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Abstract 
Aging is a natural and unavoidable part of life. However, aging is also the primary driver 
of the dominant human diseases, such as cardiovascular disease, cancer, and 
neurodegenerative diseases, including Alzheimer’s disease. Unraveling the sophisticated 
molecular mechanisms of the human aging process may provide novel strategies to 
extend ‘healthy aging’ and the cure of human aging-related diseases. Werner syndrome 
(WS), is a heritable human premature aging disease caused by mutations in the gene 
encoding the Werner (WRN) DNA helicase. As a classical premature aging disease, 
etiological exploration of WS can shed light on the mechanisms of normal human aging 
and facilitate the development of interventional strategies to improve the healthspan. 
Here, we summarize the latest progress of the molecular understandings of WRN protein, 
highlight the advantages of using different WS model systems, including C. elegans, 
Drosophila melanogaster and induced pluripotent stem cell (iPSC) systems. Further 
studies on WS will propel drug development for WS patients, and possibly also for normal 
age-related diseases.   
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1. Introduction of Werner syndrome (WS) 
1.1 Clinical Phenotypes  
Werner syndrome (WS, OMIM#277700) is a rare autosomal recessive inherited disorder 
that displays clinical features indicative of accelerated aging (Bohr, 2005; Bohr et al., 
2002; Oshima et al., 2017). WS is one of the few adult-onset accelerated aging 
syndromes, where the patients mostly develop normally until they reach adolescence 
(Oshima et al., 2017). The first clinical signs of WS appear as a lack of growth spurt in 
puberty, resulting in a relative short stature. In their 20s and early 30s, WS patients 
develop a prematurely aged appearance. This includes the development of a variety of 
age-related features including skin and muscle atrophies, loss of subcutaneous fat and 
graying and loss of hair. By the fourth decade of life bilateral cataracts, abnormal glucose 
and lipid metabolism, hypogonadism and bone deformity appear. Furthermore, WS is 
often accompanied by a series of common age-related diseases such as type II diabetes 
mellitus, osteoporosis, arteriosclerosis, and malignant neoplasms among others (Oshima 
et al., 2017; Yu et al., 1996). The most common causes of death for WS patients are 
cancer and myocardial infarction at a median age of 54 years (Goto et al., 2013; Huang 
et al., 2006). The median age of WS patients has been increasing during the last decades, 
likely due to improved medical care.  
 
1.2 Etiology 
Classical WS is caused by homozygous or compound heterozygous loss of function 
mutations in the WRN gene (Yu et al., 1996). The WRN locus is located on chromosome 
8p12 and consists of 34 coding exons spanning a region of 140 kb (Yu et al., 1996). It 
encodes one of the five human RecQ-type DNA helicases, the WRN protein (Matsumoto 
et al., 1997; Oshima et al., 1996; Yu et al., 1996). The other four human RecQ-type DNA 
helicases are RECQL1, BLM, RECQL4 and RECQL5 (Croteau et al., 2014). Human WRN 
protein consists of 1432 amino acids with the size of 160 kDa. It is a multifunctional 
nuclear protein with a 3’ to 5’ exonuclease domain in its N-terminus (Huang et al., 2006), 
an ATP-dependent 3’ to 5’ helicase in its central region (Gray et al., 1997), a nuclear 
localization signal in its C-terminus (Matsumoto et al., 1997; Suzuki et al., 2001) and two 
additional consensus domains, namely the RecQ helicase conserved region (RQC) and 
the helicase, RNase D, C-terminal conserved region (HRDC). Fig. 1 gives a schematic 
illustration of the WRN protein. 
The WRN helicase activity catalyzes unwinding of a broad spectrum of DNA substrates 
and intermediates, including intermediates of DNA replication such as complex G4-
quadruplex structures, recombination and repair (Brosh and Bohr, 2002; Crabbe et al., 
2004; Kamath-Loeb et al., 2012). The exonuclease activity of WRN degrades 3’ recessed 
double stranded DNA, bubble, forked duplexes, Holliday junctions and the DNA in RNA-
DNA duplexes (Huang et al., 2000; Shen and Loeb, 2000). WRN has been shown to have 
several interaction partners involved in DNA maintenance. These include proteins central 
for replication such as replication protein A (RPA), proliferating cell nuclear antigen 
(PCNA) and topoisomerase I (Lebel et al., 1999). WRN also interacts with multiple 
proteins involved in the DNA repair pathways including base excision repair (APE1, 
PARP-1, FEN1, Polβ) (Ahn et al., 2004), non-homologous end-joining (RAD51, RAD52, 
Mre11/Rad50/Nbs1) and homologous recombination (BRCA1, MRN, BLM) (reviewed in 
(Kusumoto et al., 2007)). 



 
More than 80 different disease-causing mutations have been identified in WRN (Friedrich 
et al., 2010; Oshima et al., 2017; Uhrhammer et al., 2006). The majority of the mutations 
lead to premature stop codons or deletions, most of which result in truncations of nuclear 
localization signals at the C-termini and/or nonsense mediated decay of mutant mRNAs, 
therefore often referred to as null mutations (Oshima and Hisama, 2014; Oshima et al., 
2017). In addition to mutations in the WRN locus, heterozygous mutations in the LMNA 
gene have also been associated with WS, and is referred to as atypical WS (AWS) (see 
review by (Chen et al., 2003) for more details). Currently, no clear correlation has been 
identified between the location of the mutation and the disease severity, thus further 
studies are needed to clarify this link.  
 
Single nucleotide polymorphisms (SNPs) in the WRN gene have also been identified, and 
several polymorphisms have been associated with both longevity and disease risks 
though not all findings have been replicated in multiple cohorts (reviewed in (Lebel and 
Monnat, 2018)). The three different polymorphisms, L1074F, C1367R, and S1133A have 
been linked with longevity, though only the association between S1133A and longevity 
was significant (Castro et al., 2000; Kulminski and Culminskaya, 2013). Additionally, 
C1376R, S1133A and M387I have been associated with cardiovascular diseases (Castro 
et al., 2000; Kulminski and Culminskaya, 2013; Ye et al., 1997), while L1074F and 
C1367R have been connected with the risk of ischemic stroke (Sebastiani et al., 2013; 
Sebastiani et al., 2012). WRN gene SNPs have also been linked with dyslipidemia (V114I 
and S1133A) (Berube et al., 2013; Kulminski and Culminskaya, 2013) and diabetes 
(C1367R) (Hirai et al., 2005). Additionally, WRN gene SNPs have been associated with 
various types of cancers including bone and soft tissue sarcomas (C1367R), breast 
cancer (C1367R and V114I) and lung cancer (L1074F) (Gagne et al., 2016; Nakayama 
et al., 2008; Shen et al., 2006). In addition, C1367R has been associated with both bipolar 
disorder, schizophrenia and increased risk of Creutzfeldt-Jakob disease (Chen et al., 
2013; Mead et al., 2012). Furthermore, SNPs in the 5’ upstream region and 5’ flanking 
areas of WRN have been associated with cognitive function (rs2251621, rs2725335, and 
rs2725338) despite mental impairment not being a typical feature of WS patients (Sild et 
al., 2006).  
 
2. WS serves as a unique model to understand normal human aging 
Aging is the primary driver of the dominant human diseases, such as cardiovascular 
disease and neurodegenerative diseases, while unraveling the underlying molecular 
mechanisms of the human aging process may provide novel strategies to extend ‘healthy 
aging’ and therapeutics for human aging-related diseases (Fang et al., 2014; Fang et al., 
2016b). Due to a series of premature aging features WS has been considered as a great 
model for aging research (Bohr et al., 2002; Shamanna et al., 2017). When comparing 
characteristics of WS to the hallmarks of aging proposed by Lopez-Otin et al. (9 hallmarks 
of aging) and us (plus defective autophagy, including defective mitophagy) (Fang et al., 
2017a; Lopez-Otin et al., 2013), WS has been linked with all the 10 hallmarks of aging: 
including epigenetic alterations (Maierhofer et al., 2017), telomere attrition (Crabbe et al., 
2007; Wyllie et al., 2000), changes in DNA damage and repair (Cheng et al., 2006; 
Kusumoto et al., 2007; Opresko et al., 2004), deregulated nutrient sensing (Yasuda et al., 



2010; Yokote et al., 2004; Yokote and Saito, 2008), loss of proteostasis (Talaei et al., 
2013; Zhu et al., 2015), altered cellular communication due to inflammation-induced 
elevated cytokine levels (Goto et al., 2015), cellular senescence (Faragher et al., 1993) , 
stem cell exhaustion (Wu et al., 2018; Zhang et al., 2015b), and  altered autophagy (Maity 
et al., 2014) and mitochondrial function (Cogger et al., 2014) (Fig. 2). In this review, we 
focus on the links between WS and some of these hallmarks, i.e., genomic stability, 
senescence, stem cells, mitochondrial function and autophagy.  
 
2.1 WRN mutation in genomic stability 
The two major characteristics of cells from WS patients are genomic instability and limited 
cell replicative lifespan (Oshima et al., 1995; Salk, 1985; Salk et al., 1985). WRN exhibits 
DNA-dependent ATPase, ATP dependent 3’5’ DNA helicase, single stranded DNA 
annealing and exonuclease activities. Through its various enzyme activities, WRN is able 
to resolve a variety of DNA substrates all representing intermediates in DNA replication 
and repair, and indeed WRN protein has been shown to be involved in multiple DNA 
transactions. WRN participates in both sub-pathways of double strand break repair (non-
homologous end-joining and homologous recombination), base excision repair and 
telomere maintenance (Shamanna et al., 2016). In addition, WRN helicase unwinds and 
resolves complex DNA structures and intermediates including G-quadruplex structures 
(Kamath-Loeb et al., 2012). This activity includes the unwinding of G-quadruplex 
structures at the lagging telomere strand and defects in WRN has been shown to lead to 
replication fork stalling and degradation, hereby linking chromosome end maintenance to 
WS (Crabbe et al., 2004; Pichierri et al., 2001; Rodriguez-Lopez et al., 2002). 
 
Furthermore, post-translational modifications of WRN modulate its enzymatic activity, 
thereby regulating its role in DNA maintenance processes (Kusumoto et al., 2007; 
Tadokoro et al., 2013). Additionally, oxidation of the WRN protein results in loss of its 
catalytic activities in addition to impairment of protein-protein interactions (Harrigan et al., 
2007). Disease causing mutations such as the missense mutation c.1720G>A, 
p.Gly574Arg, has been shown to result in decreased helicase activity due to impaired 
ATP binding. Interestingly, WS patients with this mutation do not show the short stature 
normally seen in WS patients (Tadokoro et al., 2013). Thus, the short stature of WS 
patients may not be associated with impaired helicase activity but with the residual 
activities of WRN. Additionally, the WS patient carrying the G574R mutation in the study 
by Tadokoro et al., shows nuclear WRN expression, whereas most WS patients carrying 
other WRN mutations do not. This could indicate that the G754R patient can sustain 
enough WRN activities/interactions to prevent growth failure, but still too little to prevent 
other WS related features (Tadokoro et al., 2013).  
 
In addition to the above-mentioned functions, WRN also promotes telomere maintenance, 
and loss of WRN results in a rapid decline of telomere length, which has been linked to 
aging (Ishikawa et al., 2011; Opresko et al., 2004). Collectively, WRN plays a major role 
in DNA repair through its involvement in several DNA repair pathways.   
 
2.2 WRN mutation in senescence 



Cellular senescence refers to an irreversible growth arrest of primary eukaryotic cells and 
was first described for cells in culture (Hayflick, 1965). The process of senescence is 
thought to contribute to aging and aging-related degeneration (Lopez-Otin et al., 2013), 
where senescent cells are more common and might result in limited tissue renewal (Kong 
et al., 2011). Collectively, WS patient cells and WRN knock-down cells have been related 
with senescence and premature senescence. The clinical manifestations of WS, including 
a bird-like appearance, alopecia/gray hair, skin hyperpigmentation, hoarseness, diffuse 
arteriosclerosis, juvenile bilateral cataracts and osteoporosis, are all associated to 
premature senescence (Goto et al., 2013). Furthermore, primary skin fibroblasts from WS 
patients and WRN-deficient cells undergo early replicative senescence. Additionally, cells 
depleted for WRN show increased senescence-associated beta-galactosidase (SA-β-gal) 
staining, activation of the senescence-associated secretory phenotype (SASP) (Rodier 
and Campisi, 2011; Rodier et al., 2011) and accumulation of DNA damage foci (Lu et al., 
2014). The premature senescence seen in WRN-deficient cells is related to the observed 
telomere shortening; overexpression of telomerase (hTERT) inhibits premature 
senescence at the same level as rescue with WRN protein and increases cellular lifespan 
(Crabbe et al., 2007; Grandori et al., 2003; Wyllie et al., 2000). WRN-null human 
embryonic stem cells (hESCs) differentiated to mesenchymal stem cells (MSCs) 
recapitulate features of premature cellular aging including changes of heterochromatin 
architectures in addition to altered epigenetic marks e.g. global loss of H3K9me3, all signs 
of premature senescence. Interestingly, MSCs from older individuals display decreased 
levels of WRN in addition to altered heterochromatin marks resembling the alterations 
seen in the WRN-null MSCs (Zhang et al., 2015b). Moreover, WS patients display a 
progressive increase in DNA methylation, considered as a prematurely increased 
epigenetic age (Maierhofer et al., 2017). Collectively, these studies suggest that loss of 
WRN promotes premature senescence, and that the role of WRN in the maintenance of 
various forms of DNA, including telomeres and heterochromatin might be important to 
aging. 
 
2.3 WRN mutation in stem cell exhaustion 
During normal aging the regenerative potential of stem cells is lost leading to an age-
dependent stem cell exhaustion. The regulation of stem cells in WS is largely unknown, 
though recent studies indicate the importance of WRN in stem cell function. Normally, a 
balance between the quiescent and activated state of stem cells are kept to retain stem 
cell rejuvenation potential. Likely, WRN is central in the maintenance of this homeostasis. 
In addition to the above mentioned roles of WRN, links between WRN and the sirtuins 
(SIRTs) have previously been shown, indicating an important role of WRN in 
mitochondrial health (reviewed in (Chandel et al., 2016; Wrighton, 2015)). All of these 
factors, are known to be important contributors to the prevention of stem cell exhaustion 
(summarized in Fig. 3). 
 
WRN-deficient hESCs and MSCs show phenotypes of accelerated aging including 
premature dysfunction such as decreased proliferative potential in addition to increased 
expression of p16INK4 and p21Waf1, both markers of aging (Cheung et al., 2015; 
Shimamoto et al., 2014; Wu et al., 2018). Interestingly, WRN-depleted neuronal 
progenitor cells do not show signs of premature aging, neither do reprogrammed iPSCs, 



likely due to an increased telomerase activity as a consequence of reprogramming (will 
be discussed in more detail below) (Cheung et al., 2014; Shimamoto et al., 2014). As 
explained above, WRN-null MSCs also display heterochromatin alterations linked to 
premature senescence, again suggesting WRN as an important contributor to chromatin 
regulation (Zhang et al., 2015b). A role of WRN in chromatin regulation has also been 
suggested by a recent study indicating that treatment with vitamin C likely alleviates many 
features of premature aging seen in WRN-deficient MSCs via altered expression patterns 
of a series of genes involved in chromatin condensation, cell cycle regulation, DNA 
replication and DNA damage and repair (Li et al., 2016), though it needs further 
verification. Thus, while evidence indicates a pivotal role of WRN in stem cell function 
(Fig. 3), more underlying molecular mechanisms are likely to be revealed.   
 
2.4 WRN mutation in mitochondrial dysfunction and imbalanced autophagy  
WS patient cells show mitochondrial dysfunction-related phenotypes. Thus, increased 
levels of reactive oxygen species (ROS) including both superoxide and hydrogen 
peroxide have been observed in WS patient cells. Furthermore, cells depleted for WRN, 
both mouse embryonic fibroblasts (MEFs) and human cancer cells including HeLa and 
breast cancer cells, show reduced levels of NADPH, a central provider of reducing 
equivalents for biosynthetic reactions and cellular protection against ROS. In addition, 
reduced levels of the antioxidant glutathione (GSH) and a metabolic shift resulting in 
altered mitochondrial respiration have been shown. All of the above mentioned 
consequences of WRN loss result in decreased cell proliferation (Li et al., 2014). 
Additionally, the WRN depleted cells showed increased levels of oxidative stress and also 
the oxidative DNA damage 8-oxoguanine (8oxodG) and the double strand break marker 

H2AX (Das et al., 2007). Interestingly, treatment with the antioxidant GSH normalized 
the stress level, mitochondrial function and proliferation of the WRN depleted cells to 
normal levels (Li et al., 2014), supporting an important role of ROS-induced oxidative 
stress and associated mitochondrial dysfunction in WS.  
WRN has also been implicated in cellular metabolism and autophagy. Basal autophagy 
and the associated mTOR signaling have been found to be upregulated in WS cells (Saha 
et al., 2014; Talaei et al., 2013). While short-term rapamycin treatment increases the 
activation of autophagy, long-term treatment with rapamycin of WS cells results in 
improved growth rate, reduced accumulation of DNA damage and improved morphology 
of the nuclei. The autophagy markers LC3-II and p62 are also reduced after long-term 
rapamycin treatment (Saha et al., 2014), likely due to an increased clearance of 
dysfunctional and/or damaged cellular components consistent with enhanced 
degradation of autophagosomes (Saha et al., 2014). This effect of rapamycin treatment 
was found enhanced in WS cells compared to controls. In summary, there is a lack of 
comprehensive evaluation of mitochondrial phenotypes in WS and the role of WRN in 
autophagy is largely phenotypical. Further mechanistic studies of WRN in mitochondrial 
function and autophagy using isogenic cell lines are therefore necessary.  
 
3. WS model systems 
Most of the data available concerning the underlying mechanisms of WS are based on 
three model systems: fibroblasts and lymphoblastic cell lines derived from WS patients 
and two animal models, Caenorhabditis elegans (C. elegans) and Drosophila 



melanogaster (Drosophila). Due to the well-known conservation of evolutionary pathways 
between species, both C. elegans and Drosophila can be used for drug development 
against human diseases. Despite mice being the generally most common animal model 
used for studying human diseases, it must be kept in mind that mice are more expensive 
to maintain in the laboratory, relatively long-lived and they require a very long process for 
genetic manipulation. In contrast, C. elegans and Drosophila models are cheaper to 
maintain, easy to manipulate and short-lived enabling large-scale lifespan and healthspan 
studies. One complication in studying the functions of WRN is its unique double DNA 
repair activities, where it functions both as an exonuclease and a helicase. Similar to 
human WRN, mouse WRN (mWRN) protein contains both helicase and exonuclease 
domains, making it difficult to disentangle the distinctive biological functions of the two 
domains. When modifying either one or both domains in mWRN, the mice lack a 
premature aging phenotype. This might be due the extended telomeres in mice compared 
to humans, since a premature aging phenotype appears in the telomerase-WRN double 
null mouse model (Chang et al., 2004), suggesting telomere shortening as an important 
component in WS. Therefore, the WS mouse models are not a preferable choice when 
studying WS. Unlike mammals, WRN activities are separated on different proteins in both 
flies and worms, enabling the separation of these activities and likely helping to 
understand its involvement at an organismal level.   
 
3.1 WS C. elegans 
In C. elegans, four RecQ family DNA helicases have been identified by comparing the 
genomic DNA sequences. These include the open reading frame T04A11.6, homologous 
with mammalian RecQL; HIM-6, corresponding to BLM; RCQ-5, equivalent to RecQ5; 
and the open reading frame F18C5.2 homologous with human WRN and therefore named 
WRN-1 in WormBase (https://www.wormbase.org/). No homolog of RecQ4 has been 
predicted in C. elegans. WRN-1 possesses only the helicase motif with a DEAH box which 
shares 43% identity in the amino acid sequence with that of the human WRN helicase 
domain. Moreover, the RQC (RecQ helicase conserved) domain and the HRDC domain 
share 27% identity with human WRN (Lee et al., 2004) (Fig. 1). In C. elegans, WRN-1 
lacks the exonuclease domain, although the exonuclease domain of MUT-7 shares 29% 
identity with human WRN (Fig. 1) (Lee et al., 2004). Despite the homology, MUT-7 cannot 
be considered a functional homolog of WRN exonuclease, since it is involved in RNA 
interference and gene silencing (Ketting et al., 1999; Ryu and Koo, 2016), while the 
helicase activity has been shown to unwind various DNA structures (Hyun et al., 2008). 
WRN-1 and also mWRN are discursively distributed in the nucleoplasm during interphase 
(Lee et al., 2004), where human WRN is mainly localized in the nucleolus (Marciniak et 
al., 1998; Suzuki et al., 2001). During S phase and as a respond to DNA damage, human 
WRN translocates from nucleolus to specific foci in the nucleoplasm in connection with 
other DNA repair enzymes (Gray et al., 1998; Rodriguez-Lopez et al., 2003). How WRN-
1 in C. elegans locates during cell cycle is currently unknown.  
 
C. elegans wrn-1 mutant strains (including wrn-1(gk99), wrn-1(tm764), wrn-1 (RNAi)) 
recapitulate several major phenotypes of WS patients, but also shows some distinctive 
features. The WRN-1 protein level has been shown to decrease with age in all tested 
tissues in adult worms (Lee et al., 2004). Notably, it has been shown that by silencing 



wrn-1 using RNAi knockdown, worms have a shortened lifespan (from 13.6 of WT to 11.0 
days in the wrn-1(RNAi) at 25°C). Additionally, wrn-1(RNAi) worms accumulate lipofuscin 
faster than wild type worms and dumpy body, whereas wrn-1(gk99), wrn-1(tm764) and 
wrn-1 (RNAi) worms show phenotypes including small body size, increased incidences 
of ruptured body, dumpy shape and growth arrest at larval stages (Lee et al., 2010; Lee 
et al., 2004), similar to clinical manifestations in human WS supporting the use of wrn-1 
mutant C. elegans as a model of human WS. Wrn-1 (RNAi) worms also show an 
acceleration of larval growth and surprisingly early wrn-1 (RNAi) embryos exhibit a shorter 
S-phase, which is in contrast to an elongated S-phase seen in WS patient cells (Lee et 
al., 2004). Indeed, mitotically proliferating germ cells in wrn-1 (RNAi) worms show an 
ineffective checkpoint for DNA replication arrest even after hydroxyurea-induced stress. 
Moreover γ-radiation exacerbates the WS phenotype of wrn-1 (RNAi) worms, while the 
faster growth rate is independent of ionization, suggesting that WRN-1 is involved in 
cellular responses to DNA damage (Lee et al., 2004). Additionally, WRN-1 has been 
proposed to be responsible for extensive end-resection. When WRN-1 is absent, it 
causes hyper-accumulation of RPA resulting in a failure of recruitment and 
phosphorylation of RAD-51, leaving the cells with an inefficient double strand break repair 
system (Ryu and Koo, 2016, 2017).  
 
In general, C. elegans serves as a useful model for drug screening due to the highly 
conserved mechanisms, relative ease of use and short lifespan. Vitamin C treatment has 
been suggested to alter the expression of genes related to locomotion and anatomical 
structure, and to extend lifespan of the wrn-1(gk99) C. elegans strain, suggesting vitamin 
C as a potential drug against certain premature aging features in WS (Dallaire et al., 2012; 
Dallaire et al., 2014). Interestingly, vitamin C have also been suggested effective in the 
WS mice (Massip et al., 2010) as well as in a human mesenchymal stem cell model of 
WS (Li et al., 2016), though further studies are needed to confirm these findings. 
Combined, the current data suggest that wrn-1 worms recapitulate some primary 
phenotypes of WS patients, and can serve as a powerful model for anti-WS drug 
screening.    
 
3.2 Drosophila models of WS 
In flies, an orthologue of the exonuclease domain of human WRN has been identified. 
Proteins encoded by the CG7670 and CG6744 loci have been identified as homologous 
to the human WRN exonuclease domain (Cox et al., 2007). CG7670 displays 34% 
homology, while CG6744 displays 33% homology with human WRN, respectively. 
CG6744 shares homology with the ATP-binding domain, the RQC region and C-terminal 
region of human WRN (Cox et al., 2007; Saunders et al., 2008). Additionally, CG6744 
also shows 40% identity and 59% similarity with the exonuclease 3’-5’ domain-like 2 
protein (Fig. 1) (Cox et al., 2007). Thus, CG6744 has been assigned as the orthologue of 
human WRN, termed DmWRNexo (Cox et al., 2007). The helicase domain of human 
WRN has been found to share a high percentage amino acid identity and similarity (80%) 
with DmBLM encoded by the mus309 locus (Fig. 1) (Cox et al., 2007; Kusano et al., 1999).  
 
Despite the lack of a helicase domain, DmWRNexo reserves some important functions of 
human WRN and shows similar substrate specificity to human WRN exonuclease. 



DmWRNexo shows 3’ to 5’ exonuclease activity on both single stranded and 5’ overhang 
duplex templates but not on blunt ends dependent on divalent cations (Mg2+) (Boubriak 
et al., 2009; Mason et al., 2013), similar to human WRN (Huang et al., 1998; Machwe et 
al., 2000; Machwe et al., 2011). Additionally, DmWRNexo is involved in restarting stalled 
replication forks, and mutations in its locus lead to hyper-recombination and camptothecin 
hypersensitivity, as already shown in human WS cells (Machwe et al., 2011; Saunders et 
al., 2008). Studies have also demonstrated how DmWRNexo plays a key role already in 
the early embryogenesis. Indeed, fly embryos carrying a mutation in the exonuclease 
domain of DmWRNexo, undergo slower replication. This causes replicative fork arrest 
leading to accumulation of DNA damage, resulting in improper nuclear division and 
embryonic development (Bolterstein et al., 2014). Similar features have already been 
observed in WS and WRN-depleted human cells (Opresko et al., 2007; Pichierri et al., 
2001; Szekely et al., 2005). Combined the great similarity between hWRN and 
DmWRNexo on both sequence and activity levels extends the usability of Drosophila as 
a powerful model of human WS. 
 
3.3 WS Mice 
mWRN shares ~70% amino acid identity with that of the human WRN protein and it 
exhibits both helicase and exonuclease activity (Huang et al., 2000) (Fig. 1). There are at 
least three WS mouse models available. These models include mice lacking the entire 
WRN protein (Wrn null or Wrn-/- mice), mice carrying a deletion in the helicase domain 
(WrnΔhel/Δhel mice) and transgenic mice expressing human WRN with a dominant-negative 
mutation (K577M-WRN) (Aumailley et al., 2015; Huang et al., 2000; Lebel et al., 2003; 
Massip et al., 2006). Wrn-/- and WrnΔhel/Δhel mice have been well-characterized. The Wrn-

/- mice show increased DNA damage sensitivity, but surprisingly they do not exhibit 
accelerated aging features, possibly due to the long telomeres compared to humans 
(Chang et al., 2004). Indeed, Chang et al., showed that combined telomere dysfunction 
and WRN depletion in mice manifests features seen in human WS such as replicative 
senescence leading to premature aging and tumorigenesis (Chang, 2005). Thus the Terc-

/- Wrn-/- mice recapitulate many of the phenotypes of human WS, showing a key role of 
telomere maintenance in WS and the aging process (Chang et al., 2004). 
 
Conversely, the WrnΔhel/Δhel mice recapitulate most of the WS phenotypes, such as 
abnormal hyaluronic acid secretion, higher systemic ROS levels, dyslipidemia, heart 
failure, increased genomic instability and different types of cancers (Lebel et al., 2001; 
Lebel and Leder, 1998; Massip et al., 2006). Moreover, these mice have a shorter mean 
lifespan (reduced 10-15% when compared to wild type). As also seen in human cells and 
C. elegans models, vitamin C increases the lifespan and healthspan of WrnΔhel/Δhel mice 
(Lebel et al., 2003; Massip et al., 2010). Mislocalization of WRN mutant protein to 
organelles including peroxisomes, endoplasmic reticulum and autophagosomes, rather 
than to the nucleus, likely is responsible for the premature aging phenotypes (Aumailley 
et al., 2015).  
 
WRN K577M mice show abolished ATPase and helicase activity but a retained 
exonuclease activity. In addition, tail fibroblasts from K577M-WRN transgenic mice, 
exhibit hypersensitivity to the genotoxic agent 4-nitroquinoline-1-oxide (4NQO) and 



slower proliferative capacity, even though these mice do not show any pathophysiological 
feature linked to WS (Wang et al., 2000).  
 
3.4 Human WS iPSCs 
The availability of WS iPSCs has provided a new and powerful approach to study WS, 
through the provision of isogenic background and the differentiation of any types of cells 
of interest. Generation of WS iPSCs allows researchers to unveil pathophysiological 
mechanisms and also test the newest pharmacological treatments in a human context. 
Currently, most of the data on WS are limited to patient-derived fibroblasts and 
lymphocytes. WRN-/- hESCs have been established and differentiated to MSCs as 
explained earlier. The WRN-/- MSCs exhibited features of premature cellular aging, 
including premature loss of proliferative potential and epigenetic and chromatin structure 
alterations (Zhang et al., 2015a). Although these cells provide a reasonable model of WS, 
a human iPSCs line would allow the in vitro reconstruction of the disease. Currently, the 
generation of human iPSCs from WS patients is limited to three cases, describing a 
successful generation of iPSCs through the introduction of several pluripotency genes 
resulting in induction of the gene encoding human telomerase reverse transcriptase 
(hTERT) (Cheung et al., 2014; Shimamoto et al., 2014; Wang et al., 2018). When fully 
reprogrammed to iPSCs, the cells completely lost the WS related phenotype in addition 
to restored telomerase levels, opposite to the original WS patient fibroblasts. Additionally, 
the karyotype of the iPSCs remained stable over multiple passages (Fig. 3) (Shimamoto 
et al., 2015). A strong interplay between WRN and telomere maintenance has previously 
been observed, confirming the importance of telomere maintenance. Induction of hTERT 
in the reprogramming process from WS patient fibroblasts to iPSCs recovers the 
telomerase activity, which causes elongation of telomeres and hereby an extended 
cellular lifespan (Shimamoto et al., 2015). These data demonstrate that the premature 
senescence observed in WS fibroblasts likely is due to an insufficient activity of 
telomerase, and that expression of hTERT recovers the phenotype when generating 
iPSCs (Cheung et al., 2014; Shimamoto et al., 2014). Results from these iPSC studies 
suggest that WS is a stem cell dysfunction-associated disease. However, since WS is a 
segmental progeroid syndrome, features associated with aging (such as dementia) do 
not completely overlap with WS. Despite the apparent aging phenotypes observed in 
mesenchymal stem/progenitor cells and fibroblasts, lack of premature senescence is 
observed in neural stem cells, keratinocytes (Ibrahim et al., 2016) and endothelial cells 
(Wu et al., 2018). It raises the question whether WRN mutation equally affects all the 
lineages and tissues. Apart from senescence, other hallmarks of aging have not been 
systematically examined in different adult stem/progenitor cells (Fig. 3). Thus, more 
studies are needed to differentiate the effects of WRN depletion in various iPSC-derived 
cell types  
 
4. Outstanding questions and future perspectives 
The premature aging features of WS can to a large extend be connected to several of the 
hallmarks of normal aging including telomere attrition, genomic instability and altered 
cellular communication, among others (Fig. 2). Extensive studies on the mechanisms 
behind WS are warranted. First, how WRN regulates metabolic homeostasis and whether 
this is by controlling the mitochondrial quality and function, should be studied. Second, it 



would be interesting to look for potential changes in the DNA damage-induced signaling 
from the nucleus to mitochondria (NM signaling) in WS. Accordingly, recent studies 
suggest mitophagy and NAD+ depletion to be central in the aging process and NAD+ 
precursor supplementation has shown tremendous positive effects on premature aging 
disorders including Cockayne syndrome, Xeroderma pigmentosum group A, and Ataxia 
telangiectasia (Fang et al., 2016a; Fang et al., 2017b; Fang et al., 2014; Fang et al., 
2016b; Scheibye-Knudsen et al., 2014). This drives us to speculate whether mitophagy 
and/or NAD+ metabolism also affect WS, and this is indeed the case (Fang EF et al., 
unpublished data). Third, it has so far been challenging to divide the roles of the 
exonuclease and helicase domain of WRN in the features of WS. The more recent worm 
and fly models of WS, might be able to help elucidate and distinguish the roles of the 
domains in the human syndrome. Additionally, more extensive research of WS stem cells 
may also help to clarify the mechanistic failures during human WS.  
 
In summary, WS is a classical premature aging disease with mechanisms still elusive. 
Combining different WS systems, including worms, flies, mice and human stem cells, may 
dramatically facilitate our research on WS as well as to broaden our understanding of the 
multi-faceted roles of WRN in the mechanism of normal aging. Additionally, cross-species 
studies of WS will propel the development of efficient drugs for this currently incurable 
disease.  
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Figures 

 
Fig. 1. Comparison of conserved regions of WRN in WS humans and animal 
models. Amino acid identities with human WRN are indicated below WS model proteins. 
R = acidic repeats; RQC = RecQ conserved domain; HRDC = helicase Rnase D 
conserved domain; NLS = nuclear localization signal. The numbers just below the 
illustration of the various domains refer to the amino acids in the protein sequence. The 
domains are drawn based on H. sapiens: UniProtKB − Q14191 and (Lebel and Monnat, 
2018); M. musculus: UniProtKB - O09053 and (Chen and Oshima, 2002); C. elegans wrn-
1: UniProtKB - Q19546 and (Lee et al., 2004; Ryu and Koo, 2016); C. elegans mut-7: 
UniProtKB - P34607 and (Lee et al., 2004); D. melanogaster WRN: UniProtKB - Q9VE86 
and (Cox et al., 2007; Saunders et al., 2008); D. melanogaster BLM encoded by mus309 
locus: UniProtKB - Q9VGI8, (Cox et al., 2007; Kusano et al., 1999). RecQ5 and RecQ4 
also show high similarity to human WRN, but lower than that of DmBLM (Cox et al., 2007). 
 



 
 
Fig. 2. WS and its relation to the 10 hallmarks of aging. WS can be related to many 
of the hallmarks of aging proposed by us and others (Fang et al., 2017a; Lopez-Otin et 
al., 2013), indicated outside the circle. Within the colored areas, clinical characteristics, 
metabolites and proteins involved in the links between WS and the hallmarks of aging are 
shown. While the linkages between WRN dysfunction and many of the hallmarks of aging 
are extensively studied, the linkages between WRN dysfunction and stem cell exhaustion, 
imbalanced autophagy, and mitochondrial dysfunction, respectively (boxed) are largely 
elusive and need further investigation. For detailed information, please see the text and 
references found here. Image credit of the WS patient (48 years old): William and Wilkens 
publishing Inc. 
 



 
 
Fig. 3. WRN and its effect on stem cells. (A) Representative images of fibroblasts, 
fibroblast-induced pluripotent stem cells (iPSCs), and further iPSC-differentiated 
mesenchymal stem cells (MSCs) from both a WS patient and a matched healthy control. 
WS primary fibroblasts and MSCs show much higher levels of senescence (blue colored 
β-Gal staining) compared with respective healthy control cells. Scale bar, 100 μm. (B) A 
list of features associated with the reprogramming of WS fibroblasts to iPSCs. (C) Roles 
of WRN protein in stem cell function in normal MSCs (blue panel) and the putative 
consequences of loss of WRN in WS MSCs (red panel). The dashed lines indicate the 
roles of mitochondrial sirtuins (SIRT3, 4, 5) in the regulation of mitochondrial homeostasis 
through mitophagy, which has been established in normal human cells, but needs to be 



verified in MSCs. In addition, WRN dysfunction inhibits NAD+/SIRT1 activity (Fang EF et 
al., unpublished data). For detailed information, please see the text and cited references.  
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