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Abstract

In this work, we propose “global style tokens”

(GSTs), a bank of embeddings that are jointly

trained within Tacotron, a state-of-the-art end-to-

end speech synthesis system. The embeddings

are trained with no explicit labels, yet learn to

model a large range of acoustic expressiveness.

GSTs lead to a rich set of significant results. The

soft interpretable “labels” they generate can be

used to control synthesis in novel ways, such as

varying speed and speaking style – independently

of the text content. They can also be used for

style transfer, replicating the speaking style of a

single audio clip across an entire long-form text

corpus. When trained on noisy, unlabeled found

data, GSTs learn to factorize noise and speaker

identity, providing a path towards highly scalable

but robust speech synthesis.

1. Introduction

The past few years have seen exciting developments in the

use of deep neural networks to synthesize natural-sounding

human speech (Zen et al., 2016; van den Oord et al., 2016;

Wang et al., 2017a; Arik et al., 2017; Taigman et al., 2017;

Shen et al., 2017). As text-to-speech (TTS) models have

rapidly improved, there is a growing opportunity for a num-

ber of applications, such as audiobook narration, news read-

ers, and conversational assistants. Neural models show the

potential to robustly synthesize expressive long-form speech,

and yet research in this area is still in its infancy.

To deliver true human-like speech, a TTS system must learn

to model prosody. Prosody is the confluence of a number

of phenomena in speech, such as paralinguistic informa-

tion, intonation, stress, and style. In this work we focus
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on style modeling, the goal of which is to provide models

the capability to choose a speaking style appropriate for

the given context. While difficult to define precisely, style

contains rich information, such as intention and emotion,

and influences the speaker’s choice of intonation and flow.

Proper stylistic rendering affects overall perception (see e.g.

“affective prosody” in (Taylor, 2009)), which is important

for applications such as audiobooks and newsreaders.

Style modeling presents several challenges. First, there is no

objective measure of “correct” prosodic style, making both

modeling and evaluation difficult. Acquiring annotations for

large datasets can be costly and similarly problematic, since

human raters often disagree. Second, the high dynamic

range in expressive voices is difficult to model. Many TTS

models, including recent end-to-end systems, only learn an

averaged prosodic distribution over their input data, gen-

erating less expressive speech – especially for long-form

phrases. Furthermore, they often lack the ability to control

the expression with which speech is synthesized.

This work1 attempts to address the above issues by introduc-

ing “global style tokens” (GSTs) to Tacotron (Wang et al.,

2017a; Shen et al., 2017), a state-of-the-art end-to-end TTS

model. GSTs are trained without any prosodic labels, and

yet uncover a large range of expressive styles. The internal

architecture itself produces soft interpretable “labels” that

can be used to perform various style control and transfer

tasks, leading to significant improvements for expressive

long-form synthesis. GSTs can be directly applied to noisy,

unlabeled found data, providing a path towards highly scal-

able but robust speech synthesis.

2. Model Architecture

Our model is based on Tacotron (Wang et al., 2017a;

Shen et al., 2017), a sequence-to-sequence (seq2seq) model

that predicts mel spectrograms directly from grapheme or

phoneme inputs. These mel spectrograms are converted

to waveforms either by a low-resource inversion algorithm

1Sound demos can be found at https://google.

github.io/tacotron/publications/global_

style_tokens/

https://google.github.io/tacotron/publications/global_style_tokens/
https://google.github.io/tacotron/publications/global_style_tokens/
https://google.github.io/tacotron/publications/global_style_tokens/
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Figure 1. Model diagram. During training, the log-mel spectrogram of the training target is fed to the reference encoder followed by a

style token layer. The resulting style embedding is used to condition the Tacotron text encoder states. During inference, we can feed

an arbitrary reference signal to synthesize text with its speaking style. Alternatively, we can remove the reference encoder and directly

control synthesis using the learned interpretable tokens.

(Griffin & Lim, 1984) or a neural vocoder such as WaveNet

(van den Oord et al., 2016). We point out that, for Tacotron,

the choice of vocoder does not affect prosody, which is

modeled by the seq2seq model.

Our proposed GST model, illustrated in Figure 1, consists

of a reference encoder, style attention, style embedding, and

sequence-to-sequence (Tacotron) model.

2.1. Training

During training, information flows through the model as

follows:

• The reference encoder, proposed in (Skerry-Ryan

et al., 2018), compresses the prosody of a variable-

length audio signal into a fixed-length vector, which

we call the reference embedding. During training, the

reference signal is the ground-truth audio.

• The reference embedding is passed to a style token

layer, where it is used as the query vector to a content-

based attention module. Here, attention is not used

to learn an alignment. Instead, it learns a similarity

measure between the reference embedding and each

token in a bank of trainable embeddings. This set of

embeddings, which we alternately call global style

tokens, GSTs, or token embeddings, are shared across

all training examples.

• The attention module outputs a set of combination

weights that represent the contribution of each style to-

ken to the encoded reference embedding. The weighted

sum of the GSTs, which we call the style embedding,

is passed to the text encoder for conditioning at every

timestep.

• The style token layer weights (including token em-

beddings) are jointly trained with the rest of the

model, driven only by the reconstruction loss from

the Tacotron decoder. GSTs thus do not require any

explicit style or prosody labels.

2.2. Inference

The GST architecture is designed for powerful and flexible

control at inference time. In this mode, information can flow

through the model in one of two ways:

1. We can directly condition the text encoder outputs

on certain tokens. This allows for style control and

manipulation without a reference signal, or,

2. We can feed a different audio signal (whose transcript

does not need to match the text to be synthesized) to

achieve style transfer.

These will be discussed in more detail in Section 6.

3. Model Details

3.1. Tacotron Architecture

For our baseline and GST-augmented Tacotron systems, we

use the same architecture and hyperparameters as (Wang

et al., 2017a) except for a few details. We use phoneme

inputs to speed up training, and slightly change the decoder,

replacing GRU cells with two layers of 256-cell LSTMs;

these are regularized using zoneout (Krueger et al., 2017)

with probability 0.1. The decoder outputs 80-channel log-

mel spectrogram energies, two frames at a time, which are

run through a dilated convolution network that outputs linear

spectrograms. We run these through Griffin-Lim for fast

waveform reconstruction. It is straightforward to replace

Griffin-Lim by a WaveNet vocoder to improve the audio

fidelity (Shen et al., 2017).
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The baseline model achieves a 4.0 mean opinion score

(MOS), outperforming the 3.82 MOS reported in (Wang

et al., 2017a) on the same evaluation set. It is thus a very

strong baseline.

3.2. Style Token Architecture

3.2.1. REFERENCE ENCODER

The reference encoder is made up of a convolutional stack,

followed by an RNN. It takes as input a log-mel spectrogram,

which is first passed to a stack of six 2-D convolutional lay-

ers with 3×3 kernel, 2×2 stride, batch normalization and

ReLU activation function. We use 32, 32, 64, 64, 128 and

128 output channels for the 6 convolutional layers, respec-

tively. The resulting output tensor is then shaped back to

3 dimensions (preserving the output time resolution) and

fed to a single-layer 128-unit unidirectional GRU. The last

GRU state serves as the reference embedding, which is then

fed as input to the style token layer.

3.2.2. STYLE TOKEN LAYER

The style token layer is made up of a bank of trainable em-

beddings and an attention module. Unless stated otherwise,

our experiments use 10 tokens with dimension 256 (to match

that of each text encoder state); we found this sufficient to

represent a small but rich variety of prosodic dimensions in

the training data. Since each Tacotron text encoder state is

the output of a (tanh activation) GRU, we also pass raw GST

values through a tanh before computing attention scores.

We found this led to greater token diversity.

While we use content-based additive attention as a similarity

measure, it is trivial to substitute alternatives. Dot-product

attention, location-based attention, or even combinations

of attention mechanisms may learn different types of style

tokens. In our experiments, we found that using multi-head

attention (Vaswani et al., 2017) significantly improves style

transfer performance, and is more effective than simply

increasing the number of tokens. When using h attention

heads, we set the token embedding size to be 256/h and

concatenate the attention outputs, such that the final style

embedding size remains the same. Unlike in (Vaswani et al.,

2017), we use MLP-based attention instead of dot-product

attention for each attention head in our experiments.

We experimented with different combinations of condition-

ing sites; the best-performing configuration simply adds the

replicated style embedding to every text encoder state.

4. Model Interpretation

4.1. End-to-End Clustering/Quantization

Intuitively, the GST model can be thought of as an end-to-

end method for decomposing the reference embedding into

a set of basis vectors or soft clusters – i.e. the style tokens.

As mentioned above, the contribution of each style token is

represented by an attention score, but can be replaced with

any desired similarity measure. The GST layer is concep-

tually somewhat similar to the VQ-VAE encoder (van den

Oord et al., 2017), in that it learns a quantized representation

of its input. We also experimented with replacing the GST

layer with a discrete, VQ-like lookup table layer, but have

not seen comparable results yet.

This decomposition concept can also be generalized to other

models, e.g. the factorized variational latent model in (Hsu

et al., 2017), which exploits the multi-scale nature of a

speech signal by explicitly formulating it within a factorized

hierarchical graphical model. GSTs could potentially reduce

the dimension of the sequence-dependent prior embeddings;

rather than storing one embedding per sequence, the model

would simply represent each prior embedding as a weighted

combination of GSTs.

4.2. Memory-Augmented Neural Network

GST embeddings can also be viewed as an external memory

that stores style information extracted from training data.

The reference signal guides memory writes at training time,

and memory reads at inference time. We may leverage

recent advances from memory-augmented networks (Graves

et al., 2014) to further improve GST learning.

5. Related Work

Prosody and speaking style models have been studied for

decades in the TTS community. However, most existing

models require explicit labels, such as emotion or speaker

codes (Luong et al., 2017). While a small amount of re-

search has explored automatic labeling, learning is still su-

pervised, requiring expensive annotations for model training.

AuToBI, for example, (Rosenberg, 2010) aims to produce

ToBI (Silverman et al., 1992) labels that can be used by

other TTS models. However, AuToBI still needs annota-

tions for training, and ToBI, as a hand-designed label system,

is known to have limited performance (Wightman, 2002).

Cluster-based modeling (Eyben et al., 2012; Jauk, 2017) is

related to our work. Jauk (2017), for example, uses i-vectors

(Dehak et al., 2011) and other acoustic features to cluster the

training set and train models in different partitions. These

methods rely on a complex set of hand-designed features,

however, and require training a neutral voice model in a

separate step.

As mentioned previously, (Skerry-Ryan et al., 2018) in-

troduces the reference embedding used in this work, and

shows that it can be used to transfer prosody from a refer-

ence signal. This embedding does not enable interpretable

style control, however, and we show in Section 6 that it
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generalizes poorly on some style transfer tasks.

Our work substantially extends the research in (Wang et al.,

2017b), but there are several fundamental differences. First,

(Wang et al., 2017b) uses a single frame from the Tacotron

decoder as the query to learn tokens. It thus only models

“local” variations that primarily correspond to F0. GSTs

instead use a summary of the entire reference signal as

input, and are thus able to uncover both local and global

attributes that are essential for expressive synthesis. Second,

in contrast to the decoder-side conditioning in (Wang et al.,

2017b), the design of GSTs allows textual input to be condi-

tioned on a disentangled style embedding. We show crucial

implications of this for style control and transfer in Section

6.2. Finally, GSTs can be applied to both clean recordings

and noisy found data. We discuss this and its significance in

detail in Section 7.

6. Experiments: Style Control and Transfer

In this section, we measure the ability of GSTs to control

and transfer speaking style, using the inference methods

from Section 2.2.

We train models using 147 hours of American English audio-

book data. These are read by the 2013 Blizzard Challenge

speaker, Catherine Byers, in an animated and emotive story-

telling style. Some books contain very expressive character

voices with high dynamic range, which are challenging to

model.

As is common for generative models, objective metrics often

do not correlate well with perception (Theis et al., 2015).

While we use visualizations for some experiments below, we

strongly encourage readers to listen to the samples provided

on our demo page.

6.1. Style Control

The experiments in this section use single-head GST atten-

tion.

6.1.1. STYLE SELECTION

The simplest method of control is conditioning the model on

an individual token. At inference time, we simply replace

the style embedding with a specific, optionally scaled token.

Conditioning in this manner has several benefits. First, it

allows us to examine which style attributes each token en-

codes. Empirically, we find that each token can represent

not just pitch and intensity, but also a variety of other at-

tributes, such as speaking rate and emotion. This can be

seen in Figure 2, which shows two sentences synthesized

with three different style tokens (scale=0.3) from a 10-token

GST model. The plots show that F0 and C0 (energy) curves

are quite different across style tokens. However, the F0
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Figure 2. F0 and C0 (log scale) of two different sentences, synthe-

sized using three tokens. Independent of the text content, the same

token exhibits the same F0/C0 trend relative to the other tokens.

and C0 contours generated by each token follow a clear

relative trend, despite the fact that input sentences A and

B are completely different. Indeed, perceptually, the red

token corresponds to a lower-pitch voice, the green token to

a decreasing pitch, and the blue token to a faster speaking

rate (note the total audio duration in both plots).

Single-token conditioning also reveals that not all tokens

capture single attributes: while one token may learn to

represent speaking rate, others may learn a mixture of at-

tributes that reflect stylistic co-occurrence in the training

data (a low-pitched token, for example, can also encode a

slower speaking rate). Encouraging more independent style

attribute learning is an important focus of ongoing work.

In addition to providing interpretability, style token condi-

tioning can also improve synthesis quality. Consider the

problem of long-form synthesis on training data with lots

of prosodic variation. Many TTS models learn to generate

the “average” prosodic style, which can be problematic for

expressive datasets, since the very variation that character-

izes them is collapsed. This can also lead to undesirable

side effects, such as pitch continuously declining towards

the end of each sentence. We find that conditioning on

“lively”-sounding tokens can address both of these problems,

significantly improving the prosodic variation.

6.1.2. STYLE SCALING

Another method for controlling style token output is via

scaling. We find that multiplying a token embedding by a

scalar value intensifies its style effect. (Note that large scal-

ing values may lead to unintelligible speech, which suggests

future work on improving stability.) This is illustrated in Fig-

ure 3, which shows spectrograms of utterances synthesized

by two different tokens. Perceptually, these tokens encode

https://google.github.io/tacotron/publications/global_style_tokens/
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(a) Token A (speed)
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(b) Token B (animated)

Figure 3. Effect of token scaling. From left to right, we scale the two tokens by -0.3, 0.1, 0.3, 0.5, respectively. Note that the model seems

to exhibit the reverse effect (e.g. fast to slow or animated to calm) with a negative scale, which is never seen during training.

0 50 100 150 200 250

Frame

0

10

20

30

40

50

60

70

C
h
a
n
n
e
l

(a) Raw audio

0 50 100 150 200 250

Frame

0

10

20

30

40

50

60

70

C
h
a
n
n
e
l

(b) Baseline Tacotron

0 50 100 150 200 250

Frame

0

10

20

30

40

50

60

70

C
h
a
n
n
e
l

(c) Direct conditioning

0 50 100 150 200 250

Frame

0

10

20

30

40

50

60

70

C
h
a
n
n
e
l

(d) GST conditioning

Figure 4. Log-mel spectrograms for parallel style transfer.

two different speaking styles: a faster speaking rate (3(a)),

and more animated speech (3(b)). Figure 3(a) shows that

increasing the scaling factor of the faster speaking rate to-

ken causes a gradual compression of the spectrogram in the

time domain. Similarly, Figure 3(b) shows that increasing

the scaling factor of the animated speech token yields com-

mensurate increases in pitch variation. These style scaling

effects hold even for negative values (speaking rate becomes

slower, and speech becomes calmer), despite the fact that the

model only sees positive (softmax) values during training.

6.1.3. STYLE SAMPLING

We can also control synthesis during inference by modi-

fying the attention module weights inside the style token

layer. Since the GST attention produces a set of combination

weights, these may be refined manually to yield a desired

interpolation. We can also use randomly generated softmax

weights to sample the style space. The sampling diversity

can be controlled by tuning the softmax temperature.

6.1.4. TEXT-SIDE STYLE CONTROL/MORPHING

While the same style embedding is added to all text encoder

states during training, this doesn’t need to be the case in

inference mode. As our audio samples demonstrate, this

allows us to do piecewise style control or morphing by

conditioning on one or more tokens for different segments

of input text.

6.2. Style Transfer

Style transfer is an active area of research that aims to syn-

thesize a phrase in the prosodic style of a reference signal

(Wu et al., 2013; Nakashika et al., 2016; Kinnunen et al.,

2017). The property that a GST model can be conditioned

on any convex combination of style tokens lends itself well

to this task; at inference time (method 2 of Section 2.2),

we can simply feed a reference signal to guide the choice

of token combination weights. The experiments below use

4-head GST attention.

6.2.1. PARALLEL STYLE TRANSFER

Figure 4 shows spectrograms for a parallel transfer task,

where the text to synthesize matches the text of the reference

signal. The GST model spectrogram is at the bottom right,

compared to three other baselines: (a) the ground-truth

input signal (i.e. the reference); (b) inference performed

by a baseline Tacotron model (which infers acoustics only

from text); and (c) inference as performed by (Skerry-Ryan

et al., 2018), a Tacotron system which conditions the text

encoder directly on an 128-D reference embedding.

We see that, given only text input, the baseline Tacotron

model does not closely match the prosodic style of the ref-

erence signal. By contrast, the direct conditioning method

of (Skerry-Ryan et al., 2018) results in nearly time-aligned
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(b) Direct conditioning (128-D)
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(c) 256-token GST

Figure 5. Robustness in non-parallel style transfer. Left to right:

attention alignments obtained from feeding three references whose

text lengths are 10, 96, 321 characters, respectively. The target

text length is 258 characters.

fine prosody transfer. The GST model is somewhere in

between: while its output duration and formant transitions

don’t precisely match those of the reference, the overall

spectrotemporal envelopes do. Perceptually, the GST model

resembles the prosodic style of the reference signal, regard-

less of its style, and even when it comes from an unseen

speaker. This also indicates that the model isn’t merely

learning to copy the reference.

6.2.2. NON-PARALLEL STYLE TRANSFER

We next show results for a non-parallel transfer task, in

which a TTS system must synthesize arbitrary text in the

prosodic style of a reference signal. We chose three dif-

ferent reference signals for this task, and tested how well

a GST model replicated each style when synthesizing the

same target phrase. Since long-form synthesis can benefit

significantly from proper stylistic rendering, we used a long

(258-character) target phrase. We chose source phrases of

varying lengths (10, 96, and 321 characters, respectively).

Figure 5 shows alignment matrices for synthesis conditioned

on each source signal.

The top row shows a 10-token GST model. This model

robustly generalizes to all three conditioning inputs, as evi-

denced by the good alignment plots. The bottom row shows

a 256-token GST model exhibiting the same behavior; we

include this model to show that GSTs remain robust even

when the number of tokens (256) is larger than the reference

embedding dimensionality (128).

The middle row shows a model with direct reference em-

bedding conditioning. The attention matrices show that this

Table 1. SxS subjective preference (%) and p-values of GST au-

diobook synthesis against a Tacotron baseline. Each row shows

GST inference conditioned a different reference signal (A and B).

p-values are given for both a 3-point and 7-point rating system.

PREFERENCE (%) P-VALUE

BASE NEUTRAL GST 3-POINT 7-POINT

SIGNAL A 32.9 26.5 40.6 P=0.0552 P=0.0131
SIGNAL B 33.1 21.9 45.0 P=0.0038 P=0.0003

Table 2. Robust MOS as a function of the percentage of interfer-

ence in the training set. The total training set size is the same.

NOISE % BASELINE TACOTRON GST

50% 2.819 ± 0.269 4.080 ± 0.075
75% 1.819 ± 0.227 3.993 ± 0.074
90% 1.609 ± 0.131 4.031 ± 0.082
95% 1.353 ± 0.090 3.997 ± 0.066

model fails when conditioned on the shorter source phrases,

since it tries to squeeze its synthesis into the same time in-

terval as that of the reference. While the model successfully

aligns when conditioned on the longest input, intelligibility

is poor for some words: the per-utterance embedding cap-

tures too much information (such as timing and phonetics)

from the source, hurting generalization.

To evaluate the quality of this method at scale, we ran side-

by-side subjective tests of non-parallel GST style transfer

against a Tacotron baseline. We used an evaluation set of

60 audiobook sentences, including many long phrases. We

generated two sets of GST output by conditioning the model

on two different narrative-style reference signals, unseen

during training. A side-by-side subjective test indicated

that raters preferred both sets of GST synthesis against a

Tacotron baseline, as shown in Table 1.

The performance of GSTs on non-parallel style transfer is

significant, since it allows using a source signal to guide

robust stylistic synthesis of arbitrary text.

7. Experiments: Unlabeled Noisy Found Data

Studio-quality data can be both expensive and time consum-

ing to record. While the internet holds vast amounts of rich

real-life expressive speech, it is often noisy and difficult to

label.

In this section, we demonstrate how GSTs can be used to

train robust models directly from noisy found data, without

modifications.

7.1. Artificial Noisy Data

As a first experiment, we artificially generate training sets

by adding noise to clean speech. The motivation here is to
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(b) “Reverb.” token
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(d) Clean token

Figure 6. Noisy and clean tokens uncovered.

simulate real noisy data while performing controlled experi-

ments. To achieve this, we pass a single-speaker US English

dataset into a room simulator (Kim et al., 2017), which adds

varying types of background noise and room reverberations.

The signal-to-noise ratio (SNR) ranges from 5-25 dB, and

the T60s of room reverberation range from 100-900 ms. We

create four different training sets where 50%, 75%, 90%

and 95% of the input is noisified, respectively.

After training a GST-augmented Tacotron on these datasets,

we run inference in the first mode described in Section 2.2.

Instead of providing a reference signal, we condition the

model on each individual style token, which gives us an

interpretable, audible sense of what each token has learned.

Interestingly, we find that different noises are treated as

styles and “absorbed” into different tokens. We illustrate

the spectrograms from a few tokens in Figure 6. We can see

(and hear) that these tokens clearly correspond to different

interference types, such as music, reverberation and general

background noise. Importantly, this method reveals that a

subset of the learned tokens also correspond to completely

clean speech. This means that we can synthesize clean

speech for arbitrary text input by conditioning the model on

a single, clean style token.

To demonstrate this, we run inference using a manually-

identified clean style token (scaled to 0.3), and then evaluate

the output using MOS naturalness tests. We use the same

100-phrase evaluation set as (Wang et al., 2017a), collecting

8 ratings each from crowdsourced native speakers. Table

2 shows MOS results for both a baseline Tacotron and a

“clean-token" GST model. While the baseline Tacotron

achieves a 4.0 MOS when the dataset is 100% clean, MOS

decreases as interference increases, dropping to a low score

of 1.353. Because the model has no prior knowledge of

speech or noise, it blindly models all statistics in the train-

ing set, resulting in substantial amounts of noise during

synthesis.
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Figure 7. Log-mel spectrograms (overlaid with F0 tracks) of two

randomly chosen tokens from a GST model trained on the TED

data. The two tokens uncover two different speakers.

Table 3. WER for the Spanish to English unsupervised language

transfer experiment. Note that WER is an underestimate of the true

intelligibility score; we only care about the relative differences.

MODEL WER (INS/DEL/SUB)

GST 18.68 (6.13/2.37/10.18)
MULTI-SPEAKER 56.18 (3.75/20.27/32.14)

By contrast, the GST model achieves about 4.0 MOS in

all noise conditions. Note that the number of tokens needs

to increase along with the percentage of noise to achieve

this result. For example, a 10-token GST model yields

clean tokens when trained on a 50% noise dataset, but the

noisier datasets required a 20-token model. Future work may

explore how to adapt the number of tokens automatically to

a given data distribution.

7.2. Real Multi-Speaker Found Data

Our second experiment uses real data. This dataset is made

up of audio tracks mined from 439 official TED YouTube

channel videos. The tracks contain significant acoustic

variations, including channel variation (near- and far-field

speech), noise (e.g. laughs), and reverberation. We use

an endpointer to segment the audio tracks into short clips,

followed by an ASR model to create <text, audio> train-

ing pairs. Despite the fact that the ASR model generates a

significant number of transcription and misalignment errors,

we perform no other preprocessing. The final training set is

about 68 hours long and contains about 439 speakers.

Without using any metadata as labels, we train a baseline

Tacotron and a 1024-token GST model for comparison. As

expected, the baseline fails to learn, since the multi-speaker

data is too varied. The GST model results are presented

in Figure 7. This shows spectrograms for the same phrase

overlaid with F0 tracks, generated by conditioning the model

on two randomly chosen tokens. Examining the trained

GSTs, we find that different tokens correspond to different

speakers. This means that, to synthesize with a specific

speaker’s voice, we can simply feed audio from that speaker

as a reference signal. See Section 7.3 for more quantitative

evaluations.
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Figure 8. Style embedding visualization using t-SNE.

Finally, we exploit the fact that most of the talks are in

English, but a small fraction are in Spanish. For this exper-

iment, we compare baseline and GST-enabled noisy data

models on a cross-lingual style transfer task. For a baseline,

we train a multi-speaker Tacotron similar to (Ping et al.,

2017), using video IDs as a proxy for speaker labels. Con-

ditioned on a Spanish speaker label, we then synthesize

100 English phrases for which we have ground-truth tran-

scriptions. For the GST system, we feed a reference signal

from the same Spanish speaker and synthesize the same

100 English phrases. While the Spanish accent from the

speaker is not preserved, we find that the GST model pro-

duces completely intelligible English speech with a similar

pitch range as the speaker. By contrast, the multi-speaker

Tacotron output is much less intelligible.

To evaluate this result objectively, we compute word error

rates (WER) of an English ASR model on the synthesized

speech. As shown in Table 3, the WER of the GST utter-

ances is much lower than that of the multi-speaker model.

The results strongly corroborate that GSTs learn embed-

dings disentangled from text content. Though this is an

exciting early result, an in-depth study of using GST for

prosody-preserving language transfer is in order.

7.3. Quantitative Evaluations

We use t-SNE (Maaten & Hinton, 2008) to visualize the style

embeddings learned from both the artificial noise and TED

datasets. Figure 8(a) shows that the embeddings learned

from the artificial noisy dataset (50% clean) are clearly sep-

arated into two classes. Figure 8(b) shows style embeddings

for 2,000 randomly drawn samples containing 14 TED talk

data speakers. We see that samples are well separated into

14 clusters, each corresponding to an individual speaker.

Female and male speakers are linearly separable.

We also use style embeddings as features to perform noise

and speaker classification with Linear Discriminative Anal-

ysis. Results are shown in Table 4. For noise classification,

GSTs uncover the true label with 99.2% accuracy. For

speaker classification, we use TED video IDs as true labels

Table 4. Classification accuracy (noise-vs-clean and TED speaker

ID) using GSTs and i-vectors. Despite being trained within a

generative model, GSTs encode rich discriminative information.

EMBEDDING ARTIFICIAL DATA TED (431 SPEAKERS)

GST 99.2% 75.0%
I-VECTOR / 73.4%

and compare with the i-vector method (Dehak et al., 2011),

a standard representation used in modern speaker verifica-

tion systems. For this task, the test set contains 431 speakers.

While both trained and tested on short utterances (mean du-

ration 3.75 secs), we can see that GSTs are comparable with

i-vectors. This is an encouraging result, given that i-vectors

were specifically designed for speaker classification. We

speculate that GST has the potential to be applied to speaker

diarization.

7.4. Implications

The results above have important implications for future

TTS research on found data. First, due to the robustness

of GSTs to both acoustic and textual noise, the design of

automated data mining pipelines may be greatly simplified.

The robustness as a function of the accuracy of individual

pipeline component is worth a systematic study. Second,

style attributes, such as emotion, are often very difficult to

label for large-scale noisy data. Using GSTs or weights to

automatically generate style annotations may substantially

reduce human-in-the-loop effort.

8. Conclusions and Discussions

This work has introduced Global Style Tokens, a power-

ful method for modeling style in end-to-end TTS systems.

GSTs are intuitive, easy to implement, and learn without

explicit labels. We have shown that, in addition to learning

interpretable embeddings that can be used to control and

transfer style, GSTs are a general technique for uncovering

latent variations in data.

There is still much to be investigated, including improving

GST learning, and using GST weights as targets to pre-

dict from text. Finally, while this work adds GSTs only

to Tacotron, we believe the method can be readily used by

other types of end-to-end TTS models. More generally,

we envision that GSTs can be applied to models in other

domains – such as text-to-image and neural machine trans-

lation systems – that would benefit from interpretability,

controllability and robustness.
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