areas

in Nigeria.

scintillation occurrence is most frequent when the solar ter-

minator aligns with the geomagnetic field (Paznukhov et al.,

2012). The months of June, July, and December exhibit lower

values of GPS TEC with a magnitude of less than 50 TECU

compared to other months, which have more than 50 TECU

across all the longitudes. This implies that the formation of

EIA is weaker in those months with less than 50 TECU.

3.4 Seasonal variation in GPS total electron content

Seasonal effects were investigated using Lloyd’s seasonal

classification (Eleman, 1973); the months of the year were

classified into three seasons based on the movement of the

sun: December Solstice or D season (November, Decem-

ber, January, and February), Equinox or E season (March,

April, September, and October), and June Solstice or J sea-

son (May, June, July, and August). Since E season shows

significant variations in months, we further classified E sea-

son into March Equinox (March and April) and September

Equinox (September and October) (Bilitza et al., 2004; Ra-

biu et al., 2007; Oladipo et al., 2009). The seasonal values

of GPS TEC, plotted in Fig. 5, were estimated by finding the

average of the monthly means of TEC values under a particu-

lar season as shown in Table 2 with their respective standard

deviation (SD).

Figure 5 presents the seasonal variation in TEC across

some of the study areas considered for this study. Gener-

ally, the seasonal variation depicts a semi-annual distribu-

tion with equinoctial maxima (∼ 25–30 TECU) around min-

ima in solstices (∼ 20–25 TECU). December Solstice mag-

nitude is slightly higher than the June Solstice magnitude at

all stations (except at ULAG and UNEC; see Table 2 for a

full list of abbreviations), while March Equinox magnitude

is also slightly higher than September Equinox magnitude at

all stations. This shows a seasonal asymmetry in the iono-

sphere in the solstices and equinoxes. Thus, the seasonal

variation shows a semi-annual pattern, with a maximum in

www.ann-geophys.net/35/701/2017/ Ann. Geophys., 35, 701–710, 2017
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Table 2. Seasonal mean values of TEC.

ID Location March Equinox June Solstice September Equinox December Solstice

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

RSUT Port Harcourt – 21.70 ± 13.02 24.00 ± 16.76 –

CLBR Calabar – 23.00 ± 14.19 30.96 ± 18.67 25.82 ± 15.22

FPNO Owerri – 22.40 ± 14.63 30.00 ± 19.87 –

UNEC Enugu 30.60 ± 17.02 24.60 ± 14.71 27.90 ± 18.63 23.40 ± 14.93

ULAG Lagos 28.40 ± 18.07 23.80 ± 15.30 28.60 ± 18.36 22.80 ± 14.51

OSGF Abuja 28.20 ± 17.38 22.10 ± 14.52 27.50 ± 18.64 23.00 ± 14.74

FUTY Yola 28.50 ± 18.49 21.60 ± 13.88 26.10 ± 17.56 23.10 ± 15.18

ABUZ Zaria 28.70 ± 17.71 20.50 ± 8.48 24.60 ± 12.87 23.40 ± 14.88

BKFP Kebbi 28.20 ± 17.59 22.20 ± 14.95 28.70 ± 19.06 23.60 ± 15.05

March Equinox, followed by September Equinox, December

Solstice, and June Solstice. Earlier on, a similar semi-annual

variation was observed in TEC by Bolaji et al. (2013) and

Rabiu et al. (2014) while working at stations within Nige-

ria. The semi-annual variation in Fig. 5 is significant from

ABUZ to FUTY, but became insignificant from ULAG; this

observation could be due to the EIA initiating redistributions

of semi-annual variation as plasma moves along the southern

crest.

Wu et al. (2004) and Rama Rao et al. (2006a) indepen-

dently argued that the seasonal variation pattern in GPS TEC

could be explained by the seasonal changes in atmospheric

composition. Earlier, Titheridge (1974) reported a worldwide

semi-annual variation in atmospheric composition, with the

ratio O / N2 (the relative densities of atomic oxygen and

molecular nitrogen) at a maximum near the equinoxes. Also,

Rama Rao et al. (2006) argued that the lower values of GPS

TEC during the solstice days may be attributed to the low

ionization densities due to the reduced production rates in-

dicated by the reduced O / N2 ratios owing to the increased

scale height of N2 as reported by Titheridge (1974). Rishbeth

et al. (2000) and the references therein attributed the sea-

sonal variations in the ionosphere to changes in the neutral

air composition due to the large-scale thermospheric dynam-

ics, changes in atmospheric turbulence, inputs from atmo-

spheric waves, and variations in geomagnetic activities. Sev-

eral authors, including Quattara et al. (2009) and Adebesin et

al. (2015), have reported distinct seasonal variations, similar

to our findings, in the equatorial ionosphere in the western

African region using ionosonde measurements.

The semi-annual variation in the GPS TEC could also be

due to the combined effect of the solar zenith angle and mag-

netic field geometry (Wu et al., 2004; Bagiya et al., 2008).

Rabiu (2004) observed semi-annual variation with equinoc-

tial maxima in ranges of H , D, and Z components of the

geomagnetic field and suggested the cause may be due to

one or more of three models commonly referred to as ax-

ial, equinoctial, and Russell–McPherron mechanisms (for ex-

ample Clua de Gonzalez, et al., 1993, 2001; Russell and

McPherron, 1973; Legrand and Simon, 1989; Simon and

Legrand, 1989; Crooker and Siscoe, 1986; Orlando, et al.,

1993; and references therein). Olatunji (1967), Scherliess

and Fejer (1999), Bailey et al. (2000), and Liu et al. (2006,

2009) suggested that daytime E×B drift velocities are larger

in the equinoctial months (February, March, April, August,

September, and October) and winter months (November, De-

cember, and January) than in the summer months (May,

June, and July) and this could result in semi-annual variation.

Olatunji (1967), Bailey et al. (2000), and Liu et al. (2006,

2009) related this semi-annual variation to the variation in

the noon solar zenith angle, which is an important factor for

the production of ionization. Wu et al. (2004), Rama Rao et

al. (2006b), and Lee et al. (2010) attributed the semi-annual

variation to a combined effect of solar zenith angle and geo-

magnetic field geometry.

4 Conclusions

This study presents the diurnal and seasonal variation in

GPS-measured TEC over Nigeria using simultaneous mea-

surements made with the GPS network receivers, covering

geomagnetic coordinates bounded between longitudes 75.45

and 84.31◦ E and latitudes −4.33 and 0.72◦. The diurnal and

seasonal variations in GPS TEC derived from all the sta-

tions were studied for a 12-month period from 1 January to

31 December 2012. Our observations revealed that the diur-

nal variation at all stations reached its maximum value be-

tween 12:00 and 14:00 LT. Similarly, the daily minimum in

GPS TEC occurs between 05:00 and 06:00 at all the stations.

The diurnal variation in GPS TEC shows a range of about 0

to 60 TECU at all the stations. It shows that the GPS TEC

reaches a maximum during the equinox months and is low-

est during the solstice months. The lower value of GPS TEC

during these months is attributed to the low ionization densi-

ties, which are due to the reduced production rates (indicated

by O / N2 ratio), owing to the increased scale height of N2

(Titheridge, 1974).

The monthly distribution of latitudinal and longitudinal

variations in TEC with respect to time varies from a predawn
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minimum to an afternoon maximum and then decreases to

attain minimum. The latitudinal and longitudinal variations

show a short, steep increase of about 12 to 16 TECU occur-

ring between 01:00 and 02:00 LT and a sharp and short-lived

daytime minimum of about 0 to 2 TECU occurring between

04:00 and 06:00 LT. TEC increases with time across all the

longitudes until noontime; postnoon maximum is observed

in all the months at about 14:00 LT. TEC decreases gradu-

ally and reaches minimum at about sunset as intensity of the

solar radiation decreases along all the longitudes. The sea-

sonal variations show that TEC reaches a maximum during

the equinox months and is lowest during the solstice months,

thus revealing an asymmetric semi-annual pattern.
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