
Stxxl : Standard Template Library for XXL

Data Sets

Roman Dementiev1, Lutz Kettner2, and Peter Sanders1,�

1 Fakultät für Informatik, Universität Karlsruhe,
Karlsruhe, Germany

{dementiev, sanders}@ira.uka.de
2 Max Planck Institut für Informatik,

Saarbrücken, Germany
kettner@mpi-sb.mpg.de

Abstract. We present a software library Stxxl, that enables practice-
oriented experimentation with huge data sets. Stxxl is an implemen-
tation of the C++ standard template library STL for external memory
computations. It supports parallel disks, overlapping between I/O and
computation, and pipelining technique that can save more than half of
the I/Os. Stxxl has already been used for computing minimum span-
ning trees, connected components, breadth-first search decompositions,
constructing suffix arrays, and computing social network analysis met-
rics.

1 Introduction

Massive data sets arise naturally in many domains: geographic information sys-
tems, computer graphics, database systems, telecommunication billing systems,
network analysis, and scientific computing. Applications working in those do-
mains have to process terabytes of data. However, the internal memories of
computers can keep only a small fraction of these huge data sets. During the
processing the applications need to access the external storage (e.g. hard disks).
One such access can be about 106 times slower than a main memory access. For
any such access to the hard disk, accesses to the next elements in the external
memory are much cheaper. In order to amortize the high cost of a random access
one can read or write contiguous chunks of size B. One minimizes the number of
I/Os performed, and to increase I/O bandwidth, applications use multiple disks,
in parallel. In each I/O step the algorithms try to transfer D blocks between the
main memory of size M and D disks (one block from each disk). This model
has been formalized by Vitter and Shriver as Parallel Disk Model (PDM) [1]
and is the standard theoretical model for designing and analyzing I/O-efficient
algorithms. In this model, N is the input size and B is the block size measured
in bytes.

Theoretically I/O-efficient algorithms and data structures have been devel-
oped for many problem domains: graph algorithms, string processing, computa-
tional geometry, etc. (for a survey see [2]). Some of them have been implemented:
� Partially supported by DFG grant SA 933/1-2.

G.S. Brodal and S. Leonardi (Eds.): ESA 2005, LNCS 3669, pp. 640–651, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Stxxl : Standard Template Library for XXL Data Sets 641

sorting, matrix multiplication [3], (geometric) search trees [3], priority queues [4],
suffix array construction [4]. However there is an increasing gap between theoret-
ical achievements of external memory (EM) algorithms and their practical usage.
Several EM software library projects (LEDA-SM [4] and TPIE [5]) have been
started to reduce this gap. They offer frameworks which aim to speed up the
process of implementing I/O-efficient algorithms, abstracting away the details
of how I/O is performed.

We have started to develop an external memory library Stxxl making more
emphasis on performance, trying to avoid the drawbacks of the previous libraries
impeding their practical usage. The following are some key features of Stxxl:

– Transparent support of parallel disks.
– The library is able to handle problems of size up to dozens of terabytes.
– Explicit overlapping between I/O and computation.
– A library feature “pipelining” can save more than half the number of I/Os

performed by many algorithms, directly feeding the output from an EM
algorithm into another EM algorithm, without needing to store it on the
disk in between.

– The library avoids superfluous copying of data blocks, e.g. in I/O subsystem.
– Short development times due to well known STL-compatible interfaces for

EM algorithms and data structures. STL – Standard Template Library is the
library of algorithms and data structures that is a part of the C++ standard.
STL algorithms can be directly applied to Stxxl containers; moreover the
I/O complexity of the algorithms remains optimal in most of the cases.

Stxxl library is open source and available under the Boost Software Li-
cense 1.0 (http://www.boost.org/LICENSE 1 0.txt). The latest version of the
library, a user tutorial and a programmer documentation can be downloaded
at http://stxxl.sourceforge.net. Currently the size of the library is about
15 000 lines of code.

The remaining part of this paper is organized as follows. Section 2 discusses
the design of Stxxl. In Section 3 we implement a short benchmark and use
it to study the performance of Stxxl. Section 4 gives a short overview of the
projects using Stxxl. We make some concluding remarks and point out the
directions of future work in Section 5.

Related Work. TPIE [3] was the first large software project implementing I/O-
efficient algorithms and data structures. The library provides implementation of
I/O-efficient sorting, merging, matrix operations, many (geometric) search data
structures (B+-tree, persistent B+-tree, R-tree, K-D-B-tree, KD-tree, Bkd-tree),
and the logarithmic method. The work on the TPIE project is in progress.

LEDA-SM [4] EM library was designed as an extension to the LEDA library
for handling large data sets. The library offers implementations of I/O-efficient
sorting, EM stack, queue, radix heap, array heap, buffer tree, array, B+-tree,
string, suffix array, matrices, static graph, and some simple graph algorithms.
However, the data structures and algorithms can not handle more than 231 bytes.
The development of LEDA-SM has been stopped.

http://www.boost.org/LICENSE_1_0.txt
http://stxxl.sourceforge.net

642 R. Dementiev, L. Kettner, and P. Sanders

LEDA-SM and TPIE libraries currently offer only single disk EM algorithms
and data structures. They are not designed to explicitly support overlapping
between I/O and computation. The overlapping relies largely on the operating
system that caches and prefetches data according to a general purpose policy,
which can not be as efficient as the explicit approach. Furthermore, overlapping
based on system cache on most of the operating systems requires additional
copies of the data, which leads to CPU and internal memory overhead.

The idea of pipelined execution of the algorithms that process large data sets
not fitting into main memory is very well known in relational database manage-
ment systems. The pipelined execution strategy allows to execute a database
query with minimum number of EM accesses, to save memory space to store
intermediate results, and to obtain the first result as soon as possible.

FG [6] is a design framework for parallel programs running on clusters, where
parallel programs are split into series of asynchronous stages, which are executed
in the pipelined fashion with the help of multithreading. This allows to mitigate
disk access latency, communication network latency, and overlap I/O and com-
munication.

2 Stxxl Design

Stxxl consists of three layers (see Figure 1). The lowest layer, the Asyn-
chronous I/O primitives layer (AIO layer) abstracts away the details of how
asynchronous I/O is performed on a particular operating system. Other ex-
isting EM algorithm libraries rely only on synchronous I/O APIs [4] or al-
low reading ahead sequences stored in a file using the POSIX asynchronous
I/O API [5]. Unfortunately, asynchronous I/O APIs are very different on
different operating systems (e.g. POSIX AIO and Win32 overlapped I/O).

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

T
X

X
L

S

files, I/O requests, disk queues,

block prefetcher, buffered block writer

completion handlers

Block management (BM) layer
typed block, block manager, buffered streams,

Containers:

STL−user layer
vector, stack, set

priority_queue, map
sort, for_each, merge

Pipelined sorting,
zero−I/O scanning

Streaming layer

Algorithms:

Operating System

Applications

Asynchronous I/O primitives (AIO) layer

Fig. 1. Structure of Stxxl

Therefore, we have intro-
duced the AIO layer to make
porting Stxxl easy. Porting
the whole library to a dif-
ferent platform (for example
Windows) requires only
reimplementing the AIO
layer using native file access
methods and/or native
multithreading mechanisms.
Stxxl has already several
implementations of the
layer which use synchronous
file access methods under
POSIX/UNIX systems.
The read/write calls using
direct access (O DIRECT
option) have shown the best performance under Linux. To provide asynchrony
we use POSIX threads or Boost threads.

Stxxl : Standard Template Library for XXL Data Sets 643

The Block Management layer (BM layer) provides a programming interface
simulating the parallel disk model. The block manager implements block alloca-
tion/deallocation allowing several block-to-disk assignment strategies: striping,
randomized striping, randomized cycling, etc. The BM layer provides implemen-
tation of parallel disk buffered writing [7], optimal prefetching [7], and block
caching. The implementations are fully asynchronous and designed to explicitly
support overlapping between I/O and computation.

The top of Stxxl consists of two modules. The STL-user layer provides EM
data structures which have (almost) the same interfaces (including syntax and
semantics) as their STL counterparts. The Streaming layer provides efficient
support for pipelining EM algorithms. The algorithms for external memory suf-
fix array construction implemented with this module [8] require only 1/3 of
I/Os which must be performed by implementations that use conventional data
structures and algorithms (either from Stxxl STL-user layer, or LEDA-SM, or
TPIE).

The rest of this section discusses the STL-user and Streaming layers in more
detail. The detailed description of the BM and AIO layers can be found in the
extended version of the paper [9].

2.1 STL-User Layer

Containers
Vector is an array whose size can vary dynamically. Similar to LEDA-SM arrays
[4], the user has the choice over the block striping strategy of vector, the size of
the vector cache, the cache replacement strategy (LRU, random, user-defined).
Stxxl vector has STL compatible Random Access Iterators. One random ac-
cess costs O(1) I/Os in the worst case. Sequential scanning of the vector costs
O(1/DB) amortized I/Os per vector element.

EM priority queues are used for time-forward processing technique in exter-
nal graph algorithms [10,2] and online sorting. The Stxxl implementation of
priority queue is based on [11]. This queue needs less than a third of I/Os
used by other similar cache (I/O) efficient priority queues. The implementation
supports parallel disks and overlaps I/O and computation.

The current version of Stxxl also has an implementation of EM map (based
on B+-tree), FIFO queue, and several efficient implementations of stack.

Stxxl allows to store the references to objects located in EM using EM iter-
ators (e.g. stxxl::vector::iterator). The iterators remain valid while storing
to and loading from EM. When dereferencing an EM iterator, the pointed object
is loaded from EM by the library on demand.

Stxxl containers differ from the STL containers in their treatment of mem-
ory and distinction of uninitialized and initialized memory. Stxxl containers
assume that the data types they store are plain old data types (POD). The
constructors and destructors of the contained data types are not called when a
container changes its size. The support of constructors and destructors would
imply significant I/O cost penalty, e.g. on the deallocation of a non-empty con-
tainer, one has to load all contained objects and call their destructors. This

644 R. Dementiev, L. Kettner, and P. Sanders

restriction sounds more severe than it is, since EM data structures can not cope
with custom dynamic memory management anyway, the common use of cus-
tom constructors/destructors. However, we plan to implement special versions
of Stxxl containers which will support not only PODs and handle construc-
tion/destruction appropriately.

Algorithms
The algorithms of STL can be divided into two groups by their memory access
pattern: scanning algorithms and random access algorithms.

Scanning algorithms. These are the algorithms that work with Input, Out-
put, Forward, and Bidirectional iterators only. Since random access operations
are not allowed with these kinds of iterators, the algorithms inherently exhibit
strong spatial locality of reference. Stxxl containers and their iterators are
STL-compatible, therefore one can directly apply STL scanning algorithms to
them, and they will run I/O-efficiently (see the use of std::generate and
std::unique algorithms in the Listing 1.1). Scanning algorithms are the ma-
jority of the STL algorithms (62 out of 71). Stxxl also offers specialized imple-
mentations of some scanning algorithms (stxxl::for each, stxxl::generate,
etc.), which perform better in terms of constant factors in the I/O volume and
internal CPU work. Being aware of the sequential access pattern of the applied
algorithm, the Stxxl implementations can do prefetching and use queued writ-
ing, thereby enabling overlapping of I/O with computation.

Random access algorithms. These algorithms require RandomAccess itera-
tors, hence may perform many random I/Os 1. For such algorithms, Stxxl pro-
vides specialized I/O-efficient implementations that work with STL-user layer
external memory containers. Currently the library provides two implementations
of sorting: an std::sort-like sorting routine – stxxl::sort, and a sorter that
exploits integer keys – stxxl::ksort. Both sorters are highly efficient parallel
disk implementations. The algorithm they implement guarantees close to opti-
mal I/O volume and almost perfect overlapping between I/O and computation
[7]. The performance of the sorter scales well. With eight disks which have peak
bandwidth of 380 MB/s it sorts 128 byte elements with 32 bit keys achieving
I/O bandwidth of 315 MB/s.

Listing 1.1 shows how to program using the STL-user layer and how Stxxl
containers can be used together with both Stxxl algorithms and STL algo-
rithms. This example generates a huge random directed graph in sorted edge
array representation. The edges must be sorted lexicographically. A straightfor-
ward procedure to do this is to: 1) generate a sequence of random edges, 2)
sort the sequence, 3) remove duplicate edges from it. The STL/Stxxl code for
it is only five lines long: Line 1 creates an Stxxl EM vector with 10 billion
edges. Line 2 fills the vector with random edges (generate from STL is used,
random edge functor returns random edge objects). In the next line the Stxxl
sorter sorts randomly generated edges using 512 megabytes of internal memory.
The lexicographical order is defined by functor my cmp. Line 6 deletes duplicate

1 The std::nth element algorithm is an exception. It needs O(N/B) I/Os on average.

Stxxl : Standard Template Library for XXL Data Sets 645

edges in the EM vector with the help of the STL unique algorithm. The NewEnd
vector iterator points to the right boundary of the range without duplicates.
Finally (Line 7), we chop the vector at the NewEnd boundary.

Listing 1.1. Generating a random graph using the STL-user layer

1 stxxl : : vector<edge> Edges (10000000000 ULL) ;
2 std : : generate (Edges . begin () , Edges . end () , random_edge ()) ;
3 stxxl : : sort (Edges . begin () , Edges . end () , edge_cmp () ,
4 512∗1024∗1024) ;
5 stxxl : : vector<edge > : : iterator NewEnd =
6 std : : unique (Edges . begin () , Edges . end ()) ;
7 Edges . resize (NewEnd − Edges . begin ()) ;

2.2 Streaming Layer

The streaming layer provides a framework for pipelined processing of large se-
quences. The pipelined processing technique is well known in the database world.
To the best of our knowledge we are the first to apply this method systemati-
cally in the domain of EM algorithms. We introduce it in the context of an EM
software library.

Usually the interface of an EM algorithm assumes that it reads the input from
EM container(s) and writes output to EM container(s). The idea of pipelining
is to equip the EM algorithms with a new interface that allows them to feed the
output as a data stream directly to the algorithm that consumes the output,
rather than writing it to EM. Logically, the input of an EM algorithm does not
have to reside in EM, it could be rather a data stream produced by another EM
algorithm.

Many EM algorithms can be viewed as a data flow through a directed acyclic
graph G = (V = F ∪S ∪R, E). The file nodes F represent physical data sources
and data sinks, which are stored on disks (e.g. in the EM containers of STL-user
layer). A file node outputs or/and reads one stream of elements. Streaming
nodes S are equivalent to scan operations in non-pipelined EM algorithms, but
do not perform any I/O, unless a node needs to access EM data structures.
Sorting nodes R read a stream and output it in a sorted order. Edges E in the
graph G denote the directions of data flow between nodes. A pipelined execution
of the computations in a data flow is possible in an I/O-efficient way [8].

In Stxxl, all data flow node implementations have an Stxxl stream inter-
face which is similar to STL Input iterators2. As an input iterator, an Stxxl
stream object may be dereferenced to refer to some object and may be incre-
mented to proceed to the next object in the stream. The reference obtained
by dereferencing is read-only and must be convertible to the value type of the
Stxxl stream. Stxxl stream has a boolean member function empty() which re-
turns true iff the end of the stream is reached. The binding of a Stxxl stream
object to its input streams (incoming edges in a data flow graph G) happens
at compile time using templates, such that we benefit from function inlining in

2 Do not confuse with the stream interface of the C++ iostream library.

646 R. Dementiev, L. Kettner, and P. Sanders

C++. After constructing all node objects, the computation starts in a “lazy”
fashion, first trying to evaluate the result of the topologically latest node. The
node reads its intermediate input nodes, element by element, using dereference
and increment operator of the Stxxl stream interface. The input nodes procede
in the same way, invoking the inputs needed to produce an output element. This
process terminates when the result of the topologically latest node is computed.
This style of pipelined execution scheduling is I/O-efficient, it allows to keep the
intermediate results in-memory without needing to store them in EM.

In the extended version of the paper [9] we show how to “pipeline” the random
graph generation example from the previous chapter, such that the number of
I/Os is more than halved.

3 Performance

We demonstrate some performance characteristics of Stxxl using the EM max-
imal independent set (MIS) algorithm from [10] as an example. This algorithm
is based on the time-forward processing technique. As the input for the MIS
algorithm, we use the random graph computed by the examples in the previous
Section (Listings 1.1 and its pipelined version [9]). Our benchmark includes the
running time of the input generation.

The MIS algorithm given in Listing 1.2 is only nine lines long not including
declarations. The algorithm visits the graph nodes scanning lexicographically
sorted input edges. When a node is visited, we add it to the maximal indepen-
dent set if none of its visited neighbours is already in the MIS. The neighbour
nodes of the MIS nodes are stored as events in a priority queue. In Lines 6–7,
the template metaprogram [12] PRIORITY QUEUE GENERATOR computes the type
of priority queue that will store events. The metaprogram finds the optimal val-
ues for numerous tuning parameters (the number and the maximum arity of
external/internal mergers, the size of merge buffers, EM block size, etc.) under
the constraint that the total size of the priority queue internal buffers must be
limited by PQ MEM bytes. The node greater comparison functor defines the order
of nodes of type node type and minimum value that a node object can have,
such that the top() method will return the smallest contained element. The
last template parameter tells that the priority queue can not contain more than
INPUT SIZE elements (in 1024 units). Line 8 creates the priority queue depend
having prefetch buffer pool of size PQ PPOOL MEM bytes and buffered write mem-
ory pool of size PQ WPOOL MEM bytes. The external vector MIS stores the nodes
belonging to the maximal independent set. Ordered input edges come in the
form of an Stxxl stream called edges. If the current node edges->src is not a
neighbour of a MIS node (the comparison with the current event depend.top(),
Line 13), then it is included in MIS (if it was not there before, Line 15). All
neighbour nodes edges->dst of a node in MIS edges->src are inserted in the
event priority queue depend (Line 16). Lines 11-12 remove the events already
passed through from the priority queue.

Stxxl : Standard Template Library for XXL Data Sets 647

Listing 1.2. Computing a Maximal Independent Set using Stxxl

1 struct node_greater : public std : : greater<node_type> {
2 node_type min_value () const {
3 return std : : numeric_limits<node_type > : : max () ;
4 }
5 } ;
6 typedef stxxl : : PRIORITY_QUEUE_GENERATOR<node_type ,
7 node_greater , PQ_MEM , INPUT_SIZE /1024 > : : result pq_type ;
8 pq_type depend (PQ_PPOOL_MEM , PQ_WPOOL_MEM) ;
9 stxxl : : vector<node_type> MIS ; // output

10 for (; ! edges . empty ();++edges) {
11 while (! depend . empty () && edges−>src > depend . top ())
12 depend . pop () ; // d e l e t e o ld events
13 i f (depend . empty () | | edges−>src != depend . top ()) {
14 i f (MIS . empty () | | MIS . back () != edges−>src)
15 MIS . push_back (edges−>src) ;
16 depend . push (edges−>dst) ;
17 }
18 }

To make a comparison with other EM libraries, we have implemented
the graph generation algorithm using TPIE and LEDA-SM. The MIS algo-
rithm was implemented in LEDA-SM using its array heap data structure as
a priority queue. The I/O-efficient implementation of the MIS algorithm was
not possible in TPIE, since it does not have an I/O-efficient priority queue
implementation. For TPIE, we report only the running time of the graph
generation. The source code of all our implementations is available under
http://i10www.ira.uka.de/dementiev/stxxl/paper/index.shtml.

To make the benchmark closer to real applications, the edge data structure
has two 32-bit integer fields, which can store some additional information as-
sociated with the edge. The priority queues of LEDA-SM always store a pair
<key,info>. The info field takes at least four bytes. Therefore, to make a fair
comparison with Stxxl, we have changed the event data type stored in the
priority queue, such that it also has a 4-byte dummy info field.

The experiments were run on a 2-processor Xeon (2 GHz) workstation (only
one processor was used) and 1 GB of main memory (swapping was switched off).
The OS was Debian Linux with kernel 2.4.20. The computer had four 80 GB IDE
(IBM/Hitachi 120 GXP series) hard disks formatted with the XFS file system
and dedicated solely for the experiments. We used LEDA-SM version 1.3 with
LEDA version 4.2.13 and TPIE of January 21, 2005. For compilation of Stxxl
and TPIE sources, the g++ version 3.3 was used. LEDA-SM and LEDA were
compiled with g++ version 2.95, because they could not be compiled by later
g++ versions. The optimization level was set to -O3. We used library sorters
that use C++ comparison operators to compare elements. All programs have
been tuned to achieve their maximum performance. We have tried all available

3 Later versions of the LEDA are not supported by the last LEDA-SM version 1.3.

http://i10www.ira.uka.de/dementiev/stxxl/paper/index.shtml

648 R. Dementiev, L. Kettner, and P. Sanders

file access methods and disk block sizes. In order to tune the TPIE benchmark
implementation, we followed the performance tuning Section of [5]. The input
size (the length of the random edge sequence, see Listing 1.1) for all tests was
2000 MB4. The benchmark programs were limited to use only 512 MB of main
memory. The remaining 512 MB are given to operating system kernel, daemons,
shared libraries and file system buffer cache, from which TPIE and LEDA-SM
might benefit. The Stxxl implementations do not use the file system cache.

Table 1. Running time (in seconds)/I/O bandwidth (in MB/s) of the MIS benchmark

running on single disk. For TPIE only graph generation is shown (marked with *).

LEDA-SM Stxxl-STL Stxxl-Pipel. TPIE

Input Filling 51/41 89/24 40/52
graph Sorting 371/23 188/45

100/20
307/28

generation Dup. removal 160/26 104/40 109/39
MIS computation 513/6 153/21

128/26
–N/A–

Total 1095/16 534/33 228/24 456*/32*

Table 1 compares the MIS benchmark performance of the LEDA-SM imple-
mentation, the Stxxl implementation based on the STL-user level, a pipelined
Stxxl implementation, and a TPIE implementation (only input graph genera-
tion). The running times, averaged over three runs, and average I/O bandwidths
are given for each stage of the benchmark. The running time of the different
stages of the pipelined implementation cannot be measured separately. How-
ever, we show the values of time and I/O counters from the beginning of the
execution till the time when the sorted runs are written to the disk(s) and
from this point to the end of the MIS computation. The total time numbers
show that the pipelined Stxxl implementation is significantly faster than the
other implementations. It is 2.4 times faster than the second leading implemen-
tation (Stxxl-STL). The win is due to reduced I/O volume: the Stxxl-STL
implementation transfers 17 GB, the pipelined implementation needs only 5.2
GB. However the 3.25 fold I/O volume reduction does not imply equal reduc-
tion of the running time because the run formation fused with filling/generating
phase becomes compute bound. This is indicated by the almost zero value of the
Stxxl I/O wait counter, which measures the time the processing thread waited
for the completion of an I/O. The second reason is that the fusion of merging,
duplicate removal and CPU intensive priority queue operations in the MIS com-
putation is almost compute bound. Comparing the running times of the total
input graph generation we conclude that Stxxl-STL implementation is about
20 % faster than TPIE and 53 % faster than LEDA-SM. This could be due to
better (explicit) overlapping between I/O and computation. Another possible
reason could be that TPIE uses a more expensive way of reporting run-time

4 Algorithms and data structures of LEDA-SM are limited to inputs of size 2 GB.

Stxxl : Standard Template Library for XXL Data Sets 649

Table 2. Running time (in seconds)/I/O bandwidth (in MB/s) of the MIS benchmark

running on multiple disk

Stxxl-STL Stxxl-Pipelined

Disks 2 4 2 4

Input Filling 72/28 64/31
graph Sorting 104/77 80/100

98/20 98/20

generation Dup. removal 58/69 34/118
MIS computation 127/25 114/28

112/30 110/31

Total 360/50 291/61 210/26 208/27

errors, such as I/O errors5. The running time of the filling stage of Stxxl-
STL implementation is much higher than of TPIE and LEDA-SM because they
rely on operating system cache. The filled blocks do not go immediately to the
disk(s) but remain in the main memory until other data needs to be cached by
the system. The indication of this is the very high bandwidth of 52 MB/s for
TPIE implementation, which is even higher than the maximum physical disk
bandwidth (48 MB/s) at its outermost zone. However, the cached blocks need
to be flushed in the sorting stage and then the TPIE implementation pays the
remaining due. The unsatisfactory bandwidth of 24 MB/s of the Stxxl-STL fill-
ing phase could be improved to 33 MB/s by replacing the call std::generate
by the native stxxl::generate call that efficiently overlaps I/O and compu-
tation. Stxxl STL-user sorter sustains an I/O bandwidth of about 45 MB/s
which is 95 % of the disk’s peak bandwidth. The high CPU load in the priority
queue and not very perfect overlapping between I/O and computation explain
the low bandwidth of the MIS computation stage in all three implementations.
We also run the graph generation test on 16 GByte inputs. All implementations
scale almost linearly with the input size: the TPIE implementation finishes in
1h 3min, Stxxl-STL in 49min, and Stxxl-Pipelined in 28min.

The MIS computation of Stxxl, which is dominated by PQ operations, is
3.35 times faster than LEDA-SM. The main reason for this big speedup is likely
to be the more efficient priority queue algorithm from [11].

Table 2 shows the parallel disk performance of the Stxxl implementations.
The Stxxl-STL implementation achieves speedup of about 1.5 using two disks
and 1.8 using four disks. The reason for this low speedup is that many parts of the
code become compute bound: priority queue operations in the MIS computation,
run formation in the sorting, and generating random edges in the filling stage.
The Stxxl-Pipelined implementation was almost compute bound in the single
disk case, and as expected, with two disks the first phase shows no speedup.
However the second phase has a small improvement in speed due to faster I/O.
5 TPIE uses function return types for error codes and diagnostics, which can be-

come quite expensive at the level of the single-item interfaces (e.g. read item and
write item) that is predominantly used in TPIEs algorithms. Instead, Stxxl checks
(I/O) errors on the per-block basis. We will use C++ exceptions to propagate errors
to the user layer without any disadvantage for the library users. First experiments
indicate that this will have negligible impact on runtime.

650 R. Dementiev, L. Kettner, and P. Sanders

Close to zero I/O wait time indicates that the Stxxl-Pipelined implementation
is fully compute bound when running with two or four disks. The longest MIS
computation, requiring the entire space of four disks (360 GBytes), for the graph
with 4.3 · 109 nodes and 13.4 · 109 edges took 2h 44min on an Opteron system.

4 Applications

Stxxl has been successfully applied in implementation projects that studied
various I/O efficient algorithms from the practical point of view. The fast algo-
rithmic components of Stxxl library gave the implementations an opportunity
to solve problems of very large size on a low-cost hardware in a record time.

The performance of EM suffix array construction algorithms was investi-
gated in [8]. The experimentation with pipelined Stxxl implementations of the
algorithms has shown that computing suffix arrays in EM is feasible even on a
low-cost machine. Suffix arrays for long strings up to 4 billion characters could
be computed in hours.

The project [13] has compared experimentally two EM breadth-first search
(BFS) algorithms. The pipelining technique of Stxxl has helped to save a fac-
tor of 2–3 in I/O volume. Using Stxxl, it became possible to compute BFS
decomposition of large grid graphs with 128 million edges in less than a day, and
for random sparse graphs within an hour.

Simple algorithms for computing minimum spanning trees (MST), connected
components, and spanning forests were developed in [14]. Their implementations
were built using STL-user-level algorithms and data structures of Stxxl. The
largest solved MST problem had 232 nodes, the input graph edges occupied
96 GBytes. The computation on a PC took 8h 40min.

The number of triangles in a graph is a very important metric in social
network analysis. We have designed and implemented an external memory algo-
rithm that counts and lists all triangles in a graph. Using our implementation we
have counted the number of triangles of a web crawl graph from the WebBase
project 6. In this graph the nodes are web pages and edges are hyperlinks be-
tween them. For the computation we ignored the direction of the links. Our crawl
graph had 135 million nodes and 1.2 billion edges. During computation on an
Opteron SMP which took only 4h 46min we have detected 10.6 billion triangles.
Total volume of 851 GB was transferred between 1GB of main memory and seven
hard disks. The details about the algorithm and the source code are available
under http://i10www.ira.uka.de/dementiev/tria/algorithm.shtml.

5 Conclusions

We have described Stxxl: a library for external memory computation that aims
for high performance and ease-of-use. The library supports parallel disks and ex-
plicitly overlaps I/O and computation. The library is easy to use for people who
know the C++ Standard Template Library. Stxxl supports algorithm pipelin-
ing, which saves many I/Os for many EM algorithms. Several projects using
6 http://www-diglib.stanford.edu/∼testbed/doc2/WebBase/

http://i10www.ira.uka.de/dementiev/tria/algorithm.shtml
http://www-diglib.stanford.edu/~testbed/doc2/WebBase/

Stxxl : Standard Template Library for XXL Data Sets 651

Stxxl have been finished already. With help of Stxxl, they have solved very
large problem instances externally using a low cost hardware in a record time.
The work on the project is in progress. Future directions of Stxxl develop-
ment cover the implementation of the remaining STL containers, improving the
pipelined sorter with respect to better overlapping of I/O and computation, im-
plementations of graph and text processing EM algorithms. We plan to submit
Stxxl to the collection of the Boost C++ libraries (www.boost.org) which
includes a Windows port.

References

1. Vitter, J.S., Shriver, E.A.M.: Algorithms for parallel memory, I/II. Algorithmica
12 (1994) 110–169

2. Meyer, U., Sanders, P., Sibeyn, J., eds.: Algorithms for Memory Hierarchies. Vol-
ume 2625 of LNCS Tutorial. Springer (2003)

3. Arge, L., Procopiuc, O., Vitter, J.S.: Implementing I/O-efficient Data Structures
Using TPIE. In: 10th European Symposium on Algorithms (ESA). Volume 2461
of LNCS., Springer (2002) 88–100

4. Crauser, A.: LEDA-SM: External Memory Algorithms and Data Structures in
Theory and Practice. PhD thesis, Universität des Saarlandes, Saarbrücken (2001)
http://www.mpi-sb.mpg.de/∼crauser/diss.pdf.

5. L. Arge, R. Barve, D. Hutchinson, O. Procopiuc, L. Toma, D. E. Vengroff, R.
Wickeremesinghe: TPIE: User manual and reference. (2003)

6. Davidson, E.R., Cormen, T.H.: Building on a Framework: Using FG for More
Flexibility and Improved Performance in Parallel Programs. (In: 19th International
Parallel and Distributed Processing Symposium (IPDPS 2005)) to appear.

7. Dementiev, R., Sanders, P.: Asynchronous parallel disk sorting. In: 15th ACM
Symposium on Parallelism in Algorithms and Architectures, San Diego (2003)
138–148

8. Dementiev, R., Mehnert, J., Kärkkäinen, J., Sanders, P.: Better Ex-
ternal Memory Suffix Array Construction. In: Workshop on Algorithm
Engineering & Experiments, Vancouver (2005) http://i10www.ira.uka.de/

dementiev/files/DKMS05.pdf see also http://i10www.ira.uka.de/dementiev/

esuffix/docu/data/diplom.pdf.
9. Dementiev, R., Kettner, L., Sanders, P.: Stxxl: Standard Template Library for XXL

Data Sets. Technical Report 18, Fakultät für Informatik, University of Karlsruhe
(2005)

10. Zeh, N.R.: I/O Efficient Algorithms for Shortest Path Related Problems. PhD
thesis, Carleton University, Ottawa (2002)

11. Sanders, P.: Fast priority queues for cached memory. ACM Journal of Experimental
Algorithmics 5 (2000)

12. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Ap-
plications. Addison Wesley Professional (2000)

13. Ajwani, D.: Design, Implementation and Experimental Study of External
Memory BFS Algorithms. Master’s thesis, Max-Planck-Institut für Informatik,
Saarbrücken, Germany (2005)

14. Dementiev, R., Sanders, P., Schultes, D., Sibeyn, J.: Engineering an External
Memory Minimum Spanning Tree Algorithm. In: IFIP TCS, Toulouse (2004) 195–
208

www.boost.org
http://www.mpi-sb.mpg.de/~crauser/diss.pdf
http://i10www.ira.uka.de/dementiev/files/DKMS05.pdf
http://i10www.ira.uka.de/dementiev/esuffix/docu/data/diplom.pdf

	Introduction
	\Stxxl Design
	STL-User Layer
	Streaming Layer

	Performance
	Applications
	Conclusions

