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STURMIAN AND SPECTRAL THEORY
FOR DISCRETE SYMPLECTIC SYSTEMS

MARTIN BOHNER, ONDŘEJ DOŠLÝ, AND WERNER KRATZ

Abstract. We consider 2n × 2n symplectic difference systems together with
associated discrete quadratic functionals and eigenvalue problems. We estab-
lish Sturmian type comparison theorems for the numbers of focal points of
conjoined bases of a pair of symplectic systems. Then, using this comparison
result, we show that the numbers of focal points of two conjoined bases of one
symplectic system differ by at most n. In the last part of the paper we prove
the Rayleigh principle for symplectic eigenvalue problems and we show that
finite eigenvectors of such eigenvalue problems form a complete orthogonal
basis in the space of admissible sequences.

1. Introduction and main results

In this paper we deal with oscillation properties of symplectic difference systems

(S) zk+1 = Skzk, k ∈ {0, . . . , N},

where the matrices Sk are symplectic, i.e.,

STJS = J , where J =

⎛
⎜⎜⎝ 0 I

−I 0

⎞
⎟⎟⎠ .

(Note that here and in the entire paper we use the convention that an equation
written as A = B means that Ak = Bk for all k ∈ {0, . . . , N}.) The system (S) is
a natural discrete counterpart of the linear Hamiltonian differential system

(H) z′ = H(t)z, where JH(t) + HT (t)J = 0, t ∈ [a, b],

whose oscillation theory is deeply developed; see, e.g., [22, 23, 21, 17]. Discrete
symplectic systems play a key role in the numerical methods for solving Hamilton-
ian systems, since they “. . . present a proper way, i.e., the Hamiltonian way, for
computing the Hamiltonian dynamics” [14, page 18]. Also, these systems are closely
related to discrete quadratic functionals which arise as the second-order nonlinear
problems in the discrete calculus of variations and optimal control theory; see, e.g.,
[15, 16, 24, 25, 19, 13, 26, 2].
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If in (S) and (H) we write

z =
(

x

u

)
, S =

⎛
⎜⎜⎝A B

C D

⎞
⎟⎟⎠ , H =

⎛
⎜⎜⎝A B

C −AT

⎞
⎟⎟⎠

with x, u ∈ R
n and A,B, C,D, A, B, C ∈ R

n×n, then these systems can be rewritten
in the forms

(S) xk+1 = Akxk + Bkuk, uk+1 = Ckxk + Dkuk, k ∈ {0, . . . , N},
and

(H) x′ = A(t)x + B(t)u, u′ = C(t)x − AT (t)u, t ∈ [a, b],

respectively. A matrix solution Z = (X, U) of (S), where Xk and Uk are n × n-
matrices, is said to be a conjoined basis of (S) if the matrices XT

k Uk are symmetric
and rank

(
Xk

Uk

)
= n for all k ∈ {0, . . . , N}. A conjoined basis of (H) is defined in a

similar way. Let (X, U) and (X̃, Ũ) be two conjoined bases of (H) and denote by
m and m̃ the number of points in [a, b] satisfying detX(t) = 0 and det X̃(t) = 0,
respectively (the so-called focal points of (X, U) and (X̃, Ũ)). The basic statement
of oscillation theory of (H) (the so-called Sturmian separation theorem for (H))
states that |m− m̃| ≤ n [22, Chapter VII, Corollary 1 of Theorem 7.9 on page 366].
Of course, if (H) corresponds to a second-order Sturm–Liouville equation, e.g.,

(SL) (r(t)x′)′ + p(t)x = 0, t ∈ [a, b],

then this statement reduces to the classical Sturmian theorem about separation of
zeros of linearly independent solutions of (SL).

The aim of this paper is, among others, to establish the analogue for conjoined
bases of the discrete system (S). To formulate this result, we will use the following
notation and concepts. For a real and symmetric matrix P we write P ≥ 0 if
P is nonnegative definite, and indP denotes the index of P , i.e., the number of
negative eigenvalues (including multiplicities) of P . By KerM , Im M , rankM ,
MT , and M−1 we denote the kernel, image, rank, transpose, and inverse of a
matrix M , respectively. The notion of the Moore–Penrose inverse is fundamental
in understanding the idea of multiplicity of a focal point as explained below, and
therefore we will spend a little time discussing its definition and basic properties:
For an m×n-matrix M , there exists a unique n×m-matrix N satisfying NMN = N
and MNM = M such that both NM and MN are symmetric (see [1, Section 2.8],
[3, Theorem 1.5], [5, Appendix]). This matrix N is called the Moore–Penrose inverse
of M and is denoted by M†. It can be explicitly given (see [1, Lemma 2.8.3], [17,
Remark 3.3.2]) by

M† = lim
t→0+

{
(MT M + tI)−1MT

}
= lim

t→0+

{
MT (MMT + tI)−1

}
;

in particular, these limits always exist, and we have

(MT )† = (M†)T , (M†)† = M, and Ker(M†)T = KerM.

The main “reason” for the appearance of Moore–Penrose inverses in our theory is
that for two matrices V and W , the following equivalences hold (see [1, Lemma
2.8.6], [4, Lemma 4], [5, Lemma A5], [6, Remark 2 (ii) and (iii)]):

Ker V ⊂ KerW ⇐⇒ W = WV †V ⇐⇒ W † = V †V W †.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



STURMIAN AND SPECTRAL THEORY 3111

For a conjoined basis (X, U) of (S), the following matrices were introduced in [18]:

(1.1)

⎧⎪⎨
⎪⎩

Mk = (I − Xk+1X
†
k+1)Bk,

Tk = I − M†
kMk,

Pk = TT
k XkX†

k+1BkTk

for k ∈ {0, . . . , N}. Then obviously MkTk = 0, and it can be shown (see, e.g., [18])
that the matrix Pk is symmetric.

We say that a conjoined basis (X, U) has no focal point [6, 8] in the interval
(k, k + 1] if

(1.2) Ker Xk+1 ⊆ KerXk and XkX†
k+1Bk ≥ 0

holds. Note that if the first condition in (1.2) holds, then the matrix XkX†
k+1Bk is

really symmetric (see [8]), and it equals the matrix Pk given by (1.1) since Tk = I
in this case (see [18]). The multiplicity [18] of a focal point in the interval (k, k + 1]
is defined as the number

rank Mk + ind Pk.

Throughout this paper, focal points of any conjoined basis are counted, including
their multiplicities.

Now we can formulate the Sturmian type separation theorem for conjoined bases
of (S), which is a discrete version of the above mentioned separation theorem for
(H).

Theorem 1.1. The difference between the numbers of focal points in (0, N + 1] of
any two conjoined bases of (S) is at most n.

A natural extension of the Sturmian separation theorem is the Sturmian com-
parison theorem which compares the number of zeros of solutions of two equations
(SL) or systems (H). Together with (S), we consider the system

(S
∼
) zk+1 = S∼kzk, k ∈ {0, . . . , N}, where S∼ =

⎛
⎜⎜⎝A∼ B∼

C∼ D∼

⎞
⎟⎟⎠

and recall that the conjoined basis Z = (X, U) of (S) (and similarly for (S
∼
)) given

by the initial condition X0 = 0, U0 = I is called the principal solution of (S) at 0.

Theorem 1.2. Define the 2n × 2n-matrices

(1.3) G :=

⎛
⎜⎜⎝ATBB†DB†A−AT C CT −ATBB†DB†

C − (B†)TDTBB†A BB†DB†

⎞
⎟⎟⎠

and

G∼ :=

⎛
⎜⎜⎝A∼

T B∼B∼
†D∼B∼

†A∼−A∼
T C∼ C∼

T −A∼
T B∼B∼

†D∼B∼
†

C∼ − (B∼
†)TD∼

T B∼B∼
†A∼ B∼B∼

†D∼B∼
†

⎞
⎟⎟⎠

and suppose

(1.4) G ≥ G∼ and Im(A−A∼ B) ⊂ Im B∼.
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If the principal solution of (S
∼
) has m focal points in (0, N + 1], then any conjoined

basis of (S) has at most m + n focal points in (0, N + 1].

Theorem 1.3. Suppose that (1.4) holds. If the principal solution of (S) has m
focal points in (0, N +1], then any conjoined basis of (S

∼
) has at least m focal points

in (0, N + 1].

The proofs of these theorems are given in Sections 2 and 3. These proofs are
based on various results concerning eigenvalue problems associated with (S) in the
form
(E){

xk+1 = Akxk + Bkuk, uk+1 = Ckxk + Dkuk − λxk+1, k ∈ {0, . . . , N},
x0 = xN+1 = 0.

The eigenvalue problem (E) (including some preparatory material) is treated in
Section 4 of this paper. In particular, attention is focussed on the Rayleigh principle
for the discrete quadratic functional associated with (E) and on the completeness of
finite eigenvectors in the space of the so-called admissible sequences. Section 4 also
contains some technical statements used in the proofs of the results of our paper.

2. Sturmian comparison results

An important role in the proof of Theorems 1.2 and 1.3 is played by the associated
discrete quadratic functional

F(z) =
N∑

k=0

{
xT

k AT
k Ckxk + 2xT

k CT
k Bkuk + uT

k BT
k Dkuk

}
for z =

(
x

u

)
.

A pair of n-dimensional sequences z = {zk}N+1
k=0 = {(xk, uk)}N+1

k=0 is said to be
admissible for F provided it satisfies the first equation in (S), i.e., the so-called
equation of motion xk+1 = Akxk + Bkuk for all k ∈ {0, . . . , N}.

Now we recall some concepts and statements associated with the eigenvalue
problem (E). This eigenvalue problem is treated in detail in Section 4, but some
results we need to present already now. A number λ ∈ R is called a finite eigenvalue
of (E) if there exists a solution z = (x, u) of (E) such that x0 = 0 = xN+1 and
x = {xk}N+1

k=0 	= 0, and then z is called a finite eigenvector corresponding to λ. Let
(X̃, Ũ) = (X̃(λ), Ũ(λ)) be the principal solution of the symplectic system in (E)
and denote by ñ1(λ) the number of focal points of (X̃, Ũ) in (0, N + 1]. Then by
(4.8) given in Section 4,

(2.1) ñ1(λ) = n2(λ),

where n2(λ) denotes the number of finite eigenvalues of (E) (counting multiplicities;
see Definition 4.1 for details) which are less than or equal to λ.

The results in this section extend [16, Theorem 7.1], where the statements are
proved (using a different technique than here, namely the Riccati technique) in the
special case m = 0 (see also [7, Theorem 2]). Here we also use the following lemma
from [16, Formula (7.1)] (see also [20, Lemma 1.32]), which can be proved by a
direct computation.
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Lemma 2.1. If z = (x, u) is admissible and G is given by (1.3), then

F(z) =
N∑

k=0

(
xk

xk+1

)T

Gk

(
xk

xk+1

)
.

Proof of Theorem 1.2. Let Z = (X, U) be any conjoined basis of (S). Suppose that
Z has p focal points in (0, N + 1]. Then, corresponding to each focal point, we can
construct z[ν] = (x[ν], u[ν]), 1 ≤ ν ≤ p, as in [11, (12) and (13) on page 338] such
that

x[ν] is admissible and x
[ν]
N+1 = 0 for all 1 ≤ ν ≤ p.

Furthermore, since the principal solution Z∼ = (X∼, U∼) of (S
∼
) has m focal points in

(0, N + 1], by (2.1) with λ = 0, applied to the eigenvalue problem
(2.2){

xk+1 = A∼kxk + B∼kuk, uk+1 = C∼kxk + D∼kuk − λxk+1, k ∈ {0, . . . , N},
x0 = xN+1 = 0,

this eigenvalue problem has m nonpositive finite eigenvalues λµ, 1 ≤ µ ≤ m, with
corresponding orthonormal finite eigenvectors z∼

(µ) = (x∼
(µ), u∼

(µ)), 1 ≤ µ ≤ m.
Moreover, by Theorem 4.6 given in Section 4, F(z) ≥ F∼(z) > 0 for z = (x, u)
satisfying

z ⊥ z∼
(µ), i.e.,

〈
z, z∼

(µ)
〉

:=
N∑

k=0

xT
k+1x∼

(µ)
k+1 = 0, 1 ≤ µ ≤ m, x 	= 0.

Now suppose that p > m + n. Then there exists a nontrivial linear combination

p∑
ν=1

cν

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈
z[ν], z∼

(1)
〉

〈
z[ν], z∼

(2)
〉

...〈
z[ν], z∼

(m)
〉

x
[ν]
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0.

Define

z = (x, u) =
p∑

ν=1

cνz[ν].

By construction, xN+1 = 0 and x is admissible, as it is of the same form as in [11,
(15) on page 339]. Moreover,

∑p
ν=1 cνx

[ν]
0 = 0 implies x0 = 0, and we also have

0 =
p∑

ν=1

cν

〈
z[ν], z∼

(µ)
〉

=
〈
z, z∼

(µ)
〉

for all 1 ≤ µ ≤ m,

so z ⊥ z̃(µ) for all 1 ≤ µ ≤ m. As in [11, Proof of Theorem 1 on page 339] we have
x 	= 0 (the x there was of the same form, and the only property that was used there
was that not all cν = 0, which is guaranteed in our current setting) and F(z) ≤ 0.
From the second condition in (1.4) it follows that there exists u∼ = {u∼k}N

k=0 such
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that xk+1 = Akxk+Bk u∼k for all k ∈ {0, . . . , N}, and hence z∼ = (x, u∼) is admissible
for F∼, and by applying Lemma 2.1 twice and coupled with the first condition in
(1.4), we find

F∼(z) =
N∑

k=0

(
xk

xk+1

)T

G∼k

(
xk

xk+1

)
≤

N∑
k=0

(
xk

xk+1

)T

Gk

(
xk

xk+1

)
= F(z) ≤ 0.

Hence we have found an admissible z = (x, u) with x 	= 0, x0 = xN+1 = 0, z ⊥ z∼
(µ)

for all 1 ≤ µ ≤ m, and F∼(z) ≤ 0, contradicting the Rayleigh principle, Theorem
4.6 as stated and proved in Section 4, by which F∼(z) > 0 for all admissible z with

x0 = xN+1 = 0, x 	= 0, and z ⊥ z∼
(µ) for all 1 ≤ µ ≤ m. �

Proof of Theorem 1.3. We consider (E). Let (X, U) = (X(λ), U(λ)) be the prin-
cipal solution of the symplectic system in (E) and let (X∼, U∼) = (X∼(λ), U∼(λ)) be
any conjoined basis of the symplectic system in (2.2) such that X∼0(λ) ≡ X∼0 and
U∼0(λ) ≡ U∼0 are constant. Let m = n1(λ) and p = p(λ) be the numbers of fo-
cal points of (X, U) and (X∼, U∼) in (0, N + 1], respectively. Then the assertion of
Theorem 1.3 says

n1(0) ≤ p(0).
We show that n1(λ) ≤ p(λ) for all λ ∈ R. To do so, let (as in Section 4) λµ denote
the finite eigenvalues of (E) with corresponding orthonormal eigenvectors z(µ) for
1 ≤ µ ≤ r such that λ1 ≤ . . . ≤ λr. Now, given λ ∈ R, we have that

λm ≤ λ < λm+1 for some m ∈ {0, . . . , r},
where we put λ0 = −∞ and λr+1 = ∞. By (2.1), this means that m = n1(λ).
First suppose that λ is not a finite eigenvalue of (E) so that λm < λ < λm+1. Put
z̃ =

∑m
µ=1 βµz(µ), where the constants β1, β2, . . . , βm are chosen in such a way that

z̃ = (x̃, ũ) satisfies p̃ linear homogeneous conditions

(2.3)

⎧⎪⎨
⎪⎩

M∼
T
k x̃k+1 = 0, k ∈ {0, . . . , N − 1},

s̃k ⊥ {α ∈ R
n : α is an eigenvector corresponding

to a negative eigenvalue of P∼k}, k ∈ {0, . . . , N},

where

s̃k = ũk − Qkx̃k =
m∑

µ=1

βµ(ũ(µ)
k − Qkx̃

(µ)
k )

with the matrix Q satisfying QX∼ = U∼X∼
†
X∼ and the matrices M∼ , P∼ given by (1.1)

with (X, U) = (X∼, U∼), and where p̃ equals to the number of focal points of (X∼, U∼)
in the open interval (0, N + 1) so that p̃ ≤ p. The sequence z̃ is admissible for F ,
and by the second condition in (1.4) there exists u∼ such that (x̃, u∼) is admissible
for F∼. Since the value of the quadratic functional does not depend on the second
component of an admissible sequence z = (x, u) (see Lemma 2.1), we also write
z̃ = (x̃, u∼). Then by the extended Picone identity, Theorem 4.2 from Section 4, we
have

F∼λ(z̃) := F∼(z̃) − λ 〈z̃, z̃〉 =
N∑

k=0

s̃T
k P∼ks̃k ≥ 0.
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Note that the first condition in (2.3) implies that x̃k ∈ Im X∼k for all k ∈ {0, . . . , N +
1} by Proposition 4.4 from Section 4, and hence Theorem 4.2 can be applied. At
the same time, by a direct computation using orthonormality of z(1), z(2), . . . , z(m)

(see also Section 4), we have

Fλ(z̃) := F(z̃) − λ 〈z̃, z̃〉 =
m∑

µ=1

(λµ − λ)β2
µ.

Now by Lemma 2.1 and the first condition in (1.4), we have
m∑

µ=1

(λµ − λ)β2
µ ≥

N∑
k=0

s̃T
k Pks̃k ≥ 0

since λ > λµ for all 1 ≤ µ ≤ m; this is possible only if βµ = 0 for all 1 ≤ µ ≤ m.
This means that the system of p̃ linear homogeneous conditions (2.3) has only the
trivial solution, and hence the number of conditions p̃ is greater than or equal to
the number of parameters βµ which is m. This proves the statement when λ is not
a finite eigenvalue of (E). Since the functions n1(λ) and p(λ) are continuous from
the right by (4.8), by letting λ → λ+

m we obtain the statement also in the case when
λ = λm is a finite eigenvalue of (E). �

3. Sturmian separation results

Combining Theorems 1.2 and 1.3, we obtain the following statement. This result
extends [11, Theorem 1], where the statement is proved in the special case m = 0
(see also [7, Theorem 1]).

Theorem 3.1. If the principal solution of (S) has m focal points in (0, N + 1],
then any conjoined basis of (S) has at least m and at most m + n focal points in
(0, N + 1].

Proof. We apply Theorems 1.2 and 1.3 with S∼ = S and note that the assumptions
in both theorems are satisfied since G∼ = G and Im(0 B) ⊂ ImB imply that (1.4)
holds. �

Now we prove Theorem 1.1 as stated in the Introduction of this paper.

Proof of Theorem 1.1. Suppose that Z and Z̃ are two conjoined bases of (S) with
p and p̃ focal points in (0, N + 1], respectively. Theorem 3.1 yields that

m ≤ p ≤ m + n and m ≤ p̃ ≤ m + n,

where m is the number of focal points of the principal solution in (0, N + 1]. This
yields the assertion. �

Next we show that using the construction introduced in [9, page 1256] we can
derive a more precise estimate for the difference of the numbers of focal points of
the principal solution of (S) and of any other conjoined basis of (S). This statement
can be regarded as a discrete version of [22, Problems VII.7, problem 2, page 367].

Theorem 3.2. Let (X̃, Ũ) be the principal solution of (S) and let (X, U) be any
conjoined basis of this system. Let m and p denote the number of focal points of
(X̃, Ũ) and of (X, U) in (0, N + 1], respectively. Then

m ≤ p ≤ m + rankX0.
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Proof. We extend the eigenvalue problem (E) to a problem of the same kind on the
interval [−1, N + 1]. Define

(3.1) W−1 := I and S−1 :=

⎛
⎜⎜⎝A−1 B−1

C−1 D−1

⎞
⎟⎟⎠ :=

⎛
⎜⎜⎝ U0K X0

−X0K U0

⎞
⎟⎟⎠ ,

where K := (XT
0 X0 + UT

0 U0)−1. Then by a direct computation we see that the
matrix S−1 is symplectic and hence
(3.2){

xk+1 = Akxk + Bkuk, uk+1 = Ckxk + Dkuk − λxk+1, k ∈ {−1, 0, 1, . . . , N},
x−1 = xN+1 = 0

is an eigenvalue problem for a symplectic system. Now we also extend (X̃, Ũ) and
(X, U) to [−1, N + 1] by

(
X̃−1

Ũ−1

)
:= S−1

−1

(
X̃0

Ũ0

)
=

⎛
⎜⎜⎝ UT

0 −XT
0

KXT
0 KUT

0

⎞
⎟⎟⎠

(
0
I

)
=

(
−XT

0

KUT
0

)

and (
X−1

U−1

)
:= S−1

−1

(
X0

U0

)
=

⎛
⎜⎜⎝ UT

0 −XT
0

KXT
0 KUT

0

⎞
⎟⎟⎠

(
X0

U0

)
=

(
0
I

)
.

Hence

M̃−1 = (I − X̃0X̃
†
0)B−1 = X0, T̃−1 = I − X†

0X0, P̃−1 = T̃T
−1X̃−1X̃

†
0B−1T̃−1 = 0,

which means that the extended (X̃, Ũ) has rank X0 focal points in (−1, 0] and,
since X−1 = 0, the extended conjoined basis (X, U) has no additional focal point
in (−1, 0]. Denote by m̂ and p̂ the number of focal points of the extended (X̃, Ũ)
and (X, U) in (−1, N + 1], respectively. Then m̂ = m + rankX0, p̂ = p, and by
Theorem 1.3 and S∼ = S applied once to (S) on [0, N + 1] and once on [−1, N + 1]
(with S−1 defined by (3.1)), we obtain

m ≤ p = p̂ ≤ m̂ = m + rankX0,

which completes the proof. �

4. Spectral theory

We consider the (slightly more general than in Section 1) symplectic eigenvalue
problem associated with (S),
(4.1){

xk+1 = Akxk + Bkuk, uk+1 = Ckxk + Dkuk − λWkxk+1, k ∈ {0, . . . , N},
x0 = xN+1 = 0,

where we assume that
Wk ≥ 0.

The following definition is as in [12, Definitions 2 and 3, Proposition 2 (v)].
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Definition 4.1. A number λ ∈ R is called a finite eigenvalue of (4.1) provided it
possesses a corresponding finite eigenvector z = (x, u), i.e., z solves (4.1) such that
{Wkxk+1}N−1

k=0 	≡ 0, and then

dim
{
{Wkxk+1}N−1

k=0 : z = (x, u) solves (4.1)
}

is called its multiplicity.

By [12, Proposition 2], finite eigenvectors corresponding to different finite eigen-
values are orthogonal with respect to the bilinear form

〈z, z̃〉W := 〈z, z̃〉 :=
N∑

k=0

xT
k+1Wkx̃k+1 for z = (x, u) and z̃ = (x̃, ũ).

Moreover, we consider the discrete bilinear form Fλ associated with (4.1),
(4.2)

Fλ(z, z̃) =
N∑

k=0

{
xT

k AT
k Ckx̃k + xT

k CT
k Bkũk + uT

k BT
k Ckx̃k + uT

k BT
k Dkũk

}
− λ 〈z, z̃〉W ,

for admissible z = (x, u) and z̃ = (x̃, ũ), and the quadratic functional Fλ(z) =
Fλ(z, z), so that F0(z) = F(z) with the notation of Section 2 above.

4.1. Picone’s identity. We extend the generalized Picone identity from [10, Propo-
sition 2.1] as follows. For the continuous version of this identity, see [17, Theorem
2.2.3].

Theorem 4.2 (Extended Picone identity). Suppose that Z = (X, U) is a conjoined
basis of the symplectic system of (4.1) for a fixed λ ∈ R, let Q be symmetric with
QX = UX†X, and define M , T , and P by (1.1). Let λ1, . . . , λm be finite eigen-
values with corresponding orthonormal finite eigenfunctions z(µ) = (x(µ), u(µ)), 1 ≤
µ ≤ m, with respect to 〈·, ·〉W , and let β1, . . . , βm ∈ R and put ẑ :=

∑m
µ=1 βµz(µ).

Finally, suppose that z = (x, u) is admissible, put z̃ := z + ẑ, s̃ := ũ − Qx̃, and
assume that

(4.3) z ⊥ z(µ), i.e.,
〈
z, z(µ)

〉
W

= 0 for 1 ≤ µ ≤ m

and that

(4.4) x̃k ∈ Im Xk for all k ∈ {0, . . . , N + 1}.
Then we have that
(4.5)

Fλ(z) − xT
k uk

∣∣N+1

k=0
=

N∑
k=0

s̃T
k Pks̃k +

m∑
µ=1

(λ − λµ)|βµ|2 + x̃T
k Qkx̃k

∣∣N+1

k=0
− x̃T

k ũk

∣∣N+1

k=0
.

Proof. First, we obtain from [10, Proposition 2.1 (iv)] (observe that assumption
(1.7) is not needed there) that

Fλ(z̃) =
N∑

k=0

{
x̃T

k+1Q̃kx̃k+1 − x̃T
k Q̃kx̃k + s̃T

k Pks̃k

}

= x̃T
k Qkx̃k

∣∣N+1

k=0
+

N∑
k=0

s̃T
k Pks̃k
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because z̃ is admissible and (4.4) holds. Next, from [8, page 711] or [11, Lemma
1], from the recursion of (4.1) for λ = λµ, 1 ≤ µ ≤ m, and from orthonormality we
conclude that

F0(ẑ) = x̂T
k ûk

∣∣N+1

k=0
+

N∑
k=0

x̂T
k+1 {Ckx̂k + Dkûk − ûk+1}

= x̂T
k ûk

∣∣N+1

k=0
+

m∑
µ=1

N∑
k=0

x̂T
k+1βµλµx

(µ)
k+1

= x̂T
k ûk

∣∣N+1

k=0
+

m∑
µ=1

λµ|βµ|2,

and using (4.3),

F0(z, ẑ) = xT
k ûk

∣∣N+1

k=0
+

m∑
µ=1

N∑
k=0

xT
k+1βµλµx

(µ)
k+1 = xT

k ûk

∣∣N+1

k=0

and
F0(ẑ, z) = x̂T

k uk

∣∣N+1

k=0
.

Altogether, we can conclude that

Fλ(z) − xT
k uk

∣∣N+1

k=0
= F0(z) − λ 〈z, z〉W − xT

k uk

∣∣N+1

k=0

= F0(z̃) −F0(ẑ) −F0(z, ẑ) −F0(ẑ, z) − λ 〈z, z〉W − xT
k uk

∣∣N+1

k=0

= Fλ(z̃) + λ 〈z + ẑ, z + ẑ〉W −F0(ẑ) − (xT
k ûk + x̂T

k uk + xT
k uk)

∣∣N+1

k=0

=
N∑

k=0

s̃T
k Pks̃k + x̃T

k Qkx̃k

∣∣N+1

k=0
− x̃T

k ũk

∣∣N+1

k=0
−

m∑
µ=1

λµ|βµ|2 + λ 〈ẑ, ẑ〉W ,

using the fact that z ⊥ ẑ by (4.3), and orthonormality yields our assertion (4.5). �
Note first that the existence of a matrix Q with the requirements as in Theorem

4.2 is established in [8]. Next we analyze the crucial assumption (4.4) using notation
(1.1).

Lemma 4.3. Suppose that Z = (X, U) is a conjoined basis of the symplectic system
(S) and let 0 ≤ k ≤ N . Then we have

(i) xk+1 ∈ Im Xk+1 implies that MT
k xk+1 = 0;

(ii) xk+1 = Akxk + Bkuk, MT
k xk+1 = 0, and xk ∈ Im Xk imply that xk+1 ∈

Im Xk+1.

Proof. First, xk+1 = Xk+1c ∈ Im Xk+1 implies by (1.1) that

MT
k xk+1 = BT

k (I − Xk+1X
†
k+1)Xk+1c = 0.

Hence, (i) is true. Next, xk+1 = Akxk+Bkuk, xk = Xkc ∈ Im Xk, and MT
k xk+1 = 0

imply that

0 = BT
k (I − Xk+1X

†
k+1)(AkXkc + Bkuk)

= BT
k (I − Xk+1X

†
k+1)(Xk+1c + Bk(uk − Ukc))

= BT
k (I − Xk+1X

†
k+1)Bk(uk − Ukc)

= BT
k (I − Xk+1X

†
k+1)

T (I − Xk+1X
†
k+1)Bk(uk − Ukc)
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so that
0 = (I − Xk+1X

†
k+1)Bk(uk − Ukc),

and therefore

xk+1 = Xk+1c + Bk(uk − Ukc) = Xk+1c + Xk+1X
†
k+1Bk(uk − Ukc) ∈ Im Xk+1

holds. Hence, (ii) is true. �

Proposition 4.4. Suppose that Z = (X, U) is a conjoined basis of the symplectic
system (S) and let z = (x, u) be admissible with x0 = xN+1 = 0. Then (4.4) holds
for x̃ = x if and only if

(4.6) MT
k xk+1 = 0 for all 0 ≤ k ≤ N − 1.

Proof. First, (4.4) implies (4.6) by Lemma 4.3 (i). Next, suppose that z = (x, u) is
admissible, x0 = xN+1 = 0, and (4.6) holds. Then x0 = 0 ∈ Im X0, and inductively
xk+1 ∈ Im Xk+1 for all 0 ≤ k ≤ N − 1. Moreover, xN+1 = 0 ∈ Im XN+1, so that
(4.4) holds for x̃ = x. �

4.2. Rayleigh’s principle. In this subsection we put 〈·, ·〉 = 〈·, ·〉W and assume
throughout that

(4.7) Wk = I for all 0 ≤ k ≤ N

(as in Sections 2 and 3) and that Z(λ) = (X(λ), U(λ)) is the principal solution of
the symplectic system in (E), i.e., that

X0 = X0(λ) ≡ 0 and U0 = U0(λ) ≡ I.

We need the following lemma.

Lemma 4.5. There exists λ0 ∈ R such that λ ≤ λ0 implies Fλ(z) > 0 for all
admissible z = (x, u) with x0 = xN+1 = 0 and x = {xk}N

k=0 	≡ 0.

Proof. Let z be admissible with x0 = xN+1 = 0. Then, by (4.2) and (4.7),

Fλ(z) =
N∑

k=0

{
xT

k AT
k Ckxk + 2xT

k CT
k (xk+1 −Akxk)

+(xk+1 −Akxk)TBkB†
kDkB†

k(xk+1 −Akxk) − λxT
k+1xk+1

}

≥
N∑

k=1

{
xT

k Fkxk − λ|xk|2
}

for certain matrices Fk. This yields the assertion if λ0 is sufficiently small. �

Now, using Lemma 4.5, we obtain from [12, Theorem 2]

(4.8) n1(λ) = n2(λ), n1(λ+) = n1(λ), n2(λ+) = n2(λ) for all λ ∈ R,

where, including multiplicities,

n1(λ) denotes the number of focal points of Z = Z(λ) in the interval (0, N + 1];
n2(λ) denotes the number of finite eigenvalues of (E) which are less than or equal

to λ.
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We let (see [12, Proposition 2])

λ1 ≤ . . . ≤ λr denote the finite eigenvalues of (E),

including multiplicities, with corresponding orthonormal finite eigenfunctions z(µ),
1 ≤ µ ≤ r, and we put λ0 := −∞ and λr+1 := ∞. Then, by [12, Proposition 2],
r ≤ nN < ∞.

Theorem 4.6 (Rayleigh principle). With the above notation and assumptions we
have for 0 ≤ m ≤ r that

λm+1 = min
{

F0(z)
〈z,z〉 : z = (x, u) is admissible with x0 = xN+1 = 0,

z ⊥ z(µ) for all 1 ≤ µ ≤ m, and x = {xk}N
k=1 	≡ 0

}
.

Note that we include the cases m = 0, where the orthogonality condition on z
becomes empty, and m = r, where λm+1 = ∞.

Proof. Let 0 ≤ m ≤ r and λ ∈ (λm, λm+1). Then, by (4.8),

m = n1(λ) = n2(λ),

so the principal solution possesses exactly m focal points in the open interval (0, N+
1), because N + 1 is not a focal point. The fact that N + 1 is not a focal point
follows from Lemma 4.5, which implies that rankMk(λ̃) = 0 for all λ̃ ≤ λ0 so that
by [9, Remark 3 (ii)]

rankMk(λ+) = rankMk(λ) = 0 for all 0 ≤ k ≤ N, λ ∈ (λm, λm+1),

in particular rank MN (λ) = 0.
First, we apply the extended Picone identity, Theorem 4.2, to z = 0 so that

z̃ = ẑ =
m∑

µ=1

βµz(µ) with x̃0 = x̃N+1 = x0 = xN+1 = 0.

We use an argument similar to that applied in the proof of Theorem 1.3. Suppose
that β1, . . . , βm satisfy the m linear and homogeneous equations

(4.9)

⎧⎪⎨
⎪⎩

MT
k x̃k+1 = 0, k ∈ {0, . . . , N − 1},

s̃k ⊥ {α ∈ R
n : α is an eigenvector corresponding

to a negative eigenvalue of Pk}, k ∈ {0, . . . , N},
where

s̃k = ũk − Qkx̃k.

Note that the number of these equations is just the number of focal points in
(0, N + 1) by definition. Then, by Proposition 4.4, the assumption (4.4) holds, and
we obtain from Theorem 4.2 that

0 = Fλ(z) − xT
k uk

∣∣N+1

k=0
=

N∑
k=0

s̃T
k Pks̃k +

m∑
µ=1

(λ − λµ)|βµ|2,

where s̃T
k Pks̃k ≥ 0 for 0 ≤ k ≤ N by (4.9), and λ−λµ ≥ λ−λm > 0 for 1 ≤ µ ≤ m.

Hence β1 = · · · = βm = 0 so that (4.9) possesses only the trivial solution. Thus we
have shown that

(4.10) the coefficient matrix corresponding to (4.9) is nonsingular.
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Now suppose that z is admissible with x0 = xN+1 = 0 and z ⊥ z(µ) for 1 ≤
µ ≤ m. Then we apply Theorem 4.2 to z̃ = z + ẑ = z +

∑m
µ=1 βµz(µ), where we

choose β1, . . . , βm such that (4.9) holds. This is possible because the m linear and
inhomogeneous equations possess a unique solution by (4.10). Theorem 4.2 implies
that

Fλ(z) = Fλ(z) − xT
k uk

∣∣N+1

k=0

=
N∑

k=0

s̃T
k Pks̃k +

m∑
µ=1

(λ − λµ)|βµ|2

≥
m∑

µ=1

(λ − λµ)|βµ|2 ≥ 0

so that
F0(z) ≥ λ 〈z, z〉 for all λ ∈ (λm, λm+1).

Hence F0(z) ≥ λm+1 〈z, z〉, and F0(z) = λm+1 〈z, z〉 for z = z(m+1). For multiple
finite eigenvalues use the fact that Fλ(z) = Fλ(z + ẑ) if z is admissible with x0 =
xN+1 = 0 and if ẑ is a finite eigenvector corresponding to λ. Hence the assertion
follows. �

Rayleigh’s principle yields the following result.

Theorem 4.7 (Expansion theorem). Suppose that z = (x, u) is admissible with
x0 = xN+1 = 0. Then

(4.11) x =
r∑

µ=1

cµx(µ), where cµ =
〈
z(µ), z

〉
.

Proof. First, suppose that z is admissible with x0 = xN+1 = 0 and z ⊥ z(µ) for
all 1 ≤ µ ≤ r. Then, by Theorem 4.6 with m = r, F0(z) ≥ λ 〈z, z〉 for all λ ∈ R.
Hence

〈z, z〉 =
N∑

k=0

xT
k+1xk+1 = 0 so that x = 0.

Now if z is admissible with x0 = xN+1 = 0, then z −
∑r

µ=1

〈
z(µ), z

〉
z(µ) ⊥ z(m) for

all 1 ≤ m ≤ r, and (4.11) follows from what we have shown before. �
In our final result we prove that “extremal vectors of the functional F0 satisfy

necessarily the corresponding Euler equations”. The meaning of this becomes clear
from the formulation of the following theorem.

Theorem 4.8. Let be given any eigenvalue problem (E) with (4.7) and with cor-
responding functional Fλ, and let m ∈ {0, . . . , r}. Suppose that

(4.12)
F0(ẑ) = λm+1 〈ẑ, ẑ〉 for some admissible ẑ with x̂0 = x̂N+1 = 0

and ẑ ⊥ z(µ) for all 1 ≤ µ ≤ m.

Then ẑ satisfies the Euler equation, i.e.,

(4.13)

{
ũk+1 = Ckx̂k + Dkũk − λm+1x̂k+1 for suitable vectors ũk with
Bkũk = Bkûk for 0 ≤ k ≤ N.
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Proof. Let ẑ be admissible with x̂0 = x̂N+1 = 0, ẑ ⊥ z(µ) for all 1 ≤ µ ≤ m,
and F0(ẑ) = λm+1 〈ẑ, ẑ〉. Then, by the expansion theorem, Theorem 4.7, x̂ =∑r

µ=1 cµx(µ), cµ =
〈
z(µ), ẑ

〉
, where cµ = 0 for 1 ≤ µ ≤ m, by using the notation

above. It follows that (use e.g., Theorem 4.2)

λm+1 〈ẑ, ẑ〉 = F0(ẑ) =
r∑

µ=1

λµ|cµ|2 ≥ λm+1

r∑
µ=m+1

|cµ|2 = λm+1 〈ẑ, ẑ〉

so that cµ = 0 for all µ ≥ � + 1, where λm+1 = . . . = λ� < λ�+1. Hence z̃ :=∑�
µ=m+1 cµz(µ) is an eigenfunction corresponding to λm+1 with x̃ = x̂. Then

(4.13) holds because

ũk+1 = Ckx̃k + Dkũk − λm+1x̃k+1 = Ckx̂k + Dkũk − λm+1x̂k+1

and
Bk(ũk − ûk) = (x̃k+1 − x̂k+1) −Ak(x̃k − x̂k) = 0.

The proof is complete. �
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