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Deep learning shows its advantages and potentials in plant disease recognition and has

witnessed a profound development in recent years. To obtain a competing performance

with a deep learning algorithm, enough amount of annotated data is requested but

in the natural world, scarce or imbalanced data are common, and annotated data is

expensive or hard to collect. Data augmentation, aiming to create variations for training

data, has shown its power for this issue. But there are still two challenges: creating more

desirable variations for scarce and imbalanced data, and designing a data augmentation

to ease object detection and instance segmentation. First, current algorithms made

variations only inside one specific class, but more desirable variations can further promote

performance. To address this issue, we propose a novel data augmentation paradigm

that can adapt variations from one class to another. In the novel paradigm, an image in

the source domain is translated into the target domain, while the variations unrelated to

the domain are maintained. For example, an image with a healthy tomato leaf is translated

into a powdery mildew image but the variations of the healthy leaf are maintained

and transferred into the powdery mildew class, such as types of tomato leaf, sizes,

and viewpoints. Second, current data augmentation is suitable to promote the image

classification model but may not be appropriate to alleviate object detection and instance

segmentation model, mainly because the necessary annotations can not be obtained.

In this study, we leverage a prior mask as input to tell the area we are interested in and

reuse the original annotations. In this way, our proposed algorithm can be utilized to

do the three tasks simultaneously. Further, We collect 1,258 images of tomato leaves

with 1,429 instance segmentation annotations as there is more than one instance in one

single image, including five diseases and healthy leaves. Extensive experimental results

on the collected images validate that our new data augmentation algorithm makes useful

variations and contributes to improving performance for diverse deep learning-based

methods.

Keywords: tomato disease recognition, data augmentation, image translation, image classification, instance

segmentation, image style
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1. INTRODUCTION

Food security has been raised to a high level in many countries
partly because food distribution is not compatible with the
distribution of the population in the world, and the number
of laborers related is becoming less. While enough amount of
food is required to feed our humans, many factors may harm
plant growth and hence threaten the food supply. Controlling
disease is one of the key challenges to keep plants healthy
toward obtaining the expected yield. Artificial intelligence has
recently witnessed a booming development with a decent disease
recognition performance as intelligent machines deployed in
farms can reduce workload. Deep learning, a core technique of
artificial intelligence, has been successfully adopted to recognize
diseases or abnormalities, such as tomato (Fuentes et al., 2017;
Liu and Wang, 2020; Wang et al., 2021), banana (Lin et al.,
2021), potato (Gao et al., 2021), corn and apple (Zhong and Zhao,
2020), and many other plants (Gao et al., 2020; Liu and Wang,
2021). Recent studies (Martineau et al., 2017; Liu and Wang,
2021; Saranya et al., 2021) show the advantages and potentialities
of deep learning methods compared to other methods, such as
handcraft feature, in recognizing plant diseases and related tasks.

To obtain a competing performance with a deep learning
algorithm, enough amount of annotated data is requested but
in the natural world, scarce or imbalanced data are common,
and annotated data is expensive or hard to collect. For example,
some diseases rarely appear or even never appear on one farm
but the healthy plant is more common, which can not lead
to a convincing disease recognition performance. To address
this challenge, data augmentation is one of the most potential
solutions and has been utilized in the agricultural field (Zhu et al.,
2018; Nazki et al., 2020; Abbas et al., 2021). Data augmentation
aims to generate more data with collected training data to
improve the deep learning model’s performance in testing data.
Previous studies (Pawara et al., 2017; Douarre et al., 2019;
Pinto Sampaio Gomes and Zheng, 2020; Liu and Wang, 2021;
Saranya et al., 2021) have validated that data augmentation
plays a significant role to improve the performance of deep
learning in the agricultural area. In this study, we are interested
in image-based recognition for tomato diseases, and hence data
augmentation defaults with image-based.

Traditional data augmentation methods generate new
augmented data within one specific class, within-class data
augmentation, where the appearance of the image can be
changed but the corresponding class remains, such as rotating
or translating an image (Hu et al., 2020; Gorad and Kotrappa,
2021). In contrast, cross-class data augmentation methods can
translate one image from the class to another class via image
translation that aims to translate images from a source domain
to a target domain, by which the variations are desired to
be borrowed from one class to another class. For example, a
healthy tomato image, source domain, can be translated into
a powdery mildew image, target domain. In general, healthy
tomato leaf images are easy to collect with large variations, such
as background, viewpoint, size of the leaf, and type of tomato, as
shown in Figure 1. As there is a high variation for the healthy
tomato images, we refer the healthy to a variation-majority

class. On the other hand, the class, hard to obtain images or
enough variation, is referred to as a variation-minority class,
such as some disease tomato leaves. To achieve the cross-class
data augmentation, CycleGAN (Zhu et al., 2017), one of the
state-of-the-art methods to do image translation, is plausible to
be utilized. Based on CycleGAN, Nazki et al. (2020) proposed
an activation reconstruction loss to improve the quality of the
generated image. Except for low image quality, CycleGAN tends
to change the undesired content such as background, and an
attention module was proposed in LeafGAN (Cap et al., 2020) to
detect the area that we are interested in. Although they achieved
better results than the original CycleGAN, the following two new
challenges are addressed in this study.

First, how can we adapt the majority of variations from
the source domain to the target domain? Image translation is
expected to keep the variations but there are no guarantees to
keep the variations in current algorithms. To ease this issue,
we propose a new paradigm to combine style consistency and
image translation to maintain the variations during the image
translation process, and hence, we call our algorithm style-
consistent image translation (SCIT). Specifically, we follow the
hypothesis that images can be factorized into two parts, label-
related and style-related (Gonzalez-Garcia et al., 2018; Lee et al.,
2018). While the label-related are the characteristics or patterns
of specific classes such as healthy and powdery mildew, the
style-related is independent of the labels, such as illumination,
viewpoints, and background. In the translation process, we aim
to translate the label-related but keep the style-related, which
contributes to adapting the styles from the source domain to the
target domain. In Figure 1, we can see that the selected healthy
tomato leaves are translated into powdery mildew leaves by our
method, but the styles in healthy tomato leaves are maintained,
and the variations of powdery mildew domain are augmented
from the healthy domain.

Second, how canwe use image translation as data augmentation
to ease object detection and instance segmentation? Traditional
data augmentation and current image translation-based
algorithms can be leveraged to improve the image classification
but may not be appropriate to alleviate object detection
and instance segmentation which are closer to our practical
applications. The first reason is that object detection and
instance segmentation require more annotations than image
classification but current algorithms can not make those
necessary annotations. Generally, we only need class information
of images to train the image classification model, but the exact
locations of each class are necessary to train the object detection
algorithm, and both location and instance identity are required
to train the instance segmentation model, Figure 9 giving
examples about the two tasks. Furthermore, classification is an
image-level task but object detection and instance segmentation
are at the instance level. Elusively, the input image undergoes
a preprocessing to be one leaf or even part of one leaf to do
image classification by which classification model is easier to
be trained (Nazki et al., 2020). In contrast, preprocessing is
not necessary for object detection and instance segmentation.
In fact, the leaves are normally in different scales, as shown
in the red boundary images in Figure 1. Therefore, we are
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FIGURE 1 | Data augmentation from healthy tomato leaves to powdery mildew leaves using the proposed style-consistent image translation (SCIT) model. Healthy

leaves are in the source domain, belonging to the variation-majority class, while powdery mildew leaves are in the target domain, belonging to the variation-minority

class. Ours SCIT model is leveraged to translate the images in the source domain into the target domain, which can take the variations from the variation-majority

class to the variation-minority class. Healthy leaves include several variations, background, type of tomato, viewpoint, shape, illumination, size. SCIT model can only

translate one given leaf in one image as shown right three images with red boundary, compared to other generative adversarial networks (GAN)-based data

augmentation methods which translate all leaves in one image (Cap et al., 2020; Nazki et al., 2020).

requested to translate leaf instances separately in diverse
scales instead of translating all leaves as other algorithms
have been doing (Cap et al., 2020; Nazki et al., 2020). To
address the two issues, we employ a mask as prior knowledge
in order to split an image into the region of interest (ROI)
and background (BG). We aim to translate its ROI part but

reuse its BG part, by which the original annotations can be
reused for the produced images. Further, we design a new
framework based on CycleGAN (Zhu et al., 2017). First of
all, a mask encoder is designed to be incorporated with the
image encoder, as shown in Figure 2, by which our generator
knows where is interested. Although a similar idea appears
in RBGAN (Xu et al., 2021), we aim to translate part of the
image yet keep the other part and maintain the style during the
image translation but RBGAN aims to perform instance-level
image translation with a decent translated instance boundary.
Besides, our discriminator absorbs both real or fake images
and corresponding masks and is pushed to know where
is the translated area and whether the area is real or fake.
Therefore, with the new generator and discriminator along
with the input mask, our algorithm can translate given leaves
in diverse scales with the reused annotations, which contributes
to ease object detection and instance segmentation as a data
augmentation method.

To summarize, our contributions are as follows:

1. We propose a data augmentation paradigm, SCIT, which can
increase the data variations for the variation-minority class by
leveraging the images from the variation-majority class.

2. We propose a framework to perform image translation in
diverse scales with necessary annotations as output to ease
object detection and instance segmentation, which is out of
current data augmentation methods.

3. Taking tomato as an example, we perform extensive
experiments on three tasks, image classification, object
detection, and instance segmentation. The experimental
results suggest that our proposed algorithm improves the
performances for diverse deep learning-based methods and
outperforms the state-of-the-art data augmentation methods.

The remainder of this study is organized as follows. Related
studies and our basic idea are introduced in the preliminary
section. The proposed method to do data augmentation is
instantiated in Section 3, including the framework and loss
function. In the experiments section, we show the details about
our dataset, implementation to train and test our model, ablation
study to understand our algorithm, comparison to other methods
in three tasks. Finally, we conclude our studies and future study
in the last section.
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FIGURE 2 | (A) Proposed SCIT model, the general structure of the proposed data augmentation model for image classification, object detection, and instance

segmentation. xs and x′ denote the source image and the generated image by our model. While ms denotes instance segmentation mask aligning source image xs

and expecting to align x′, mt is the instance segmentation mask of real images in the target domain. The generator consists of an image encoder EI, a mask encoder

EM, and a decoder Dec. Discriminator Dis pushes the region of interest (ROI) of the generated image to have the same label with the ROI of the real image in the target

domain, while the pre-trained VGG pushes ROIs to share the same style. (B) Flow chart to compute identity loss and cycle-consistent loss. GT and GS is the

generator to produce images in the domain T and S, respectively. The masks to generate the image are omitted.

2. PRELIMINARY

Data augmentation based on the image can be categorized
into two main parts, basic image manipulations and deep
learning-based algorithms. In this section, we try to highlight the
difference between other methods and our method to achieve
data augmentation.

Image manipulations. Image manipulations make use of
image processing methods, such as pixel-wise conversion and
geometrical transformations. Formally, let xs and xa denote
the source image and the augmented image. Similarly, ys and
ya are corresponding labels. The formulation of basic image
manipulation-based data augmentation refers to Equation 1.

{

xa = fm(x
s),

ya = ys,
(1)

where fm is one of the basic image manipulation functions.
The equation suggests that the label of the input image is
not changed when the input image undergoes manipulations.
The retainment degree of the label is called safety of data
augmentation because manipulations can not always keep the
label (Shorten and Khoshgoftaar, 2019). For example, after
adding too much random noise, some images could not be
recognized as before. With these image manipulations, prior
works achieved better performance in the missions with small
datasets (Hu et al., 2020; Gorad and Kotrappa, 2021). Besides,
these basic image manipulation can be adapted from one image
to more than one image (Dwibedi et al., 2017). Kuznichov et al.

(2019) copied the leaves from different images to form a new
augmented image to promote leaf segmentation and counting.
Similarly, Gao et al. (2020) produced a synthetic image by
combining specific objects from different images, in which two
different classes can appear in a single image. Their experiments
validated that the performance can be also improved by their
methods. In this study, we aim to do data augmentation from
another viewpoint by using one class to augment another class,
hoping that more variations can be produced.

Deep learning-based algorithms. Different from image
manipulations, deep learning-based algorithms employ
deep neural networks to generate new images. According
to the condition to generate new images, deep learning-based
algorithms can be split into label-condition and image-condition.
Label-condition algorithms generate images from given labels by
using generative adversarial networks (GANs) (Valerio Giuffrida
et al., 2017; Pandian et al., 2019; Bi and Hu, 2020; Abbas
et al., 2021). In contrast, image-condition algorithms produce
images from given images. Style transfer is one of the possible
methods (Li et al., 2017; Huang et al., 2021; Shen et al., 2021).
Mathematically, it can be formalized as Equation 2.

{

xa = fst(x
s),

ya = ys,
(2)

where fst is the style transfer function. Because of the function,
style transfer algorithms can introduce more variations into
the dataset. For instance, images captured in sunny style can
be transferred into night style (Shen et al., 2021), which is

Frontiers in Plant Science | www.frontiersin.org 4 February 2022 | Volume 12 | Article 773142

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Xu et al. Style-Consistent Image Translation

beyond the basic image manipulations. However, the labels of the
transferred images are considered as same as the source, which
is the same as the basic image manipulations. Besides, the style
transferring-based algorithms try to maintain the content of the
image. Take the tomato leaves as an example, it aims to maintain
the size, shape of leaves, viewpoints and, hence, making more
variations about them is still challenging.

To deal with the challenge mentioned above, we propose
a novel paradigm to achieve data augmentation, following the
disentangled idea that an image can be factorized into two factors:
style-related and label-related (Gonzalez-Garcia et al., 2018; Lee
et al., 2018). By using image translation, label-related factors of
an image in the source domain can be translated into images
in the target domain. Simultaneously, the style-related factors of
the source image are desired to be kept in the translated image.
In the style-consistent image translation, the variations of the
style in the source domain are borrowed into the target domain.
Mathematically, this kind of data augmentation algorithm can be
formulated as Equation 3.







xa = fit(x
s),

ya 6= ys,
g(xa) = g(xs),

(3)

where fit symbolizes image translation function. ya and ys denote
the label corresponding to image xs and xa, respectively. The
function g symbolizes the style extracting function.

We argue that this kind of data augmentation eases practical
applications. When it is hard to collect the data or the collected
data suffer from a lack of variations in one domain but
easier to collect data in another domain, we can use this data
augmentation to leverage the variations in the easier domain
to promote the variations in the harder domain. For example,
images of healthy tomato leaves can be easily collected from farms
but images with specific diseases of abnormalities like powdery
mildew could not be collected easily, mainly because farmers
must do necessary measures to prevent before their appearance
or make a fast remedy after their appearance to reduce financial
loss. We can augment data for powdery mildew effectively
by using image translation from healthy domain to powdery
mildew domain. Besides, we emphasize that the proposed data
augmentation method can be employed with any kind of image
translation model fit and domain-invariant function g.

Moreover, we also notice that data augmentation for image
classification attracts much more attention than for object
detection or instance segmentation. A label is globally assigned to
a whole image for the image classification task but a label is locally
assigned to a region of an image for object detection or instance
segmentation task. Therefore, one of the challenges for object
detection and instance segmentation is mainly that dealing with a
bounding box or instance mask for a local region is required. To
address this issue, we further spatially split one image into two
parts, region of interest (ROI) xroi and background xbg . Formally,

input image x is split into xroi and xbg according to the binary
instance segmentation mask from source domain ms. Then our
proposed generative adversarial network takes the xs and ms

as input and aims to translate the xroi into the target domain.

Simultaneously, we reuse the background of the source image
since the translationmodel is not interested in the background. In
this way, the augmented image xa shares the same bounding box
or instance segmentation with the source image xs, but the label
is changed. Formally, the SCIT for object detection and instance
segmentation can be formalized as Equation 4.







xa = ms ∗ fit(x
s)+ (1−ms) ∗ xs,

yaroi 6= ysroi,
g(xa) = g(xs),

(4)

where yaroi and ysroi denote the label corresponding to the ROI
of xa and xs. We found this kind of method suitable for image
classification.

3. STYLE-CONSISTENT IMAGE
TRANSLATION

In this section, we instantiate fit and g as a GAN model
and VGG network and deploy them to do image classification
(Simonyan and Zisserman, 2014), object detection, and instance
segmentation for tomato leaves. Specifically, an updated
CycleGAN (Zhu et al., 2017) is leveraged in our experiments to
translate images from the source domain to the target domain.
To keep the style consistent, VGG loss is employed (Huang and
Belongie, 2017; Li et al., 2017). But we emphasize that other kinds
of image translation methods and style losses are possible and
encouraged. Since our method aims to keep the style consistent
when doing image translation, it is called SCIT.

3.1. Framework
Style-consistent image translation consists of three parts
functionally, as shown in Figure 2A. The Generator, G for short,
is expected to translate the image, while the discriminator Dis is
assumed to push the translated image similar to the real image in
the target domain, and a pre-trained VGG19 is utilized to extract
the style, class-unrelated characters.

The generator G absorbs source image xs and instance
segmentation mask from source imagems as input, in which two
specific encoders, EI and EM , are leveraged to extract features
from image and mask, respectively. The outputs of the two
encoders are concatenated, followed by a decoder to produce
an output image x′. Formally, the generating process can be
formalized as Equation 5.

x′ = G(xs,ms) = Dec(EI(x
s) +©EM(ms)), (5)

where +© denotes concatenation channel-wise. The instance
segmentation maskms is used to let the generator know where to
put attention. Similarly, our discriminator takes in real image xt

in the target domain or generated image x′, along with its instance
maskms, to recognize whether it is fake or real.

In the inference time, the image xa to be used as augmented
data is a fusion of the source image xs and the generated image
x′. Equation 6shows the inference process to get augmented
data. Intuitively, the augmented image has the same background
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FIGURE 3 | Original tomato leaf dataset. From the first to the last row are Healthy, Powdery (powdery mildew), Canker, LMold (leaf mold), ToCV, MagDef (magnesium

deficiency). We collect the dataset from different farms at different times. The variations among the dataset include background, type of tomato, the severity of

disease, illumination condition, the distance between the camera and interesting leaf, viewpoint to take the picture.

as the source image but has the same foreground as the
translated image.

xa = ms ∗ Dec(EI(x
s) +©EM(ms))+ (1−ms) ∗ xs. (6)

3.2. Loss Functions
The loss functions employed to train our SCIT model are
explained in this subsection. To push the generated image toward
the real image in the target domain, GAN loss is used as shown
in Equation 7.

LGAN = E||Dis(xt +©mt)− 1||2 +E||Dis(G(xs,ms) +©ms)||2. (7)

Except for being like a real image in the target domain, the
generated image x′ is hypothesized to have the same style as the
source image xs, which is realized by a pre-trained VGG network,
as Equation 8.

Lsty = E

n
∑

i

k(φi(x
s ∗ms),φi(x

′ ∗ms)), (8)

where k denotes a kernel function, and φ is an image feature
extractor. A linear kernel function is employed in this study,
as it gives a decent performance and requires less computation
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TABLE 1 | Dataset used in the experiment.

Original data
Augmented data

All Testing data Training data

Type Images Masks Images Masks Images Masks Images Masks

Healthy 314 358 0 0 0 0 0 0

Powdery 170 185 71 73 106 112 314 358

Canker 298 309 119 122 185 187 314 358

Leaf mold 166 198 74 78 105 120 314 358

ToCV 172 227 81 89 115 138 314 358

Mag Def 138 152 57 59 86 93 314 358

All 999 1,071 402 421 597 650 1,570 1,790

It includes healthy tomato leaves and five kinds of diseases of abnormalities. To do the tasks (image classification, object detection, and instance segmentation), the original data are

split into two parts according to the number of masks, 60% training and 40% as testing. The healthy images are only used to do image translation.

FIGURE 4 | Data utilization process. The originally collected data are split into

testing and training data, 0.4 and 0.6, respectively. The training data is firstly

adopted to train our SCIT model that then generates the augmented data.

Next, the training data along with the augmented data are leveraged to train

the task model (image classification, object detection, or instance

segmentation). The dotted lines suggest the data augmentation process. The

SCIT model is one of our main contributions, which introduces new variations

for the original data and, thus, encourages the task model to have better

performance on the testing data.

(Li et al., 2017). We apply a pretrained VGG-19 network as the
feature extractor without finetuning. Thus, φi means a layer in
VGG-19, which is similar to the literature. In our experiments,
we use relu1_1, relu2_1, relu3_1, relu4_1, and relu5_1 layers with
equal weights and, thus, n = 5. Intuitively, the style loss pushes
the two images to share the same feature distribution. Specifically,
the linear kernel function-based loss encourages them to have
the same sample mean in feature distribution space. We refer
to Li et al. (2017) to check the detail about the style loss and its
related kernel functions. The deep learning-based style loss with
a linear kernel function is adopted in our experiment, but other
methods, such as different kernel functions and new style loss are
theoretically possible.

To ease the training of generator model G, identity loss
and cycle-consistency loss are leveraged in our experiments,
as shown in Figure 2B (Zhu et al., 2017). To describe clearly
the cycle-consistency loss, we use subscript with S and T to

denote the source domain and target domain. For instance, GS

means the generator which aims to translate an image into the
source domain while GT denotes the generator which aims to
translate an image into the target domain. Identity loss, defined
in Equation 9, comes from that when one instance in the target
domain is given to generator GT as input, the generator needs
to output the same as its input without any change. Equation 10
shows the way to calculate the cycle-consistent loss. When we
translate an image in the source domain into the target domain
and translate the result back into the source domain, we want to
get the same result as the original input.

Lide = E||GS(x
t ,mt)− xt||1 + E||GT(x

s,ms)− xs||1. (9)

Lcyc=E||GS(GT(x
s,ms),ms)−xs||1+E||GT(GS(x

t ,mt),mt)−xt||1.
(10)

In the end, ourmodel is trained with four loss functions described
before. Mathematically, Equation 11 shows the sum of the four
losses, where λ∗ balances each loss.

Lfull = LGAN + λstyLsty + λideLide + λcycLcyc. (11)

4. EXPERIMENTS

4.1. Dataset and Implementation Details
Dataset. We aim to recognize tomato diseases among different
farms and collect data in real farms with many variations, such as
the type of tomato, the distance between the camera and tomato
leaf, weather, and illumination. Figure 3 gives examples of the
collected images. A total of 1,258 images of tomato leaves are
collected, called original data, which covers five types of disease
and healthy leaves. Table 1 displays the number of images for
each class. As shown in Figure 4, the original data are first split
into 40% testing and 60% training data, respectively. We adopt
the training data to train data augmentation models and utilize
all healthy leaves images as testing to get the augmented data for
the other five diseases. Table 1 shows the number of augmented
data for each class. Since we are not interested in healthy leaves,
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TABLE 2 | The architecture details adopted in our algorithm.

Network Input size Operation Normalization Active function

EI (256, 256, 3) Conv7-C64-S1-P3 InstNorm ReLU

(256, 256, 64) Conv3-C128-S2-P1 InstNorm ReLU

(128, 128, 128) Conv3-C256-S2-P1 InstNorm ReLU

(64, 64, 256) Residual block * 9

EM (256, 256, 3) Conv7-C64-S1-P3 InstNorm ReLU

(256, 256, 64) Conv3-C128-S2-P1 InstNorm ReLU

(128, 128, 128) Conv3-C256-S2-P1 InstNorm ReLU

Dec (64, 64, 512) Conv1-C256-S1-P1 InstNorm ReLU

(64, 64, 256) DeConv3-C128-S2-P1 InstNorm ReLU

(128, 128, 128) DeConv3-C64-S2-P1 InstNorm ReLU

(256, 256, 64) Conv7-C3-S1-P0 InstNorm Tanh

Dis (256, 256, 3) Conv4-C64-S2-P1 InstNorm LeakyReLU

(128, 128, 64) Conv4-C128-S2-P1 InstNorm LeakyReLU

(64, 64, 128) Conv4-C256-S2-P1 InstNorm LeakyReLU

(32, 32, 256) Conv4-C512-S1-P1 InstNorm LeakyReLU

(31, 31, 256) Conv4-C1-S1-P1 InstNorm Sigmoid

The input size is height, width, and channel. In the operation, Convk is a convolution layer with kernel size as k, DeConv is the deconvolution layer. Ck, Sk, and Pk denote the number of

channels, stride, and padding, respectively. Instance normalization (InstNorm) is used. We utilize nine residual blocks (He et al., 2016) to extract necessary information from the image

while no residual block is used in the mask encoder as the mask is much simpler than the image.

TABLE 3 | The impact of λsty on FIDs. For each λsty , we execute five times and report the mean and SD.

λsty = 0 λsty = 0.5 λsty = 1 λsty = 2 λsty = 4

Powdery 70.3± 1.35 60.2± 1.41 63.0± 1.40 65.7± 0.60 67.3± 0.84

Canker 97.5± 2.36 93.4± 2.90 93.5± 1.73 98.0± 2.81 99.3± 1.93

LMold 97.9± 3.09 98.2± 2.97 100.8± 2.34 103.1± 3.32 112.6± 5.14

ToCV 79.6± 5.95 72.7± 6.68 75.7± 5.35 86.6± 3.52 93.0± 2.14

MagDef 83.2± 4.10 83.1± 1.71 85.1± 1.77 90.2± 2.83 89.5± 3.12

we do not do data augmentation for the healthy class. A total of
314 generated images and 358 instances are generated for each
disease class. Finally, the augmented data and the training data
are leveraged to train task models (classification, object detection,
and instance segmentation). While object detection and instance
segmentation can give more than one label or one instance to
one image, image classification requires one holistic label for one
image. To ease image classification, we crop the original image to
get a single leaf in one image.

Implementation details. The original training dataset is
employed to train our data augmentation model. Meanwhile,
basic image manipulation is adopted to enlarge the original data
since the collected data are not enough to train the SCIT model.
Specifically, we use three times randombrightening or darkening,
and three times random cropping. Hence, the training data are
enlarged to six times in total. During the training process of our
data augmentation model, random flip in horizontal and vertical
are employed and every image is resized to 256 in both height and
width. Each type of disease employs one specific SCIT model.

We use Adam optimizer to train our model for 100 epochs
with a learning rate of 0.0002. The batch size is set as 6

with three TITAN V GPUs (12 GB memory). After training,
the trained models are adopted to generate disease images,
which are later taken as augmented data to train task models.
Every training process for each class and λsty roughly spends
5 h. Therefore, all translation models require about 26 days (5
translation models for each class and 5 λsty settings, each setting
is executed 5 times.)

Architectures. The proposed SCIT model consists of three
sub-models. First, the generator consists of an image encoder,
mask encoder, and decoder. The image encoder, aiming to
extract necessary information from the input images, leverages
several stacks of convolution-ReLU-BatchNorm layers and nine
residual blocks, while the mask encoder only adopts the
same number of stacks of convolution-ReLU-BatchNorm layers
without residual blocks since the mask is much simpler than
images. In contrast, the decoder, aiming to produce bigger
size images from the smaller size of the feature map, employs
several stacks of deconvolution-ReLU-BatchNorm. Second,
the discriminator also applies several stacks of convolution-
LeakyReLU-BatchNorm. The details of our generator and
discriminator are referred to in Table 2 and our codes will
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FIGURE 5 | Some generated images for image translation with different λsty .

TABLE 4 | Ablation study of λsty in image classification.

VGG11 ResNet18 DenseNet121 MobileNet v2 ShuffleNet v2 MNASNet

λsty = 0 89.04 ± 2.12 92.68 ± 0.63 96.01 ± 0.32 94.14 ± 0.23 79.56 ± 0.42 67.65 ± 7.01

λsty = 0.5 88.03 ± 3.75 94.24 ± 0.55 96.25 ± 0.46 95.56 ± 0.32 80.37 ± 0.19 65.08 ± 6.65

λsty = 1 93.82 ± 2.34 94.10 ± 0.64 96.24 ± 0.48 96.20 ± 0.28 86.46 ± 0.69 73.11 ± 4.52

λsty = 2 94.36 ± 2.63 94.61 ± 0.38 96.48 ± 0.44 96.28 ± 0.32 87.44 ± 0.69 69.45 ± 7.48

λsty = 4 86.17 ± 3.12 93.96 ± 0.76 95.32 ± 0.31 95.57 ± 0.49 82.35 ± 0.79 64.52 ± 6.79

The red font shows the best accuracy for each classification model.

be public soon1. In terms of the style computation model, a
pretrained VGG19 model2 is leveraged.

4.2. Ablation Study
FIDs and Visualization. In this subsection, we analyze the
impact of the style-consistent loss by changing the value of λsty
in Equation 11. We use Fréchet inception distance (FID) (Heusel
et al., 2017) to show its impact, one of the popular methods
to access the quality of the generated images by computing the
distance between two images distributions, real images, and the

1https://github.com/xml94/SCIT
2https://pytorch.org/vision/stable/models.html#torchvision.models.vgg19

translated images. In general, the lower the FID value, the closer
distance between the distributions. We point out that FID is
not suitable to access the generated images by our SCIT model
since we assume that the real images in the target domain are
not available. But the FID can be used to show the tendency
between our generated images and all available data that we have
when λsty changes.

To compute the FID, all original images including training and
testing images are leveraged as real images while the generated
images are taken as fake images. We borrow code3 to compute

3https://github.com/mseitzer/pytorch-fid
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TABLE 5 | Verification of SCIT.

Training data ResNet18 DenseNet121 MobileNet v2

To 86.94 ± 0.69 91.21 ± 0.72 85.27 ± 0.47

Tt 78.24 ± 1.05 81.38 ± 1.06 79.90 ± 1.51

To + Tm 90.01 ± 0.42 94.06 ± 0.41 92.37 ± 0.54

To + Tm + Tt 94.61 ± 0.38 96.48 ± 0.44 96.28 ± 0.32

We show the performance of three popular classifier models according to differently

combined training datasets with averages and standard deviations. To denotes the

original training dataset, Tm denotes the augmented training data by basic image

manipulation, and Tt denotes the training data by our image translation method.

FIGURE 6 | Some translation failure examples from our algorithm.

FID. Table 3 shows the FID values for each class, λsty ranging
from 0 to 4. From the table, we observe that FID tends to
be larger as λsty ranges from 0.5 to 4, which proves that the
generated images are farther from the real images when we try
to keep the style in the image translation process. Moreover, the
performance of λsty = 0 differs in different classes. It shows
lower FIDs in LMold and MagDef but higher FIDs in translated
powdery mildew.

Figure 5 shows the generated image with different λsty. The
visual comparisons in the figure comply with the FID values in
Table 3. First, the generated images with λsty = 0 are clear to
show the corresponding class, but the style is far from the input
images. Further, the style is better to be maintained when λsty
becomes larger while the abnormal severity tends to be less. We

argue that the variation of the severity contributes to improving
task performance. As the collected data are limited to variations,
the FID in big λsty tends to be worst for some classes, such as
in Lmold and MagDef. But when the variations in the collected
data are bigger, such as powdery mildew, our SCIT model tends
to be better.

Image classification. Except for FID and visualization, we
conduct the ablation study on the image classification task. To
compare the accuracy in image classification, three categories of
classification models are utilized for our tomato leaves. VGG,
ResNet, and DenseNet are often deployed in applications with
big scale datasets, while MobileNet and ShuffleNet aim to save
computations for mobile devices. MNASNet is designed to find
the optimal model setting. As our dataset is not big, smaller
architecture is the default for all models. On the other hand,
since our main objective is data augmentation, we use an open
code4 to produce it. For each model, we execute five times
independently for each augmented data. All models are trained
for 400 epochs and the best performance is recorded. The initial
learning rate is set as 0.02 and decreased to 0.01 and 0.005
at epoch 50 and 200 respectively. SGD is the optimizer with
0.9 as the momentum and batch size is 64 using one GPU.
Table 4 displays the comparison results. The table shows that
the performance varies with different λsty, λsty = 2 showing its
superiority to other values except in MNASNet, and controlling
the style tends to be better than without controlling the style, such
as λsty = 0 resulting in less accuracy than other values of λsty with
model ResNet, DenseNet, MobileNet, and ShuffleNet. It validates
that our model, style controlling, is reliable to dedicate the
classification in the applications with a small dataset. Moreover,
the classification accuracy changes with different models. We
argue that it is related to the model itself. As ResNet has
fewer parameters and more powerful architecture than VGG,
the performances in ResNet are better than VGG. DenseNet, an
advanced version of ResNet, also obtains decent results. While
MobileNet receives competing results, MNASNet behaves much
lower than other methods. We guess that the optimal model
setting of MNASNet learned from other datasets is not suitable
for our tomato dataset.

Verification of SCIT. As shown in Table 5, performance
is compared using different training datasets in three popular
networks for image classification to check how the augmented
data by our SCIT model work as training data. For this
experiment, we use the combinations of three datasets as training
datasets. Let To denote the original training data, Tt denote the
training data by our image translation SCIT method, and Tm

denote the augmented training data by basic imagemanipulation.
Tt individually shows potential with an average accuracy of 79.84
on the testing data, even though its performance is worse than
To. One of the reasons is that there are some translation failures
in our SCIT model, as shown in Figure 6, which is common
with deep learning-based image generation, such as BigGAN
(Brock et al., 2018). However, Tt coupled with To, Tm improves
performance averagely by 3.58% over three classification models.

4https://github.com/bearpaw/pytorch-classification
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TABLE 6 | Comparison results to other methods to perform image classification for tomato leaves with multiple deep learning-based models.

Training data Accuracy Precision F1 Score Specificity

VGG11

Baseline 78.72 ± 3.78 98.95 ± 0.12 86.31 ± 5.21 87.42 ± 1.51

DCGAN 78.34 ± 6.36 98.30 ± 0.78 86.30 ± 4.67 87.46 ± 1.31

LeafGAN 87.73 ± 2.47 99.06 ± 0.05 94.03 ± 1.37 89.28 ± 0.46

CycleGAN* 89.04 ± 2.12 99.21 ± 0.33 95.37 ± 1.55 89.81 ± 0.55

Ours 94.36 ± 2.63 99.46 ± 0.13 96.50 ± 2.03 90.14 ± 0.51

ResNet18

Baseline 86.75 ± 0.81 99.07 ± 0.43 92.06 ± 0.61 88.80 ± 0.83

DCGAN 82.52 ± 0.99 98.77 ± 0.29 89.44 ± 0.74 88.17 ± 0.59

LeafGAN 90.36 ± 0.82 99.27 ± 0.31 94.49 ± 0.56 89.93 ± 0.39

CycleGAN* 92.68 ± 0.63 99.35 ± 0.12 95.50 ± 0.33 90.33 ± 0.22

Ours 94.61 ± 0.38 99.68 ± 0.07 96.59 ± 0.12 90.65 ± 0.19

DenseNet121

Baseline 90.97 ± 0.40 99.59 ± 0.27 94.94 ± 0.27 90.16 ± 0.40

DCGAN 90.45 ± 1.28 99.63 ± 0.22 94.52 ± 0.74 89.97 ± 0.39

LeafGAN 92.02 ± 0.75 99.77 ± 0.15 95.57 ± 0.59 90.37 ± 0.50

CycleGAN* 96.01 ± 0.32 99.44 ± 0.22 97.14 ± 0.22 90.16 ± 0.62

Ours 96.48 ± 0.44 99.61 ± 0.14 97.87 ± 0.40 90.76 ± 0.31

MobileNet v2

Baseline 84.37 ± 2.10 99.05 ± 0.35 90.79 ± 1.34 88.35 ± 0.90

DCGAN 82.80 ± 1.69 98.94 ± 0.37 89.68 ± 1.12 88.33 ± 0.46

LeafGAN 91.31 ± 0.53 99.31 ± 0.19 95.17 ± 0.30 89.94 ± 0.39

CycleGAN* 94.14 ± 0.23 99.44 ± 0.39 96.59 ± 0.77 90.22 ± 0.42

Ours 96.28 ± 0.32 99.36 ± 0.22 97.53 ± 0.30 90.10 ± 0.52

ShuffleNet v2

Baseline 71.82 ± 0.66 98.98 ± 0.35 84.76 ± 0.31 88.12 ± 0.38

DCGAN 78.05 ± 1.82 98.80 ± 0.18 86.43 ± 1.10 87.47 ± 0.46

LeafGAN 77.84 ± 2.26 99.15 ± 0.31 88.89 ± 1.45 88.97 ± 0.70

CycleGAN* 79.56 ± 0.42 99.12 ± 0.11 89.54 ± 0.48 89.92 ± 0.17

Ours 87.44 ± 0.69 99.15 ± 0.46 92.43 ± 0.87 89.76 ± 0.69

The boldfaces show the best average evaluation metric for each classification model.

Hence, we conclude that our SCIT model can ease downstream
applications to be a data augmentation method.

4.3. Image Classification
Compared algorithms. To validate our algorithm, we compare
it to other image generation methods using GANs, as GANs have
good reputations to produce clear images. The followingmethods
are compared:

• Baseline. We adopt the image manipulation-based data
augmentation with the original training dataset. We argue
that our data augmentation is complementary to other data
augmentationmethods. In other words, taking more advanced
data augmentationmethods such as mixup (Zhang et al., 2018)
and cut and paste (Dwibedi et al., 2017) could be a stronger
baseline for our future study.

• DCGAN (Radford et al., 2015). DCGAN-based (Pandian
et al., 2019) or label-condition GANs (Valerio Giuffrida et al.,
2017; Pandian et al., 2019; Bi and Hu, 2020; Abbas et al.,
2021) are GAN-based algorithms to do data augmentation
in which the generator produces images from random noises
or given labels. We adopt the original DCGAN to do data
augmentation and to produce a higher resolution, two more
upsampling layers and convolution layers are added to the
original DCGAN.

• LeafGAN (Cap et al., 2020). LeafGAN aims to keep the
background, one of the challenges of CycleGAN, and
introduces an attention module to distinguish the foreground
and background. Performance in the cucumber dataset shows
its superiority over than original CycleGAN.

• CycleGAN*. To get a stronger comparison, we updated
CycleGAN. CycleGAN* directly reuses the background from
the input image with a mask as input. We emphasize that
CycleGAN* is the same as the LeafGAN when the mask is
given. Simultaneously, our algorithm degrades to CycleGAN*
without keeping the style of the input image during the image
translation process.

Quantitive comparisons. For each method, five independent
training processes are performed. Except for the baseline,
all methods are utilized to generate images with resolution
256 in width and height. The number of generated images
is also the same except for the baseline. Table 6 shows the
performances of image classification for tomato leaves with
different deep-learning models. From the table, CycleGAN*
and our model can significantly improve the classification
accuracy. Simultaneously, our data augmentation method
achieves the best accuracy and F1 score overall models,
which suggests that choosing a good data augmentation
method is the way to obtain a better result. In contrast,
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FIGURE 7 | Qualitative results of different algorithms to do image translation for image classification.

TABLE 7 | Performance of object detection and instance segmentation for tomato leaves in multiple deep learning-based models.

Baseline CycleGAN* Ours

mAP AP50 mAP AP50 mAP AP50

FasterRCNN 49.5 ± 0.007 76.8 ± 0.010 50.7 ± 0.015 77.2 ± 0.012 51.5 ± 0.019 77.4 ± 0.015

MaskRCNN 52.4 ± 0.014 79.6 ± 0.015 55.6 ± 0.010 80.4 ± 0.011 56.6 ± 0.005 80.5 ± 0.007

PointRend 51.7 ± 0.009 79.4 ± 0.006 52.8 ± 0.007 80.9 ± 0.011 53.4 ± 0.007 81.1 ± 0.011

YOLO-v3 29.5 ± 0.007 58.7 ± 0.013 31.2 ± 0.015 63.2 ± 0.025 32.6 ± 0.013 65.6 ± 0.024

MaskRCNN 62.6 ± 0.015 80.1 ± 0.009 66.6 ± 0.006 80.0 ± 0.012 67.1 ± 0.010 79.9 ± 0.007

PointRend 56.1 ± 0.023 80.6 ± 0.007 67.6 ± 0.007 81.0 ± 0.010 68.3 ± 0.006 81.3 ± 0.008

Four models have been used to do object detection, while two to do instance segmentation. Red font is utilized to show the best average mAP for each model while blue is adopted to

show the best average AP50. In general, higher mAP and higher AP50 are better.

DCGAN and LeafGAN can not always boost performance.
Moreover, each data augmentation method shows the
best performance with DenseNet and the worst with
ShuffleNet, which suggests that the classification model is

also essential and we should choose a better model in our
own applications.
Qualitative results. Figure 7 shows several generated samples
from each algorithm. First, DCGAN can learn similar patterns
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FIGURE 8 | Some generated samples to do data augmentation for object detection and instance segmentation in which one image could include more than one

leaves but we can just translate the desired one and maintain the others.

such as the white part for the powdery and yellow part for
LMold, but produces poor images and, in ToCV, fails. The
visual results verify its impact in Table 6. Moreover, LeafGAN
gives plausible images but its attention module is hard to find
decent objects to be translated. Hence, it tends to change the
background and fails to do image translation such as the canker
image. In contrast, CycleGAN*, an advanced LeafGAN with
a perfect attention module, achieves much better results and
hence boosts the classification performances. Furthermore, our
method, adopting a style loss to maintain the style during the
image translation and hence taking the variations from the source
domain to the target domain, obtains decent visual images.

4.4. Object Detection and Instance
Segmentation
As discussed before, our algorithm reuses the annotation for
object detection and instance segmentation. As DCGAN is not
image translation-based and LeafGAN can not maintain the
annotations, we compare our algorithm to CycleGAN* in this
subsection. To do object detection and instance segmentation,

mmDetection5 is borrowed as it supports many models. For
object detection, we leveraged FasterRCNN, MaskRCNN, and
PointRend. In a different paradigm, YOLO aiming to achieve
high-speed object detection is also used. Except for object
detection, MaskRCNN and PointRend are deployed to do
instance segmentation. As λsty = 2 shows its superiority in
classification, we use it as the default value and compare it to
baseline and CycleGAN*. For each model, we also execute it five
times separately and compute the average performance.

Table 7 displays the comparison. We observe that while
the CycleGAN* improves the performance, our method gives
more improvements. Except for AP50 in YOLO-v3, our model
achieves the best mAP and AP50. Besides, we find that
FasterRCNN, MaskRCNN, and PointRend obtain similar results
and better results than YOLO-v3 to do object detection. Figure 8
displays some generated samples as data augmentation for
object detection and instance segmentation, in which one image
includes more than one healthy leaf but we choose one of them
to do data augmentation with necessary annotations as output.

5https://github.com/open-mmlab/mmdetection
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FIGURE 9 | Result samples of instance segmentation in different diseases

with our SCIT model as data augmentation model and λsty = 2. The predicted

results are decent compared to the ground truth. Zoom in to see the bounding

boxes.

Figure 9 illustrates several samples of instance segmentation
results using our SCIT model as a data augmentation method. As
shown in the figure, the predicted results are highly competent to
the ground truth.

5. CONCLUSION AND FUTURE WORK

In this study, we introduced a new data augmentation method
to improve the abnormality recognition for tomato leaves,
termed SCIT which aims to keep the image style from the
source image when doing image translation. Armed with
this data augmentation paradigm, the data variation in the
variation-minority classes is enlarged by the variation-majority
class. Simultaneously, we extended the data augmentation
from image classification to object detection and instance
segmentation which is more competing to do downstream
applications. Experimental results validated that the proposed
data augmentationmethod outperforms the baseline and popular
methods, in image classification, object detection, and instance

segmentation. Although our algorithm was verified to be useful,
our future study includes how to integrate different types of
data augmentation methods to facilitate the data-hungry deep
learningmethods, such as advanced imagemanipulations (mixup
Zhang et al., 2018 and cut and paste Dwibedi et al., 2017).
We hope that our study can stimulate the community to use
a more powerful data augmentation method to improve the
recognition performance for diseases or other abnormalities
in the agricultural field where data are hard or expensive
to collect.
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