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Abstract

We have previously presented Qsilver, a flexible sim-

ulation system for graphics architectures. In this paper

we describe our extensions to this system, which we use—

instrumented with a power model and HotSpot—to analyze

the application of standard CPU static and runtime ther-

mal management techniques on the GPU. We describe ex-

periments implementing clock gating, fetch gating, dynamic

voltage scaling, multiple clock domains and permuted floor-

planning on the GPU using our simulation environment,

and demonstrate that these techniques are beneficial in the

GPU domain. Further, we show that the inherent paral-

lelism of GPU workloads enables significant thermal gains

on chips designed employing static floorplan repartitioning.

1 Introduction

Commodity graphics hardware is evolving at a tremen-

dous rate, with each successive generation adding not only

performance but fundamentally new functionality. Graphics

processors (GPUs) sport sophisticated memory hierarchies,

multiple issue, wide parallel SIMD and MIMD pipelines,

and NVIDIA’s current offering, the “NV40” architecture,

implements out-of-order issue [15].

Graphics architectures are also becoming more pro-

grammable, with greater program sophistication possible

with each generation. Early programmable GPUs had pro-

grammability available only in the vertex engine, they were

limited with respect to size of programs, and these pro-

grams could not have branch instructions. More recent gen-

erations have added conditional expressions, the ability to

execute much larger programs, and the ability to program

the pixel engine. The current generation of hardware even

supports fully general branching (loops, subroutines, etc.).

As these processors continue to add programmability, they

become more general. GPUs offer very high performance

in their specialized domain; with massively parallel float-

ing point arrays and the recent trends toward increased pro-

grammability, they are beginning to be applied towards sci-

entific computing. Such applications of graphics hardware

are known within the graphics community as GPGPU, short

for General Purpose Graphics Processing Unit.

The rapid rate of innovation in graphics architecture,

combined with the need for energy and thermal effi-

ciency, creates a rich design space well-suited for study

by the methods familiar to the general-purpose processor-

architecture community. Yet the inherent parallelism of

GPU workloads makes the design space much richer than

for traditional CPUs, and the lack of a suitable publicly-

available simulation infrastructure has hampered academic

research in GPU architecture. The lack of infrastructure is

particularly serious, since in the time required to build a

complex simulation infrastructure, the simulated architec-

ture can easily become obsolete. GPU architectures also

span a wide range of aggressiveness, from high-end prod-

ucts intended for gaming and scientific visualization, where

the emphasis is on performance, to low-end products for

mobile applications, where the emphasis is on energy effi-

ciency.

Across this entire spectrum, thermal considerations have

become important, with cooling constraints already limit-

ing performance. Furthermore, as evidenced by Figure 1,

graphics processors display thermal behavior that is both lo-

calized to specific functional units, and bursty. Such activ-

ity is ripe for exploitation by dynamic thermal management

techniques.

In this paper, we use Qsilver [17] to explore a series of

thermal management techniques, ranging from classical dy-

namic voltage scaling (DVS) and clock gating, to techniques

like multiple clock domains and temperature-aware floor-

plans, both of which specifically exploit the parallelism of

graphics workloads. Though we also describe two energy

efficiency experiments, one varying throughput in the vertex

and fragment engines and the other using Multiple Clock

Domains or MCD while varying leakage rate, we choose

thermal management as a driving problem because we feel

it is an area with rich rewards for graphics architecture and

an area that can draw a great deal from past work in general
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Figure 1. The temperature variation on the

chip is both localized, at the granularity of

the functional unit block, and bursty. These

traces plot temperature over time process-

ing an execution trace on a system based

on the base low-resolution floorplan (see Fig-

ure 3). It is also evident that the GPU dis-

plays both inter- and intra-frame variations in

activity and temperature fluctuation. The fre-

quent periodic variations correlate to individ-

ual frames.

purpose processor design. Furthermore, and perhaps more

importantly, we believe that these two communities—those

of general purpose and of graphics processor architects—

have much to offer each other. We hope that our work will

spur interest that leads to cross fertilization of ideas between

these largely disjoint groups.

2 Related Work: Architectural Simulation

The advent of detailed but flexible, configurable, cycle-

accurate CPU simulators in the 1990s for complex, super-

scalar architectures served as the catalyst for an explosion

of quantitative research in the computer architecture com-

munity. The most prevalent simulator in academic archi-

tectural research is SimpleScalar [2]; other simulators used

in specific circumstances include Rsim [6] for multipro-

cessors, as well as Simics [9] and SimOS [14] for captur-

ing operating-system and multi-programmed behavior. By

describing instruction flow at the granularity of individual

steps through the CPU pipeline, these simulators allowed

research and design to move beyond good but imprecise

analytical models or cumbersome, logic-level models. In-

stead, architects could analyze detailed tradeoffs under re-

alistic workloads and estimate how various microarchitec-

tural choices affected instruction throughput. Examples of

problems that can now be studied at least partially thanks to

academic architectural simulators include the impact of dif-

ferent cache and branch predictor algorithms, the impact of

different superscalar out-of-order instruction-issue designs,

and the effectiveness of a host of novel CPU organizations

such as hyper-threading.

These simulation systems are not alone; new infrastruc-

tures continue to appear. One of these, ASIM [11], offers a

high degree of flexibility in definition of the system being

simulated. It is much like Qsilver in this respect. Unlike

Qsilver, ASIM uses an asynchronous event model for com-

munication between blocks, while QSilver, being designed

with the GPU in mind, depends on a streaming infrastruc-

ture and more conventional intra-block communication.

More recently, power-modeling capability launched an-

other round of innovation by allowing architects to estimate

the energy efficiency of different processor organizations,

verify that new microarchitecture innovations are justifiable

from an energy-efficiency standpoint, and explore microar-

chitectural techniques for managing energy efficiency. The

dominant power model today is Wattch [3], which uses cal-

ibrated analytical models to allow flexible and configurable

estimation of power for a variety of structures, structure

sizes, organizations, and semiconductor technology gen-

erations or nodes. Other power models that use circuit-

extracted data have been described, but they are based

on specific implementations and tend to be less flexible.

These two approaches can be combined, using the circuit-

extracted model as calibration for Wattch’s analytical mod-

els; see for example a recent study of hyper-threading us-

ing IBM’s circuit-extracted PowerTimer [8]. Most recently,

the architecture community has begun to explore architec-

tural techniques for thermal management, facilitated by the

HotSpot [20] dynamic temperature model. This paper ex-

tends our earlier work in thermally aware graphics proces-

sor design [18].

Our goals with Qsilver are to stimulate the same kind

of innovation in the GPU community that products such as

SimpleScalar have stimulated in the general purpose archi-

tecture community, to stimulate greater cross-fertilization

of ideas with the general-purpose CPU architecture com-

munity, and to enable new studies in power-aware and

temperature-aware design.

3 Description and Modification of the Simu-

lator

3.1 Description of Qsilver

There are two major components of the Qsilver system:

the annotator and the simulator core. The annotator gener-
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ates an input trace, which the simulator core traces through

its cycle timer model. This section summarizes Qsilver as

presented in [17].

3.1.1 The Annotator

The Qsilver annotator is built on Chromium [7], an OpenGL

library interceptor which implements and exports the

OpenGL API, an API for realtime 3D graphics. Chromium

allows the OpenGL call stream of an application to be in-

tercepted and transformed on the fly, without need of any

modification or source code. Chromium is typically used

for such applications as scientific simulation and visualiza-

tion; for example, splitting output over multiple displays or

balancing a graphics workload over many GPUs. By im-

plementing several new Chromium stream processing units

(SPUs), we transform the OpenGL stream in such a way

that we can gather aggregate statistics about the activities

of the hardware during rendering. These statistics form the

input to our cycle-timer simulation.

An unfortunate fault of our Chromium based annota-

tor is our inability to gather non-aggregate data, specifi-

cally screen-space positional information and texture coor-

dinates. Many structures, such as the texture cache, cannot

be accurately modeled with the current system. Another av-

enue worth exploring as a base system for the Qsilver anno-

tator is the use of a software renderer like Mesa [12]. With

Mesa, we would sacrifice some of the speed of the current

system, and in exchange get all of the current functionality,

as well as the non-aggregate data required for lower level

simulation. We intend to move the annotator to Mesa, or

some Chromium/Mesa hybrid, in our future work.

Video games drive the graphics hardware market; how-

ever many games will not run if they cannot maintain suf-

ficient framerate. Since our annotation system significantly

slows the annotated application, we also use Chromium to

record and play back an OpenGL trace of the application.

This trace is no longer the application itself, but only its

calls into the OpenGL API. As the application logic has al-

ready been processed, framerate is no longer a concern. We

pass this OpenGL trace to the annotator for data aggrega-

tion.

The annotation process consists of the following stages,

implemented as Chromium SPUs:

1. Expansion of vertex arrays

OpenGL allows vertices to be specified in two main

ways: individually, with component parameters spec-

ified explicitly in the call, and as part of a set of ver-

tices stored in an array on the GPU and indexed by an

element number. For efficiency reasons, and because

only a single call in to the API is required to render

complex geometries, the latter, called a vertex array or

vertex buffer, is favored by game developers. As de-

scribed below, we need all geometry to be broken into

individual triangles, so the first task of the annotator

is to expand the vertex arrays to produce the triangles

which will eventually pass through to the GPU. The

most significant problem with complex geometries is

that they can be self occluding. The first three SPUs in

our SPU chain are designed to eliminate self occlusion.

Also note that to correctly model such structures as the

vertex cache, it is necessary to maintain an awareness

of the original layout of the vertex array.

2. Unfolding of display lists

Display lists are another efficiency construct of the

OpenGL API. Like vertex arrays, display lists allows

complex geometries to be rendered with a single API

call. We use Chromium to store display lists as they are

‘recorded’, then monitor the stream for the API calls

which play them back. When the call comes through,

we play back the recorded source rather than passing

the display list invocation though to the driver.

3. Triangulation of geometries

The GPU deals with geometry in terms of individual

triangles, but OpenGL allows specification of geome-

try in terms of triangle strips and fans, and polygons

with an arbitrary number of sides. These complex ge-

ometries need to be triangulated—turned in to indi-

vidual triangles—before they can be rasterized. This

stage of the annotator further transforms the OpenGL

call stream such that subsequent stages receive only

triangulated geometry.

4. Query of state and activity

Rasterization is the process of turning triangles into

fragments, which can be thought of as a generaliza-

tion of pixels. The transformations leading to this stage

eliminate complex geometry—meaning that all geom-

etry coming to this stage is organized into individ-

ual triangles—and with them self occlusion. In order

to accurately model a GPU, we must know—among

other statistics—how many fragments were generated

from a triangle and how many of these fragments pass

the depth test and get written to the framebuffer. We

wrap each triangle in an occlusion query which returns

a count of the number of non-occluded fragments that

that triangle generates on the hardware. We then ren-

der the triangle again into another buffer with the depth

test disabled, wrapped in another occlusion query, to

determine the total number of fragments generated by

the triangle.

In addition to counting fragments, in this stage we also

collect some information on OpenGL state and count
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statistics such as the number of texture accesses in

this stage. The latter is non-trivial, as magnification

and minification texture sampling filters do not nec-

essarily make the same number of texel accesses, and

it requires some further manipulation of the OpenGL

stream, another rendering of the triangle in question,

another occlusion query, and use of the programmable

features of modern GPUs. For full details, please see

[17].

The annotator ultimately writes an annotated trace to

disk. This trace describes what the hardware must do to

render the OpenGL trace input. The simulator core takes

this annotated trace as input for its timing simulation.

3.1.2 The Simulator Core

The Qsilver simulator core is based on the OpenGL

pipeline. Figure 2 is a diagram of a simple GPU architec-

ture. This is the machine we model in the Qsilver core.

The simulated architecture has four main functional units:

the vertex engine, the rasterizer, the fragment engine, and

the framebuffer control unit. These are all decoupled by

queues, with the fragment queue acting as a natural decou-

pler of vertex and fragment portions of the chip. This be-

comes important when we discuss our multiple clock do-

mains experiment in section 4.2.5.

The Qsilver core traces the input through a timing model.

A cycle counter is advanced each time it runs through the

pipeline. As the simulation advances, events are counted

and aggregated at a user defined granularity. There are cur-

rently dozens of events monitored. These include the num-

ber of vertices transformed, the number of vertices lit, the

number of fragments generated, the number of texture ac-

cesses, and the number of fragments that fail the depth- or

Z-test. A typical aggregation period is on the order of 25000

cycles. The user can make this as fine as a one cycle aggre-

gation period for true micro-level output, however the shear

quantity of data generally precludes such a practice.

3.1.3 The Power Model

Qsilver’s power model is based on an industrial power

model for a high performance, general purpose processor

(CPU). We scale this power model to account for differ-

ences in voltage, frequency, process node and bit width. We

acknowledge, of course, that differences in the microarchi-

tecture and circuit design methodology impair our ability

to apply a power model from the CPU realm to a graphics

processor. For example, modern, high-performance general

purpose processors tend to use a custom or semi-custom de-

sign, while industry sources tell us that GPUs primarily use

standard cell technology. Unfortunately, no industry mod-

els are available for validation, but we believe our model

provides relative accuracy for many coarse-grained archi-

tectural studies, even if absolute accuracy is not yet possi-

ble. Our future work includes developing an accurate GPU

power model for use in Qsilver and by the community at

large.

3.2 Changes to Qsilver

We have made significant modifications and extensions

to Qsilver since its original publication. In addition to

adding thermal modeling capabilities, we have also ex-

tended its configurability so that it now allows runtime def-

inition of the architectural pipeline. The next two sections

discuss these modifications in more detail.

3.2.1 Runtime Pipeline Configuration
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Figure 2. The stages of the rendering pipeline

are joined by decoupling queues. The frag-

ment queue in particular serves to decou-

ple the vertex and fragment “halves” of the

chip. This latter proves useful in implement-

ing, for example, multiple clock domains on

the QSilver framework. The vertex and frag-

ment portions of the processor, clearly sepa-

rated by the fragment queue, form logical do-

mains for separate clocks. The high- and low-

water marks in this figure are used in the MCD

power experiment described in Section 4

At the time of original publication [17], Qsilver was

highly flexible from the standpoint of runtime configuration
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of state variables. We could, at runtime, define such param-

eters as the number of pipelines in the fragment core, the

length of the vertex queue, or the bandwidth of the network

between the fragment queue and fragment engine. A ma-

jor failing was the inability to define the simulated pipeline

itself at runtime.

We undertook a complete rewrite of the Qsilver system.

The changes to the annotator are mostly cosmetic, but the

changes to the simulator core itself are significant. The most

important modification is our addition of runtime pipeline

configuration.

Qsilver now is essentially a stream system. The user

writes kernels, in the form of C functions, representing each

stage of the pipeline they wish to simulate (of course they

also may use an existing kernel). The stream infrastructure

sees that the kernels receive input, and it is the responsibil-

ity of the pipeline builder to signal the infrastructure when

work is complete on a particular datum. This is similar to

the approach that was used in the Liberty system [21].

At runtime, the pipeline itself is organized into a list of

function pointers. The simulation infrastructure traverses

the list and calls each function or kernel with its associated

input and a state data structure that is also stored in the list.

With this organization, it is straightforward to run multiple

simulations, each using a different pipeline configuration,

without need for a recompile. Configuration of the pipeline,

as well as all runtime state variables, is handled in a single,

simple configuration file.

3.2.2 Thermal Modeling with HotSpot

We have augmented Qsilver with HotSpot [5, 19], a tool for

architectural thermal modeling. Drawing from the power

model described in section 3.1.3 and based on the floorplans

in section 4.2.1, HotSpot is invoked at the end of every ag-

gregation period to calculate the temperature of each func-

tional unit.

HotSpot builds a system of differential equations which

describe a complex RC circuit—conveniently thermal sys-

tems are modeled in exactly the same way as electrical RC

circuits, with a thermal resistance and capacitance—and

solves them numerically for temperatures.

4 Experiments and Results

Figure 1 is a trace of the thermal activity of the vertex

engine and the framebuffer control unit over 100 frames of

data. From this plot, we can see that thermal activity is

both localized and bursty. The dynamic thermal manage-

ment techniques discussed below capitalize on this charac-

teristic.

Given the limitations of our power model combined with

the dependence of temperature on power, and the fact that

we have not fully explored the design space for any of these

techniques, we must acknowledge that the ‘error bars’ on

our results are large. Without a more accurate power model,

we cannot precisely, quantitatively compare the techniques

listed below. Nonetheless, we reiterate that we believe our

results hold qualitatively, and that interesting insights can be

gained from this work. As a case in point, below we show

that DVS outperforms MCD with respect to performance in

managing temperature on the GPU. This is consistent with

the literature, but with our large and unquantified error, the

small difference in performance of these techniques, and the

fact that MCD does a better job of controlling temperature,

we should probably consider these techniques to be in an

equivalence class! Both present interesting room for further

study.

4.1 Experiments

On top of the QSilver framework we implemented the

following thermal management techniques:

• Global Clock Gating

This technique stops the clock when any monitored

unit on the chip exceeds a threshold temperature. The

clock is restarted when the temperature of all the units

is once again below the threshold. With this tech-

nique, the processor is effectively turned off whenever

the chip experiences thermal stress, except that state is

preserved and leakage currents are unaffected.

• Fetch Gating

Fetch gating, in a general purpose processor, toggles

on and off the instruction fetch stage of the pipeline,

effectively reducing the throughput of the entire pipe.

Due to the decoupled nature of the rendering pipeline,

we believe that this technique can be used effectively

in any stage of the pipeline. We have tested it, with

positive results, on the vertex fetch and transform-and-

light (another name for the vertex engine) stages.

• Dynamic Voltage Scaling

In Dynamic Voltage Scaling, or DVS, voltage is re-

duced upon crossing the thermal threshold. With lower

voltage, the switching speed of the transistors is de-

creased, so it is necessary to also scale frequency. Be-

cause P ∝ V 2f , this technique achieves a roughly cu-

bic reduction in power relative to performance loss1.

Employing this technique, the power saved with even

a small change in voltage can be significant, with little

detriment to performance. This is despite a switching

penalty incurred while the clock resynchronizes.

1Note that we do correctly account for the non-linear dependence of f

and V .
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• Multiple Clock Domains

Multiple Clock Domains, or MCD [16], is an archi-

tectural technique whereby separate functional units

or sets of units on a chip are operated by different

clocks—essentially DVS is employed at the granu-

larity of the functional unit block, with mostly the

same benefits and drawbacks as that solution. This

technique improves efficiency when different portions

of the chip have imbalanced workloads—in the GPU

realm, for example, an architect may want to slow

down the vertex engine to save power when the proces-

sor is fill bound [17]. Thermally, it may be practical to

slow down only the hot stage of a pipeline rather than

to penalize the entire chip for a single unit’s poor be-

havior. Again the decoupling inherent in the graphics

pipeline is advantageous to the architect here, making

the implementation of this technique on the GPU far

easier than its equivalent on a general purpose proces-

sor. In fact, existing GPUs already make heavy use

of non-dynamic MCD, so little modification should be

necessary to take advantage of these clocks for thermal

management.

• Thermal-aware Floorplanning

This static technique puts space between the hottest

units of the chip, so there is more cool area surround-

ing them to help spread heat. We take floorplan-

ning one step farther, by producing unique layouts

where some functional units are broken into smaller

constituent parts. This is possible on the GPU, be-

cause, for example, the fragment engine actually con-

tains multiple fragment pipelines (e.g. NVIDIA’s new

NV40 architecture has 16) [15]. Many of the func-

tional units on the GPU contain multiple pipelines,

making this technique an especially rich avenue for ex-

ploration. Of course, breaking up units imposes the

overhead of longer communication pathways, but due

to the high prevalence of queues in the GPU, commu-

nication latency doesn’t seem to play a major role in

performance.

• Power Management

Graphics hardware is moving into embedded devices

like PDAs and cell phones [1, 13]. For example, it has

been suggested that the most played electronic game

of all time is the ‘snake’ cell phone game [13], which

demonstrates that even in the embedded market, games

are likely to become the driving application for graph-

ics hardware. As embedded devices ship with more so-

phisticated graphics capabilities, battery life becomes

a greater concern. Energy efficiency of these systems

is of major importance to the vendors. We can use

Qsilver to conduct energy efficiency studies on our

simulated architectures.

In [17], we presented several power management re-

sults on the GPU using Qsilver. Among these are

studies of unit throughput and MCD for power man-

agement, which we reiterate here. In the throughput

experiments, we vary the processing rates of our ver-

tex and fragment engines to discover the highest per-

forming and the most energy efficient design points.

For the MCD experiment, we note that activity on the

GPU tends to alternate between being vertex bound

and fragment bound and take advantage of this by im-

plementing two clock domains, one before the frag-

ment queue, and one after, and scaling the voltage in

one domain when the other has a workload above a cer-

tain threshold. Figure 2 illustrates high- and low-water

marks on the fragment queue. We implement a sim-

ple state machine to avoid oscillations between MCD

state. We require that the queue remain within 10%

of maximum capacity or empty for at least 50000 cy-

cles before turning on MCD, and use a similar test to

decide when to turn MCD off.

4.2 Results

All thermal results are summarized in Table 1. In our

experiments we assume that:

• Case ambient temperature is 45◦C

• The cooling solution is under-designed, and consists

only of a small, aluminum heatsink with no fan

• The vendor specifies a maximum safe operating tem-

perature of 100◦C

• The chip has one temperature sensor for each func-

tional unit block

• Sensor precision is specified to be within ±3
◦C

Furthermore, all DTM techniques are employed for multi-

ples of 25000 cycles. HotSpot is only invoked at the end

of an aggregation period, and As we are modeling 300MHz

processors, this corresponds to an 85µs sampling interval.

Our input traces are generated from an OpenGL stream we

captured from Splash Damage’s game Wolfenstein: Enemy

Territory. We have two traces, both identical save resolu-

tion: one is 800× 600 pixels, and the other is 1280× 1024.

These traces contain frames which are typical for this game,

and which contain mixes of large and small triangles, textur-

ing modes, etc. Both are 50 frames long. We ‘play’ traces

twice in succession to get 100 frames worth of simulation

data. Section 4.2.1 illustrates all four of the floorplans we

use in these experiments.
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Figure 3. The floorplan on the left is based on an NVIDIA marketing photo for the GeForce4. The

units labeled framebuffer control and vertex engine are the hotspots, and placed adjacently. The right

floorplan moves the vertex unit to the opposite corner of the chip, reducing the maximum temperature

of each unit and decreasing the thermal gradient across the chip. We use these two floorplans with

our 800 × 600 resolution trace. We add a cycle of latency between pipeline stages when using the

repartitioned floorplan to account for increased wire length.

4.2.1 Floorplans

We consider floorplan reorganization itself a thermal man-

agement technique, though a static one, and demonstrate

that the parallelism inherent in GPU workloads allows big

rewards to be garnered from careful, thermal-aware de-

sign of functional unit layout. Figure 3 shows two floor-

plans. The left layout is based on an NVIDIA marketing

photo2. The right layout moves the vertex processor down

to the bottom of the right side of the chip. This places the

two hottest units—the vertex engine and the framebuffer

operations unit—at opposite corners of the chip, reducing

their respective maximum temperatures by about 1◦C each.

When attempting to maintain interactive framerates—30 to

60 frames per second—with higher resolution traces, the

necessary addition of fragment processing power to this

chip caused unrealistic power densities in some units. As

a result, we produced the new floorplan on the right in Fig-

ure 4. This chip layout slightly increases the area of the

framebuffer operations unit, nearly doubles the size of the

fragment core, and increases the area of the texture cache

by a factor of 2.5, but gives room for the addition of 4 more

fragment pipes. The left layout in this image makes a more

radical change than that used on the low resolution chip.

We attempt to separate hot units with cooler ones, and in

doing so, break up some of the units into constituent parts.

We have 12 fragment pipes on this chip, so we separate the

fragment engine into three blocks with four pipes each. We

2Industry sources have commented to us with doubts about the correct-

ness of this photograph’s labels.

also separate the vertex engine, as it consists of two dis-

tinct pipelines. This layout preserves unit area, but does

add some dead space to the silicon3. With both rearrange-

ments, we add a cycle of latency between pipeline stages to

account for the extra wire length.

Without any DTM technique engaged, and with our

under-engineered cooling solution assumptions in place, all

four of these chips exceeded the 100
◦C maximum oper-

ating temperature. In the case of the two low resolution

floorplans, 100% of the cycles of the simulation executed

at temperatures in excess of the safe operating temperature,

and both chips topped 105◦C. Figure 5 is a thermal map of

the base low-resolution design at the hottest point in a 100

frame input trace, with no DTM enabled.

4.2.2 Global Clock Gating

Clock gating is a fairly primitive technique, but simple

to implement. In exchange for its simplicity our results

demonstrate a very high cost in performance. Our base

floorplan runs 62% slower with clock gating turned on,

which corresponds with a system in which the clock is gated

38% of the time! We see a behavior here in which the pro-

cessor is gated after one temperature update, then ungated

after the next, and then gated again after the following, etc.

It is only during the cooler stages of the execution that the

3Note that this transformation does not maintain the aspect ratios of the

split blocks. Increased border area of the separated units most likely con-

tributes to the effectiveness of this technique by increasing lateral thermal

conduction. This is an interesting space to explore in future work.
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Figure 4. In order to maintain reasonable power densities with our 1280 × 1024 trace, it was necessary

to increase the area of some of the units. The left hand floorplan is a conventional layout for these

resized blocks. The right floorplan preserves unit area while spreading out the hotspots across the

chip. We add a cycle of latency between pipeline stages when using the repartitioned floorplan to

account for increased wire length.

processor can spend significant time running consistently.

4.2.3 Fetch Gating

We have employed fetch gating on two different stages of

the pipeline:

• Vertex Fetch

Canonically, fetch gating is employed in the instruc-

tion fetch stage of a general purpose processor. The

logical extension of this idea to the GPU domain is

to toggle vertex fetch. An instruction on a CPU,

though, does not generate more work, while three

vertices—a triangle—can potentially generate over a

million fragments on a system with display resolution

of 1280×1024. Even with more realistically sized tri-

angles, it is not unreasonable for hundreds to thou-

sands of fragments to be created from each triangle,

and since vertices are queued between the fetch and

transform-and-light stages, toggling vertex fetch is in-

effective in controlling thermal behavior. In fact, both

the low- and high-resolution base floorplans exceed the

maximum safe operating temperature while also incur-

ring not insignificant performance penalties. DTM is

engaged in these two cases 100% and 67% of the time,

respectively.

• Rasterizer

The rasterizer draws input from the post transform-

and-light queue and writes to the fragment queue. At

some level, it can be thought of as the creator of the

work that is done in the second half of the pipeline.

‘Fetch gating’ the rasterizer was able to keep the pro-

cessors beneath the maximum operating temperature,

but incurred unacceptable performance penalties. The

base floorplans took performance reductions of 90%

and 17% for low- and high-resolution designs respec-

tively.

4.2.4 Dynamic Voltage Scaling

Global dynamic voltage scaling scales the voltage uni-

formly over the entire processor. In our experiments we

scale voltage by 20%, which gives a nearly 50% savings in

power. We choose 20% because this seems to be the upper

limit on voltage scaling without adversely impacting caches

and other memory structures. Additionally, we impose a

3000 cycle synchronization penalty whenever DVS state is

changed. For all processors, save the one based on the base

low-resolution floorplan, this technique was able to main-

tain safe operating characteristics for the processor, while

incurring performance penalties of less than 3.5%. In the

case of the base low-resolution design, the processor had

9



Figure 5. The hottest point in an execution

trace on the base low-resolution design with

no DTM. Note how the two hottest units are

located adjacently, leading to a large thermal

gradient across the chip. Such situations as

this stress the cooling solution, which is in-

sufficient in this case. See Figure 3 for unit

labels.

DVS turned on 71% of the time and only incurred a 13%

slowdown, or about 1 frame out of 8. This experiment only

slightly exceeded 100◦C, and an only slightly higher volt-

age scaling factor would have been sufficient to keep the

temperature within the safe zone with similar performance.

Figure 6 illustrates the thermal gradients across the high-

resolution partitioned chip with DVS at the hottest point in

the simulation.

4.2.5 Multiple Clock Domains

Multiple Clock Domains is the second voltage scaling tech-

nique we have employed. Unlike DVS, MCD employs volt-

age scaling at a sub-chip granularity. In this case, we’ve

implemented MCD at the granularity of the individual func-

tional unit block. Whenever the DTM state changes for any

functional unit block, the entire chip must be stopped while

clocks resynchronize. As with DVS, we impose a 3000 cy-

cle, or 10µs, penalty for synchronization whenever MCD

state changes. MCD is the only technique, under our as-

sumptions, that is able to both keep all four processor de-

signs within safe operating limits and maintain reasonable

performance in all cases. In the worst case, the base low-

resolution design, the processor ran with MCD engaged for

55% of all cycles, incuring less than a 17% performance

penalty. Our best performing design here, the partitioned

high-resolution chip, was only slowed by 0.5%.

4.2.6 Thermally-Aware Floorplanning

Independent of the above dynamic thermal management

techniques, thermally-aware floorplanning deserves men-

tion on its own. Without any active dynamic techniques,

intelligent floorplanning was able to reduce the maximum

temperature of the low resolution design by .9◦C, and the

high resolution design by 2.8◦C. The lower interdepen-

dence between unit blocks on the GPU, as compared to

traditional CPU architectures, makes the kind of radical

changes we have employed possible.

It seems counter-intuitive that the high-resolution sys-

tems should perform so much better thermally. Among pos-

sible explanations for this are that the units were scaled to

account for power density and not for thermal characteris-

tics. The fragment engine was never a concern thermally,

yet it has increased in size. The framebuffer operations

unit, due to increased fragment activity has grown, but only

by a small amount. The vertex engine, one of the hottest

units, is doing exactly the same work, and so it has not been

changed. And we were forced to add some dead silicon.

All told, we have significantly increased the total area of

the chip, while making only a small increase in the area of

the hottest units, thereby decreasing the mean temperature

of the chip, and increasing lateral cooling ability.

Figure 6. With DVS and static repartitioning of

the floorplan, the chip has a much lower max-

imum temperature. Furthermore, the thermal

gradients are smaller here so that the cool-

ing solution is better able to do its job. See

Figure 4 for unit labels.
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Floorplan Base Permuted Base High Resolution Partitioned High Res

DTM Technique Performance

Cost

Maximum

Temperature

Performance

Cost

Maximum

Temperature

Performance

Cost

Maximum

Temperature

Performance

Cost

Maximum

Temperature

No DTM 0.0% 106.4 0.0% 105.5 0.0% 103.7 0.0% 100.9

Clock Gating 62.0% 97.0 13.6% 97.0 14.8% 97.0 0.7% 97.0

Vertex Fetch

Gating

25.9% 102.9 10.2% 98.7 9.2% 101.3 0.5% 98.1

Rasterizer Fetch

Gating

90.1% 98.1 17.7% 97.8 17.4% 97.0 0.7% 97.8

Dynamic Voltage

Scaling

13.1% 100.7 3.4% 98.2 3.4% 97.4 0.1% 97.0

Multiple Clock

Domains

16.7% 98.4 4.1% 97.0 3.7% 97.0 0.5% 97.4

Table 1. A summary of all thermal results. Notable results are marked in italics; particularly poor

results in sans serif. As a general observation, note that the two voltage scaling techniques, DVS

and MCD, performed very well, while the more primitive gating techniques tended to impose heavy

performance penalties and exceed maximum operating temperature. Also note that static floorplan

partitioning gives impressive results as well. All temperatures are in degrees centigrade.
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Figure 7. Performance (T) and energy-efficiency data (ED2 and E) for different fragment- and vertex-

processing rates. All results are normalized to our base cases, which are 5 cycles/tile and 18

cycles/vertex, respectively. Note also that in all cases, a smaller ratio is better.

4.2.7 Power Management

We implement two energy efficiency experiments, one vary-

ing unit throughput and one using MCD. In both of these

experiments, we choose ED2 as our energy efficiency met-

ric. In the first experiment, we vary fragment and vertex

engine throughput rates to locate the most energy efficient

and the best performing design points—these are usually

not the same point. Note that we have Qsilver configured to

process fragments in SIMD tiles of 2 × 2 fragments. From

the plots in Figure 7 we see that in the fragment engine, the

optimal design point from an energy efficiency perspective

is at 4 cycles per tile. In the case of the vertex engine, the

energy efficiency optimum comes at 4 cycles per vertex. In

both cases, as would be expected, performance increases

with throughput.

The MCD power efficiency experiment measures the im-

pact of varying the leakage ratio while using MCD for

power management. Figure 8 presents a comparison of per-

formance and energy efficiency for three different leakage

rates, the only variable changed. In all cases the perfor-

mance loss was only 1.5%; while for a leakage rate of 10%

MCD achieved an 11% energy efficiency gain, a leakage

rate of 50% corresponds with a 28% increase in efficiency!
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Because leakage is exponentially dependent on voltage, re-

sults are even better for future technology nodes. This sug-

gests that MCD will become increasingly effective in future.
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Figure 8. Performance and energy-efficiency

data of MCD for different leakage ratios. All

results are normalized to the base case (with

no MCD) for the appropriate leakage ratio.

Smaller y-axis values are better, represent-

ing better performance and better energy ef-

ficiency.

5 Conclusions

We have extended Qsilver, our graphics architectural

simulation system, to allow runtime pipeline configuration

and to enable studies of dynamic thermal management.

We have also demonstrated that standard CPU ther-

mal management techniques map well to the GPU. Volt-

age scaling techniques—dynamic voltage scaling and mul-

tiple clock domains—give much better results in this do-

main than the more primitive gating techniques we have ex-

plored. DVS imposes less performance penalty than MCD,

but MCD is the only dynamic technique that was able to

keep our simulated processor within safe operating limits in

all cases.

Our results indicate that static floorplan repartitioning,

which separates hot units and splits up pipelines, may hold

rich rewards for the GPU domain. This is because of the

highly parallel nature of GPU workloads and design spaces.

With one of our repartitioned floorplans, addition of DTM

techniques imposed negligible performance penalties.

Lastly we presented two power management techniques:

throughput variation and MCD. As graphics hardware con-

tinues to move into the embedded domain, such techniques

will grow in importance. Indeed, vendors are already

considering such ideas to extend battery life of handheld

graphics-enabled devices.

6 Discussion and Future Work

The input trace fed to QSilver contains only aggregate

information about the rendered primitives. In order to accu-

rately model, for example, a texture cache, the input stream

must also contain position information. As discussed in

section 3.1.1, we intend to use Mesa to extend the trace

generator (discussed in detail in [17]) to encode such non-

aggregate information so that we can more fully model

modern architectures. The graphics literature is rich with ar-

chitectural innovations such as Zmin culling [1] and Zmax

or hierarchical Z-buffer culling [4, 10]. These techniques

cannot easily be implemented without positional informa-

tion on fragments coming through the pipeline. We plan to

implement these and other techniques, and study their effi-

ciency and thermal characteristics.

We feel it is important to create a new, more precise

power model to replace our scaled CPU model. We are

developing a series of comprehensive micro-benchmarks,

physically measuring the power used for each operation,

much as was done by the Wattch group [3].

Our voltage scaling implementations are based on all-

or-nothing approaches—voltage scaling is on or off, with a

fixed scaling factor. We note that although DVS is consis-

tently beating MCD thermal management in terms of per-

formance, MCD maintains a lower maximum temperature

in all explored cases. We believe that with a feedback mech-

anism that dynamically modifies the scaling factor, MCD

could beat DVS in performance while still maintaining safe

operating temperatures.

While we believe that Qsilver is qualitatively sound, we

cannot hope for it to be quantitatively accurate without

some means of validation and verification. We are not yet

certain how to accomplish validation, and would like to is-

sue a challenge to the community to solve the problem, and

to the vendors to make the problem more tractable. Graph-

ics hardware vendors are traditionally very closed-mouthed.

Their unwillingness to talk about their products makes aca-

demic research in the graphics architecture domain very dif-

ficult. Just as the CPU industry continues to benefit from

architectural innovations originating in academia, vendors

could expect useful innovation and analysis from architects

in academia if they were more open.

Even without a proper means of validation, due to its

flexibility and extensibility, Qsilver is a good first step to-

ward a cycle-accurate GPU simulator and a simulator accu-

rate enough to be the validation engine for future endeavors

in graphics architecture.

Qsilver source is available for download and use at

http://qsilver.cs.virginia.edu/.
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