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Abstract

Automatically inferring user demographics from social media posts is useful for both social

science research and a range of downstream applications in marketing and politics. We

present the first extensive study where user behaviour on Twitter is used to build a predic-

tive model of income. We apply non-linear methods for regression, i.e. Gaussian Pro-

cesses, achieving strong correlation between predicted and actual user income. This allows

us to shed light on the factors that characterise income on Twitter and analyse their interplay

with user emotions and sentiment, perceived psycho-demographics and language use

expressed through the topics of their posts. Our analysis uncovers correlations between dif-

ferent feature categories and income, some of which reflect common belief e.g. higher per-

ceived education and intelligence indicates higher earnings, known differences e.g. gender

and age differences, however, others show novel findings e.g. higher income users express

more fear and anger, whereas lower income users express more of the time emotion and

opinions.

Introduction

The vast amount of publicly available user-generated content on social media enables the study

of complex problems for which sufficient data was not available before in various domains,

such as health, politics or economics [1–3]. Automatic analysis of that content can unveil inter-

esting patterns of language [4] and infer characteristics of users. Examples range from location

[5], gender [6], age [7, 8], personality [9] or political preference [10, 11]. Usually, inferring user

characteristics is framed as a predictive task validated on held-out data. This is solved by estab-

lished regression or classification methods or more sophisticated latent variable models tai-

lored to the task [10, 12]. Conversely, some studies also provide an analysis of the predictive

linguistic variables with the purpose to unveil sociological insight [13, 14]. Automatically

inferred user characteristics can enable large-scale social science studies or assist applications

such as targeted advertising, polling across different demographics or sentiment analysis [15].
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This is the first study on automatically inferring the income of social media users. An

income predictor is a useful tool for exploring the important effect of socio-economic status in

subsequent social science studies using Twitter data, e.g. in public health applications. More-

over, such information can be used in mainstream commercial applications, e.g. in personal-

ised advertising. We hypothesise that income is revealed through a variety of factors, starting

from the actual text posted by a user [16], but also via other information, such as the number

of friendships, demographics (e.g. gender and age), personality [17], education level or

expressed emotions. Previous related studies on income originated in socio-economic research.

Income of people has been predicted using demographic features such as the congressional dis-

trict in which the respondent lived, educational categories, sex, age, age squared, race catego-

ries, marital status categories, and height [18]. Another study showed that psychological traits

related to extraversion (e.g. larger social networks) and conscientiousness (e.g. orderliness)

have positive correlation with income, while neurotic traits (e.g. anger, anxiety) are anti-corre-

lated [19].

We frame the income prediction task as regression using linear as well as non-linear learn-

ing algorithms. For training and testing, we use a large dataset of Twitter users annotated with

their income, using fine-grained user occupation as a proxy. For prediction we use a broad

spectrum of features, ranging from simple user profile features (e.g. number of followers) to

inferred psycho-demographics, emotions and word topics. Experimental results show that

income is highly predictable given the content generated by a user, with the best non-linear

models reaching up to .633 Pearson correlation.

The other goal of this work is to give insights into the features that correlated with income

on Twitter. Therefore, we conduct a qualitative analysis by examining the output and the para-

metrisation of our regression models. The most important features are identified by using the

Bayesian non-parametric framework of Gaussian Processes (GPs), which supports non-linear

modelling as well as interpretability through the use of Automatic Relevance Determination

(ARD) [20]. Taking advantage of this property, we expose the relationship between income

and attributes such as language use, platform behaviour or affect.

Our approach replicates broadly accepted norms or statistically supported trends such as

income being correlated with perceived education, intelligence and age as well as the difference

in pay between males and females. In addition, a number of more intriguing patterns are

uncovered. Users perceived as religiously unaffiliated and less anxious appear to have higher

earnings. These users have more followers and get retweeted more, albeit following similar

number of persons, tweeting less and with fewer URLs. Automatic analysis of language use

uncovered that higher income users express more anger and fear while posting less subjective

content—both positive and negative. Finally, the topics were identified as the best predictors,

with higher income users posting more about politics, non-governmental organisations

(NGOs) and corporate topics, while lower income users adopting more swear words.

Materials and Methods

Data

We create a large dataset consisting of Twitter users mapped to their income, together with

their platform statistics and historical tweet content. This dataset is based on mapping a Twit-

ter user to a job title and—using this as a proxy—to the mean income for that specific

occupation.

We use a standardised job classification taxonomy for mapping Twitter users. The Standard

Occupational Classification (SOC) [21, 22] is a UK government system developed by the Office
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of National Statistics (ONS) for listing and grouping occupations. Jobs are organised hierar-

chically based on skill requirements and content.

The SOC taxonomy includes nine 1-digit groups coded with a digit from 1 to 9. Each 1-digit

group is divided into 2-digit groups, where the first digit indicates its 1-digit group. Each

2-digit group is further divided into 3-digit groups and finally, 3-digit groups are divided into

4-digit groups. The 4-digit groups contain specific jobs together with their respective titles.

Table 1 shows a part of the SOC taxonomy. In total, there are 9 1-digit groups, 25 2-digit

groups, 90 3-digit groups and 369 4-digit groups. Although other occupational taxonomies

exist, we use SOC because it has been updated recently (2010), is the outcome of years of

research [22], contains newly introduced jobs, has a balanced hierarchy and offers a wide vari-

ety of job titles that were crucial in our dataset creation. A recent study has proven the effective-

ness of building large corpora of users and their SOC occupation from social media finding

many similarities to real world population distribution across jobs [23].

We use the job titles provided by the extended description of each 4-digit SOC groups to

query the Twitter Search API and retrieve a maximum of 200 accounts which best matched

each job title. In order to clean our dataset of inevitable errors caused by keyword matching

(e.g. ‘coal miner’s daughter’ is retrieved using the ‘coal miner’ keywords) two of the authors

performed a manual filtering of all retrieved profile descriptions. We removed all profiles

where either of the annotators considered that the profiles were not indicative of the job title

(e.g. ‘spare time guitarist’), contained multiple possible jobs (e.g. ‘marketer, social media ana-

lyst’) or represented an institutional account (e.g. ‘limo driver company’). In total, around 50%

Table 1. Subset of the SOC classification hierarchy.

Group 112: Production Managers and Directors (50,952 GBP/year)

•Job titles: engineering manager, managing director, production manager, construction manager, quarry
manager, operations manager

Group 241: Conservation and Environment Professionals (53,679 GBP/year)

•Job titles: conservation officer, ecologist, energy conservation officer, heritage manager, marine
conservationist, energy manager, environmental consultant, environmental engineer, environmental
protection officer, environmental scientist, landfill engineer

Group 312: Draughtspersons and Related Architectural Technicians (29,167 GBP/year)

•Job titles: architectural assistant, architectural, technician, construction planner, planning enforcement
officer, cartographer, draughtsman, CAD operator

Group 411: Administrative Occupations: Government and Related Organisations (20,373 GBP/year)

•Job titles: administrative assistant, civil servant, government clerk, revenue officer, benefits assistant,
trade union official, research association secretary

Group 541: Textiles and Garments Trades (18,986 GBP/year)

•Job titles: knitter, weaver, carpet weaver, curtain maker, upholsterer, curtain fitter, cobbler, leather
worker, shoe machinist, shoe repairer, hosiery cutter, dressmaker, fabric cutter, tailor, tailoress, clothing
manufacturer, embroiderer, hand sewer, sail maker, upholstery cutter

Group 622: Hairdressers and Related Services (10,793 GBP/year)

•Job titles: barber, colourist, hair stylist, hairdresser, beautician, beauty therapist, nail technician, tattooist

Group 713: Sales Supervisors (18,383 GBP/year)

•Job titles: sales supervisor, section manager, shop supervisor, retail supervisor, retail team leader

Group 813: Assemblers and Routine Operatives (22,491 GBP/year)

•Job titles: assembler, line operator, solderer, quality assurance inspector, quality auditor, quality
controller, quality inspector, test engineer, weightbridge operator, type technician

Group 913: Elementary Process Plant Occupations (17,902 GBP/year)

•Job titles: factory cleaner, hygene operator, industrial cleaner, paint filler, packaging operator, material
handler, packer

doi:10.1371/journal.pone.0138717.t001
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of the accounts were removed by manual inspection performed by the authors. Finally, we

removed all 3-digit categories that contained less than 50 user accounts after filtering. This

resulted in a total number of 5,191 users from 55 3-digit groups, spread across all nine 1-digit

SOC groups. We use the Annual Survey of Hours and Earnings [24] released by the Office for

National Statistics of the UK to map each user to the mean yearly income for 2013 in British

Pounds (GBP) for its 3-digit job class. The distribution of user income in our dataset is pre-

sented in Fig 1.

For the users in the dataset, we have collected all of their tweets, going back as far as the lat-

est 3,200, and their platform statistics. The final dataset consists of 10,796,836 tweets collected

around 5 August 2014 and is freely available [25]. The data was preprocessed, i.e. tokenisation

and language identification, using the Trendminer pipeline [26].

User Features

The first group of features used in our experiments are user level properties either extracted

directly from a user’s profile or via established classifiers which can infer latent user character-

istics from text information. They are presented in the following paragraphs.

Profile Features (Profile). Profile features comprise of statistics computed based on the

user’s profile information. Table 2a presents the eight features in this category.

Inferred Perceived Psycho-Demographic Features (Demo). User psycho-demographic

features are automatically inferred based on user’s published text using the methods developed

in [27]. These represent logistic regression models trained on binary features containing unique

word types (also known as unigrams) extracted from tweets. The models have been trained on

5,000 Twitter profiles annotated with perceived user properties obtained through crowdsourc-

ing. In total, for each user we predict 15 psycho-demographic features described in Table 2b.

Fig 1. The distribution of yearly income for the users in our dataset. The red dotted line represents the
mean.

doi:10.1371/journal.pone.0138717.g001
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Table 2. Description of the user level features.

(a) User profile features (Profile)

u1 number of followers

u2 number of friends

u3 number of times listed

u4 follower/friend ratio

u5 no. of favourites the account made

u6 avg. number of tweets/day

u7 total number of tweets

u8 proportion of tweets in English

(b) User psycho-demographic features (Demo)

d1 gender (male, female)

d2 age (18–70)

d3 political (independent, conservative, liberal, unaffiliated)

d4 intelligence (> average, average, � average, � average, � average)

d5 relationship (married, in a relationship, single, other)

d6 ethnicity (Asian, African American, Indian, Hispanic, Other, Caucasian)

d7 education (bachelor, graduate, high school)

d8 religion (Christian, Jewish, Muslim, Hindu, unaffiliated, other)

d9 children (yes, no)

d10 income (below average, above average, very high)

d11 life satisfaction (satisfied, dissatisfied, very satisfied, very dissatisfied, neither)

d12 optimism (optimist, pessimist, extreme optimist, extreme pessimist, neither)

d13 narcissism (agree strongly, agree, disagree, disagree strongly, neither)

d14 excited (agree strongly, agree, disagree, disagree strongly, neither)

d15 anxious (agree strongly, agree, disagree, disagree strongly, neither)

(c) User emotion features (Emo)

e1 proportion of tweets with positive sentiment

e2 proportion of tweets with neutral sentiment

e3 proportion of tweets with negative sentiment

e4 proportion of joy tweets

e5 proportion of sadness tweets

e6 proportion of disgust tweets

e7 proportion of anger tweets

e8 proportion of surprise tweets

e9 proportion of fear tweets

(d) Shallow textual features (Shallow)

s1 proportion of non-duplicate tweets

s2 proportion of retweeted tweets

s3 average no. of retweets/tweet

s4 proportion of retweets done

s5 proportion of hashtags

s6 proportion of tweets with hashtags

s7 proportion of tweets with @-mentions

s8 proportion of @-replies

s9 no. of unique @-mentions in tweets

s10 proportion of tweets with links

doi:10.1371/journal.pone.0138717.t002
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Crowdsourcing perceived attribute annotations—collecting the subjective impressions

workers get when reading the content of user profiles—is not trivial [28, 29]. For building

the models used in this paper, labeled data was obtained using a group of trained and

screened workers who reside in the US, have over 98% reputation score and have been

involved in similar annotation tasks on Amazon Mechanical Turk before. In addition, a

variety of quality control questions with known ground truth were embedded and the work-

ers had to answer all of them correctly for their work to be accepted. To reduce annotator

bias (e.g. users generating more emotional tweets perceiv0ed to be females), the workers

were given access to complete Twitter profiles including user bio, tweets, photos and

videos. The large scale of the annotation effort resulted in a high monetary cost for annotat-

ing 5,000 profiles on multiple traits. Thus, to minimise the annotation cost a single annota-

tion was obtained per target user profile. To measure the degree of agreement between

raters, we collected redundant annotations for a 2% random subsample of user profiles. The

inter-annotator agreement measured using Cohen’s kappa ranges between fair (0.3 < κ<

0.7 for the majority of subjective attributes) and high (κ> 0.7 for gender and ethnicity

attributes).

To ensure the quality of subjective annotations we tested the models trained on crowd-

sourced labels on publicly available data from [11, 30] for classifying gender and political orien-

tation. Our models yield significantly higher performance (up to 10% accuracy gain) which

highlight the quality of crowdsourced annotations. In addition, recent research looked more

deeply into classifying political orientation, analyzed data annotation and sampling biases in

social media and showed how classification accuracy depends on the amount of data available

for prediction [11, 31]. They showed that political orientation classifiers achieve accuracy

between 63%—91%. For previously unexplored attributes (e.g. education, relationships status,

optimism), prediction quality measured using 10-fold cross validation as ROC AUC (the prob-

ability of correctly classifying two randomly selected profiles of each of the two most frequent

classes) ranges between 0.63 (religion)—0.93 (ethnicity) [27].

Note that in our regression experiments we are using the probability distribution of a user

over all possible classes rather than the actual class label. This allows to capture more informa-

tion and limits class imbalance issues in our training data. Age and gender are predicted using

text-based models described in [32]. These models were trained on data from over 70,000 Face-

book users and reports an accuracy of 91.9% for gender (88.9% on Twitter data) and Pearson

correlation r = 0.84 for age prediction.

Emotions (Emo). In addition, Table 2c outlines nine emotion features: the six Ekman’s

emotions [33] and three sentiment (valence) scores, all automatically inferred from user tweets.

To obtain these, we use predictive models based on binary unigram features and a set of affect

features from [27]. These text-based models predict one of six emotions—joy, sadness, fear,

disgust, surprise and anger—and one of three valence features—positive, negative, neutral—for

each tweet. We aggregate all emotions and sentiment per user and calculate the proportion of

every emotion and sentiment per user.

Textual Features

We derive textual features from the Twitter posts of each user. These are either shallow features

or deeper semantic topics.

Shallow Features (Shallow). The first set of textual features are shallow statistics on user’s

texts presented in Table 2d.

Word Clusters (Topics). In text regression tasks, textual features are usually represented

by a list of unigrams. Each feature represents the number of times that a word found in the
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tweets of a particular user. Although useful, this study focuses on using a more abstract repre-

sentation of textual features with the goal of interpretability.

To build the clusters we use a separate Twitter dataset consisting of the Twitter Gardenhose

stream (a 10% sample of the entire Twitter stream) from 2 January to 28 February 2011. We

first create a list of the most frequent unigrams (71,555) and then we obtain their vector repre-

sentations. Neural language models learn low dimensional vectors for words through a hidden

layer of a neural network. Dense word vectors, i.e. embeddings, are computed using a state-of-

the-art model, Word2Vec [34, 35]. We use the skip-gram model with negative sampling [35]

to learn the embeddings from the Twitter reference corpus using Gensim [36]. The dimension-

ality of the embeddings is set to 50. A detailed description of neural language models is pre-

sented in [34, 35].

Then, we group together words into clusters or topics, i.e. words that are semantically or

syntactically similar, using their embeddings. We derive a word by word matrix where each

row and column represent a word and each cell represents the cosine similarity between their

embeddings. We finally apply spectral clustering on that matrix to obtain the 200 distinct word

clusters. The clusters are interpreted by a list of the top representative words—those with the

highest average relatedness to the rest of the words in the cluster. For each user, we aggregate

all tokens in his tweets and represent the user as a distribution over the clusters, normalised by

the number of tweets. We have selected this configuration after trying several other clustering

methods (i.e. LDA [37], GloVe embeddings [38], NPMI clustering [13]) and number of clusters

(ranging from 30 to 2000).

Predictive Models

We frame our income prediction task as regression using a combination of user level and tex-

tual features. We use state-of-the-art linear and non-linear methods. The linear method is the

logistic regression (LR) [39] with Elastic Net regularisation [40]. The first non-linear method is

Support Vector regression [41] (SVM) with a Radial Basis Function (RBF) kernel [42], as

implemented in the Scikit Learn Toolkit [43]. Although a standard non-linear method used in

regression, SVMs do not inform which features are the most important in our predictive task.

For this reason, we use Gaussian Processes (GP) [20] for regression. GPs formulate a Bayesian

non-parametric statistical framework which defines a prior on functions. The properties of the

functions are given by a kernel which models the covariance in the response values as a func-

tion of its inputs. In order to enable feature interpretability, we use the Squared Exponential (a.

k.a. RBF) covariance function with Automatic Relevance Determination (ARD) [44] to learn a

separate kernel lengthscale for each feature. Intuitively, the lengthscale parameter controls the

variation along that dimension, i.e. a low value makes the output very sensitive to input data,

thus making that input more useful for the prediction. Given that our dataset is very large and

number of features high, for GP inference we use the fully independent training conditional

(FITC) approximation [45] with 500 random inducing points. Finally, we combine the out-

comes of the models learned using all feature sets in a linearly weighted ensemble.

Results and Discussion

Income Prediction

We first measure the predictive power of our features by performing regression on the user

income. Performance is measured using 10 fold cross-validation: in each round, 80% of the

data is used to train the model, 10% is used to tune model parameters using grid search (for LR

and SVM) and a different 10% is held out for testing. The final results are computed over the

aggregate set of results of all 10 folds. Results using all three regression methods and all types of
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features are presented in Table 3. Performance is measured using two standard metrics: Pear-

son’s correlation coefficient r and Mean Absolute Error (MAE) between inferred and target

values.

Best results are obtained using a combination of all features, reaching a correlation of .633

and Mean Average Error of £9535 with user income. This shows that our models predict

income with high accuracy. In general, the non-linear methods outperform the linear methods

with wide margins, showing the importance of modelling non-linear relationships in our data.

Out of all sets of features, the best results are obtained using the word clusters, with the other

four sets of features having each similar predictive power. The strong predictive performance

allows us to study more in depth the impact of all features while automatically inferring user

income.

Psycho-Demographics

We begin our analysis by examining the perceived psycho-demographic features. The psycho-

demographic features are categorical—unlike all others—and allow us to compare variations

within groups. To relate income with perceived psycho-demographic attributes we compare

the average income within the groups of users with contrastive psycho-demographic attributes.

Fig 2 shows the average income for groups with mean differences statistically significant at

p<.001 (Mann-Whitney test [46]).

The following findings confirm known relationships and establish the validity of our auto-

matic approach and dataset:

• For gender, there is a well-known payment gap [47], with average males earning significantly

more than females. For example, the gender pay ratio in the US is .816 [48] and in the UK is

0.906 [49]. In our dataset, the mean ratio between females and males is .793;

• Age plays an important role in income, with older age groups earning on average signifi-

cantly more than younger ones, reaching a plateau after the age of 35 [48]. Higher age leads

on average more work experience and education, which is translates to a higher income;

• There is a very strong racial difference in income level [50], with the mean ratio between

African Americans and Caucassians being for example .784 in the US [48]. In our dataset,

users perceived as African Americans earn much less (£24,944) on average than Caucasians

(£32,621) with a mean ratio of .764. This large gap can be partly explained with the perceived

nature of our race predictions, with African American language markers associated indirectly

with lower social status and income.

• Higher perceived education plays a significant role in having higher income;

Table 3. Prediction of incomewith our groups of features. Pearson correlation (left columns) and Mean Average Error (right columns) between income
and our models on 10 fold cross-validation using three different regression methods: Linear regression (LR), Support Vector Machines with RBF kernel
(SVM) and Gaussian Processes (GP) and sets of features described in the User Features section.

Feature set No. Features LR SVM GP

Profile 8 .205 £11460 .331 £11033 .372 £11291

Demo 15 .278 £11126 .257 £10418 .364 £10110

Emo 9 .271 £11093 .358 £10768 .371 £10980

Shallow 10 .200 £11183 .261 £11494 .355 £11456

Topics 200 .498 £10430 .606 £9835 .608 £9621

All features (Linear ensemble) 5 .506 £10342 .614 £9652 .633 £9535

doi:10.1371/journal.pone.0138717.t003
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• Differences in real income between predicted perceived income groups are significant. We

highlight that other groups (e.g. high income or graduate studies) have few users assigned

and therefore it is hard to estimate a reliable group mean;

• Predicted perceived intelligence should be correlated with actual income. However, the vast

majority of people are predicted to be part of the average intelligence class. Annotating intel-

ligence from text is a hard task and our classifier was trained on labels which had a very low

Cohen’s κ = .07 [51]. However, predicting actual income using only perceived intelligence

probabilities still leads to correlations (.135).

In addition, we unveil the following relationships on Twitter:

• Users perceived as being Christian earn significantly less on average than people who chose

not to signal their religious belief. This is different to surveys in the US [52] which show that

income levels are very similar between Christians and non-affiliated. This finding is caused

by users who are perceived of being Christian from their posts earn significantly less than

users who do not disclose their religious beliefs;

Fig 2. Mean incomewith confidence intervals for psycho-demographic groups. All group mean differences are statistically significant (Mann-Whitney
test, p < .001).

doi:10.1371/journal.pone.0138717.g002
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• Perceived anxiety and optimism differences in means were observed at higher p-values (.05).

Perceived optimists had a lower mean income (£32,267) than users neither optimist or pessi-

mist (£32,678), while less anxious users had higher mean income (£32,608) than users per-

ceived neither anxious nor calm (£31,337). Higher income social media users do not signal

anxiousness, although wealth has been found to have a positive correlation with stress [53];

• For narcissism and excitability groups incomes are not significantly different, but results

show trends by which narcissistic and excitable persons have lower income than those who

do not express these traits (p< .07);

• Other psycho-demographic features such as political orientation or life satisfaction are not

significantly related to income. The relationship between life satisfaction and income is

widely debated [54].

Subsequently, we analyse the distribution of psycho-demographic traits in a balanced sample

of 1,000 users with the highest (£53,679—£111,413) and lowest (£8,395—£16,035) income. For

each trait we estimate and compare the probability of every attribute given the income classes

e.g. p(Female j i = High) vs. p(Female j i = Low). We test whether these attribute values are sta-

tistically significant using a Mann-Whitney test (p< .001). The significant differences for

higher compared to lower income are ("—higher, #—lower—income group): users> 35 y.o.

18%", 30—35 y.o. 14%", 25—30 y.o. 12%#,< 25 y.o. 20%#; female 31%#; Christians 5%#; Cau-

casians 4%"; users with a degree 7%" and users with above average intelligence 2%"; narcissists

3%#. We did not find any significant differences for other attributes such as political preference

and relationship status.

Profile

We interpret the non-linear relationship between the rest of the features and income using

Gaussian Processes. The GP’s lengthscale parameters are inversely proportional to feature rele-

vance. We can use the lengthscales to rank feature importance for the prediction task. Further-

more, we can use the lengthscale for each feature to fit a GP to the feature values and plot the

non-linear function. Because the lengthscales are uncorrelated—unlike linear regression—we

use for interpretation a model which combines all features exhibiting a non-linear relationship

(Topics, Profile, Shallow, Emo). This allows us to rank the importance within each feature type

as well as between the types. In Fig 3 we plot the relationship between all profile features and

user income together with the lengthscale for each feature.

We observe the following trends:

• Higher income users have significantly more followers (u1), albeit the number of friends (u2)

is not dependent on income. The most predictive feature is the number of times a user is

listed (u3). Twitter listing is a way to organise users into lists for easier following and is per-

ceived as a higher form of endorsement than following that user. Higher income users are

listed more than lower income users;

• The rate of Twitter posting (u6, u7) increases as the income gets lower in a near linear rela-

tionship. This could be caused by the fact that lower income users use Twitter more for social

interaction (which leads to higher volumes of posts).

Emotions

In Fig 4 we plot changes in emotions and sentiments of users with income. We find the follow-

ing relationships:

Studying User Income in Social Media

PLOS ONE | DOI:10.1371/journal.pone.0138717 September 22, 2015 10 / 17



• Neutral sentiment increases with income, while both positive and negative sentiment

decrease. This uncovers that lower income users express more subjectivity online;

• Anger and fear emotions are more present in users with higher income while sadness, sur-

prise and disgust emotions are more associated with lower income; the changes in joy are not

significant.

Similarly to our analysis between income and psycho-demographics, we test whether these

emotional changes are statistically significant using a Mann-Whitney test on the 1,000 user

Fig 3. Linear and non-linear (GP) fit for Profile features. Variation of income as a function of user profile features. Linear fit in red, non-linear Gaussian
Process fit in black. Brackets show the GP lengthscales—the lower the value, the more important the feature is for prediction.

doi:10.1371/journal.pone.0138717.g003

Fig 4. Linear and non-linear (GP) fit for emotions and sentiments. Variation of income as a function of user emotion and sentiment scores. Linear fit in
red, non-linear Gaussian Process fit in black. Brackets show the GP lengthscales—the lower the value, the more important the feature is for prediction.

doi:10.1371/journal.pone.0138717.g004
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profiles with highest and lowest income. We found that all differences in means between these

two groups of users are statistically significant (p< .001), except for joy. The differences in

mean values between these two groups of users as the income increases are: positive 5% #, neg-

ative 4%#, neutral 9%", sadness 2%#, disgust 0.25%#, anger 0.27%", surprise 1.5%# and fear

3.3%".

Shallow Textual Features

Fig 5 shows the shallow textual features against user income for the top five most predictive

features as determined by the GP lengthscales. The rest of the features have very high lengths-

cales (higher than all profile features for example) and do not exhibit any observable patterns.

The following relationships are identified:

• Lower income users use more URLs (s10) in their posts, showing that these users link to

external content such as news, pictures or videos;

• Higher income users get retweeted more (s2) and also perform many retweets (s4) themselves.

This points out that high income users use Twitter more for content dissemination. This is

affected also by the larger number of followers higher income users have, which raises the

likelihood of a tweet to be retweeted;

• Although the majority of users do not post duplicate content (s1), those who do have lower

income.

Topics

The word clusters allow to gain insights into text use and its relation to income. We assume

there is a variation in language between the entire spectrum of user incomes [16, 55]. We also

note that the GP lengthscales for the top 10 topics are lower (i.e. more predictive) than all

except three features from the Profile, Emo and Shallow categories combined. This further con-

firms the good predictive power of the word clusters. Table 4 shows ten of the most informative

topics represented by top 15 words, sorted by their ARD lengthscale (l).

In Fig 6 we plot the linear and Gaussian Process fit for a selection of important topics.

These cover a broad range of thematic subjects:

• First, users talk more about ‘Politics’ (Topic 139) as the income gets higher in a near linear

relationship. Since income is usually strongly associated with the level of education, we

observe that higher educated users talk more about politics than less educated ones. Another

reason is that richer people are closer to political elites and therefore are more concerned

about politics;

Fig 5. Linear and non-linear (GP) fit for shallow textual features. Variation of income as a function of user shallow textual features. Linear fit in red, non-
linear Gaussian Process fit in black. Brackets show the GP lengthscales—the lower the value, the more important the feature is for prediction.

doi:10.1371/journal.pone.0138717.g005
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• A similar near linear relationship is observed between tweeting about ‘NGOs’ (Topic 163)

and ‘Corporate’ (Topic 124), with higher income users using these topics more. NGOs are

usually supported by donations which are usually made by people with higher incomes.

Therefore, even if NGOs activities are of general interest, they concern and are more dis-

cussed by users that participate actively in these organisations. Furthermore, tweeting about

‘Corporate’ is expected to be more prevalent amongst corporate members and investors who

usually have higher than average income;

• On the other hand, an opposite linear relationship is present for ‘Swearing’ (Topic 99). Swear

words are used more by people with lower incomes which suggest that they use more

Table 4. Topics, represented by top 15 words, sorted by their ARD lengthscale.Most predictive topics for income. Topic labels are manually added.
Lower lengthscales (l) denote more predictive topics.

Rank Topic # Label Topic l

1 139 Politics republican democratic gop congressional judiciary hearings abolishing oppose legislation governors
congress constitutional lobbyists democrat republicans

3.10

2 163 NGOs advocacy organization organizations advocates disadvantaged communities organisations participation
outreach associations non-profit nonprofit orgs educators initiative

3.44

3 196 Web analytics /
Surveys

#measure analytics #mrx #crowdsourcing crowdsourcing #socialmedia #analytics whitepaper #li metrics
#roi startup #social #smm segmentation

3.68

5 124 Corporate 1 consortium institutional firm’s acquisition enterprises subsidiary corp telecommunications infrastructure
partnership compan aims telecom strategic mining

6.48

6 91 Corporate 2 considerations provides comprehensive cost-effective enhance advantages selecting utilizing resource
essential additionally specialized benefits provide enhancing

7.44

7 107 Justice allegations prosecution indictment alleged convicted allegation alleges accused charges extortion
defendant investigated prosecutor sentencing unlawful

7.84

8 92 Link words otherwise unless wouldn’t whatever either maybe pretend anyone’s assume eventually assuming or
bother couldn’t however

8.39

9 173 Beauty hair comb bleached combed slicked hairs eyebrows ponytail trimmed curlers dye dyed curls waxed
bangs

9.75

10 40 Sport shows first-ever roundup sport’s round-up rundown poised previewing spotlight thursday’s com’s long-running
joins concludes prepares observer

10.57

11 99 Swearing messed f’d picking effed cracking f*cked hooking tearing catching lighten picked cracks ganging warmed
fudged

11.09

doi:10.1371/journal.pone.0138717.t004

Fig 6. Linear and non-linear (GP) fit for topics. Variation of income as a function of user topic usage. Linear fit in red, non-linear Gaussian Process fit in
black.

doi:10.1371/journal.pone.0138717.g006
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informal language. The same behaviour holds in general with topics that contain more per-

sonal language or words with alternative spellings (topics not shown here). This suggests that

in general users of lower income use social media more for personal communication, while

the ones with higher incomes use it for more ‘professional’ issues;

• Some topics reveal non-linear relationships with income which shows the effectiveness of

modelling this task using GPs. For example, users with higher incomes tweet more about

‘Web analytics / Surveys’ (Topic 196) and ‘Justice’ (Topic 107) with a plateau above a certain

feature value. This shows that using these topics helps discriminate higher from lower

incomes, but the larger the volume of tweets on these topics does not imply even higher

income.

Limitations

In our study, we showed that it is feasible to gather a large dataset with little cost. However, we

acknowledge possible limitations. Deriving income statistics from job labels is not perfect,

although variance withing the 3-digit SOC groups is small. We were constrained by using the

UK income levels for our outcome based on their mapping to the SOC classification. Our

users, however, are not geolocated, as this would decrease our dataset size drastically—only

1–2% tweets or users are geolocated and represent a biased sample [56], profile field geoloca-

tion is not perfect or very frequent [57] and automatic geolocation prediction methods [58]

would introduce biases in our analysis. Self-identification of the occupation is potentially

another source of bias, albeit we were able to find users representative to most job types. Nota-

bly, the self-identification approach is being used widely throughout the literature [58–60].

For the psycho-demographic analysis we relied on predictions from automated text-based

algorithms. The majority of these were trained on perceived annotated ground truth labels,

leading the classifier to estimate the perception of those traits from text. A future study that has

access to better data could study the interplay between income and real user psycho-demo-

graphic traits as measured using questionnaires.

Conclusions

We presented the first large-scale study aiming to predict the income of social media users

from their generated content and online behaviour. Framing this task as a regression problem,

we demonstrated high predictive power using a combination of publicly available features,

such as language and profile data, with automatically inferred characteristics from text, such as

perceived psycho-demographics, emotions and sentiment.

The interpretability of the applied Gaussian Process model allowed us to perform an exten-

sive qualitative and quantitative analysis of the input features. We found that the proportion of

tweets using vocabulary related to fear or joy, the ratios of tweets with links and retweets as

well as topics discovered in the textual content have high predictive power. We also discovered

that users perceived to be female, younger, African American, with lower education level, or

anxious are associated with lower rates of income. On the other hand, users with higher income

post less emotional (positive and negative) but more neutral content, exhibiting more anger

and fear, but less surprise, sadness and disgust. Finally, through an analysis on user language,

we were able to highlight latent topics that discriminate users with high and low income, such

as politics, specific technology topics or swear words.

Acknowledging possible limitations of this study, we consider our study as a necessary first

step in analysing income through social media using datasets orders of magnitude larger and

with more complex features than previous research efforts. We believe that the presented
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methods can find several applications in a multitude of domains, ranging from health to poli-

tics or marketing.
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