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Abstract
Classical Sturm non-oscillation and comparison theorems as well as the Sturm theorem on
zeros for solutions of second order differential equations have a natural symplectic version,
since they describe the rotation of a line in the phase plane of the equation. In the higher
dimensional symplectic version of these theorems, lines are replaced by Lagrangian sub-
spaces and intersections with a given line are replaced by non-transversality instants with
a distinguished Lagrangian subspace. Thus the symplectic Sturm theorems describe some
properties of the Maslov index. Starting from the celebrated paper of Arnol’d on symplectic
Sturm theory for optical Hamiltonians, we provide a generalization of his results to general
Hamiltonians. We finally apply these results for detecting some geometrical information
about the distribution of conjugate and focal points on semi-Riemannian manifolds and for
studying the geometrical properties of the solutions space of singular Lagrangian systems
arising in Celestial Mechanics.

Keywords Maslov index · Conley-Zehnder index · Hamiltonian dynamics · Conjugate
points · Kepler problem
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Introduction

Symplectic Sturm theory has a lot of predecessor, like Morse, Lidskii, Bott, Edwards, Given-
tal who proved the Lagrangian nonoscillation of the Picard-Fuchs equation for hyperelliptic
integrals. The classical Sturm theorems on oscillation, non-oscillation, alternation and com-
parison for a second-order ordinary differential equation have a symplectic nature. They,
in fact, describe the rotation of a straight line through the origin of the phase plane of the
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equation. A line through the origin is a special 1-dimensional subspace of the phase plane: it
is, in fact a Lagrangian subspace.

Starting from this observation, as clearly observed and described by Arnol’d in [2], the
higher-dimensional symplectic generalization of the Sturm theory has been obtained by
replacing lines by Lagrangian subspaces and instants of intersections between lines, by
instants of non-transversality. Such instants in the terminology of Arnol’d has been termed
moments of verticality. Thus, in higher dimension, the rotation of a straight line through the
origin has been replaced by the evolution of a Lagrangian subspace through the phase flow of
the linear Hamiltonian system in the phase space. The phase flow defines, in this way, a curve
of Lagrangian subspaces and moments of verticality correspond to the intersection instants
between this curve and a hypersurface (with singularities) in the Lagrangian Grassmannian
manifold, called (in the Arnol’d terminology), the train of a distinguished Lagrangian sub-
space. Such a train is a transversally oriented variety and by using such an orientation, it is
possible to define an integer-valued intersection index, called Maslov index. Generically, in
a local chart of the Lagrangian Grassmannian manifold, the contribution to the Maslov index
of a C 1-Lagrangian curve, is through the signature of a quadratic form, the so-called crossing
form. In some particular cases it can actually happen that the signature coincides with the
coindex, namely with the positive inertia index of the crossing form. If this property holds
at each crossing, the Lagrangian curve is called positive curve or plus curve. This property
strongly depends upon the choice of the distinguished Lagrangian subspace in the sense that
a curve could be a plus curve with respect to a Lagrangian subspace L0 but not respect to
a different L1. Often, in the applications, such a distinguished Lagrangian subspace L0 is
uniquely determined by the boundary conditions imposed on the problem.

As already observed, Arnol’d proved Sturm nonoscillation, alternation and comparison
theorems in the case of optical or positively twisted Hamiltonians, namely Hamiltonian func-
tions such that the flow lines of the lifted Hamiltonian flow on the Lagrangian Grassmannian
manifold level are positive curves with respect to a distinguished Lagrangian. This kind of
Hamiltonians often occur in applications. It is well-known, in fact, that Legendre convex
Hamiltonians in the cotangent bundle with the canonical symplectic form are optical with
respect to the vertical section.

However, in many interesting applications, the lifted Hamiltonian flow at the Lagrangian
Grassmannian level is not a positive curve with respect to a fixed Lagrangian subspace or,
otherwise said, the Hamiltonians are not optical with respect to a distinguished section of
the cotangent bundle. This is for instance the case of the evolution of a Lagrangian subspace
through the phase flow induced by the Jacobi deviation equation along a spacelike geodesic
in a Lorentzian manifold or more generally of a geodesic of any causal character on a
semi-Riemannian manifold having non-trivial signature. (Cfr. [12,22,23,25] and references
therein).

Surprisingly, Sturm alternation and comparison theorems still hold in the case of not
optical Hamiltonians. Sturm alternation theorem actually gives an estimate between the dif-
ference of the Maslov indices computed with respect to two different Lagrangians. By using
the transition functions of the atlas of the Lagrangian Grassmannian, authors in [15, Propo-
sition 3.3 & Corollary 3.4] proved an estimate on the difference of Maslov indices and then
applied this estimate in order to obtained some comparison results between conjugate and
focal points in the semi-Riemannian world. Inspired by [15], in this paper we prove, among
others, a sharper estimate of the difference between two Maslov indices with respect to two
different Lagrangian subspaces (see Theorem 2.9). The main idea in order to provide this
estimates mainly relies on the Hörmander index whose vocation is precisely to measure such
a difference.

123



Sturm theory with applications in geometry and classical mechanics 259

By using this estimate together with the Bott-Long type iteration formula we provide,
in Proposition 2.20, an estimate between the Conley-Zehnder index of an iterated periodic
orbit of a Hamiltonian system and the Conley-Zehnder index of the orbit on its prime period.
Furthermore we give an estimate between the Conley-Zehnder index and the Maslov index
with respect to a distinguished Lagrangian L of a Lagrangian curve constructed by letting
evolving L under the phase flow of a Hamiltonian system. The interest for this study is mainly
related to the following fact. In the case of symmetric periodic orbits it is possible to associate
in a natural fashion the Conley-Zehnder index as well as the Maslov index with respect to
a fixed Lagrangian subspace. In the case of autonomous Hamiltonian systems with discrete
symmetries (e.g. reversible Hamiltonian systems) the (symmetric) periodic solutions can be
interpreted either as periodic orbits or as Lagrangian intersection points and hence they have
both indices naturally associated.

Another interesting result of the present paper is Theorem 3.10 which is nothing but
the Sturm nonoscillation theorem. This result is somehow hybrid and has in its own the
Lagrangian and theHamiltonian nature of the problem. If theHamiltonian is natural (meaning
that it is the sum of the kinetic and the potential energy) in which the kinetic part is a positive
quadratic form in the momentum variables and the potential part is a non-positive definite
quadratic form in the configuration variables, then the moment of non-transversality between
the Lagrangian curve induced by the lifted phase flow at Lagrangian Grassmannian level and
the Dirichlet Lagrangian is less or equal than the number of degrees of freedom. We observe
that these assumptions on the kinetic and potential energy, don’t insure that the induced
Lagrangian curve is a plus curve with respect to any Lagrangian subspace different from
the Dirichlet (which is the Lagrangian corresponding to the coordinate plane of vanishing
configuration variables). However, these signature assumptions, insure that the Lagrangian
function is non-negative. This is a pretty important information and gives deep insight on
the spectral analytic properties of the problem. In fact, up to a shifting constant (discussed in
Section 1) that is bounded by the number of degrees of freedom, the Maslov index coincides
with the Morse index. Now, under the signature assumptions on the kinetic and potential
energy, it follows that the Morse index is zero and hence the the Maslov index is bounded
by the number of degrees of freedom. This, however, is not the end of the story, since the
bound on theMaslov index doesn’t imply, in general, a bound on the total number of crossing
instants. However, in the case of plus curve, it does. This is why in the theorem the Maslov
intersection index is considered with respect to the Dirichlet Lagrangian (and in fact such a
Hamiltonian is Dirichlet optical, being Legendre convex).

An extremely useful result in applications is Theorem 4.1: a generalized version of the
Sturm comparison theorem. In this case, on the contrary, is not important to work with plus
Lagrangian curves. This fact, has been already recognized by the third author in [23]. Loosely
speaking, the monotonicity between Hamiltonian vector fields implies an inequality on the
Maslov index and if the Hamiltonian system is induced by a second order Lagrangian system
C 2-convex in the velocity, this implies an inequality on the Morse indices. From a technical
viewpoint the proof of this result is essentially based upon the homotopy invariance of the
Maslov index. An essential ingredient in the proof is provided by a spectral flow formula for
paths of unbounded self-adjoint first order (Fredholm) operators with dense domain in L2.

Finally in the last section we provide some applications essentially in differential topology
and classical mechanics. More precisely, we prove some interesting new estimates about the
conjugate and focal points along geodesics on semi-Riemannian manifolds, improving the
estimates provided by authors in [15, Section 4]. We stress on the fact that classical compar-
ison theorems for conjugate and focal points in Riemannian manifolds and more generally
on Lorenzian manifolds but for timelike geodesics, requires curvature assumptions or Morse
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index arguments. On general semi-Riemannian manifolds having non-trivial signature, the
curvature is never bounded and the index form has always infinite Morse index and co-index.
The second application we provide is based upon an application of the Sturm comparison
theorem to the Kepler problem in the plane with fixed (negative) energy.

Considerable effort has been focused on improving the readability of the manuscript and
on explaining the main ideas and involved techniques.

Notation

For the sake of the reader, we introduce some notation that we shall use henceforth without
further reference throughout the paper.

– We denote by V ,W finite dimensional real vector spaces; L (V ,W ) and B(V ,W )

respectively the vector spaces of all linear operators T : V → W and of bilinear forms
B : V×W → R; by V ∗ we denote the dual space of V , i.e. V ∗ = L (V ,R). In shorthand
notation we setL (V ) := L (V , V ) andB(V ) := B(V , V ).L sa(V ) denotes the subset
of L (V ) of all linear self-adjoint operators on V . There is a canonical isomorphism

L (V ,W ∗) � T → BT ∈ B(V ,W ) such that

BT (v,w) := T (v)(w), ∀ v ∈ V , ∀w ∈ W.

IdV or in shorthand notation just Id denotes the identity;
– For T ∈ L (V ,W ), we define the pull-back of C ∈ B(W ) through the map T as

T ∗ : B(W ) → B(V ) given by T ∗(C) := C(T ·, T ·)

and if T is an isomorphism we define the push-forward of B ∈ B(V ) through T as the
map:

T∗ : B(V )→ B(W ) given by T∗(B) := B(T−1·, T−1·).

Given a linear operator T : V → V , we denote by Gr (T ) ⊂ V 2 its graph. If T = Id, its
graph coincide with the diagonal subspace � ⊂ V × V .

– Bsym(V ) is the vector space of all symmetric bilinear forms on V . For any B ∈ Bsym(V ),
we denote by n− (B), n0 (B) and n+ (B) respectively speaking the index, the nullity and
the coindex of B. The signature of B is the difference sgn(B) := n+ (B)− n−(B)

B is termed non-degenerate if n0 (B) = 0.
– (V , ω) denotes a 2n-dimensional (real) symplectic vector space and J denotes a complex

structure on V ; Sp(V , ω) the symplectic group ; sp(V , ω) denotes the symplectic Lie
algebra. GL(V ) denotes the general linear group. The symplectic group of (R2n, ω) is
denoted by Sp(2n) and its Lie algebra simply by sp(2n). We refer to a matrix in sp(2n)

as the set of Hamiltonian matrices.
– PT (V , ω) := {ψ ∈ C 0

([0, T ],Sp(V , ω)
)|ψ(0) = Id}where PT (V , ω) is equipped with

the topology induced from (V , ω).PT (2n) denotes the setPT (V , ω) in the case in which
(V , ω) = (T ∗Rn, ω0).

– �(V , ω) denotes the Lagrangian Grassmannian of (V , ω) whereas �(n) denotes the
Lagrangian Grassmannian of the standard 2n-dimensional symplectic space.
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1 Variational framework and an Index Theorem

This section is devoted to recall some basic definitions and results about the Lagrangian
and Hamiltonian dynamics that we shall need later on. The main result in this section is a
Morse-type index theorem given at Theorem 1.7 relating the Morse index of a critical point
x of the Lagrangian action functional with the Maslov-type index of zx corresponding to x
through the Legendre transform. Our basic references are [3,9,13].

Let TRn ∼= R
n ⊕R

n be the tangent space of Rn endowed with coordinates (q, v). Given
T > 0 and the Lagrangian function L ∈ C 2([0, T ]×TRn,R), we assume that the following
two assumptions hold

(L1) L is C 2-convex with respect to v, that is the quadratic form

〈∂vvL(t, q, v)·, ·〉 is positive definite ∀ t ∈ [0, T ], ∀ (q, v) ∈ TRn

(L2) L is exactly quadratic in the velocities v meaning that the function L(t, q, v) is a
polynomial of degree at most 2 with respect to v.

Under the assumption (L1) the Legendre transform defined by

LL : [0, T ] × TRn → [0, T ] × T ∗Rn, (t, q, v) �→ (t, q, DvL(t, q, v)
)

is a C 1 (local) diffeomorphism.

Remark 1.1 The assumption (L2) is in order to guarantee that the action functional is twice
Frechét differentiable. It is well-known, in fact, that the smoothness assumption on the
Lagrangian is in general not enough. The growth condition required in (L2) is related to
the regularity of the Nemitski operators. For further details we refer to [28] and references
therein.

We denote by H := W 1,2([0, T ],Rn) be the space of paths having Sobolev regularity
W 1,2 and we define the Lagrangian action functional A : H → R as follows

A(x) =
∫ T

0
L
(
t, x(t), x ′(t)

)
dt .

Let Z ⊂ R
n ⊕ R

n be a linear subspace and let us consider the linear subspace

HZ := {x ∈ H |(x(0), x(T )
) ∈ Z}

Notation 1.2 In what follows we shall denote by AZ the restriction of the action A onto HZ ;
thus in symbols we have AZ := A

∣∣
HZ

.

It is well-know that critical points of the functional A on HZ are weak (in the Sobolev
sense) solutions of the following boundary value problem
⎧
⎨

⎩

d

dt
∂vL
(
t, x(t), x ′(t)

) = ∂q L
(
t, x(t), x ′(t)

)
, t ∈ [0, T ]

(
x(0), x(T )

) ∈ Z ,
(
∂vL
(
0, x(0), x ′(0)

)
,−∂vL

(
T , x(T ), x ′(T )

)) ∈ Z⊥
(1.1)

where Z⊥ denotes the orthogonal complement of Z in T ∗Rn and up to standard elliptic
regularity arguments, classical (i.e. smooth) solutions.

Remark 1.3 We observe, in fact, that there is an identification of Z × Z⊥ and the conormal
subspace of Z , namely N∗(Z) in T ∗Rn . For further details, we refer the interested reader to
[3].
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We assume that x ∈ HZ is a classical solution of the boundary value problem given in
Eq. (1.1).We observe that, by assumption (L2) the functional A is twice Fréchet differentiable
on H . Being the evaluation map from HZ into H a smooth submersion, also the restriction
AZ is twice Fréchet differentiable and by this we get that the Gateaux second differential
d2AZ (x) coincides with the Fréchet second differential D2AZ (x).

By computing the second variation of AZ at x we get, for any ξ, η ∈ HZ

d2AZ (x)[ξ, η] =
∫ T

0

[〈P(t)ξ ′ + Q(t)ξ, η′〉 + 〈QT(t)ξ ′, η〉 + 〈R(t)ξ, η〉] dt,
where P(t) := ∂vvL

(
t, x(t), x ′(t)

)
, Q(t) := ∂qvL

(
t, x(t), x ′(t)

)

and finally R(t) := ∂qq L
(
t, x(t), x ′(t)

)
.

Now, by linearizing the ODE given in Eq. (1.1) at x , we finally get the (linear) Morse-Sturm
boundary value problem defined as follows
⎧
⎨

⎩
− d

dt

[
P(t)u′ + Q(t)u

]+ QT(t)u′ + R(t)u = 0, t ∈ [0, T ]
(
u(0), u(T )

) ∈ Z ,
(
Pu′(0)+ Q(0)u(0),−[P(T )u′(T )+ Q(T )u(T )

]) ∈ Z⊥.

(1.2)
We observe that u is a weak (in the Sobolev sense) solution of the boundary value problem
given in Eq. (1.2) if and only if u ∈ ker I . Moreover, by elliptic bootstrap it follows that u is
a smooth solution.

Let us now consider the standard symplectic space T ∗Rn ∼= R
n ⊕ R

n endowed with the
canonical symplectic form

ω0
(
(p1, q1), (p2, q2)

) := 〈p1, q2〉 − 〈q1, p2〉
Denoting by J0 the (standard) complex structure namely the automorphism J0 : T ∗Rn →
T ∗Rn defined by J0(p, q) = (−q, p) whose associated matrix is given by

J0 =
(
0 −Id
Id 0

)

it immediately follows that ω0(z1, z2) := 〈J0z1, z2〉 for all z1, z2 ∈ T ∗Rn .

Notation 1.4 In what follows, T ∗Rn is endowed with a coordinate system z = (p, q), where
p = (p1, . . . , pn) ∈ R

n and q = (q1, . . . , qn) ∈ R
n . we shall refer to q as configuration

variables and to p as the momentum variables.

By setting z(t) := (P(t)u′(t)+ Q(t)u(t), u(t)
)T, the Morse-Sturm equation reduces to

the following (first order) Hamiltonian system in the standard symplectic space

z′(t) = J0B(t) z(t), t ∈ [0, T ] where

B(t) :=
[

P−1(t) −P−1(t)Q(t)
−QT(t)P−1(t) QT(t)P−1(t)Q(t)− R(t)

]
(1.3)

Wenowdefine the double standard symplectic space (R2n⊕R
2n,−ω0⊕ω0) andwe introduce

the matrix J̃0 := diag(−J0, J0) where diag(∗, ∗) denotes the 2 × 2 diagonal block matrix.
In this way, the subspace LZ given by

LZ := J̃0(Z
⊥ ⊕ Z) (1.4)

is thus Lagrangian.
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Notation 1.5 The following notation will be used throughout the paper. If x is a solution of
(1.1) we denote by zx the corresponding function defined by

(
t, zx (t)

) = LL
(
t, x(t), x ′(t)

)
(1.5)

Definition 1.6 Let x be a critical point of A.We denote by ιZ (x) theMorse index of x namely

ιZ (x) := sup{dim L|L ⊆ HZ and d2A(x)L×L is negative definite} ∈ N ∪ {+∞}
Let zx be defined in Eq. (1.5). We define theMaslov index of zx as the integer given by

ιLZ (zx ) := ιCLM
(
LZ ,Grψ(t); t ∈ [0, T ])

where ψ denotes the fundamental solution of the Hamiltonian system given in Eq. (1.3).

Theorem 1.7 Under the previous notation and if assumptions (L1) & (L2) are fulfilled the
functional A : HZ → R is of regularity class C 2.

If x is a critical point of AZ , then ιZ (x) is finite. Moreover there exists a non-negative
integer c(Z) ∈ {0, . . . , n} such that the following equality holds

ιZ (x) = ιLZ (zx )− c(Z) (1.6)

Proof For the proof of this result we refer the reader to [13, Theorem 3.4 & Theorem 2.5]. ��
Remark 1.8 The integer c(Z) depend upon the boundary conditions. However the authors in
[13, Section 3], computed c(Z) in some interesting cases.

• (Periodic) Z := � ⊂ R
n ⊕ R

n (where � denotes the graph of the identity in R
n) and

c(Z) = n
• (Dirichlet) Z := Z1 ⊕ Z2 = (0)⊕ (0) and c(Z) = n
• (Neumann) Z := R

n × R
n and c(Z) = 0

We observe that in the case of separate boundary conditions, i.e. Z = Z1 ⊕ Z2, then we get
that c(Z) = dim(Z⊥1 ∩ Z⊥2 ). (Cfr. [13, Equation (3.28)] for further details).

Remark 1.9 It is not surprising that in the Dirichlet case and in the Neumann we get the n
and 0. In fact the Morse index of a critical point x ∈ H of the action A get its largest possible
value with respect to Neumann boundary conditions and the smallest possible value with
respect to Dirichlet boundary conditions.

The last result of this section provides a bound on the Maslov index of zx when x is a
minimizer.

Proposition 1.10 Let x be a minimizer for AZ . Then

ιLZ (zx ) ∈ {0, . . . , n}.
Proof Being x minimizer, it follow that ιZ (x) = 0 and by Theorem 1.7, we get that

ιLZ (zx ) = c(Z).

The conclusion now follows from the fact that c(Z) ∈ {0, . . . , n}. ��
A direct consequence of Proposition 1.10 in the case of natural Lagrangian, namely

Lagrangian of the form
L(t, q, v) = K (v)− V (q)

where as usually K (v) and V (q) denote respectively the kinetic and the potential function,
is the following result.
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Corollary 1.11 Let L be aC 2-natural Lagrangian having aC 2-concave potential energy and
let x ∈ HZ be a critical point of AZ . Then

ιLZ (zx ) ∈ {0, . . . , n}.
Proof Being L(t, q, v) = K (v) − V (q), we get that the Lagrangian function L is C 2-
convex. Let x ∈ H be a critical point of A. By the C 2-convexity of the Lagrangian, we get
that ι(x) = 0 on H and in particular ιZ (x) = 0 for every Z ⊂ R

n ⊕ R
n . By Theorem 1.7

ιLZ (zx ) = c(Z),

and the conclusion now follows by using Proposition 1.10. ��
Remark 1.12 A common Z , often occurring in the applications, is represented by Z :=
Z1⊕ (0) where Z1 is a linear subspace of Rn . This subspace directly appears in the classical
Sturm non-oscillation theorem [2, Section 1].

2 Sturm theory and symplectic geometry

The aimof this section is to provide a generalization of the SturmAlternation andComparison
TheoremsprovedbyArnol’d in [2] in the case of opticalHamiltonian.The abstract idea behind
these results relies on a careful estimates of the Hörmander (four-fold) indexwhich is used for
comparing and estimating the difference of the Maslov indices with respect to two different
Lagrangian subspaces. Our basic reference for this section is [34, Section 3] and references
therein. We stress on the fact that, even in the (classical) case of optical Hamiltonians, we
provide new and sharper estimates. For the sake of the reader, we refer to Section A for the
main definitions and properties of the intersection indices as well as for the basic properties
of the Lagrangian Grassmannian �(V , ω) of the symplectic space (V , ω).

2.1 A generalization of Sturm Alternation theorem

In the 2n-dimensional symplectic space (V , ω), let us consider λ ∈ C 0
([a, b],�(V , ω)

)
and

μ1, μ2 ∈ �(V , ω). We now define the two non-negative integers k1, k2 given by

k1 := min{dim ε1, dim ε2} for ε1 := λ(a) ∩ λ(b)+ λ(b) ∩ μ1 and

ε2 := λ(a) ∩ λ(b)+ λ(b) ∩ μ2

k2 := min{dim δ1, dim δ2} for δ1 := λ(a) ∩ μ1 + μ1 ∩ μ2 and

δ2 := λ(b) ∩ μ1 + μ1 ∩ μ2

and we let k := max{k1, k2}. We are in position to state and to prove the first main result of
this section.

Theorem 2.1 Under the previous notation, the following inequality holds:
∣∣∣ιCLM
(
μ2, λ(t); t ∈ [a, b])− ιCLM

(
μ1, λ(t); t ∈ [a, b])

∣∣∣ ≤ n − k.

Proof The proof of this result is a consequence of Proposition A.14, Equation (A.12) and
Remark A.11. First of all, we start to observe that

ιCLM
(
μ2, λ(t); t ∈ [a, b])− ιCLM

(
μ1, λ(t); t ∈ [a, b]) = s(λ(a), λ(b);μ1, μ2)

= ι(λ(a), λ(b), μ2)− ι(λ(a), λ(b), μ1) = ι(λ(a), μ1, μ2)− ι(λ(b), μ1, μ2) (2.1)
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Sturm theory with applications in geometry and classical mechanics 265

For i = 1, 2, we denote by πεi (resp. πδi ) the projection onto the symplectic reduction mod
εi (resp. δi ). So, we have

ι(λ(a), λ(b), μ1) = o
n +Q
(
πε1λ(a), πε1λ(b);πε1μ1

) = o
n +Qε1

ι(λ(a), λ(b), μ2) = o
n +Q
(
πε2λ(a), πε2λ(b);πε2μ2

) = o
n +Qε2

ι(λ(a), μ1, μ2) = o
n +Q(πδ1λ(a), πδ1μ1;πδ1μ2) = o

n +Qδ1

ι(λ(b), μ1, μ2) = o
n +Q(πδ2λ(b), πδ2μ1;πδ2μ2) = o

n +Qδ2

Since dim Vεi = 2(n − dim εi ) (resp. dim Vδi = 2(n − dim δi )), it follows that Qεi (resp.
Qδi ) are quadratic forms on n−dim εi (resp. n−dim δi ) vector space. So, the inertia indices
are integers between 0 and n − dim εi (resp. n − dim δi ). In conclusion, we get that

0 ≤ ι(λ(a), λ(b), μ1) ≤ n − dim ε1 ≤ n − k1,

0 ≤ ι(λ(a), λ(b), μ2) ≤ n − dim ε2 ≤ n − k1

0 ≤ ι(λ(a), μ1, μ2) ≤ n − dim δ1 ≤ n − k2,

0 ≤ ι(λ(b), μ1, μ2) ≤ n − dim δ2 ≤ n − k2.

By using these inequalities together with Eq. (2.1), we get that
∣∣ιCLM
(
μ2, λ(t); t ∈ [a, b])− ιCLM

(
μ1, λ(t); t ∈ [a, b])∣∣

= ∣∣ι(λ(a), λ(b), μ2)− ι(λ(a), λ(b), μ1)
∣∣

= ∣∣ on +Qε2 − o
n +Qε1

∣∣ ≤ n − k1
∣∣ιCLM
(
μ2, λ(t); t ∈ [a, b])− ιCLM

(
μ1, λ(t); t ∈ [a, b])∣∣

= ∣∣ι(λ(a), μ1, μ2)− ι(λ(b), μ1, μ2)
∣∣

= ∣∣ on +Qδ1 − o
n +Qδ2

∣∣ ≤ n − k2

Putting the inequalities given in Formula 2.1 all together, we get
∣∣∣ιCLM
(
μ2, λ(t); t ∈ [a, b])− ιCLM

(
μ1, λ(t); t ∈ [a, b])

∣∣∣ ≤ n − k

where k = max{k1, k2}. This concludes the proof. ��
Remark 2.2 Loosely speaking, by Theorem 2.1, we can conclude that the smaller is the
difference of a Lagrangian path with respect to two Lagrangian subspaces the higher is the
intersection between them.

Corollary 2.3 Under the notation of Theorem 2.1 and assuming that λ∩μ1 = λ(b)∩μ2 = ∅,
we get ∣∣∣ιCLM

(
μ2, λ(t); t ∈ [a, b])− ιCLM

(
μ1, λ(t); t ∈ [a, b])

∣∣∣ ≤ n − dim I

where I := λ(a) ∩ λ(b). In particular, if λ is a closed path, then we get that

ιCLM
(
μ2, λ(t); t ∈ [a, b]) = ιCLM

(
μ1, λ(t); t ∈ [a, b]).

Proof We observe that

λ(b) ∩ μ2 ⊆ ε2 and λ(b) ∩ μ1 ⊆ ε1 ⇒ dim ε2 ≥ dim I and dim ε1 ≥ dim I .

By this, we get that n− k ≤ n− k1 is less or equal than n− dim I . This concludes the proof
of the first claim.
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The second claim readily follows by observing that for loops of Lagrangian subspaces,
we have dim I = n. ��
Remark 2.4 It is worth noticing that in the case of Lagrangian loops, the ιCLM-index is actually
independent on the vertex of the train. This property was already pointed out by Arnol’d in
his celebrated paper [1].

Corollary 2.5 Under notation of Theorem 2.1 and if μ1 ∩ λ(a) = μ1 ∩ λ(b) = ∅, then we
have ∣

∣
∣ιCLM
(
μ2, λ(t); t ∈ [a, b])− ιCLM

(
μ1, λ(t); t ∈ [a, b])

∣
∣
∣ ≤ n − dim J

where J := μ1 ∩ μ2.

Proof We observe that

μ1 ∩ μ2 ⊆ δ1 and μ1 ∩ μ2 ⊆ δ2 ⇒ dim δ1 ≥ dim J and dim δ2 ≥ dim J .

By this, we get that n − k ≤ n − k2 is less or equal than n − dim J . ��
Remark 2.6 Weobserve that if the four Lagrangiansλ(a), λ(b), μ1, μ2 aremutually transver-
sal, then k = 0.Thus in this case themodulus of the difference of theMaslov indices computed
with respect to two (distinguished) Lagrangian is bounded by n.

Remark 2.7 We observe that Corollary 2.3 and Corollary 2.5 are well-known.More precisely
Corollary 2.3 agrees with [15, Corollary 3.4] and Corollary 2.5 corresponds to [15, Propo-
sition 3.3]. As by-product of the previous arguments we get that the inequalities proved by
authors in aforementioned paper were not sharp.

It is worth noticing that the proof provided by authors is completely different from the one
given in the present paper and it mainly relies on a careful estimate of the inertial indices of
symmetric bilinear forms obtained by using the atlas of the Lagrangian Grassamannian and
its transition functions.

Theorem 2.8 Let L0, L1, L2 ∈ �(V , ω), ψ ∈ PT (V , ω) and for every t ∈ [0, T ], we let
�1(t) := ψ(t)L1, �2(t) := ψ(t)L2 and μ0(t) := ψ−1(t)L0.

Thus, we have
∣∣∣ιCLM
(
L0, �1(t); t ∈ [a, b])− ιCLM

(
L0, �2(t); t ∈ [a, b])

∣∣∣ ≤ n − k

where k := min{dim εa, dim εb} and where εa := L1 ∩ L2+ L2 ∩ L0 while εb := L1 ∩ L2+
L2 ∩ μ0(b).

Proof By taking into account the symplectic invariance of the ιCLM-index, we get

ιCLM
(
L0, �1(t); t ∈ [a, b]) = ιCLM

(
ψ(t)−1L0, L1; t ∈ [a, b]) = ιCLM

(
μ0(t), L1; t ∈ [a, b])

and

ιCLM
(
L0, �2(t); t ∈ [a, b]) = ιCLM

(
ψ(t)−1L0, L2; t ∈ [a, b]) = ιCLM

(
μ0(t), L2; t ∈ [a, b]).

Moreover

ιCLM
(
μ0(t), L2; t ∈ [a, b])− ιCLM

(
μ0(t), L1; t ∈ [a, b]) = s

(
L1, L2; L0, μ0(b)

)

= ι(L1, L2, L0)− ι
(
L1, L2, μ0(b)

)
.

The proof now immediately follows by theorem 2.1. ��
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By restrictingTheorem2.1 to curves ofLagrangian subspaces induced by the evolution of a
fixed Lagrangian under the phase flow of a linear Hamiltonian systemwe get a generalization
of the Sturm Alternation Theorem proved by Arnol’d in [2]. More precisely, let us consider
the linear Hamiltonian system

z′(t) = J0B(t)z(t), t ∈ [0, T ]. (2.2)

Then the following result holds.

Theorem 2.9 (Sturm Alternation Theorem) Let L, L1, L2 ∈ �(n) and we set �(t) := φ(t)L
where φ denotes the fundamental solution of Eq. (2.2). Then we get

∣
∣
∣ιCLM
(
L2, �(t); t ∈ [0, T ]

)− ιCLM
(
L1, �(t); t ∈ [0, T ]

)∣∣
∣ ≤ n − k

where k := max{k1, k2} and
k1 := min{dim ε1, dim ε2} for ε1 := L ∩ �(T )+ �(T ) ∩ L1 and ε2 := L ∩ �(T )

+ �(T ) ∩ L2

k2 := min{dim δ1, dim δ2} for δ1 := L ∩ L1 + L1 ∩ L2 and δ2 := �(T ) ∩ L1 + L1 ∩ L2.

Remark 2.10 We stress on the fact that in the aforementioned paper, Arnol’d proved the
Alternation Theorem for the class of quadratic Hamiltonian functions that are optical with
respect to the twodistinguishedLagrangian subspaces L1 and L2. In the classical formulation,
author provides a bound on the difference of non-transversality moments of the evolution of
a Lagrangian path with respect to two distinguished Lagrangian subspaces.

2.2 Iteration inequalities for periodic boundary conditions

In this section we provide some simple estimates on the Conley-Zehnder index ofwhich can
be obtained directly from Theorem 2.1.

Given a symplectic space (V , ω), we consider the direct sum V 2 := V ⊕ V , endowed
with the symplectic form ω2 := −ω ⊕ ω, defined as follows

ω2((v1, v2), (w1, w2)) = −ω(v1, v2)+ ω(w1, w2), for all v1, v2, w1, w2 ∈ V

and we recall that

ψ ∈ C 0([a, b],Sp(V , ω)
) ⇒ Grψ ∈ C 0([a, b],�(V 2, ω2)

)
,

and � is the diagonal subspace of V ⊕ V .

Definition 2.11 Let ψ ∈ C 0
([a, b],Sp(V , ω)

)
. The generalized Conley-Zehnder index of ψ

is the integer ιCZ(ψ) defined as follows

ιCZ(ψ(t); t ∈ [a, b]) := ιCLM
(
�,Grψ(t); t ∈ [a, b]).

Remark 2.12 We observe that the Conley-Zehnder index was originally defined for sym-
plectic paths having non-degenerate final endpoint meaning that Grψ(b) ∩ � = {0}. We
emphasize that, for curves having degenerate endpoints with respect to � there are several
conventions for how the endpoints contribute to theMaslov index. For other different choices
we refer the interested reader to [8,20,29] and references therein.
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Lemma 2.13 Let L1, L2 ∈ �(V , ω) and ψ ∈ C 0
([a, b],Sp(V , ω)

)
. Then

ιCLM
(
L1 ⊕ L2,Grψ(t); t ∈ [a, b]) = ιCLM

(
L2, ψ(t)L1; t ∈ [a, b]).

Proof The proof of this result follows by [29, Theorem 3.2] and Eq. (A.7) ��
Theorem 2.14 Let (V , ω) be a 2n-dimensional symplectic space, L, L0 ∈ �(V , ω), ψ ∈
PT (V , ω) and let � ∈ C 0

([0, T ],�(V , ω)
)
be pointwise defined by �(t) := ψ(t) L. Then

the following inequality holds
∣
∣
∣ιCLM
(
L0, �(t); t ∈ [a, b])− ιCZ

(
ψ(t); t ∈ [a, b])

∣
∣
∣ ≤ 2n − dim ε,

where ε is the subspace defined by ε := Gr P ∩�+� ∩ (L ⊕ L0) with P = ψ(T ).

Before proving this result, we observe that the maximal dimension of the isotropic sub-
space ε is a number less or equal than 2n. This is for instance the case in which P = Id.

Proof We start noticing that � = −ω ⊕ ω is a symplectic structure on V ⊕ V and on
(V ⊕ V ,�), by invoking Lemma 2.13, we get that

ιCLM(L0, �(t); t ∈ [0, T ]) = ιCLM(L0, ψ(t) L; t ∈ [0, T ])
= ιCLM

(
L ⊕ L0,Grψ(t); t ∈ [0, T ]),

and by Definition 2.11, we know that ιCZ(ψ(t); t ∈ [0, T ]) = ιCLM
(
�,Grψ(t); t ∈ [0, T ]).

Summing up, we get

ιCLM
(
L0, �(t); t ∈ [0, T ]

)− ιCZ
(
ψ(t); t ∈ [0, T ])

= ιCLM
(
L ⊕ L0,Grψ(t); t ∈ [0, T ])− ιCLM

(
�,Grψ(t); t ∈ [0, T ])

= s
(
�,Gr P;�, L ⊕ L0

) = −ι
(
Gr P,�, L ⊕ L0

)
,

where in the last equality we used Lemma A.13, (I). We observe that ι
(
Gr P,�, L ⊕ L0

)
is

equal to the extended coindex of a quadratic form on a Lagrangian subspace of the reduced
space Vε := ε�/ε (see Equations (A.12)). Thus the sum of all inertia indices is bounded
from above by 1/2 dim Vε which is equal to 2n − dim ε. ��
Remark 2.15 For an explicit computation of the term ι

(
L ⊕ L,�,Gr (P)

)
, we refer the

interested reader to [10,27] and references therein.

Definition 2.16 Given L ∈ �(V , ω), we term the L-Maslov index the integer given by

ιL
(
ψ(t), t ∈ [a, b]) := ιCLM

(
L ⊕ L,Grψ(t); t ∈ [a, b]).

As direct consequence of Theorem 2.14 and Definition 2.16 we get the following.

Lemma 2.17 Under notation of Theorem 2.14, the following inequality holds:
∣∣∣ιL
(
ψ(t), t ∈ [a, b])− ιCZ

(
ψ(t); t ∈ [a, b])

∣∣∣ ≤ 2n − dimW ≤ n (2.3)

where W := Gr P ∩�+ (L ⊕ L) ∩�.

Proof The proof of the first inequality in Eq. (2.3) comes directly by Theorem 2.14. The
second inequality follows by observing that W ⊇ (L ⊕ L) ∩� and thus dimW ≥ n. ��
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Typically in concrete applications, one is faced with the problem of estimating the differ-
ence of the ιCLM-indices of two different Lagrangian curves with respect to a distinguished
Lagrangian subspace. These Lagrangian curves are nothing but the evolution under the phase
flow of two distinguished Lagrangians.

We set

Dω(M) := (−1)n−1ωn det(M − ωId), ω ∈ U, M ∈ Sp(2n,R).

Then for any ω ∈ U, let us consider the hypersurface in Sp(2n) defined as

Sp0ω(2n,R) := {M ∈ Sp(2n,C)|Dω(M) = 0}.
As proved by Long (cf. [19] and references therein), for any M ∈ Sp(2n)0ω, we define a
co-orientation of Sp(2n)0ω at M by the positive direction d

dt |t=0Met J of the path Met J with
t ≥ 0 sufficiently small. Let

Sp∗ω(2n,R) := Sp(2n,R) \ Sp0ω(2n,R).

Given ξ, η ∈ C 0
([0, T ],Sp(2n,R)

)
with ξ(T ) = η(0), we define the concatenation of the

two paths as

(η ∗ ξ)(t) =
{

ξ(2t) 0 ≤ t ≤ T /2

η(2t − T ) T /2 ≤ t ≤ T
.

For any n ∈ N, we define the following special path ξn ∈ PT (2n) as follows

ξn(t) =
⎡

⎢
⎣
2− t

T
0

0

(
2− t

T

)−1

⎤

⎥
⎦

�n

0 ≤ t ≤ T

where � denotes the diamond product of matrices. (Cf. [19] for the definition).

Definition 2.18 For any ω ∈ U and ψ ∈ PT (2n), we define

νω(ψ) := dim kerC
(
ψ(T )− ωId

)
,

and the ω-Maslov type index ιω(ψ) given by setting

ιω(ψ) :=
[
e−εJψ ∗ ξn : Sp(2n)0ω

]

that is the intersection index between the path e−εJψ ∗ ξn and the transversally oriented
hypersurface Sp0ω(2n).

We now set, for any ψ ∈ PT (2n),

ψκ+1(t) = ψ(t − κT )Pκ , κT ≤ t ≤ (κ + 1)T

where P := ψ(T ) and we define the m-th iteration ψm ∈ C 0
([0,mT ],Sp(2n,R)

)
of ψ as

follows

ψm(t) := ψκ+1(t) for κT ≤ t ≤ (κ + 1)T and κ = 0, 1, . . . ,m − 1.
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Based on the index function ιω, Long established (cfr. [19] and references therein) a Bott-type
iteration formula for any path ψ ∈ PT (2n) that reads as follows

ιz
(
ψm(t), t ∈ [0,mT ]) =

∑

ωm=z
ιω
(
ψ(t), t ∈ [0, T ]) and

νz
(
ψm(t), t ∈ [0,mT ]) =

∑

ωm=z
νω

(
ψ(t), t ∈ [0, T ]). (2.4)

Lemma 2.19 For any ψ ∈ PT (2n), we have

ι1
(
ψ(t); t ∈ [0, T ])+ n = ιCLM

(
�,Grψ(t); t ∈ [0, T ])

ιω
(
ψ(t); t ∈ [0, T ]) = ιCLM

(
�ω,Grψ(t); t ∈ [0, T ]), ω ∈ U \ {1},

where �ω := Gr (ωId).

Proof For the proof of this result, we refer the interested reader to [20, Corollary 2.1]. ��

Given L ∈ �(V , ω) and ψ ∈ PT (2n), we define the continuous curve �m : [0,mT ] →
�(n) as

�m(t) := ψm(t)L.

By the affine scale invariance of the Maslov index, for any given L ∈ �(n), we get

ιCLM
(
L, ψκ+1(t)L; t ∈ [κT , (κ + 1)T ])

= ιCLM
(
L, ψ(t)Pκ L; t ∈ [0, T ]), κ ∈ {0, . . . ,m − 1}.

By taking into account the additivity property of the Maslov index under concatenations of
paths and Lemma 2.13, we infer

ιCLM(L, �m(t); t ∈ [0,mT ])

=
m−1∑

κ=0
ιCLM(L, ψκ+1(t)L; t ∈ [κT , (κ + 1)T ]) =

m−1∑

κ=0
ιCLM(L, ψ(t)Pκ L; t ∈ [0, T ])

=
m−1∑

κ=0
ιCLM
(
Pκ L ⊕ L,Grψ(t); t ∈ [0, T ]).

In particular, if L is P-invariant (namely PL ⊆ L), then we have

ιL(ψ(t), t ∈ [0,mT ])

= ιCLM(L, �m(t); t ∈ [0,mT ]) =
m−1∑

κ=0
ιCLM
(
L ⊕ L,Grψ(t); t ∈ [0, T ])

= m ιCLM
(
L ⊕ L,Grψ(t); t ∈ [0, T ]) = m ιL

(
ψ(t); t ∈ [0, T ]).

Proposition 2.20 Let ψ ∈ PT (2n) and m ∈ N. Then

k1 − km ≥ ιCZ(ψm(t); t ∈ [0,mT ])− m ιCZ(ψ(t); t ∈ [0, T ]) ≥ −(m − 1) · (2n − k1)

where ki = dim(Gr Pi ∩�).
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Proof By invoking the Bott type iteration formula given in Equation (2.4), Definition 2.11
and Lemma 2.19, we get

ιCZ(ψm(t); t ∈ [0,mT ]) = ιCZ(ψ(t); t ∈ [0, T ])+
∑

ωm=1
ω �=1

ιCLM
(
�ω,Grψ(t); t ∈ [0, T ]).

For every ω ∈ U, using Lemma A.13, we have

ιCLM
(
�ω,Grψ(t); t ∈ [0, T ])− ιCLM

(
�,Grψ(t); t ∈ [0, T ]) = s(�,Gr P;�,�ω)

= −ι(Gr P,�,�ω).

Summing up, we finally get

ιCZ(ψm(t); t ∈ [0,mT ]) = m ιCZ(ψ(t); t ∈ [0, T ])−
∑

ωm=1
ω �=1

ι
(
Gr P,�,�ω

)
.

Now, for every root of unit ωi , by using analogous arguments as given in the proof of
Theorem2.1, we get that the triple index ι

(
Gr P,�,�ωi

)
is equal to the extended coindex of a

quadratic formon a (2n−dim εi )-dimensional vector spacewhere εi := �∩�ωi+�∩Gr P =
� ∩ Gr P . Set k1 = (dim� ∩ Gr P) , then we get that

ιCZ(ψm(t); t ∈ [0,mT ])− m ιCZ(ψ(t); t ∈ [0, T ]) ≥ −(m − 1)(2n − k1).

Furthermore, use (A.10), we have ι
(
Gr P,�,�ω

) ≥ dim(�ω ∩ Gr (P)). It follows that
∑

ωm=1
ω �=1

ι
(
Gr P,�,�ω

) ≥ dim ker(Pm − Id)− dim ker(P − Id).

This concludes the proof. ��
Remark 2.21 For an analogous estimate, we refer the interested reader to [8, Corollary 3.7,
Equation (12)]. We remark that the estimate provided in Proposition 2.20 coincides with the
one proved by authors in [19, Equation (19), Theorem 3, pag.213] with completely different
methods once observed that ιCZ(ψ(y), t ∈ [0, T ] = i1(ψ)+n where i1 is the index appearing
in the aforementioned book of Long.

3 Optical Hamiltonian and Lagrangian plus curves

This section is devoted to discuss a monotonicity property of the crossing forms for a path
of Lagrangian subspaces with respect to a distinguished Lagrangian subspace L0; such a
property is usually termed L0-positive (respectively L0-negative) or L0-plus (respectively
L0-minus) property. We start with the following definition.

Definition 3.1 Let L0 ∈ �(V , ω). A curve � : [a, b] → �(V , ω) is termed a L0-plus curve
or L0-positive curve if, at each crossing instant t0 ∈ [a, b], the crossing form �(�(t), L0, t0)
is positive definite.

If � is a L0-plus and if t0 ∈ [a, b] is a crossing instant, we define the multiplicity of the
crossing instant t0, the positive integer

mul (t0) := dim
(
�(t0) ∩ L0

)
.
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Remark 3.2 Weobserve that an analogous definition holds for L0-minus curves just by replac-
ing plus by minus.

Remark 3.3 We stress on the fact that the plus condition strongly depends on the train�(L0).
In fact, as we shall see later, a curve of Lagrangian subspaces could be a plus curve with
respect to a train but not with respect to another (or even worse with respect to any other).

Thus for L0-plus curves we get the following result.

Lemma 3.4 Let � ∈ C 1
([a, b],�(V , ω)) be a L0-plus curve. Then we have:

ιCLM
(
L0, �(t); t ∈ [a, b]) = mul (a)+

∑

t0∈�−1�(L0)
t0∈]a,b[

mul (t0).

Proof We observe that if � is a L0-plus curve then

sgn�(�, L0, t0) = n+ �(�, L0, t0) = dim
(
�(t0) ∩ L0

)
.

Since � is a plus curve, each crossing instant is non-degenerate and in particular isolated. So,
on a compact interval are in finite number. We conclude the proof using Equation (A.5). ��

In this paragraph we provide sufficient conditions on the Hamiltonian function in order
the lifted Hamiltonian flow at the Lagrangian Grassmannian level is a plus curve with respect
to a distinguished Lagrangian subspace.

On the symplectic space (R2n, ω0), let H : [0, T ]×R
2n → R be a (smooth) Hamiltonian

and let us consider the first order Hamiltonian system given by

z′(t) = J0∇H
(
t, z(t)
)
, t ∈ [0, T ], (3.1)

(ω0 and J0 have been introduced at page 5). By linearizing Equation (3.1) along a solution
z0, we get the system

w′(t) = J0B(t)w(t), t ∈ [0, T ] (3.2)

where

B(t) := D2H
(
t, z0(t)

) =
[
Hpp(t) Hpq(t)
Hqp(t) Hqq(t)

]
(3.3)

We denote by ψ the fundamental solution of the Hamiltonian system given at Eq. (3.2).

Remark 3.5 We observe that if H is quadratic and t-independent, the linear Hamiltonian
vector field in Eq. (3.2) is t-independent, i.e. B(t) = B. In this particular case, we get
ψ(t) = exp(t J0S).

Definition 3.6 Let L0, L ∈ �(n) and let � : [0, T ] → �(n) be defined by �(t) := ψ(t) L .
The Hamiltonian H is termed L0-optical or L0-positively twisted if the curve t �→ �(t) is a
L0-plus curve.

Some important special classes of L0-optical Hamiltonianswhere L0 is theDirichlet (resp.
Neumann) Lagrangian is represented by Hamiltonian having some convexity properties with
respect to the momentum (resp. configuration) variables.

Proposition 3.7 Let H : R2n → R be a C 2-convex Hamiltonian and let z0 be a solution of
the Hamiltonian system given in Equation (3.1). Then we get that H with respect to the
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1. momentum variables is LD-optical
2. configuration variables is LN -optical.

Proof We prove only the first statement, being the second completely analogous. Given
L ∈ �(n), let us consider the Lagrangian curve pointwise defined by �(t) := ψ(t)L . Let t0
be a crossing instant for � with respect to the Dirichlet Lagrangian LD . By using equations
(A.9) and (3.3), we get that

�
(
�(t), LD, t0

)[w] = 〈B(t0)w,w〉 = 〈Hpp(t0)y, y〉, ∀w =
[
y
0

]
∈ �(t0) ∩ LD . (3.4)

Since H isC 2 convex in the p-variables, it follows that the crossing form� given in Equation
(3.4) is positive definite. The conclusion now follows by the arbitrarily of t0. ��
Corollary 3.8 Let H : R2n → R be a C 2-strictly convex Hamiltonian function and let z0 be
a solution of the Hamiltonian system given in Eq. (3.1). Then H is L0-optical with respect
to every L0 ∈ �(n).

Proof In fact, since H is C 2-strictly convex, this in particular implies that B(t) =
D2H
(
t, z0(t)

)
is positive definive and hence every restriction is positive definite. The con-

clusion now follows directly by using once again Equation (A.9). ��
Remark 3.9 We consider the Hessian of H along a solution z0 of the Hamiltonian system
given in Eq. (3.1), given by Eq. (3.3) and we observe that in terms of the block matrices
entering in the Hessian of H , the condition for H to be C 2-strictly convex is equivalent to

1. Hpp(t) is positive definite (in particular invertible);
2. Hqq(t)− Hqp(t)Hpp(t)−1Hpq(t) is positive definite.

The equivalence readily follows by the characterization of positive definiteness of a block
matrices in terms of the Schur’s complement. Thus, in general, if the Lagrangian L given in
Definition (3.6) is not in a special position with respect to LD and LN , the opticality property
strongly depends upon the all blocks appearing in the Hessian of H .

We are now in position to prove the Sturm non-oscillation theorem.

Theorem 3.10 (SturmNon-Oscillation) Let H : [0, T ]⊕R
2n → R be aC 2 Legendre convex

natural quadratic Hamiltonian of the form

H(p, q) = 1

2

[
〈B(t)p, p〉 + 〈A(t)q, q〉

]
,

where A, B : [0, T ] → Sym(n) (with B(t) positive definite for every y ∈ [0, T ]). Let ψ

be the fundamental solution of the linearized system given in Eq. (3.2), L0 ∈ �(n), and
�0(t) := ψ(t)L0. Setting mul (t0) := dim

(
�(t0) ∩ LD

)
, then we get that

∑

t0∈[0,T ]
mul (t0) ≤ n

Proof Let x be the critical point (with Dirichlet boundary conditions) of the action functional
corresponding to the solution z0. Then theMorse index of x is 0, since the (natural) Lagrangian
L corresponding to the Hamiltonian H is C 2 convex. In particular by Theorem 1.7, we have

ιLZ (z0) = c(Z).
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Here Z = (0)⊕(0), LZ = LD , and by taking into account Remark 1.8 we get that c(Z) = n.
Then ιLZ (z0) = n and by Definition 1.6 we have

ιCLM(LD ⊕ LD,Gr (ψ(t)); t ∈ [0, T ]) = ιCLM(LD, ψ(t)LD; t ∈ [0, T ]) = n (3.5)

Note that LD ∩ (ψ(0)LD) = n and the Hamiltonian is LD-optical . By lemma 3.4, we have

LD ∩ (ψ(T )LD) = {0}. (3.6)

From Definition A.9 and Proposition A.14 we get

ιCLM(LD ⊕ LD,Gr (ψ(t)); t ∈ [0, T ])− ιCLM(L0 ⊕ LD,Gr (ψ(t)); t ∈ [0, T ])
= s(Gr (Id),Gr (ψ(T )); L0 ⊕ LD, LD ⊕ LD)

= ι(Gr (Id), L0 ⊕ LD, LD ⊕ LD)− ι(Gr (ψ(T )), L0 ⊕ LD, LD ⊕ LD).

By [14, Equation (1.17)], we have

ι(Gr (Id), L0 ⊕ LD, LD ⊕ LD) = n − dim(L0 ∩ LD)+ ι(L0, LD, LD)

= n − dim(L0 ∩ LD),

where the last equality follows by [34, Corollary 3.14]. By Eqs. (A.10) and (3.6), we have

ι(Gr (ψ(T )), L0 ⊕ LD, LD ⊕ LD)

≤ 2n − dim (Gr (ψ(T )) ∩ (L0 ⊕ LD))

− dim((L0 ⊕ LD) ∩ (LD ⊕ LD))+ dim (Gr (ψ(T )) ∩ (L0 ⊕ LD) ∩ (LD ⊕ LD))

= 2n − dim((ψ(T )L0) ∩ LD)− (n+dim(L0 ∩ LD))+dim ((ψ(T )(LD ∩ L0)) ∩ LD)

= n −mul (T )− dim(L0 ∩ LD).

We get

ιCLM(LD ⊕ LD,Gr (ψ(t)); t ∈ [0, T ])− ιCLM(L0 ⊕ LD,Gr (ψ(t)); t ∈ [0, T ])
≥ n − dim(L0 ∩ LD)− (n − dim(L0 ∩ LD)−mul (T )) = mul (T ).

By this inequality and by Eq. (3.5), we get that

ιCLM(L0 ⊕ LD,Gr (ψ(t)); t ∈ [0, T ])
= ιCLM(LD, ψ(t)L0; t ∈ [0, T ]) ≤ ιCLM(LD, ψ(t)LD; t ∈ [0, T ])−mul (T )

= n −mul (T ).

The thesis follows by observing that in the case of positive curves, it holds that

ιCLM(L0 ⊕ LD,Gr (ψ(t)); t ∈ [0, T ]) =
∑

t0∈[0,T )

mul (t0).

��
Remark 3.11 It is worth noticing that, in fact

mul (0) := dim(L0 ∩ LD) ≤ ιCLM(L0 ⊕ LD,Gr (ψ(t)); t ∈ [0, T ])
= ιCLM(LD, ψ(t)L0; t ∈ [0, T ]) ≤ n.

Now, since the natural Hamiltonian is C 2 Legendre convex, as direct consequence of
Proposition 3.7, we get that the curve t �→ �0(t) is LD-plus and by using Lemma 3.4, the
local contribution to the ιCLM-index is through the multiplicity. This concludes the proof.
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Remark 3.12 By using the suggestive original Arnol’d language, the Sturm non-oscillation
theorem given in Theorem 3.10 could be rephrased by stating that

Nonoscillation Theorem. If the potential energy is nonpositive, then the number of
moments of verticality does not exceed the number n of degrees of freedom.

The non-positivity of the potential energy implies that the quadratic Lagrangian is strictly
positive and hence the Morse index of associated Lagrangian action functional vanished
identically.

Let L ∈ �(n) and for i = 1, 2, we denote by ν(Li , [0, T ]) the total sum of all non-
transversality instants (counted according their own multiplicities) between the curve t �→
�(t) := ψ(t)L and the Lagrangian subspaces Li ∈ �(n) on the interval [0, T ].
Theorem 3.13 (Sturm Alternation Theorem for plus-curves) Under the above notation, the
following holds: ∣

∣
∣ν(L2, [0, T ])− ν(L1, [0, T ])

∣
∣
∣ ≤ n − k,

where k := max{k1, k2} and
k1 := min{dim ε1, dim ε2} for εi := L ∩ �(T )/L ∩ �(T ) ∩ Li , i = 1, 2

k2 := min{dim δ1, dim δ2} for δ1 := L ∩ L1 + L1 ∩ L2 and δ2 := �(T ) ∩ L2 + L1 ∩ L2.

Proof The idea of the proof is similar wit h theorem 2.9 but it needs more precise estimate.
Note that ν(Li , [0, T ]) = ιCLM(Li , �(t); t ∈ [0, T ]) + dim �(T ) ∩ Li since t �→ l(t) is
Li -plus curve for i = 1, 2. Then we have

ν(L2, [0, T ])− ν(L1, [0, T ]) = s(L, �(T ); L1, L2)+ dim L2 ∩ �(T )− dim L1 ∩ �(T )

Then by theorem A.14, we get

ν(L2, [0, T ])− ν(L1, [0, T ])
= ι(L, �(T ), L2)+ dim L2 ∩ �(T )− (ι(L, �(T ), L1)+ dim L1 ∩ �(T )

)
(3.7)

ν(L2, [0, T ])− ν(L1, [0, T ])
= ι(L, L1, L2)−

(
ι(�(T ), L1, L2)+ dim L1 ∩ �(T )− dim L2 ∩ �(T )

)
(3.8)

By using Eqs. (A.10) and (3.7), we get that

ι(L, �(T ), Li )+ dim Li ∩ �(t) ≤ n − dim L ∩ �(T )+ dim L ∩ �(T ) ∩ Li . (3.9)

Moreover, for arbitrary Lagrangian subspaces α, β, γ , we have

ι(α, β, γ ) = n+Q(α, β, γ )+ dim α ∩ γ − dim α ∩ β ∩ γ + dim α ∩ β − dim α ∩ γ

= ι(β, γ, α).

Then by (3.8) it follows that

ν(L2, [0, T ])− ν(L1, [0, T ]) = ι(L, L1, L2)− ι(L1, L2, �(T )). (3.10)

By using Eqs. (3.9) and (3.10), we get the thesis arguing precisely as given in Theorem 2.9 .
��

Remark 3.14 We observe that the estimates provided in Theorem 3.13 is, in general, sharper
than the one proved by Arnol’d for which the difference was bounded by n.
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The next result represents a generalization of [2, Theorem on Zeros].

Theorem 3.15 (Sturm Theorem on Zeros) Under the notation of Theorem 3.13, we get that
for any interval [α, β] ⊂ [0, T ],
• if
∣
∣ν
(
L2, [α, β])∣∣ > n − k, then there is at least one crossing instant of � with L1;

• if
∣
∣ν
(
L1, [α, β])∣∣ > n − k, then there is at least one crossing instant of � with L2.

Proof The proof follows immediately by using triangular inequality and Theorem 3.13. ��

4 Sturm comparison principles

In this section we provide some new comparison principles as well as a generalization of the
classical Sturm comparison principle. Our first result is a generalization of the comparison
principle which was proved by third named author in [24, Section 5].

Theorem 4.1 (Comparison Principle) Let L1, L2, L3 ∈ �(V , ω), ψ ∈ PT (V , ω) and for
i = 1, 2 we set �i (t) := ψ(t)Li . We assume that

1. t �→ �2(t) is L3-plus curve
2. ι(L1, L2, L3) = n − dim(L1 ∩ L2)

3. ιCLM(L3, �1(t); t ∈ [0, T ]) = 0.

Then ιCLM(L3, �2(t); t ∈ [0, T ]) = 0.

Remark 4.2 Before proving this result, we observe that assumption 2. corresponds to require
that the triple index is as large as possible. In fact, by assumption 1. the termdim(L1∩L2∩L3)

drops down. This assumption, somehow replaces the condition on Q(L1, L2; L3) to be
positive definite in this (maybe degenerate) situation.

Proof We start to observe that by assumption 3. ιCLM(L3, �1(t); t ∈ [0, T ]) = 0 by assump-
tion 1., ιCLM(L3, �2(t); t ∈ [0, T ]) is non-negative. Thus, we get

0 ≤ ιCLM(L3, �2(t); t ∈ [0, T ])− ιCLM(L3, �1(t); t ∈ [0, T ])
= ιCLM

(
ψ(t)−1L3, L2; t ∈ [0, T ]

)− ιCLM
(
ψ(t)−1L3, L1; t ∈ [0, T ]

)

= s(L1, L2; L3, ψ(T )−1L3)

= ι(L1, L2, ψ(T )−1L3)− ι(L1, L2, L3)

= ι(L1, L2, ψ(T )−1L3)− n + dim(L1 ∩ L2) ≤ 0,

where the last inequality follows from Eq. (A.10). In fact,

ι(L1, L2, ψ(T )−1L3) ≤ n − dim(L1 ∩ L2)− dim(L2 ∩ ψ(T )−1L3)

+ dim(L1 ∩ L2 ∩ ψ(T )−1L3)

≤ n − dim(L1 ∩ L2),

being − dim(L2 ∩ ψ(T )−1L3) + dim(L1 ∩ L2 ∩ ψ(T )−1L3) ≤ 0. So, since 0 ≤
ιCLM(L3, �2(t); t ∈ [0, T ]) ≤ 0, we get that ιCLM(L3, �2(t); t ∈ [0, T ]) = 0. This concludes
the proof. ��

A direct consequence of the Theorem 4.1, we get the following result which is in the form
appearing in [24, Theorem 5.1].
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Corollary 4.3 (Comparison Principle) Let L1, L2, L3 ∈ �(V , ω), ψ ∈ PT (V , ω) and for
i = 1, 2 we set �i (t) := ψ(t)Li . We assume that

1. t �→ �2(t) is L3-plus curve
2. ι(L1, L2, L3) = n − dim(L1 ∩ L2)

3. t �→ �1(t) ∈ �0(L3).

Then t �→ �2(t) ∈ �0(L3).

Proof By means of assumption 1., we only need to prove that �2(T )∩ L3 = {0}. In the proof
of Theorem 4.1, we get

ι(L1, L2, ψ(T )−1L3)− n + dim(L1 ∩ L2) = 0.

Note that ι(L1, L2, ψ(T )−1L3) ≤ n − dim(L1 ∩ L2 + L2 ∩ ψ(T )−1L3).
It follows that L2∩ψ(T )−1L3 ⊂ L1∩L2 ⊂ L1. Then we haveψ(T )L2∩L3 ⊂ ψ(T )L1,

and it follows that ψ(T )L2 ∩ L3 ⊂ ψ(T )L1 ∩ L3 = {0}. ��
Remark 4.4 Corollary 4.3 provides a generalization of [24, Theorem 5.1] which was proved
for paths of symplectic matrices arising as fundamental solutions of Hamiltonian systems.
Moreover we removed the Legendre convexity condition as well as the transversality con-
dition between the Lagrangian subspaces L1 and L2, which, in concrete applications such a
conditions are pretty difficult to be checked.

Theorem 4.5 Under the notation of Theorem 4.1, we assume that

1. t �→ �2(t) is L3-plus curve
2. ι(L1, L2, L3) = n − dim(L1 ∩ L2)

3. dim(L3 ∩ L2) = k
4. ιCLM(L3, �1(t); t ∈ [a, b]) = k for some k ∈ N

Then ιCLM(L3, �2(t); t ∈ [a, b]) = k.

Proof We start to observe that by assumption 3. and assumption 1. we get that

ιCLM(L3, �2(t); t ∈ [a, b]) ≥ k.

Thus 0 ≤ ιCLM(L3, �2(t); t ∈ [0, T ]) − ιCLM(L3, �1(t); t ∈ [0, T ]) ≤ 0 where the last
inequality follows by arguing precisely as in Theorem 4.1. By this the conclusion readily
follows. ��

The last result of this section is a generalized version of the Sturm comparison theorem
proved by Arnol’d in the case of optical Hamiltonians. The proof of this result is essentially
based on spectral flow techniques and for the sake of the reader we refer to Appendix B for the
basic definitions, notation and properties. Now, for i = 1, 2 let us consider the Hamiltonians
Hi : [0, T ] ⊕ R

2n → R and the induced Hamiltonian systems

z′(t) = J0∇Hi
(
t, z(t)
)
. (4.1)

By linearizing Eq. (4.1) at a common equilibrium point z0, we get

w′(t) = J0Bi (t)w(t), (4.2)

where Bi (t) = D2Hi (t, z0(t)). For i = 1, 2, we denote by ψi the fundamental solution
of the corresponding linearized Hamiltonian system (4.2). For s ∈ [0, 1], we define the
two-parameter family of symmetric matrices as follows

C : [0, 1] ⊕ [0, 1] → C1([0, T ],Sym(2n))

C(s,r)(t) := C(s, r)(t) = s
[
r B2(t)− r B1(t)

]+ r B1(t).
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Given L ∈ �(2n), we denote by D(T , L) the subspace of W 1,2 paths defined by

D(T , L) := {w ∈ W 1,2([0, T ],R2n)|(w(0), w(T )
) ∈ L} (4.3)

and we define the two parameter family of first order linear operators:

A(s,r) : D(T , L) ⊂ L2([0, T ],Rn)→ L2([0, T ],R2n) defined by

A(s,r) := −J0
d

dt
− C(s,r)(t).

It is well-known that for every (s, r) ∈ [0, 1]⊕[0, 1], the linear operatorA(s,r) is unbounded
self-adjoint in L2 with dense domain D(T , L). We also observe that being the domain
independent on (s, r) the linear operator A(s,r) : D(T , L)→ L2([0, T ],R2n) is bounded.

Theorem 4.6 (First Comparison theorem) Let L ∈ �(2n) and under the notation above, we
assume

(C1) B1(t) ≤ B2(t), ∀ t ∈ [0, T ].
Then we get

sf(A2) ≤ sf(A1)

where A1 := A(0,r) and A2 := A(1,r).

Before proving the result, we observe that the assumption (C1) guarantees that the curve
s �→ A(s,r) is a plus-curve.

Proof The proof of this result is based upon the homotopy invariance of the spectral flow. Let
us consider the two parameter family of operatorsA(s,r) defined above, and we observe that,
as direct consequence of the homotopy invariance (since the rectangle R is contractible), we
get that

sf
(
A(s,0), s ∈ [0, 1]

)+ sf
(
A(1,r), r ∈ [0, 1]

) = sf
(
A(0,r), r ∈ [0, 1]

)

+ sf
(
A(s,1), s ∈ [0, 1]

)
. (4.4)

We now observe that the first term sf
(
A(s,0), s ∈ [0, 1]

) = 0. This follows by the fact that
A(s,0) is a fixed operator. Let us now consider the second term in the right-hand side of Eq.
(4.4), namely sf

(
A(s,1), s ∈ [0, 1]

)
. By LemmaB.5 we can assume that for δ > 0 sufficiently

small the path

Aδ
s := A(s,1) + δ Id

where Id denotes the identity on L2, has only regular crossings. So, by the homotopy invari-
ance of the spectral flow we get that

sf
(
A(s,1), s ∈ [0, 1]

) = sf
(
Aδ

s , s ∈ [0, 1]
)

(4.5)

and by the assumption (C1) it follows that the local contribution to the spectral flow for the
path s �→ Aδ

s at each crossing instant is negative, i.e.

sf
(
Aδ

s , s ∈ [0, 1]
) ≤ 0 (4.6)

Summing up Eqs. (4.4), (4.5) and finally Eq. (4.6), we finally get that

sf
(
A(1,r), r ∈ [0, 1]

) ≤ sf
(
A(0,r), r ∈ [0, 1]

)
.

��

123



Sturm theory with applications in geometry and classical mechanics 279

In order to relate the spectral flow for a path of Hamiltonian operators with the Maslov
index of the induced Lagrangian curve, we need to use a spectral flow formula.

Let us now consider the path s �→ Ls of unbounded Hamiltonian operators that are
selfadjoint in L2 and defined on the domain D(T , L) given in Eq. (4.3)

Ls := −J0
d

dt
− Es(t)

where s �→ Es(t) is a C 1 path of symmetric matrices such that E0(t) = 02n and E1(t) =
E(t), where we denoted by 02n the 2n ⊕ 2n zero matrix.

Proposition 4.7 (Spectral flow formula) Under the above notation, the following equality
holds

− sf (Ls, s ∈ [0, 1]) = ιCLM(L,Grψ(t); t ∈ [0, T ])
where ψ denotes the solution of

⎧
⎨

⎩

d

dt
ψ(t) = J0 E(t)ψ(t), t ∈ [0, T ]

ψ(0) = Id2n .

Proof For the proof of this result, we refer the interested reader to [13, Theorem 2.5, Equation
(2.7) & Equation (2.19)]. ��
Remark 4.8 The basic idea behind the proof of Proposition 4.7 is to perturb the path s �→ Ls

in order to get regular crossing (which it is possible as consequence of the fixed endpoints
homotopy invariance). Once this has been done, for concluding, it is enough to prove that
the local contribution at each crossing instant to the spectral flow is the opposite of the local
contribution to the Maslov index. This can be achieved by comparing the crossing forms as
in [13, Lemma 2.4] and to prove that the crossing instants for the path s �→ Ls are the same
as the crossing instants of the path s �→ Grψs and at each crossing s0 the kernel dimension
of the operator Ls0 is equal to the dim(L ∩ Grψs0). The conclusion follows once again by
using the homotopy properties of the ιCLM-index and the spectral flow.

Theorem 4.9 (Second Comparison theorem) Under the notation above, we assume

(C1) B1(t) ≤ B2(t), ∀ t ∈ [0, T ].
Then we get

ιCLM(L,Grψ1(t), t ∈ [0, T ]) ≥ ιCLM(L,Grψ2(t); t ∈ [0, T ]). (4.7)

Proof The proof readily follows by Theorem 4.6 and Proposition 4.7. ��
As direct consequence of Theorem 4.5 we get the following useful result.

Corollary 4.10 (Oscillation Theorem) Let H : [0, T ] ⊕R
2n → R be a C 1 natural quadratic

Hamiltonian of the form

H(t, p, q) = 1

2
‖p‖2 + V (t, q), (t, q, p) ∈ [0, T ] × R

2n

such that

V (t, q) ≤ 1

2
ω2 ‖q‖2 and V (0, q) = 1

2
ω2 ‖q‖2
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Then, we get

ιCZ(ψ(t); t ∈ [0, T ]) ≥ 2

⌊
Tω

2π

⌋
.

In particular, this number growth unboundedly as T →+∞.

Proof The proof follows as direct application of Theorem 4.9, in the case in which L = �

and of [17, Equation (3.8)]. ��

Remark 4.11 An analogous of Corollary 4.10 already appears in [2, Corollary 2 (Oscillation
Theorem]. In this result, however, author estimates from below the moments of verticality,
namely the Maslov index with respect to the Dirichlet Lagrangian. We also observe that the
opposite inequality appearing in Corollary 4.10 with respect to the aforementioned Arnol’d
result is due essentially to the fact that in that paper author considered Lagrangian paths
ending in the vertex of the train, whereas we are considering Lagrangian paths starting at the
vertex of the train.

We close this section with a comparison theorem for Morse-Sturm systems. For i = 1, 2,
let us consider the natural quadratic Hamiltonians Hi : R2n → R of the form

Hi (p, q) = 1

2
〈Pi (t)−1 p, p〉 − 1

2
〈Ri (t)q, q〉 (4.8)

where t �→ Pi (t) andt �→ Ri (t) are C 1-paths symmetric matrices and Pi (t) is positive
definite for all t ∈ [0, T ]. Thus the Hamiltonian system given in Eq. (1.3) reduces to

z′i (t) = J0Bi (t) z(t), t ∈ [0, T ] where Bi (t) :=
[
P−1i (t) 0

0 −Ri (t)

]
. (4.9)

Let Z ⊂ R
n ⊕R

n be a linear subspace, LZ ∈ �(2n) be the Lagrangian subspace defined by
Equation (1.4) and, for i = 1, 2, we denote by ιZ (Bi ) the Morse-index of the index form of
the Morse-Sturm system corresponding to Bi .

Proposition 4.12 Under the above notation, we assume that

(S1) P1(t)−1 ≤ P2(t)−1 for every t ∈ [0, T ];
(S2) R1(t) ≥ R2(t) for every t ∈ [0, T ];
Then we get

ιZ (B1) ≥ ιZ (B2).

Proof Under (S1) & (S2), it follows that B1(t) ≤ B2(t) for all t ∈ [0, T ]. Thus as direct
consequence of Theorem 4.9, we get

ιCLM(LZ ,Grψ1(t); t ∈ [0, T ]) ≥ ιCLM(LZ ,Grψ2(t); t ∈ [0, T ]). (4.10)

By Theorem 1.7 we infer that ιCLM(LZ ,Grψi (t); t ∈ [0, T ]) = ιZ (Bi ) + C(Z) and so the
thesis follows. This concludes the proof. ��
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5 Some applications in geometry and classical mechanics

The aim of this final section is to give some applications in differential geometry and in
classical mechanics. Inspired by [15] from which we borrow some notation, in Sect. 5.1 we
shall prove some comparison results between the conjugate and focal points along a geodesic
on semi-Riemannian manifold. In Sect. 5.2 some applications to the planar Kepler problem
where provided.

5.1 Comparison theorems in semi-Riemannian geometry

Let (M, g)be semi-Riemanniann-dimensionalmanifold, and let D be the covariant derivative
of theLevi-Civita connection of themetric tensor g.Wedenote by R theRiemannian curvature
tensor, chosen according to the following sign convention R(ξ, η) := [Dξ , Dη] − D[ξ,η].
Given a geodesic γ : [a, b] → M the Jacobi (deviation) equation along γ is given by

(D/dt)2ξ(t)− R
(
γ ′(t), ξ(t)

)
γ ′(t) = 0 ∀ t ∈ [a, b]. (5.1)

The Jacobi equation is a linear second order differential equation whose flow � defines a
family of isomorphisms

�t : Tγ (a)M ⊕ Tγ (a)M → Tγ (t)M ⊕ Tγ (t)M for t ∈ [a, b]
defined by�t (v,w) := (Jv,w(t), (D/dt)Jv,w(t)

)
where Jv,w is the unique Jacobi field along

γ satisfying J (a) = v and (D/dt)J (a) = w.
On the space V := Tγ (a)M ⊕ Tγ (a)M , let us consider the symplectic form given by

ω
(
(v1, w1), (v2, w2)

) := g(v1, w2)− g(v2, w1)

and for all t ∈ [a, b] we define Lt
0 = {0} ⊕ Tγ (t)M ⊂ V and we set �(t) := �−1t (Lt

0).
It is easy to check that in this way we get a smooth curve � : [a, b] → �(V , ω). We set
L0 := �(a) = La

0.
1 Now, consider a smooth connected submanifold P of M , with γ (a) ∈ P

and γ ′(a) ∈ Tγ (a)P⊥ (where ⊥ is the orthogonal with respect to g) and we assume that the
restriction of g to Tγ (a)P is non-degenerate. (This condition is always true if M is either
Riemannian or Lorentzian and γ is timelike). Let S be the second fundamental form of P at
γ (a) in the normal direction γ ′(a), seen as a g-symmetric operator S : Tγ (a)P → Tγ (a)P .

Definition 5.1 A P-Jacobi field is a solution ξ of Equation (5.1) such that ξ(a) ∈ Tγ (a)P
and (D/dt)ξ(a)+ S[ξ(a)] ∈ Tγ (a)P⊥.

An instant t0 ∈ (a, b] is P-focal if there exists a nonzero P-Jacobi field vanishing at t0.
The multiplicity of a mechanical P-focal instant is the multiplicity of the P-Jacobi fields
vanishing at t0. To every submanifold P of M , we associate a Lagrangian subspace LP ⊂ V
defined by

LP := {(v,w) ∈ Tγ (a)M ⊕ Tγ (a)M |v ∈ Tγ (a)P and w + S(v) ∈ Tγ (a)P
⊥}. (5.2)

It is worth noticing that, if the submanifold P reduces to the point γ (a), then the induced
Lagrangian defined in Equation (5.2) reduces to L0 := Tγ (a)M ⊕ {0} and we term a P-focal

1 We observe that even if the local chart of the atlas of the Lagrangian Grassmannian manifold is the opposite
with respect to that one defined by authors in [15], there is no sign changing involved, since our symplectic
form is the opposite of the symplectic form defined by authors in the aforementioned paper and the two minus
signs cancel each other.
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point just a conjugate point. Then, an instant t ∈]a, b] is P-focal along γ if and only if
�(t) ∩ LP �= {0} and the dimension of the intersection coincides with the multiplicity of the
P-focal point. We also observe that L0 ∩ LP = Tγ (a)P⊥ ⊕ {0} and hence dim(L0 ∩ LP ) =
codim P

For all t ∈]a, b], we define the space
AP [t] := {(D/dt)J (t)|J is a P-Jacobi field along γ such that J (t) = 0},

whilst for t = a we set AP [a] = Tγ (a)P⊥. We observe that dim AP [t] = dim �(t) ∩ LP . If
P is just a point for all t ∈]a, b], we set

A0[t] := {(D/dt)J (t)|J is a P-Jacobi field along γ such that J (a) = J (t) = 0},
whilst for t = a we set A0[a] = Tγ (a)M . As direct application of Theorem 2.9, we get the
following comparison between conjugate and focal points.

Proposition 5.2 Under the previous notation, the following inequality holds
∣∣
∣ιCLM
(
LP , �(t); t ∈ [a, b])− ιCLM

(
L0, �(t); t ∈ [a, b])

∣∣
∣ ≤ n − k ≤ dim P,

where k = dim
(
�(b) ∩ L0 + L0 ∩ LP ).

Remark 5.3 The last inequality appearing in Proposition 5.2 coincide with that one proved
by authors in [15, Proposition 4.3].

As direct consequence of the triangular inequality and Proposition 5.2, we get the follow-
ing.

Corollary 5.4 Under the notation of Proposition 5.2, we get that, for any interval [α, β] ⊂
[a, b],
• if ιCLM

(
L0, �(t); t ∈ [a, b]) > n−k then there is at least one mechanical P-focal instant

in [α, β]
• if ιCLM

(
LP , �(t); t ∈ [a, b]) > n − k then there is at least one mechanical P-conjugate

instant in [α, β]

The last result of this paragraph is quite useful in the applications. Loosely speaking,
claims that the absence of conjugate (respectively focal instants gives an upper bound on the
number of focal (respectively conjugate) instants

Proposition 5.5 If γ has no conjugate instant, then

|ιCLM(LP , �(t); t ∈ [α, β])| ≤ n − k,

for k = dim
(
�(b) ∩ L0 + L0 ∩ LP ) and for every [α, β] ⊂]a, b]. Similarly, if γ has no

P-focal instants, then

|ιCLM(L0, �(t); t ∈ [α, β])| ≤ n − k.

Proof If γ has no conjugate instants, then ιCLM
(
L0, �(t); t ∈ [a, b]) = 0. The result directly

follows by applying Proposition 5.2. Similarly for the second claim. ��
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Let now consider two smooth connected submanifold P, Q of M , with γ (a) ∈ P∩Q and
γ ′(a) ∈ Tγ (a)P⊥ ∩ Tγ (a)Q⊥ (where ⊥ is the orthogonal with respect to g) and we assume
that the restriction of g to Tγ (a)P and to Tγ (a)Q are non-degenerate. We set

LP := {(v,w) ∈ Tγ (a)M ⊕ Tγ (a)M |v ∈ Tγ (a)P and w + SP (v) ∈ Tγ (a)P
⊥},

LQ := {(v,w) ∈ Tγ (a)M ⊕ Tγ (a)M |v ∈ Tγ (a)Q and w + SQ(v) ∈ Tγ (a)Q
⊥},

where SP and SQ denote the shape operators of P and Q, respectively.

Proposition 5.6 Let L be either L P or LQ. Then we have
∣
∣
∣ιCLM
(
L, �(t); t ∈ [a, b])− ιCLM

(
L0, �(t); t ∈ [a, b])

∣
∣
∣ ≤ n − k ≤ d,

where k = max{kP , kQ} for
kP = dim

(
�(b) ∩ L0 + L0 ∩ LP ) and kQ = dim

(
�(b) ∩ L0 + L0 ∩ LQ)

and d := max{dim P, dim Q}.

5.2 Simplemechanical systems andmechanical focal points

This final section is devoted to study the so-called P-kinetic focal and conjugate points in
the case of simple mechanical systems and to derive some interesting estimates relating the
qualitative and variational behavior of orbits in some singular Lagrangian systems.

In this paragraph we stall by recalling some well-known facts and to fix our notation. The
main references are [26,31,32] and references therein.

Definition 5.7 Let (M, g) be a finite dimensional Riemannian manifold and V : M → R be
a smooth function. The triple (M, g, V ) is called a simple mechanical system. The manifold
M is called the configuration space and its tangent bundle T M is usually called the state
space. A point in T M is a state of the mechanical system which gives the position and the
velocity. The kinetic energy K of the simple mechanical system is the function

K : T M → R defined by K (q, v) := 1

2
‖v‖2g ∀ (q, v) ∈ T M .

The smooth function V is called the potential energy (function) of the system and finally the
total energy function

E : T M → R defined by E(q, v) := 1

2
‖v‖2g + V (q) ∀ (q, v) ∈ T M .

Notation 5.8 Everywhere in the paper we shall denote by V the potential energy and by U
the potential function and we recall that V = −U .

Example 5.9 (The n-body problem) Consider n point masses particles (bodies) with masses
m1, . . . ,mn ∈ R

+ moving in the d-dimensional Euclidean space Ed . So the positions of the
bodies is described by the vector q = (q1, . . . , qn) ∈ (Ed)n . The kinetic energy is

K (q, v) := 1

2

n∑

i=1
〈mivi , vi 〉 ∀ (q, v) ∈ (Ed)n × (Ed)n .
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Clearly the kinetic energy is induced by the Riemannian metric 〈cdot, ·〉M on (Ed)n defined
by

〈v,w〉M =
n∑

i=1
〈mivi , wi 〉 ∀ v,w ∈ (Ed)n .

The n-bodies moves under the influence of the Newtonian potential energy defined by

V (q1, . . . qn) = −
∑

i< j

mim j∥
∥qi − q j

∥
∥ .

The function V is singular at the collision set defined by

� := {(q1, . . . , qn) ∈ (Ed)n |qi = q j for some i �= j}.
Then V is a smooth function on M := (Ed)n\� thus defining a simple dynamical system
(M, K , V ).

Definition 5.10 A physical path (orbit, trajectory) of a simple mechanical system (M, g, V )

is a smooth path γ in M satisfying the Newton Equation

(D/dt)γ ′ = −∇gV (γ ) (5.3)

where D/dt denotes the covariant derivative relative of the Levi-Civita connection D of the
Riemannian metric g and where ∇g denotes the gradient defined by g.

Remark 5.11 If V = 0 then the physical path are just geodesics of the Riemannian manifold.
Moreover if g is the Euclidean metric, then the left-hand side of Eq. (5.3) reduces to γ ′′ and
the gradient ∇g appearing in the right-hands side of that equation is the usual gradient.

By the conservation law of the total energy function along a physical path and since in the
Riemannian world the kinetic energy is non-negative2 a physical path of total energy h ∈ R

must lie in the set
M := {q ∈ M |V (q) ≤ h},

where M denotes the topological closure of the set

M := {q ∈ M |V (q) < h}
usually called the h-configuration space or theHill’s region. If h is a regular value of V , then
M is a smooth manifold with boundary

∂M := {q ∈ M |V (q) = h}.
The Jacobi metric g corresponding to the value h of a simple mechanical system (M, g, V )

is given by
g(q) := 2[h − V (q)] g(q).

Remark 5.12 We observe that g defines a honest Riemannian metric on M which degenerate
on ∂M .

The next result, which relates the physical paths of energy h and the geodesics on the
Hill’s region with respect to the Jacobi metric, goes back to Jacobi.

2 This fact is not longer true, in general, on semi-Riemannian manifolds having non trivial signature (for
instance Lorentzian manifolds).
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Proposition 5.13 (Jacobi) The physical paths of (M, g, V ) of total energy h are, up to time
re-parametrization, geodesics of the Riemannian manifold (M, g).

We now consider the configuration space M to be the Euclidean plane E2 endowed with
a polar coordinate system (r , θ). Take the origin to be the center of central force so that the
potential energy V of the problem depends only upon r (thus is θ independent). We assume
that the particle has mass m = 1 so that the kinetic energy is K (q, v) = ‖v‖2 /2 for all
v ∈ E2. The Jacobi metric of this simple mechanical system in polar coordinates is given by

g := 2[h − V (r)](dr2 + r2dθ2).

The mechanical Gaussian curvature can be easily computed (cfr. [26, Proposition 2.1]) and
it is given by

K(q) := 1

4[h − V (r)]
[
(h − V )(rV ′)′ + r(V ′)2

]
.

Assuming that h is a regular value of V meaning that V ′ �= 0 on the boundary ring

∂M := {q ∈ M |V (‖q‖) = h} �= ∅,
then by continuity it readily follows the following result.

Lemma 5.14 [26, Proposition 2.1 & Proposition 2.2] Suppose h is a regular value of V and
that the boundary ring ∂M �= ∅. Then there is an annulus region of the boundary ∂M on
which the mechanical Gaussian curvature is positive. MoreoverK(q) →+∞ as q → ∂M.

The planar Kepler problem

In polar coordinates the Jacobi metric for the planar Kepler problem is

g = 2

(
h + 1

r

)
(dr2 + r2dθ2).

Remark 5.15 As recently observed by Montgomery in [21, Section 4], in the particular case
of zero energy h = 0 it reduces to

g0 = 2

(
dr2

r
+ dθ2

)

and by setting ρ = 2r1/2 it can be written as follows

g0 = dρ2 + ρ2

4
dθ2

which is the metric of cone over a circle of radius 1/2.

In the standard planar Kepler problem, the mechanical Gaussian curvature is

K(r) = − h

4(1+ rh)3
.

In particular we get that
⎧
⎪⎨

⎪⎩

h > 0 ⇒ K(r) < 0 (hyperbolicorbits)

h = 0 ⇒ K(r) = 0 (parabolicorbits)

h < 0 ⇒ K(r) > 0 (ellipticorbits).
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In the two dimensional case the mechanical Jacobi field, reduces to

d2 J

ds2
+K(s)J = 0,

where s denotes the Jacobi arc-length. Since |K| ≥ |h|/4, and as a direct consequence of
Proposition 4.12, we get the following.

Theorem 5.16 Let γ be a Keplerian ellipse. Then the first conjugate point occurs at Jacobi
distance less than

2
π√|h| .

Proof In fact, since |K(s)| ≥ |h|
4
, by setting R1(s) = |K(s)| and R2(s) := |h|Id and by using

Proposition 4.12, we get that the associated block diagonal matrices B1 and B2 are ordered,
meaning that pointwise we have B1(s) ≤ B2(s) for every s ∈ [0, 1]. Thus, by invoking once
again Proposition 4.12 and Theorem 1.7, we have

ιLD (B1) ≥ ιLD (B2).

Since crossing instants (or a verticality moments) correspond to conjugate points. (Cfr. [22]
and references therein for further details), the result follows once observed that |K| ≥ |h|/4
and |h|/4 is the Gaussian curvature of the sphere of radius 2/√|h|. This concludes the proof.
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A Appendix: A Symplectic excursion on theMaslov index

The purpose of this Section is to provide the basic definitions, properties and symplectic
preliminaries used in the paper. We recall the basic definition, the main properties of the
intersection number for curves of Lagrangian subspaces with respect to a distinguished one
and we fix our notation. Our basic references are [4,6,13,20,22,23,28,29].

A.1 Symplectic preliminaries and the Lagrangian Grassmannian

A finite dimensional (real) symplectic vector space, is a pair (V , ω), where V is a (real, even
dimensional) vector space, and ω : V ×V → R is an antisymmetric non-degenerate bilinear
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form on V . A complex structure on the real vector space V is an automorphism J : V → V
such that J 2 = −Id. With such a structure V becomes a complex vector space. We denote
by Sp(V , ω) the symplectic group of (V , ω) which is the closed Lie subgroup of the general
linear groupGL(V ) consisting of all isomorphisms that preserveω. The Lie algebra sp(V , ω)

of Sp(V , ω) consists of all endomorphisms X : V → V such that ω(X ·, ·) is a symmetric
bilinear form on V , i.e. ω(Xv,w) = ω(Xw, v), for all v,w ∈ V . Here and throughout,
unless different stated, (V , ω) denotes a 2n-dimensional (real) symplectic space.

We start by recalling some classical definition and notation that we will use throughout
the paper. First of all, a (linear) subspace I ⊂ V is termed isotropic if the restriction of ω on
I vanishes identically. Now, given an isotropic subspace I of the symplectic Euclidean space
(V , 〈·, ·〉, ω) and denoting by Iω the symplectic orthogonal, we shall identify the quotient
space Iω/I with the orthogonal complement VI of I in Iω and we call VI the symplectic
reduction of V modulo I . Thus, by definition:

VI := Iω ∩ I⊥ = (J I )⊥ ∩ I⊥ (A.1)

Notice that if I is isotropic, also J I is isotropic. Moreover VI = VJ I . This follows from
Eq. (A.1) and the orthogonality relations between ω and ⊥ . Moreover

V⊥I = [I⊥ ∩ (J I )⊥]⊥ = I ⊕ J I .

We observe that VI is a symplectic space since VI ∩ V ω
I = {0}. Thus, we get the symplec-

tic decomposition of V : V = VI ⊕ V⊥I . A special class of isotropic subspaces is played
by the so-called Lagrangian subspaces. More precisely, a maximal (with respect to the
inclusion) isotropic subspace of (V , ω) is termed a Lagrangian subspace. We denote by
�(V , ω) (or in shorthand notation by �) the collection of all Lagrangian subspaces of V .
So, if (V , ω) is a 2n-dimensional (real) symplectic space, a Lagrangian subspace of V is
an n-dimensional subspace L ⊂ V such that L = Lω. We denote by � = �(V , ω) the
Lagrangian Grassmannian of (V , ω), namely the set of all Lagrangian subspaces of (V , ω);
thus �(V , ω) := {L ⊂ V |L = Lω}.

Notation A.1 Here and throughout the Lagrangian Grassmannian of the standard symplectic
space will be denoted by �(n). Moreover, we set

LD = R
n × {0} ⊂ R

n × R
n and LN = {0} × R

n ⊂ R
n × R

n

and we shall refer to LD as the Dirichlet (or horizontal) Lagrangian subspace whilst to LN

as the Neumann (vertical) Lagrangian subspace.

In this subsection we recall some basic facts on the differentiable structure of �(V , ω).
We start to observe that �(V , ω) has the structure of a compact real-analytic submanifold of
the Grassmannian of all n-dimensional subspaces of V . Moreover the dimension of�(V , ω)

is 1
2n(n + 1) and an atlas on � is given as follows.
Given a Lagrangian decomposition of (V , ω) namely a pair (L0, L1) of Lagrangian sub-

spaces of V with V = L0⊕ L1, we denote by �0(L1) the open and dense subset of �(V , ω)

consisting of all Lagrangian subspaces of V that are transversal to L1. To any Lagrangian
decomposition (L0, L1) of V it remains a well-defined bijection

Q(L0, L1) : �0(L1) → Bsym(L0) defined by

Q(L0, L1)(L) := Q(L0, L1; L) := ω(·, T ·)∣∣L0×L0
(A.2)
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where T : L0 → L1 is the unique linear map whose graph in V is represented by L .3 We also
observe that ker

(
Q(L0, L1; L)

) = L ∩ L0, for all L ∈ �0(L1). Moreover, as proved by the
author in [9, Proposition 2.1], the collection of all Q(L0, L1)where the pair (L0, L1) runs all
over the Lagrangian decomposition of (V , ω) form a differentiable atlas for�(V , ω). For any
distinguished L0 ∈ �, let �k(L0) := {L ∈ �(V , ω)| dim (L ∩ L0

) = k} k = 0, . . . , n.

We recall that �k(L0) is a real compact, connected submanifold of codimension k(k+ 1)/2.
The topological closure of �1(L0) is theMaslov cycle that can be also described as follows.

Definition A.2 We term Maslov cycle with vertex at L0 or train with vertex L0 (by using
Arnol’d terminology [2, Section 2]), the algebraic (stratified) variety defined by

�(L0) :=
n⋃

k=1
�k(L0).

The top-stratum �1(L0) is co-oriented meaning that it has a transverse orientation. To be
more precise, for each L ∈ �1(L0), the path of Lagrangian subspaces (−δ, δ) �→ et J L cross
�1(L0) transversally, and as t increases the path points to the transverse direction. Thus the
Maslov cycle is two-sidedly embedded in �(V , ω) and, based on the topological properties
of the LagrangianGrassmannianmanifold, it is possible to define a fixed endpoints homotopy
invariant ιCLM-which is a generalization of the classical notion of Maslov index for paths of
Lagrangian subspaces.

A.2 On the CLM-index: definition and computation

Our basic references for this subsection are the beautiful papers [6,20,29].
We let P([a, b];R2n) the space of continuous maps

f : [a, b] → {pairs of Lagrangian subspaces in R
2n}

equipped with the compact-open topology and we recall the following definition.

Definition A.3 The CLM-index is the unique integer valued function

ιCLM :P([a, b];R2n)→ Z

which satisfies Properties I-(VI) in [6].

For further referencewe refer the interested reader to [6] and references therein. Following
authors in [20, Section 3], and references therein, let us now introduce the notion of crossing
form that gives an efficient way for computing the intersection indices in the Lagrangian
Grassmannian context.

Let � be a C 1-curve of Lagrangian subspaces such that �(0) = L and �̇(0) = L̂ . Now,
if W is a fixed Lagrangian subspace transversal to L . For v ∈ L and small enough t , let
w(t) ∈ W be such that v + w(t) ∈ �(t). Then the form

Q(L, L̂)[v] = d

dt

∣∣∣
t=0ω
(
v,w(t)

)
(A.3)

is independent on the choice of W .

3 We observe that this map coincides, up to a sign with, the one defined in [9, Equation 2.3] or with the local
chart ϕL0,L1 (L) given by authors in [8, Section 2] or in [15, Section 2]. However our choice is coherent with
the crossing forms defined through Q in [29, Section 1], [34, Equation 2 & Remark 3.1] with [20, Section 3]
and [6].

123



Sturm theory with applications in geometry and classical mechanics 289

Definition A.4 Let t �→ �(t) = (�1(t), �2(t)) be a map inP([a, b];R2n). For t ∈ [a, b], the
crossing form is a quadratic form defined by

�(�1, �2, t) = Q(�1(t), �̇1(t))− Q(�2(t), �̇2(t))
∣
∣
∣
�1(t)∩�2(t)

(A.4)

A crossing instant for the curve t �→ �(t) is an instant t ∈ [a, b] such that �1(t)∩�2(t) �= {0}
nontrivially. A crossing is termed regular if the �(�1, �2, t) is non-degenerate.

We observe that if t is a crossing instant, then �(�1, �2, t) = −�(�2, �1, t). If � is regular
meaning that it has only regular crossings, then the ιCLM-index can be computed through the
crossing forms, as follows

ιCLM
(
�1(t), �2(t); t ∈ [a, b]) = n+

(
�(�2, �1, a)

)

+
∑

a<t<b

sgn
(
�(�2, �1, t)

)− n−
(
�(�2, �1, b)

)
(A.5)

where the summation runs over all crossings t ∈ (a, b) and n+ , n− are the dimensions of
the positive and negative spectral spaces, respectively and sgn := n+ − n− is the signature.
(We refer the interested reader to [20] and [13, Equation (2.15)]).

Let L0 be a distinguished Lagrangian and we assume that �1(t) ≡ L0 for every t ∈ [a, b].
In this case we get that the crossing form at the instant t provided in Eq. (A.4) actually reduce
to

�
(
�2(t), L0, t

) = Q|�2(t)∩L0 (A.6)

and hence

ιCLM
(
L0, �2(t); t ∈ [a, b]) = n+

(
�(�2, L0, a)

)

+
∑

a<t<b

sgn
(
�(�2, L0, t)

)− n−
(
�(�2, L0, b)

)

Remark A.5 As authors proved in [20] for regular curves of Lagrangian subspaces the Robbin
and Salamon index ιRS for path of Lagrangian pairs defined in [29, Section 3] is related to
the ιCLM-index as follows the half-integer valued function given by

ιRS
(
�1(t), �2(t), t ∈ [a, b]) = 1

2
sgn
(
�(�1, �2, a)

)

+
∑

t0∈]a,b[
sgn
(
�(�1, �2, t0)

)+ 1

2
sgn
(
�(�1, �2, b)

)
.

Thus, we have:

ιCLM(�1(t), �2(t); t ∈ [a, b]) = ιRS(�2(t), �1(t); t ∈ [a, b])− 1

2
[h12(b)− h12(a)] (A.7)

where h12(t) := dim[�1(t) ∩ �2(t)]. We refer the interested reader to [20, Theorem 3.1] for
a proof of Eq. (A.7).

Remark A.6 For the sake of comparison with the results proven in [15] we remark that
ιCLM(L0, �2) can be defined by using the Seifert Van Kampen theorem for groupoids as
the unique Z-valued homomorphism that it is locally defined as difference of the coindices
as in [15, Equation (2-3)]. It is worth noticing that in that respect the local chart we are
considering here is the opposite of the one considered in that paper.
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A particular interesting situation which often occurs in the applications is the one in which
�(t) := ψ(t)L where ψ ∈ C 1

([a, b],Sp(2n)
)
. Usually, in fact, such a ψ is nothing but the

fundamental solution of a linear Hamiltonian system.
In this situation, in fact, as direct consequence of Eqs. (A.3) and (A.6), we get that for

such a path

�
(
�(t), L0, t0

)[v] = 〈ψ(t0)J0
Tψ ′(t0)v, v〉 ∀ v ∈ ψ−1(t)

(
�(t0) ∩ L

)
or

�
(
�(t), L0, t0

)[w] = 〈J0Tψ ′(t0)ψ−1(t0)w,w〉 ∀w ∈ �(t0) ∩ L0. (A.8)

Assuming that ψ is the fundamental solution of the linear Hamiltonian system

z′(t) = J0B(t)z(t), t ∈ [a, b]
where t �→ B(t) is a path of symmetric matrices, then by Eq. (A.8), we get that

�
(
�(t), L0, t0

)[w] = 〈B(t0)w,w〉 ∀w ∈ �(t0) ∩ L0. (A.9)

Example A.7 In this example we compute the crossing form with respect to the Dirichlet and
Neumann Lagrangian for a special curve of Lagrangian subspaces in the symplectic space
(R2n, ω0) by using the fact that for any L ∈ �(V , ω), the map δL : Sp(V , ω) → �(V , ω)

defined by δL(A) := AL is a real-analytic fibration.
Let L0 be either the Dirichlet or the Neumann Lagrangian, � : [a, b] → �(n) be a smooth

curve having a crossing instant with �(L0) at the instant t0 ∈ (a, b).

First case: L0 = LD . We assume that �(t0) is transverse to LN (otherwise it is enough
to consider a different Lagrangian decomposition). By the local description of the atlas of
the Lagrangian Grassmannian, �(t0) is a graph of a (symmetric) linear map A : Rn → R

n ,
namely �(t0) = {(p, q) ∈ R

n × R
n |q = Ap} and hence

�(t0) ∩ LD = {(p, q) ∈ R
n × R

n |q = 0, p ∈ ker A}.
There exists ε > 0 sufficiently small and ψ : (t0 − ε, t0 + ε) → Sp(2n) with ψ(t0) = Id
such that �(t) = ψ(t)�(t0). With respect to the Lagrangian decomposition LD ⊕ LN = R

2n

we can write ψ(t) in the block form as follows

ψ(t) :=
[
a(t) b(t)
c(t) d(t)

]
.

By an immediate computation, it follows that the crossing form is given by

�(�, LD, t0)[ξ ] = 〈p, ċ(t0)p〉
where p ∈ ker A is the unique vector in Rn such that ξ = (p, 0).

Second case: L0 = LN . We assume that �(t0) is transverse to LD ; thus in this case, we can
assume that �(t0) = {(p, q) ∈ R

n × R
n |p = Bq} and hence

�(t0) ∩ LN = {(p, q) ∈ R
n × R

n |p = 0, q ∈ ker B}.
Under the above notation, it follows that the crossing form is given by

�(�, LN , t0)[η] = −〈q, ḃ(t0)q〉
where q ∈ ker B is the unique vector in Rn such that η = (0, q).
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Remark A.8 Before closing this section, one more comment on theMaslov intersection index
defined by author in the quoted paper. We observe that, for a general Lagrangian path, the
(intersection) Maslov index defined by Arnol’d in [2, Section 2] (namely ιAr) differ from
ιCLM because of the contribution of the endpoints. In the aforementioned paper, author only
considered paths of Lagrangian subspaces such that the starting point doesn’t belong to the
train of a distinguished Lagrangian L0 whereas the final endpoint coincides with the vertex.
However, if we restrict on this particular class of Lagrangian paths and assuming that the
Hamiltonian defining these paths through the lifting to the Lagrangian Grassmannian is L0-
optical, then we have ιCLM(L0, �(t); t ∈ [0, T ]) = ιAr(L0, �(t), t ∈ [0, T ]) − n where ιAr

denotes the Maslov index defined in [2, Section 2]. This fact easily follows by observing that
the local contribution given by the endpoints to the ιCLM index is through the coindex at the
final point and the index of the starting point.

We also observe that the Lagrangian paths defined by the evolution of a Lagrangian
subspace under the phase flow, have in general, degenerate starting point. Thus, in order to
fit with the class of Lagrangian paths defined by Arnol’d it is natural to parametrize the paths
in the opposite direction. However, since the contribution at the end points is different, in the
definition of ιCLM-index such a re-parametrization changes the Maslov index not only for a
sign changing but also for a correction term which depends upon the endpoints. This fact is
pretty much put on evidence in the Sturm-type comparison theorems.

We close this section by recalling some useful properties of the ιCLM-index.

Property I (Reparametrization invariance) Let ψ : [a, b] → [c, d] be a continuous
and piecewise smooth function with ψ(a) = c and ψ(b) = d , then

ιCLM
(
L0, �(t); t ∈ [c, d]

) = ιCLM(L0, �(ψ(t)); t ∈ [a, b]).
Property II (Homotopy invariance with respect to the ends) For any s ∈ [0, 1], let
s �→ �(s, ·) be a continuous family of Lagrangian paths parametrised on [a, b] and such
that dim

(
�(s, a) ∩ L0

)
and dim

(
�(s, b) ∩ L0

)
are constants, then

ιCLM
(
L0, �(0, t); t ∈ [a, b]) = ιCLM

(
L0, �(1, t); t ∈ [a, b]).

Property III (Path additivity) If a < c < b, then

ιCLM
(
L0, �(t); t ∈ [a, b]) = ιCLM

(
L0, �(t); t ∈ [a, c])+ ιCLM

(
L0, �(t); t ∈ [c, b]

)

Property IV (Symplectic invariance) Let � : [a, b] → Sp(2n,R). Then

ιCLM
(
L0, �(t); t ∈ [a, b]) = ιCLM

(
�(t)L0,�(t)�(t); t ∈ [a, b]).

A.3 On the triple and Hörmander index

A crucial ingredient which somehow measure the difference of the relative Maslov index
with respect to two different Lagrangian subspaces is given by the Hörmader index. Such an
index is also related to the difference of the triple index and to its interesting generalization
provided recently by the last author and his co-authors in [34]. For, we start with the following
definition of the Hörmander index.

Definition A.9 ([34, Definition 3.9]) Let λ,μ ∈ C 0
([a, b],�(V , ω)

)
such that

λ(a) = λ1, λ(b) = λ2 and μ(a) = μ1, μ(b) = μ2.
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Then the Hörmander index is the integer given by

s(λ1, λ2;μ1, μ2) := ιCLM
(
μ2, λ(t); t ∈ [a, b])− ιCLM

(
μ1, λ(t); t ∈ [a, b])

= ιCLM
(
μ(t), λ2; t ∈ [a, b])− ιCLM

(
μ(t), λ1; t ∈ [a, b]).

Compare [34, Equation (17), pag. 736] once observing that we observe that ιCLM(λ, μ) cor-
responds to Mas{μ, λ} in the notation of [34].

Properties of the Hörmander index We briefly recall some well-useful properties of the
Hörmander index.

• s(λ1, λ2;μ1, μ2) = −s(λ1, λ2;μ2, μ1)

• s(λ1, λ2;μ1, μ2) = −s(μ1, μ2; λ1, λ2)+∑ j,k∈{1,2}(−1) j+k+1 dim(λ j ∩ μk).
• If λ j ∩ μk = {0} then s(λ1, λ2;μ1, μ2) = −s(μ1, μ2; λ1, λ2).

The Hörmander index is computable as difference of two indices each one involving three
different Lagrangian subspaces. This index is defined in terms of the local chart representation
of the atlas of the Lagrangian Grassmannian manifold, given in Equation (A.2).

Definition A.10 Let α, β, γ ∈ �(V , ω), ε := α∩β+β∩γ and let π := πε be the projection
in the symplectic reduction of V mod ε. We term triple index the integer defined by

ι(α, β, γ ) := n+ Q(πα, πβ;πγ )+ dim(α ∩ γ )− dim(α ∩ β ∩ γ )

≤ n − dim(α ∩ β)− dim(β ∩ γ )+ dim(α ∩ β ∩ γ ). (A.10)

Remark A.11 Definition A.10 is well-posed and we refer the interested reader to [9, Lemma
2.4] and [34, Corollary 3.12 & Lemma 3.13] for further details). It is worth noticing that
Q(πα, πβ;πγ ) is a quadratic form on πα. Being the reduced space Vε a 2(n − dim ε)

dimensional subspace, it follows that inertial indices of Q(πα, πβ;πγ ) are integers between
{0, . . . , n − dim ε}.
Remark A.12 It is worth noticing that for arbitrary Lagrangian subspaces α, β, γ , Q(α, β, γ )

is well-defined and it is a quadratic form on α ∩ (β + γ ). Furthermore, we have
n+Q(α, β, γ ) = n+Q(πα, πβ, πγ ). So we can also define the triple index as

ι(α, β, γ ) := n+ Q(α, β; γ )+ dim(α ∩ γ )− dim(α ∩ β ∩ γ ).

Authors in [34, Lemma 3.2] give a useful property for calculating such a quadratic form.

n+ Q(α, β, γ ) = n+ Q(β, γ, α) = n+ Q(γ, α, β).

We observe that if (α, β) is a Lagrangian decomposition of (V , ω) and β ∩ γ = {0} then
π reduces to the identity and both terms dim(α ∩ γ ) and dim(α ∩ β ∩ γ ) drop down. In this
way the triple index is nothing different from the the quadratic form Q defining the local
chart of the atlas of �(V , ω) given in Equation (A.2). It is possible to prove (cfr. [34, proof
of the Lemma 3.13]) that

dim(α ∩ γ )− dim(α ∩ β ∩ γ ) = n0 Q(πα, πβ;πγ ), (A.11)

where we denoted by n0 Q the nullity (namely the kernel dimension of the quadratic form
Q). By summing up Eqs. (A.10) and (A.11), we finally get

ι(α, β, γ ) = o
n +Q(πα, πβ;πγ ) (A.12)

where
o
n +Q denotes the so-called extended coindex or generalized coindex (namely the

coindex plus the nullity) of the quadratic form Q. (Cfr. [9, Lemma 2.4] for further details).
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Lemma A.13 Let λ ∈ C 1
([a, b],�(V , ω)

)
. Then, for every μ ∈ �(V , ω), we have

(I) s
(
λ(a), λ(b); λ(a), μ

) = −ι
(
λ(b), λ(a), μ

) ≤ 0,
(II) s

(
λ(a), λ(b); λ(b), μ

) = ι
(
λ(a), λ(b), μ

) ≥ 0.

Proof For the proof, we refer the interested reader to [34, Corollary 3.16]. ��
The next result, which is the main result of [34], allows to reduce the computation of the

Hörmander index to the computation of the triple index.

Proposition A.14 [34, Theorem 1.1] Let (V , ω) be a 2n-dimensional symplectic space and
let λ1, λ2, μ1, μ2 ∈ �(V , ω). Under the above notation, we get

s(λ1, λ2, μ1, μ2) = ι(λ1, λ2, μ2)− ι(λ1, λ2, μ1) = ι(λ1, μ1, μ2)− ι(λ2, μ1, μ2) (A.13)

Remark A.15 We emphasize that no transversality conditions are assumed on the four
Lagrangian subspaces in Proposition A.14

B Appendix B: On the Spectral Flow

LetW,H be real separable Hilbert spaceswith a dense and continuous inclusionW ↪→ H. In
what follows we use the following notation.B(W,H) denotes the Banach space of all linear
bounded operators; Bsa(W,H) denotes the set of all linear bounded selfadjoint operators
when regarded as operators on H. BFsa(W,H) denotes the set of all linear and bounded
selfadjoint Fredholm operators. Let now T ∈ BFsa(W,H), then either 0 is not in σ(T )

or it is in σdisc(T ) and, as a consequence of the Spectral Decomposition Theorem (cf. [16,
Theorem 6.17, Chapter III]), the following orthogonal decomposition holdsW = E−(T )⊕
ker T ⊕ E+(T ), with the property

σ(T ) ∩ (−∞, 0) = σ
(
TE−(T )

)
and σ(T ) ∩ (0,+∞) = σ

(
TE+(T )

)
.

Definition B.1 Let T ∈ BFsa(W,H). If dim E−(T ) < ∞ (resp. dim E+(T ) < ∞), we
define itsMorse index (resp.Morse co-index) as the integer denoted by n−(T ) (resp. n+ (T ))
and defined as n−(T ) := dim E−(T )

(
resp. n+ (T ) := dim E+(T )

)
.

We are now in position to introduce the spectral flow. Given a C 1-path L : [a, b] →
BFsa(W,H), the spectral flow of L counts the net number of eigenvalues crossing 0.

Definition B.2 An instant t0 ∈ (a, b) is called a crossing instant (or crossing for short) if
ker Lt0 �= {0}. The crossing form at a crossing t0 is the quadratic form defined by

�(L, t0) : ker Lt0 → R, �(L, t0)[u] := 〈L̇ t0u, u〉H,

where we denoted by L̇ t0 the derivative of L with respect to the parameter t ∈ [a, b] at the
point t0. A crossing is called regular, if �(L, t0) is non-degenerate. If t0 is a crossing instant
for L , we refer to m(t0) the dimension of ker Lt0 .

Remark B.3 It is worth noticing that regular crossings are isolated, and hence, on a compact
interval are in a finite number.

In the case of regular curve (namely a curve having only regular crossings) we introduce
the following Definition.
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Definition B.4 Let L : [a, b] → BFsa(H) be a C 1-path and we assume that it has only
regular crossings. Then

sf(L; [a, b]) =
∑

t∈(a,b)

sgn�(L, t)− n−
(
�(L, a)

)+ n+
(
�(L, b)

)
,

where the sum runs over all regular (and hence in a finite number) strictly contained in [a, b].
We recall the following well-known result.

Lemma B.5 There exists ε > 0 such that

• A + δId is a path in BFsa(W,H) for all |δ| ≤ ε;
• A + δId has only regular crossings for almost every δ ∈ (−ε, ε).

Definition B.6 The C 1-path L : [a, b] � t �→ Lt ∈ BFsa(H) is termed positive or plus path,
if at each crossing instant t∗ the crossing form �(L, t∗) is positive definite.

Remark B.7 We observe that in the case of a positive path, each crossing is regular and in
particular the total number of crossing instants on a compact interval is finite. Moreover
the local contribution at each crossing to the spectral flow is given by the dimension of the
intersection. Thus given a positive path L , the spectral flow is given by

sf(L; [a, b]) =
∑

t∈(a,b)

dim ker L(t)+ dim ker L(b).

Definition B.8 The path L : [a, b] → BFsa(H) is termed admissible provided it has invert-
ible endpoints.

For paths of bounded self-adjoint Fredholm operators parametrized on [a, b] which are
compact perturbation of a fixed operator, the spectral flow given in Definition B.4, can be
characterized as the relativeMorse index of its endpoints.More precisely, the following result
holds.

Proposition B.9 Let us consider the path L : [a, b] → BFsa(H) and we assume that for
every t ∈ [a, b], the operator Lt − La is compact. Then

− sf(L; [a, b]) = I (La, Lb). (B.1)

Moreover if La is essentially positive, then we have

− sf(L; [a, b]) = n−(Lb)− n−(La) (B.2)

and if furthermore Lb is positive definite, then

sf(L; [a, b]) = n−(La).

Proof The proof of the equality in Eq. (B.1) is an immediate consequence of the fixed end
homotopy properties of the spectral flow. For, let ε > 0 and let us consider the two-parameter
family L : [0, 1] × [a, b] → BFsa(H) defined by L(s, t) := Lt + s ε Id. By the homotopy
property of the spectral flow, we get that

sf(Lt ; t ∈ [a, b])
= sf(La + sεId, s ∈ [0, 1])+ sf(Lt + εId, t ∈ [a, b])− sf(Lb + sεId, s ∈ [0, 1])
= sf(Lt + εId, t ∈ [a, b]) (B.3)
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where the last equality in Eq. (B.3) is consequence if the positivity of all the involved paths.
By choosing a maybe smaller ε > 0 the path t �→ Lt + εId is admissible (in the sense of
Definition B.8). The conclusion, now readily follows by applying [11, Proposition 3.3] (the
minus sign appearing is due to a different choosing convention for the spectral flow.

In order to prove the second claim, it is enough to observe that if La is essentially positive,
then L is a path entirely contained in the (path-connected component) BFsa+ (H). The proof
of the equality in Eq. (B.2) is now a direct consequence of equation the previous argument
and [11, Proposition 3.9]. The last can be deduced by Equation (B.2) once observed that
n−(Lb) = 0. This concludes the proof. ��
Remark B.10 We observe that a direct proof of Eq. (B.2) can be easily conceived as direct
consequence of the homotopy properties of BFsa+ (H).

Remark B.11 We observe that the definition of spectral flow for bounded selfadjoint Fred-
holm operators given in Definition B.4 is slightly different from the standard definition given
in literature in which only continuity is required on the regularity of the path. (For further
details, we refer the interested reader to [30,33] and references therein). Actually Defini-
tion B.4 represents an efficient way for computing the spectral flow even if it requires more
regularity as well as a transversality assumption (the regularity of each crossing instant).
However, it is worth to mentioning that, the spectral flow is a fixed endpoints homotopy
invariant and for admissible paths (meaning for paths having invertible endpoints) is a free
homotopy invariant. By density arguments, we observe that a C 1-path always exists in any
fixed endpoints homotopy class of the original path.

Remark B.12 It is worth noting, as already observed by author in [33], that the spectral
flow can be defined in the more general case of continuous paths of closed unbounded
selfadjoint Fredholm operators that are continuous with respect to the (metric) gap-topology.
However in the special case in which the domain of the operators is fixed, then the closed
path of unbounded selfadjoint Fredholm operators can be regarded as a continuous path
in BFsa(W,H). Moreover this path is also continuous with respect to the aforementioned
gap-metric topology.

The advantage to regard the paths in BFsa(W,H) is that the theory is straightforward
as in the bounded case and, clearly, it is sufficient for the applications studied in the present
manuscript.

References

1. Arnol’d, V.I.: On a characteristic class entering into conditions of quantization. (Russ.) Funkcional. Anal.
i Prilozhen. 1, 1–14 (1967)

2. Arnol’d, V.I.: Sturm theorems and symplectic geometry. (Russ.) Funktsional. Anal. i Prilozhen. 19(4),
1–10 (1985). 95

3. Abbondandolo, A., Portaluri, A., Schwarz, M.: The homology of path spaces and Floer homology with
conormal boundary conditions. J. Fixed Point Theory Appl. 4(2), 263–293 (2008)

4. Barutello, V., Jadanza, R.D., Portaluri, A.: Morse index and linear stability of the Lagrangian circular
orbit in a three-body-type problem via index theory. Arch. Ration. Mech. Anal. 219(1), 387–444 (2016)

5. Bialy, M., Polterovich, L.: Hamiltonian diffeomorphisms and Lagrangian distributions. Geom. Funct.
Anal. 2(2), 173–210 (1992)

6. Cappell, S.E., Lee, R., Miller, E.Y.: On the Maslov index. Comm. Pure Appl. Math. 47(2), 121–186
(1994)

7. Contreras, G., Gambaudo, J.-M., Iturriaga, R., Paternain, G.P.: The asymptotic Masloc index and its
applications. Ergod. Theory Dyn. Syst. 23, 1415–1443 (2003)

123



296 V. L. Barutello et al.

8. De Gosson, M., De Gosson, S., Piccione, P.: On a product formula for the Conley-Zehnder index of
symplectic paths and its applications. Ann. Global Anal. Geom. 34(2), 167–183 (2008)

9. Duistermaat, J.J.: On the Morse index in variational calculus. Adv. Math. 21(2), 173–195 (1976)
10. Frauenfelder, U., van Koert, O.: The Hörmander index of symmetric periodic orbits. Geom. Dedicata

168, 197–205 (2014)
11. Fitzpatrick, P.M., Pejsachowicz, J., Recht, L.: Spectral flow and bifurcation of critical points of strongly-

indefinite functionals. I. Gener. Theory. J. Funct. Anal. 162(1), 52–95 (1999)
12. Giambò, R., Piccione, P., Portaluri, A.: Computation of the Maslov index and the spectral flow via partial

signatures. C. R. Math. Acad. Sci. Paris 338(5), 397–402 (2004)
13. Hu, X., Sun, S.: Index and stability of symmetric periodic orbits in Hamiltonian systems with application

to figure-eight orbit. Comm. Math. Phys. 290, 737–777 (2009)
14. Hu, X., Wu, L., Yang, R.: Morse index theorem of lagrangian systems and stability of brake orbit. J.

Dynam. Differential Equations 32(1), 61–84 (2020). https://doi.org/10.1007/s10884-018-9711-x
15. Javaloyes, M.A., Piccione, P.: Comparison results for conjugate and focal points in semi-Riemannian

geometry via Maslov index. Pac. J. Math. 243(1), 43–56 (2009)
16. Kato, T.: Perturbation Theory for Linear Operators. Grundlehren der Mathematischen Wissenschaften,

vol. 132. Springer, Berlin (1980)
17. Kavle, H., Offin, D., Portaluri, A.: Keplerian orbits through the Conley-Zehnder index. Qual. Theory Dyn.

Syst. (2021). https://doi.org/10.1007/s12346-020-00430-0 https://arxiv.org/pdf/1908.00075.pdf
18. Lion, G., Vergne, M.: TheWeil Representation, Maslov Index and Theta Series. Progress inMathematics,

vol. 6. Birkhäuser, Boston (1980)
19. Long, Y.: Index Theory for Symplectic Paths with Applications. Progress in Mathematics, vol. 207.

Birkhäuser, Basel (2002)
20. Long, Y., Zhu, C.: Maslov-type index theory for symplectic paths and spectral flow. I. Chin. Ann. Math.

Ser. E 21(4), 89–108 (2000)
21. Montgomery, R.: Metric cones, N-body collisions, and Marchal’s lemma. (2018). https://arxiv.org/pdf/

1804.03059.pdf
22. Musso, M., Pejsachowicz, J., Portaluri, A.: A Morse index theorem for perturbed geodesics on semi-

Riemannian manifolds. Topol. Methods Nonlinear Anal. 25(1), 69–99 (2005)
23. Musso, M., Pejsachowicz, J., Portaluri, A.: Morse index and bifurcation of p-geodesics on semi Rieman-

nian manifolds. ESAIM Control Optim. Calc. Var. 13(3), 598–621 (2007)
24. Offin, D.: Hyperbolic minimizing geodesics. Trans. Am. Math. Soc. 352(7), 3323–3338 (2000)
25. Piccione, P., Portaluri, A., Tausk, D.V.: Spectral flow, Maslov index and bifurcation of semi-Riemannian

geodesics. Ann. Global Anal. Geom. 25(2), 121–149 (2004)
26. Pin, O.C.: Curvature and mechanics. Adv. Math. 15, 269–311 (1975)
27. Portaluri, A.: Maslov index for Hamiltonian systems. Electron. J. Differ. Equ. 2008, 9 (2008)
28. Portaluri, A., Wu, L., Yang, R.: Linear instability for periodic orbits of non-autonomous Lagrangian

systems. (2018). https://arxiv.org/pdf/1907.05864.pdf
29. Robbin, J., Salamon, D.: The Maslov index for paths. Topology 32(4), 827–844 (1993)
30. Robbin, J., Salamon, D.: The spectral flow and the Maslov index. Bull. Lond. Math. Soc. 27(1), 1–33

(1995)
31. Smale, S.: Topology and mechanics. I. Invent. Math. 10, 305–331 (1970)
32. Smale, S.: Topology and mechanics. II. The planar n-body problem. Invent. Math. 11, 45–64 (1970)
33. Waterstraat, N.: Spectral flow, crossing forms and homoclinics of Hamiltonian systems. Proc. Lond.Math.

Soc. (3) 111(2), 275–304 (2015)
34. Zhou,Y.,Wu, L., Zhu, C.:Hörmander index in finite-dimensional case. Front.Math. China 13(3), 725–761

(2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/s10884-018-9711-x
https://doi.org/10.1007/s12346-020-00430-0
https://arxiv.org/pdf/1908.00075.pdf
https://arxiv.org/pdf/1804.03059.pdf
https://arxiv.org/pdf/1804.03059.pdf
https://arxiv.org/pdf/1907.05864.pdf


Sturm theory with applications in geometry and classical mechanics 297

Affiliations

Vivina L. Barutello1 · Daniel Offin2 · Alessandro Portaluri3 · Li Wu4

Vivina L. Barutello
vivina.barutello@unito.it

Daniel Offin
offind@mast.queensu.ca

Li Wu
vvvli@sdu.edu.cn

1 Dipartimento di Matematica “G. Peano”, Università degli Studi di Torino, Via Carlo Alberto, 10,
10123 Turin, Italy

2 Department of Mathematics and Statistics, Queens University, Kingston, ON KZL 3N6, Canada
3 DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy
4 Department of Mathematics, Shandong University, Jinan, Shandong 250100, The People’s

Republic of China

123


	Sturm theory with applications in geometry and classical mechanics
	Abstract
	Introduction
	Notation

	A Appendix: A Symplectic excursion on the Maslov index
	B Appendix B: On the Spectral Flow 
	2.1 A generalization of Sturm Alternation theorem
	2.2 Iteration inequalities for periodic boundary conditions

	3 Optical Hamiltonian and Lagrangian plus curves
	4 Sturm comparison principles

	5 Some applications in geometry and classical mechanics
	5.1 Comparison theorems in semi-Riemannian geometry
	5.2 Simple mechanical systems and mechanical focal points
	The planar Kepler problem


	Acknowledgements
	A.1 Symplectic preliminaries and the Lagrangian Grassmannian
	A.2 On the CLM-index: definition and computation
	A.3 On the triple and Hörmander index
	References



