SCISPACE

formerly Typeset

@ Open access « Journal Article « DOI:10.1109/TVCG.2007.70440

Stylized Rendering Using Samples of a Painted Image — Source link [£

Chung-Ren Yan, Ming-Te Chi, Tong-Yee Lee, Wen-Chieh Lin

Institutions: National Cheng Kung University, National Chiao Tung University

Published on: 01 Mar 2008 - IEEE Transactions on Visualization and Computer Graphics (IEEE Computer Society)

Topics: Computer animation, Rendering (computer graphics) and Animation

Related papers:

Stylized and abstract painterly rendering system using a multiscale segmented sphere hierarchy
Image analogies

Painterly rendering with curved brush strokes of multiple sizes

Non-Photorealistic Rendering

Painterly rendering for animation

Share thispaper: @ ¥ M &

View more about this paper here: https:/typeset.io/papers/stylized-rendering-using-samples-of-a-painted-image-
4b62mycxi5

https://typeset.io/
https://www.doi.org/10.1109/TVCG.2007.70440
https://typeset.io/papers/stylized-rendering-using-samples-of-a-painted-image-4b62mycxi5
https://typeset.io/authors/chung-ren-yan-5a44x0un8f
https://typeset.io/authors/ming-te-chi-3t46kz2dir
https://typeset.io/authors/tong-yee-lee-4z84othmg9
https://typeset.io/authors/wen-chieh-lin-4zhzsxlxlq
https://typeset.io/institutions/national-cheng-kung-university-2wf6qq5z
https://typeset.io/institutions/national-chiao-tung-university-1db72t8f
https://typeset.io/journals/ieee-transactions-on-visualization-and-computer-graphics-1yt9mtt7
https://typeset.io/topics/computer-animation-1ab49vf6
https://typeset.io/topics/rendering-computer-graphics-2x538szh
https://typeset.io/topics/animation-2mh6kf0b
https://typeset.io/papers/stylized-and-abstract-painterly-rendering-system-using-a-53qwtfl4th
https://typeset.io/papers/image-analogies-hspaw0est3
https://typeset.io/papers/painterly-rendering-with-curved-brush-strokes-of-multiple-1870lqk9j6
https://typeset.io/papers/non-photorealistic-rendering-1rykcbih3w
https://typeset.io/papers/painterly-rendering-for-animation-3jmejew9xz
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/stylized-rendering-using-samples-of-a-painted-image-4b62mycxi5
https://twitter.com/intent/tweet?text=Stylized%20Rendering%20Using%20Samples%20of%20a%20Painted%20Image&url=https://typeset.io/papers/stylized-rendering-using-samples-of-a-painted-image-4b62mycxi5
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/stylized-rendering-using-samples-of-a-painted-image-4b62mycxi5
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/stylized-rendering-using-samples-of-a-painted-image-4b62mycxi5
https://typeset.io/papers/stylized-rendering-using-samples-of-a-painted-image-4b62mycxi5

468 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 2, MARCH/APRIL 2008

Stylized Rendering Using Samples
of a Painted Image

Chung-Ren Yan, Ming-Te Chi, Tong-Yee Lee, Member, IEEE, and Wen-Chieh Lin, Member, IEEE

Abstract—We introduce a novel technique to generate painterly art maps (PAMs) for 3D nonphotorealistic rendering. Our technique
can automatically transfer brushstroke textures and color changes to 3D models from samples of a painted image. Therefore, the
generation of stylized images or animation in the style of a given artwork can be achieved. This new approach works particularly well
for a rich variety of brushstrokes ranging from simple 1D and 2D line-art strokes to very complicated ones with significant variations in
stroke characteristics. During the rendering or animation process, the coherence of brushstroke textures and color changes over
3D surfaces can be well maintained. With PAM, we can also easily generate the illusion of flow animation over a 3D surface to convey

the shape of a model.

Index Terms—Nonphotorealistic rendering, stylized rendering, painterly art map (PAM), stroke.

1 INTRODUCTION

ARTISTIC rendering has been one of the ultimate goals in
nonphotorealistic rendering (NPR) research. A natural
way to generate artistic rendering would be learning from
artists” works and imitating their painting style in an NPR
system. It is, however, very difficult to transfer artists’
painting styles since they can manipulate a rich variety of
stroke patterns and color changes to deliver their creation and
emotion. Although there has been a great advance in NPR in
the past decade, real-time stylized rendering on 3D models
has been a challenging problem as the rendering system
needs not only to generate a variety of brushstroke styles
flexibly but also to maintain frame-to-frame coherence of
brushstrokes stably. Moreover, the rendering system needs to
be computationally efficient so that real-time rendering can
be achieved. These difficulties motivate us to develop a real-
time NPR system to render 3D models with a gallery of styles
presented on actual paintings from talented artists.

Existing approaches to stylized rendering onto 3D models
work well on 1D and 2D line-art strokes [1], [2], but an artist-
designed brush texture map is required to paint color strokes
on 3D models [3], [4]. There are still many limitations to these
approaches in rendering 3D models regarding the require-
ments of stroke variety, stroke coherence, and real-time
computation. Praun et al. [1] proposed a Tonal Art Map
(TAM) to render hatching strokes over 3D surfaces in real

e C.-R. Yan, M.-T. Chi, and T.-Y. Lee are with the Computer Graphics
Group/Visual System Laboratory, Department of Computer Science and
Information Engineering, National Cheng-Kung University, No. 1, Ta-
Hsueh Road, Tainan 701, Taiwan, R.O.C.

E-mail: chongren.yan@gmail.com, dodowell@csie.ncku.edu.tw,
tonylee@mail .ncku.edu.tw.

o W.-C. Lin is with the Department of Computer Science, National Chiao-
Tung University, Hsinchu, Taiwan, 1001 Ta Hsueh Rd., Hsinchu 300,
Taiwan 300, R.O.C. E-mail: wclin@cs.nctu.edu.tw.

Manuscript received 27 June 2007; revised 4 Sept. 2007; accepted 23 Sept.
2007; published online 4 Oct. 2007.

Recommended for acceptance by H. Hauser.

For information on obtaining reprints of this article, please send e-mail to:
tocg@computer.org, and reference IEEECS Log Number
TVCG-2007-06-0077.

Digital Object Identifier no. 10.1109/TVCG.2007.70440.

1077-2626/08/$25.00 © 2008 IEEE

time. These hatch images are generated by adding hatching
strokes repeatedly to represent different tones. This is a very
good method for handling line-art strokes. However, for non-
line-art strokes such as those from the painting examples in
Fig. 1, it is very difficult to generate a good TAM using the
Praun et al. approach. To solve this difficulty, we present a
novel technique, called painterly art map (PAM), from paint
samples of a given artwork. PAM can then be used to light
3D models, making them as though they have been painted
using the same style and technique as the input painting.

Our system requires users to select several paint samples
from an actual painting image (see Fig. 2). PAM consists of a
sequence of tone images. Texture synthesis is an ideal
mechanism for generating each tone image from each
selected sample. Many celebrated texture methods [5], [6],
[7], [8], [9] are good candidates for generating good-quality
tone maps for our application. However, there are several
challenging issues that need to be tackled further. When the
existing texture synthesis is used to generate each tonal map
independently, it is difficult to guarantee good coherence in
stroke textures and color changes as one tonal map is
switched to another. Sudden changes in stroke and color are
always perceived in this manner. To alleviate this problem
in coherence, the synthesis process needs to ensure the
similar stroke structures between two consecutive PAMs.
However, any overemphasis on this issue can lead to the
loss of the details of the original paint samples from the
synthesized maps.

To solve the above difficulties, we develop a novel
multiresolution patch-based synthesis algorithm to generate
each PAM. Our algorithm synthesizes the coarse levels of a
map to have a stroke orientation similar to the first PAM,
and therefore, the coherent orientation of consecutive PAMs
can be well maintained. Our algorithm then synthesizes the
finer levels with an emphasis on preserving the stroke
textures and colors of the original paint sample. The major
contributions of this paper are described as follows: We
present a novel NPR system for stylized rendering. Given a
sample painting, our NPR system semiautomatically builds
PAMs by which it generates rendered results with artistic
styles derived from an input painting. The PAM technique

Published by the IEEE Computer Society

YAN ET AL.:

STYLIZED RENDERING USING SAMPLES OF A PAINTED IMAGE

(@)

(b)

469

Fig. 1. The input painted images and our results. (a) Rendering with “Palais des Papes Avignon” painted by Paul Signac. (b) and (c) Rendering with
“The Starry Night” painted by Van Gogh. Originally, the models in (a) and (b) are uncolored, and the model in (c) is colored.

can maintain the coherence of brushstroke textures and
color changes over 3D surfaces. An additional feature of our
system is the ability to animate the PAMs, giving the
illusion of strokes flowing over the surface. Finally, we also
apply the proposed NPR system to render isosurfaces from
medical data as an example of its potential applications.

2 RELATED WORKS

NPR techniques can generate artistic styles for images. Many
NPR approaches concentrate on converting photographic
images into artistic images. Hertzmann [10] presents an
introductory survey of stroke-based rendering in this 2D NPR
category. Example-based NPR techniques [6], [11] are very
popular and successful in generating visually pleasing
results. The example-based approach transfers the styles of

Painted Image

sample paintings to the synthesized paintings. In addition to
2D NPR, several techniques have also been developed to
render 3D scenes, for example, the polygonal mesh technique
[1], [12], [13], [14], [15], [16], [17], [18] and the 3D points
technique [4], [19]. These 3D NPR techniques paint different
strokes over the surface of a 3D model, including simple line
drawings, decal strokes, paintings, and hatching strokes. The
stroke variations on a 3D surface, such as color, orientation,
size, density, and texture, can convey features of models and
lighting variations. The common objective of NPR-stylized
animation from 3D models is to ensure frame-to-frame stroke
coherence.

Based on hand-drawn hatching patterns, Praun et al. [1]
presented a pioneering TAM technique to render a 3D surface
using hatching strokes in real time. TAM is constructed by
repeatedly adding hatching strokes to represent the tone

P
[JIH
THid "l’l

Sxab

Fig. 2. An overview of our NPR system. The user can sketch guiding lines and then use JSEG and our merging method to segment brushstroke
textures. Finally, our texture synthesis method is used to construct the key maps and PAM, and then, PAM is used to render the input model.

470 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 2, MARCH/APRIL 2008

variance. Surfaces are then rendered by selecting the textures
with the approximate tone in the TAM. Webb et al. [2] later
utilized a hardware-assisted 3D volume texture to better
control tone (including color and texture) and to avoid
blending or aliasing artifacts in the TAM-based approach.
Although TAM is an efficient method for rendering line-art
strokes, it has difficulty in representing other painting styles
since most painting strokes are much more complicated than
the line-art style. Kulla et al. [3] shaded 3D models using
painted samples by artists to represent dark-to-bright
transitions. Color and texture variations in paints were
considered in shading 3D models. However, this technique
requires an artist to provide a real paint example with
shading variations from dark to light. In this paper, we
consider a more general and challenging problem in the same
vein as [3]. From a painted image, the user arbitrarily selects
regions, from which our system generates a stylized image
and animation that looks as though it has been painted using
the same technique. These segmented regions feature a
variety of brushstrokes rather than a single type.

Our work is also related to texture synthesis. Although
existing texture synthesis methods [5], [6], [7], [8], [9] are
efficient in generating good-quality textures, they synthe-
size textures independently and without considering the
coherence and translation smoothly within different tex-
tures. These texture synthesis algorithms are not suitable for
PAM synthesis since we need the textures in the PAM to
have a similar stroke distribution and to preserve the
original stroke characteristics of painted images. In addi-
tion, Zelinka and Garland [20] proposed a jump map to
create search links for each pixel. These links record the
possible adjacent pixels in the same image and make the
synthesis process run very quickly. This work can be
considered as a prior work of the coherence search space
(CSS) algorithm introduced in our paper. Cohen et al. [21]
modeled textures into equal-sized squares and assigned a
color on each edge. If the adjacent tiles have the same color
of abutting edge, they can be arranged side by side. This
method can synthesize arbitrary-size textures easily and
quickly.

Our PAM synthesis problem is most similar to the
transitional texture synthesis problem in which a sequence
of transitional textures between two texture samples is
generated. These transitional textures form a continuous
spectrum on which the geometric structure and color
statistics are continuously varied. Several authors have
tackled the challenge of transitional texture synthesis in the
past. Heeger and Bergen [22] and Bar-Joseph et al. [23]
worked on a related problem of mixing textures from
multiple samples, but they did not address the problem of
generating transitional textures. Zhang etal. [5] synthesized a
spatially varying texture from two input textures. Their
approach requires a user to manually specify textons and to
choose suitable input textures for blending. Matusik et al. [24]
proposed a morphable interpolation for textures relying on a
large database in which textures are manually rotated and
scaled to approximately the same orientation and feature size.
In general, these approaches require intensive user interven-
tions and are mostly designed for structural textures as they
exploit sharp edge features or strong color contrast to align

the texture elements of a structural texture. In PAM synthesis,
the edges or colors of paint strokes may not be obvious in
actual paintings. These algorithms cannot be directly applied
to PAM synthesis. Therefore, we propose a multiresolution
texture synthesis algorithm to construct PAMs in which the
variations of brushstroke textures are generated to represent
different tones.

3 SysTEM OVERVIEW

Fig. 2 shows an overview of the proposed NPR system. The
user starts by selecting a sample painting and interactively
selecting representative regions within that image. The
system then automatically builds a PAM in two steps: first,
by generating a set of “key maps,” one for each region
selected by the user and, then, by completing the PAM by
generating in-between maps that represent a painter’s style
at intermediate tone values between those associated with
the key maps. A novel multiresolution patch-based texture
synthesis is used during this stage. Our rendering method is
based on Chi and Lee’s work [4], which uses a splat
representation. Each splat is textured using an image from
the PAM, selected according to the computed tone at that
surface location. PAM textures have an apparent stroke
direction; thus, the stroke textures are aligned with
directions computed to follow the principal curvature
directions on the surface. Furthermore, the system can
animate the rendered textures, giving the illusion of strokes
flowing over the surface. This effect can be used for
animation (for example, simulating the flow of water or
clouds) and can also aid in the perception of a shape.

4 PAINTERLY ART MAP CONSTRUCTION
4.1 Painting Image Segmentation Using Scribbles

From a painting, our PAM technique constructs a sequence of
tone images from segmented irregular regions. We apply the
JSEG algorithm [25] to segment the sample painting. JSEG
introduces a] value to measure local image inhomogeneities.
However, JSEG was originally designed for natural scenes
rather than painted images and does not consider brush-
stroke directions, which are a very important attribute of
paintings. Therefore, a modified JSEG algorithm is used and
described as follows: In the spatial segmentation and merging
stage of JSEG, we set a high threshold on the] value to obtain
an oversegmented result, as shown in Fig. 2. Next, the user
scribbles some lines on the painting to indicate the regions of
interest (ROIs) (one line at each ROI). For each segmented
region by JSEG, we then compute the average intensity I,,
standard deviation of intensity o,, and average edge direction
D, in the region . D, is obtained by averaging the gradient
directions at the pixel locations with the highest 20 percent
gradient magnitudes. Finally, region growing is applied to
merge oversegmented regions in which the I,, o,, and D,
values are similar. In the region-growing process, seeds are
put on those regions with scribbled lines. The scribbled lines
serve as the user’s hints for specifying ROIs. Thus, our system
allows the user to flexibly select brushstroke textures from a
sample painting.

In general, the local variation of brush textures is not
significant within each segmented region, but the global

YAN ET AL.: STYLIZED RENDERING USING SAMPLES OF A PAINTED IMAGE

Fig. 3. CSS construction from brushstroke texture A to B. Each pixel in A
has multiple links to the pixels in B whose neighborhoods are similar in
stroke color and stroke orientation.

variation of brush textures across all segmented regions can
be significant. To reduce the difficulty of PAM synthesis in
later steps, we roughly align the stroke orientation and
normalize the stroke density in all segmented regions. We
rotate segmented regions from their original directions D,
to a vertical direction. To normalize the stroke density, the
user scribbles two line segments on each region. The
distance between these two line segments tells us the
approximate stroke density in this region. We compute this
distance information for all segmented regions and pick the
one with the median distance value. Using this median
value, we resize all segmented regions so that their new
distance values are almost identical in all resized regions.

4.2 Coherence Search Space

A PAM consists of several tone images synthesized from
extracted brushstroke textures. As brushstroke textures
represent strokes with different luminance in painted images,
the coherence among different synthesized textures is very
important if we want to use a PAM to shade a 3D model. In
Section 4.1, we adjust all segmented brush textures to
approximately the same stroke density, orientation, and
stroke size. This adjustment is helpful for the subsequent
synthesis procedure that will be used to maintain the
coherence of textures in PAM.

Coherence means that the distribution of the strokes must
be similar in all the textures in PAM and that the shapes of the
strokes in the original brush textures must also be preserved.
However, it is difficult to place strokes in similar relative
positions in each synthesized texture. An intuitive way to
solve this problem is to select feature points and align them in
the synthesis process. This is a convenient method of
achieving coherence in PAM if the structures of the textures
are almost regular, such as brick textures. However, in most
paintings, the strokes have irregular structures and distribu-
tion. It is difficult to determine the feature points automati-
cally, and it is also too tedious for a user to select all the
features in brushstroke textures. Hence, the first step of our
texture synthesis algorithm is to automatically create a CSS
between two brushstroke textures. The CSS establishes the
correspondence of patches between two brushstroke textures
in terms of feature coherence. Fig. 3 illustrates an example of a
CSS from A to B.

Let A and B be two brushstroke textures that we want to
construct a CSS from A to B. N, is a neighborhood centered
at pixel p. We define F, as the feature map of a texture
obtained by applying the Gaussian smooth filter and edge
detection operator to NV, and H,, the hue variations of pixels

471

in N,. To measure the similarity between two patches
centered at pixels p and ¢, we define a distance function

S{:ss (p7 Q):

Scss(pv Q) = SSD(Fpan) =+ SSD(Hvaq)7p €A qge B, (1)

(2)

where SSD is the sum of the squared differences between
two image patches, h,, is the hue value of pixel p, and 1 and
o are the mean and the standard deviation of the hue values
of all pixels, respectively. In the CSS, each pixel in one
brushstroke texture has multiple links to the pixels in the
other brushstroke texture whose neighborhoods are most
similar. We compute S for all pixel pairs between two
brushstroke textures, and a link is built between pixels p
and ¢ if S is less than a threshold H,..;. We use M4, 5(p) to
denote the set of all pixels in B linked to a pixel p in A:

MAHB(p) = {q | S(:ss(pa Q) < Hcssvp € A7q € B}

4.3 Key Map Generation Using Multiresolution
Synthesis

We synthesize a set of rectangular textures called key maps
from brushstroke textures extracted from a painted image
(Section 4.1). There are two reasons for generating rectan-
gular key maps. First, extracted brushstroke textures
usually have irregular shapes. It is easier to construct
PAM based on stroke textures in a rectangular shape.
Second, we can control the stroke orientation and stroke
size in the key map construction process more finely. The
basic idea is to disassemble a brushstroke texture into small
patches and align the stroke orientation of the small patches
when reassembling them in the texture synthesis process.

To control the stroke orientation and stroke size in key
maps, we develop a multiresolution patch-based synthesis
algorithm in which cross-level patch selection and dynamic
programming patch stitching are used to synthesize key
maps. Our synthesis algorithm forces the coarser levels to
have structures similar to the first key map, whereas the
finer levels have their own detailed contents. In this way,
the global orientations of all strokes are aligned, and the
detailed characteristics of individual strokes are also
preserved. In the followings, we will describe our cross-
level patch selection approach and will not address the
patch stitching problem as there have already been several
mature techniques developed in the texture synthesis field,
such as dynamic programming [6], graph cut [8], and image
feathering [26]. Readers who are interested in patch
stitching can refer to these papers.

Our cross-level patch selection process is illustrated in
Fig. 4. Given twobrushstroke textures A and Bextracted from
a painted image, we construct their Gaussian pyramids
AL’AL—la AL_27 . ,Al and BL, BL—h BL_27 ceey Bl, respec-
tively. Here, A; = A and Bj = B denote the brushstroke
textures at the finest resolution level. Larger subscript values
correspond to finer resolution levels. Our cross-level patch
selection process (Fig. 4) consists of three major steps: 1) we
first synthesize the first key map A’ using a multiresolution
texture synthesis algorithm modified from Wei and Levoy’s

(3)

472 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 2, MARCH/APRIL 2008

A'L : B'L BI.
M, .(0) = {4,,9,--} css frornlAzto_ B2

.g%\w:.

Fig. 4. Cross-level patch selection in multiresolution key map synthesis
(levels 2 to L).

method [27].! The intermediate results from the multiresolu-
tion synthesis process of Ay are denoted as A} _,, A} ,,...,
A!. 2) Then, the coarsest level key map B is generated
according to the CSS described in Section 4.2. 3) Finally, when
synthesizing the finer level B, the best matched patches are
chosen based on the CSS and the correspondence of the prior
level B;_,. The cross-level patch selection ensures that the
stroke orientation in the synthesized B is aligned with thatin
A, and the local color characteristics are similar to the brush
texture Br. More details for the second and third steps are
described in the following paragraphs.

4.3.1 Key Map Synthesis at the Coarsest Level

We synthesize B/ starting from the coarsest level. At the
coarsest level, the patch selection process is shown in Fig. 5,
where p and ¢ denote a pixel in A and B, respectively, and r
represents a pixel in A’ and B’ at the same location. We first
trace where the patch A (N,) was picked from A; based on
the mapping g(p) =r recorded during the synthesis process
of A} from A;. Here, g(p) =r denotes that N, in A is
originally copied from N, in A;. As the stroke orientation at
the pixel in B) should match the stroke orientation at the
pixel rin A}, we pick a set of candidate patches in B; whose
stroke orientations are similar to A;(N,) ~ A|(N,) accord-
ing to the CSS result between A, and B;. The center of the
best matched patch in B, is determined by

q* = arg quin doverla,pping(Bl (Nq)7 B/l)7 (4)

where doyeriapping is the sum of the squared differences at the
overlapping region between the current synthesized texture
B and candidate patch B;(N,), and ¢ € M4,_p (g7 (r)). In
doveriapping cOMputation, we enforce L-shape neighbors as a
constraint and use the feature-weighted function [28] to
assign weights to each pixel in L-shape neighbors to
calculate the similarity. In addition, their prioritized pixel

1. The modification we made is to change a pixel-based synthesis process
to a patch-based one, which improves the speed and better preserves the
global structure of a texture.

M_.ql—)gl @) = {4,,4,,--} CSS from A to‘% _

B B, -

Fig. 5. Patch selection in key map synthesis at the coarsest level.

resynthesis method [28] is also applied to the overlapping
regions of the patches to reduce the artifacts.

4.3.2 Key Map Synthesis at Other Levels

We will only describe the synthesis process at level 2 to
simplify the notations since the synthesis process is the
same from levels 2 to L. To synthesize at pixel r of B, we
first find the best matched patch B, (N,) in B, by applying
the same patch selection process in the coarsest level to A,
Al), and By:

q* = arg quin dovcr’lapping(BQ (Nq) s B;) . (5)

In addition, we obtain another patch By(N,-) via the route
of By and Bj. This can be done straightforwardly since the
pixel correspondence from B) to B} and from B, to B, are
simply downsampling and upsampling, respectively. More-
over, we can also trace where a patch in Bj is copied from
B; by bookkeeping the synthesis process of B (similar to
the way we obtain the mapping g).

By(Ny) and By(Ng+) can be interpreted as the best
matched patches in terms of the similarity to the first key
map in a finer and coarser level, respectively. The best patch
is then determined based on the following equation:

min(d(merlapping((l - UJQ)BQ(Nq*), B/2)7
dm:erlapping(w232 (Nq**)) B,Q)) ’

where w, is used to adjust the influence of the first key map
at a finer level relative to a coarser lever. Since the finer
levels correspond to more localized features, we set a larger
weight in finer levels to preserve the localized features of

the stroke texture B. The weight w at level [is defined as
!
i

(6)

w; =5

To construct the remaining key maps, we replace the
stroke texture B by other extracted brushstroke textures one
by one. In this way, we can generate a set of key maps
whose stroke orientations are aligned with that of the first
key map. Additionally, we make all synthesized PAMs
tileable to increase the rendering speed at runtime. This can
be easily done by setting the left and top boundaries of the
textures as L-shape constraints when synthesizing the right
and bottom boundaries of another texture.

4.4 In-Between Map Synthesis

After synthesizing the key maps in PAM, we use a linear
blending method to generate in-between maps and make
the variation between key maps smoother. The number of
in-between maps N is decided by computing the difference
of the average intensities of two adjacent key maps:

YAN ET AL.: STYLIZED RENDERING USING SAMPLES OF A PAINTED IMAGE

(d)

473

Fig. 6. Rendering comparison. (a) Rendering result by Chi and Lee’s method [4]. (b) Our rendering result by PAM. (c) Synthesized results of PAM
used in (b). (d) Stroke patterns specified by a user, from dark to bright, used in Chi and Lee’s work [4].

where 14 and pp denote the average intensities of two key
maps I4 and Ip, respectively. The coefficient k is used to
control the intensity incremental level between PAMs. k = 5
is used in this paper. The in-between maps IM are
computed as follows:

N—-1 N-=-2
T,T,-- (8)

An example result of in-between maps is shown in Fig. 6c.

IM=alp+(1—-a)lg a=1, ., 0.

5 ST1YLIZED NONPHOTOREALISTIC RENDERING
UsING PAINTERLY ART MAPS

In this section, we apply PAMs to render a 3D model using
the 3D painterly splat rendering framework proposed by
Chi and Lee [4]. Their framework offers great flexibility in
many aspects of NPR, including stylization and abstraction.
Later, they apply their framework to anatomic visualization
[29]. In the preprocessing stage, this framework converts the
input mesh model into a multiscale segmented 3D point
hierarchy and uses curvature information to compute
smooth direction fields over a 3D surface. At rendering
time, each 3D point is drawn as a splat primitive textured
by a series of 2D brushstroke shapes, shown in Fig. 6d. In
the spirit of Chi and Lee’s framework, splats of varied sizes
rendered on the screen are analogous to the multiple-size
strokes drawn on the canvas. Our NPR is based on their
framework with the following extensions: 1) replacing the
stroke shape texture by PAMs, 2) enhancing the color

transfer from PAMs to a colored model, and 3) animating
the PAMs to generate strokes flowing over the surface.

5.1 Rendering with Painterly Art Maps

We render each splat as a single texture-mapped quad with a
Gaussian-shaped alpha. Packing the PAMs into a 3D texture
will make the texture and color transitions in PAMs vary
continuously with the graphic hardware interpolation.
Therefore, during rendering with PAMSs, neighboring splats
can potentially be drawn with varying brush textures and
colors. We implement our splat rendering in three passes
similar to surfels [30]: 1) the first pass renders splats into a
depth buffer to obtain visibility information, 2) the second
pass renders a splat color additively weighted with a
Gaussian-kernel into a color buffer and accumulates the
weights, and 3) the third pass normalizes the pixel colors
using the accumulated weights in the color buffer. Moreover,
to enrich our rendering, our system allows the user to specify
different sets of PAMs for different parts of a model to mimic
varying brush textures and colors in different areas of interest
drawn by the artist. When zooming in the models, we simply
enlarge the strokes instead of changing the stroke density in
the current implementation.

5.2 Rendering with Luminance and Chromatic
Variance of Painterly Art Maps

Luminance and chromatic variance are important charac-
teristics of brushstrokes in PAMs. In this section, we present
an interesting alternative to rendering models using PAMs.
When rendering a colored model, the color of the rendered

474 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 2, MARCH/APRIL 2008

(@)

()

Fig. 7. (a) Direction fields. (b) Painterly rendering of a 3D Tai-Chi Ball [4]. (c) Animating the strokes along the direction fields in (a) to illustrate the
shape of a Tai-Chi Ball. Animation results can be seen in the accompanying videos.

model can mainly be determined by the original color of the
model, and both the luminance and chromatic variance of
PAMs are used to modify the model colors, that is, adding
the fine details of brushstrokes in PAMs on top of the model
colors. The color of a splat is obtained by composing the
model color and the PAMs in the YUV color space, which is
defined in terms of one luminance and two chrominance
components. Given a set of PAMs, all PAM images are
converted from the RGB color space to the YUV color space
and stored as a 3D texture in floating-point format. Each
entry of this 3D texture is computed by

texel(u, v, w) = texel(u, v, w) — u, (9)

where (u,v) are texture coordinates on the wth image of
PAMs, and w is the tone coordinate. Each texel(u,v,w)
value is a YUV tuple (Y,U, V), and p = (py, pu, pv) are the
mean values of each channel in the YUV color space for a
set of PAMs. In rendering, the RGB color S32%! of a splat S
is first converted into its YUV color Sy, and the
rendering YUV color of a splat Syyv is then composed by

Sypy = { Syt 1 o - texel(u, v, w)y,

o (10)
ST+ B - texel(u, v,)y 1

where o and 3 are parameters to control the strength of
luminance and chromatic of PAMs independently, and w is
determined by the lighting condition (that is, the dot
product of the lighting vector and the splat normal vector).
Finally, Sypyv is converted to Srep again to render splat S.

5.3 Animating Stroke Flow with Painterly Art Maps
In practice, artists orient strokes along some directions to
express varied artistic effects. Many cognitive scientists and
visual artists have suggested motion as visual cues for the
perception of shape and depth [31]. In Chi and Lee’s work
[4], they orient strokes along the direction field to represent
varied artistic effects. However, their framework only
presents still stylized illustration of shapes without the
capability to animate their textured splats. With the
advantage of PAMs, we can easily generate an illusion of
flow motion in two steps: 1) rotate the coordinates of a splat
along its direction field and 2) update the texture
coordinates of a splat at time ¢ by the following:

uy =ug + NoiseO ffsetU,

11
vy =vg + NoiseOffsetV +t x FlowO ffset, (11)

where (ug, v) is the texture coordinate of a splat before flow
animation, NoiseOffsetU and NoiseOffsetV are small offset
constants of u and v and computed using Perlin noise. The
flow speed is controlled by a parameter FlowOffset. Our
PAM is tileable, as mentioned in Section 4.3; therefore,
moving and scaling the texture coordinate will not induce
artifacts. In addition, we construct the PAM to make strokes
aligned along the v direction in the synthesis step. There-
fore, as texture coordinates move along a direction (that is,
v direction in (11)), an illusion of flow animation is
generated. The splat was oriented along its direction field,
and therefore, this modification makes a splat look as if it is
flowing along its direction field.

Fig. 7 shows an example for expressing a 3D Tai-Chi Ball
using our technique (see our accompanying video for
animating the flow on a 3D Tai-Chi Ball). In Figs. 7b and
7c, we demonstrate our method’s advantages over that used
in [4]. In Fig. 7c, this example is rendered with the stroke
texture and color variation from the paint samples and,
therefore, appears more NPR stylized than that in Fig. 7b.
With flow motion, the result becomes more interesting and
helps in the perception of the shape of this object. More
animation results are demonstrated in Section 6.

6 RESULTS

There are two major improvements in our point-based
stylized rendering framework compared to Chi and Lee’s
work [4]. First, we use PAMs to transfer the brushstroke
(shape and color) of actual paintings from an example
painting to 3D models. In contrast to their method, our
approach can generate NPR results with richer styles. Fig. 6
shows a visual comparison with Chi and Lee’s work [4]. More
importantly, our approach does not require a user to specify
an artistically and carefully designed brush texture map like
that in Fig. 6d, which is usually a very tedious and trial-and-
error task. Second, our NPR splat rendering approach using
PAM can control the stroke pattern direction and generate the
illusion of stroke flowing over a surface and, therefore, can
easily create interesting NPR animations. In contrast, the
approaches relying on user-specified brush texture maps [3],
[4] cannot generate such effects easily. In the following, we
present many results obtained from the proposed methods.
More results and our accompanying videos can be found at
http://graphics.csie.ncku.edu.tw/Paper_Video/TVCG_
NPR_2007/IEEE_TVCG_NPR_demo.mov.

YAN ET AL.:
Iy

|
W

i

STYLIZED RENDERING USING SAMPLES OF A PAINTED IMAGE

!

(@)

Fig. 8. (a) Our synthesized PAM results of hatching patterns.
(b) Rendering result without model color. (c) Rendering result with
model color.

6.1 Generating a Line-Art Painterly Art Map
Although real-time hatching [1] can generate very good line-
art TAMs, it cannot handle other painting styles because the
shapes of strokes are irregular and the textures of strokes are
complex. In contrast, our method uses multiresolution
synthesis to preserve the shape of a stroke and to maintain
the coherence in PAM as well. We do not only generate good
hatching strokes as the real-time hatching [1] but also can
handle other stylized paintings well, such as oil paintings.
Figs. 6c and 8a show synthesized PAM results of oil paintings
and hatching patterns, respectively. In Figs. 8b and 8c, we
show our rendering results without and with model color
using hatching strokes.

6.2 Stylization of Different Paintings

In Fig. 13, we show four different sets of PAMs constructed
from four paintings to render the same 3D model. In these
four sets of PAMs, their strokes vary significantly in color,
length, density, and regularity. As a result, we can generate
varied NPR stylizations of a 3D model.

475

6.3 Multipass Rendering with Painterly Art Maps
Fig. 9 imitates paintings with multiple brushstrokes of
multiple sizes. At runtime, we can simply use the curvature
information to identify if a splat represents a coarser
(Fig. 9a) or a finer (Fig. 9b) detail. A large splat size is then
chosen to generate an image (Fig. 9a) as though the model is
painted using a large brushstroke. A small brushstroke size
is then used to draw (Fig. 9b) to obtain another image.
These two images are then blended to create the final image
(Fig. 9¢).

6.4 2D and 2.5D

We can also treat a 2D image as a 3D point set on a 2D plane
and then render it using PAMs. Fig. 10 shows an example of
a 2D image rendered with different types of image
abstraction. Figs. 10b, 10c, and 10d are rendered using the
PAMs in Figs. 13a, 13b, and 13c, respectively. In Fig. 11, we
demonstrate an interesting 2.5D stylized rendering. The
2.5D model is obtained using a sketch-based modeling
method [32].

6.5 Stroke Flow Animation

We show stroke flow results in Figs. 7 and 12. As demon-
strated in the accompanying video, the strokes are animated
and flowing along their direction fields. For example, in Fig. 7,
with animated flows, a Tai-Chi movement can be better
interpreted as a 3D ball rather than a 2D circle. In the example
of “Starry Night” by Van Gogh, we divide it into several
regions in Fig. 12 and assign them with different attributes,
such as direction fields, PAMs, and animation controls (for
example, making the moon and the star twinkle). In the
accompanying video, we also demonstrate a brushing effect
in which the user can interact with the bunny by brushing its
furs. This effect is generated by orienting stroke direction in
response to the user’s mouse control. The animation in the
accompanying video demonstrates that the strokes rendered
by the PAM technique exhibit frame-to-frame coherence
when we animate models and vary the light and viewing
angles.

Fig. 9. Multipass rendering with PAMs. (a) Brushstrokes with a large size. (b) Brushstrokes with a small size. (c) The result by blending (a) and (b).

476 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,

VOL. 14, NO.2, MARCH/APRIL 2008

Fig. 10. (a) Input image (Photo courtesy of http://philip.greenspun.com). (b)-(d) Using the varied types of PAMs in Fig. 13 to render a 2D image in a

different image abstraction.

(a)

Fig. 11. Example of 2.5D painterly rendering. (a) 2.5D models. (b) PAM rendering results.

(a) (b)

Fig. 12. Animating Van Gogh’s “Starry Night.” (a) Region map and
vector fields. (b) A frame in the result video (see the accompanying
video (http://graphics.csie.ncku.edu.tw/Paper_Video/TVCG_NPR_
2007/IEEE_TVCG_NPR_demo.mov) for full animation).

6.6 Rendering Performance

Our rendering system was implemented using OpenGL on
the Nvidia GeForce 8800GTS graphics card. It renders all
examples interactively on a Pentium D 2.8 GHz processor,
running on Microsoft Windows XP. Table 1 shows the
rendering speed and the number of rendered splats in our
experiments. The number of splat nodes displayed on the
screen is a major factor that affects the rendering speed, that
is, the fewer splats, the higher the performance in frames
per second. The silhouette is an important element in NPR
that expresses the shape of an object attractively. In Figs. 1a,
1b, and 6, we display silhouette splats using Chi and Lee’s
method [4]. Detecting and drawing silhouette splats will
degrade the rendering speed substantially. For example,
when rendering silhouette splats for Figs. 1a and 1b, the
rendering speed will be degraded from 9.7 and 15.6 fps to
6.4 and 10 fps, respectively. Finally, we also demonstrate

YAN ET AL.: STYLIZED RENDERING USING SAMPLES OF A PAINTED IMAGE

477

Fig. 13. Using varied types of PAMs to shade 3D models. The top row shows the painted image and synthesized PAM. The red rectangles in the
painted images are the brush regions specified by the user. The second and last rows are the rendering results on a sphere and bunny, respectively.

more still results in the supplementary image file (which
can be found on the Computer Society Digital Library at
www.computer.org/tvcg/archives.htm).

6.7 Comparison and Application

The lit sphere approach [18] used painterly samples to
render 3D models, and it is the most relevant work to the
proposed method. The comparison between these two
approaches is described as follows: First, the lit sphere is
a triangle-based NPR system, whereas ours is a point-based
NPR system. We render each point or splat as a stroke

drawn on the canvas. Their method aims at transferring the
shading of the painterly samples to 3D models. However,
the characteristics of texture strokes are not maintained
well. In contrast, our method can preserve the stroke
characteristics of input samples. Second, to illuminate
3D models, we encode several stroke textures on a
3D volume texture, whereas their approach encodes an
input sample on a lit sphere. With several stroke textures,
our approach potentially yields a richer variety of stroke
patterns and color changes than theirs. In addition, the
users can simply scribble several lines to select stroke

478 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 2, MARCH/APRIL 2008

TABLE 1
Performance Statistics
Figure Splats Silhouette Splats Resolution Fps
Fig. 7 taichi 3311 0 640x480 72.0
Fig. 8 bunny 8549 0 1280x1024 28.1
Fig. lc bunny 9941 0 1280x1024 214
Fig. 1b lion vase 17972 6848 1280x1024 10.0
Fig. 6 david 9776 23232 1280x1024 7.9
Fig. la gargoyle 22248 14240 12801024 6.4

patterns, and then, our system can automatically build
PAMs for stylized rendering. In contrast, the lit sphere
requires several steps to interactively select triangular
regions of a 2D image and place them on the corresponding
hemisphere of a lit sphere. Good understanding of a
shading study on the sphere is required to create a good
lit sphere. Therefore, our method seems easier to use than
theirs with respect to the issue of human intervention.
Third, as mentioned in the lit sphere work [18], their
method works well for static scenes only. Whenever a scene
is transformed and the texture features of a lit sphere are
very prominent, the surface will appear to “swim.” This
“swim” artifact is quite annoying to a viewer. Fig. 14a is
excerpted from the lit sphere approach [18], and the “swim”
is perceived as “rings” in this illustration. In contrast, our
approach does not have this artifact, as seen in our
accompanying video. Fig. 14b shows our result in contrast
to theirs in Fig. 14a, and our result preserves the
characteristics of input stroke textures well. Finally, our
approach can easily create the illusion of stroke flowing
over the surface of 3D models. However, their approach
does not support this capability.

The NPR techniques can be potentially useful to many
applications such as medical and scientific visualization.
Recently, Bruckner and GrLoller [33] extend the lit sphere
approach to volume rending and create very nice volume
rendered results in NPR stylization. Here, two examples

(Figs. 15a and 15b) of visualizing isosurfaces of medical
data are demonstrated as a potential application of our
proposed techniques. In the near future, we would like to
explore more applications of our algorithm such as
rendering the stream surface of flow visualization or
visualizing molecular surface. Also, we would like to
enhance the capabilities of our system to be more
sophisticated for specific applications [33] in volume
rendering.

7 ConNcLusioN AND FUTURE WORK

In this paper, we present a semiautomatic system to
segment and extract stroke patterns from painted images.
From the extracted stroke patterns, we construct a PAM to
generate NPR stylized images and animation. Our PAM
rendering approach demonstrates many properties that are
advantageous for NPR applications, including 1) the
maintenance of frame-to-frame stroke coherence—the dis-
tribution of splat nodes maintains the coherence of the
stroke pattern in translation, scaling, and rotation, and PAM
helps maintain the coherence in lighting; 2) brushstroke
textures and color changes can be automatically transferred
to 3D models with the stylization of input paintings; and
3) PAM can be easily used to animate stroke flow over the
surface to convey the shape of a static model or the motion
of objects in a static image.

Some limitations of the proposed approach will be
resolved in the near future. First, chromatic variance is
limited to shifting from the mean chromatic color while
rendering a splat using PAMs. A better treatment may be
required as the stroke pattern is intermixed with very
different chromatic colors or a splat’s model color is very
different from a PAM’s color. Considering this problem, a
statistical analysis model for color transfer [34] can improve
the color transfer quality. Second, we equalize the stroke
density by simply resizing the width of the strokes in
different stroke textures in the segmentation stage. We will

Fig. 14. Visual comparisons of our technique versus the lit sphere approach. (a) Image excerpted from the lit sphere approach in [18]. (b) Image

rendered by the proposed method.

YAN ET AL.: STYLIZED RENDERING USING SAMPLES OF A PAINTED IMAGE

479

(b)

Fig. 15. Medical visualization. (a) A hand skeleton is rendered by a set of PAMs. (b) Teeth and gums are rendered by different sets of PAMs.

improve our key map and in-between map synthesis
approaches so that the stroke density can also be controlled
in the synthesis process. Third, from our experience, it is
difficult to automatically detect the stroke density on most
paintings without any user’s interaction. We would like to
explore automatic methods to detect the stroke density.
Although we can easily control the stroke direction and
tone variance on each splat through splat rendering, it still
has some blurring artifacts on the overlapped area of
neighbor splats. Instead of blending the overlapped area,
we may be able to fix the problem by using an optimization
method to synthesize the overlapped area of neighbor
splats. Finally, we also plan to consider better camera-
sampling analysis [35] to improve the point-based render-
ing quality.

ACKNOWLEDGMENTS

The authors thank the reviewers for their insightful
comments. They also thank the AIM@SHAPE Shape
Repository, Stanford 3D Scanning Repository, Stanford
Digital Michelangelo Project, and Large Geometric Models
Archive, Georgia Institute of Technology (Georgia Tech),
for sharing their various models. Fig. 14a is courtesy of the
authors of the lit sphere approach [18]. This work is
supported by the Landmark Program of the NCKU Top
University Project under Contract BO008 and is supported
in part by the National Science Council under Contracts
NSC-96-2628-E-006-200-MY3 and NSC-96-2221-E-009-152-
MY3. For correspondence, please contact Professor Tong-
Yee Lee at tonylee@mail.ncku.edu.tw

REFERENCES

[1] E. Praun, H. Hoppe, M. Webb, and A. Finkelstein, “Real-Time
Hatching,” Proc. ACM SIGGRAPH 01, pp. 579-584, 2001.

[2] M. Webb, E. Praun, A. Finkelstein, and H. Hoppe, “Fine Tone
Control in Hardware Hatching,” Proc. Second Int’l Symp. Non-
Photorealistic Animation and Rendering (NPAR "02), pp. 53-58, 2002.
C.D. Kulla,].D. Tucek, RJ. Bailey, and C.M. Grimm, “Using
Texture Synthesis for Non-Photorealistic Shading from Paint
Samples,” Proc. 11th Pacific Conf. Computer Graphics and Applica-
tions (PG '03), pp. 477-481, 2003.

M.-T. Chi and T.-Y. Lee, “Stylized and Abstract Painterly
Rendering System Using a Multiscale Segmented Sphere Hier-
archy,” IEEE Trans. Visualization and Computer Graphics, vol. 12,
no. 1, pp. 61-72, Jan./Feb. 2006.

B3]

[4]

[5]

(o]

(]

8]

%]

[10]
(1]
(12]
[13]

(14]

[15]

[1o]

(171

(18]

(19]

(20]

(21]

[22]

[23]

J. Zhang, K. Zhou, L. Velho, B. Guo, and H.-Y. Shum, “Synthesis
of Progressively Variant Textures on Arbitrary Surfaces,” ACM
Trans. Graphics, vol. 22, no. 3, pp. 295-302, July 2003.

A.A. Efros and W.T. Freeman, “Image Quilting for Texture
Synthesis and Transfer,” Proc. ACM SIGGRAPH 01, pp. 341-346,
2001.

Q. Wu and Y. Yu, “Feature Matching and Deformation for Texture
Synthesis,” ACM Trans. Graphics, vol. 23, no. 3, pp. 364-367, Aug.
2004.

V. Kwatra, A. SchLodl, I. Essa, G. Turk, and A. Bobick, “Graphcut
Textures: Image and Video Synthesis Using Graph Cuts,” ACM
Trans. Graphics, vol. 22, no. 3, pp. 277-286, July 2003.

V. Kwatra, I. Essa, A. Bobick, and N. Kwatra, “Texture
Optimization for Example-Based Synthesis,” ACM Trans. Graphics,
vol. 24, no. 3, pp. 795-802, Aug. 2005.

A. Hertzmann, “A Survey of Stroke-Based Rendering,” IEEE
Computer Graphics and Applications, vol. 23, no. 4, pp. 70-81, 2003.
A. Hertzmann, C.E. Jacobs, N. Oliver, B. Curless, and D.H. Salesin,
“Image Analogies,” Proc. ACM SIGGRAPH ’01, pp. 327-340, 2001.
O. Deussen and T. Strothotte, “Computer-Generated Pen-and-Ink
lustration of Trees,” Proc. ACM SIGGRAPH 00, pp. 13-18, 2000.
A. Hertzmann and D. Zorin, “Illustrating Smooth Surfaces,” Proc.
ACM SIGGRAPH 00, pp. 517-526, 2000.

J.D. Northrup and L. Markosian, “Artistic Silhouettes: A Hybrid
Approach,” Proc. First Int’l Symp. Non-Photorealistic Animation and
Rendering (NPAR "00), pp. 31-37, 2000.

B.J. Meier, “Painterly Rendering for Animation,” Proc. ACM
SIGGRAPH "96, pp. 477-484, 1996.

D. Cornish, A. Rowan, and D. Luebke, “View-Dependent Particles
for Interactive Non-Photorealistic Rendering,” Proc. Graphics
Interface (GI '01), pp. 151-158, 2001.

R.D. Kalnins, L. Markosian, B.J. Meier, M.A. Kowalski, J.C. Lee,
P.L. Davidson, M. Webb, J.F. Hughes, and A. Finkelstein,
“WYSIWYG NPR: Drawing Strokes Directly on 3D Models,”
ACM Trans. Graphics, vol. 21, no. 3, pp. 755-762, July 2002.

P.-P.J. Sloan, W. Martin, A. Gooch, and B. Gooch, “The Lit Sphere:
A Model for Capturing NPR Shading from Art,” Proc. Graphics
Interface (GI '01), pp. 143-150, 2001.

H. Xu, N. Gossett, and B. Chen, “Pointworks: Abstraction and
Rendering of Sparsely Scanned Outdoor Environments,” Proc.
15th Eurographics Symp. Rendering (EGSR '04), pp. 45-52, 2004.

S. Zelinka and M. Garland, “Interactive Texture Synthesis on
Surfaces Using Jump Maps,” Proc. 14th Eurographics Symp.
Rendering (EGSR “03), pp. 90-96, 2003.

M.F. Cohen, J. Shade, S. Hiller, and O. Deussen, “Wang Tiles for
Image and Texture Generation,” ACM Trans. Graphics, vol. 22,
no. 3, pp. 287-294, July 2003.

D.J. Heeger and J.R. Bergen, “Pyramid-Based Texture Analysis/
Synthesis,” Proc. ACM SIGGRAPH '95, pp. 229-238, 1995.

Z. Bar-Joseph, R. El-Yaniv, D. Lischinski, and M. Werman,
“Texture Mixing and Texture Movie Synthesis Using Statistical
Learning,” IEEE Trans. Visualization and Computer Graphics, vol. 7,
no. 2, pp. 120-135, Apr.-June 2001.

480

(24]

(23]

[20]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

[35]

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 2, MARCH/APRIL 2008

W. Matusik, M. Zwicker, and F. Durand, “Texture Design Using a
Simplicial Complex of Morphable Textures,” ACM Trans. Graphics,
vol. 24, no. 3, pp. 787-794, Aug. 2005.

Y. Deng, B.S. Manjunath, and H. Shin, “Color Image Segmenta-
tion,” Proc. IEEE Conf. Computer Vision and Pattern Recognition
(CVPR "99), pp. 2446-2451, 1999.

L. Liang, C. Liu, Y.-Q. Xu, B. Guo, and H.-Y. Shum, “Real-Time
Texture Synthesis by Patch-Based Sampling,” ACM Trans.
Graphics, vol. 20, no. 3, pp. 127-150, July 2001.

L.-Y. Wei and M. Levoy, “Fast Texture Synthesis Using Tree-
Structured Vector Quantization,” Proc. ACM SIGGRAPH ‘00,
pp- 479-488, 2000.

T.-Y. Lee and C.-R. Yan, “Feature-Based Texture Synthesis,” LNCS
3482, pp. 1043-1049, 2005.

T.-Y. Lee, C.-R. Yan, and M.-T. Chi, “Stylized Rendering for
Anatomic Visualization,” Computing in Science and Eng., vol. 9,
no. 1, pp. 13-19, 2007.

H. Pfister, M. Zwicker, J. van Baar, and M. Gross, “Surfels: Surface
Elements as Rendering Primitives,” Proc. ACM SIGGRAPH ’00,
pp- 335-342, 2000.

E.B. Lum, A. Stompel, and K.-L. Ma, “Using Motion to Illustrate
Static 3D Shape-Kinetic Visualization,” IEEE Trans. Visualization
and Computer Graphics, vol. 9, no. 2, pp. 115-126, Apr.-June 2003.

T.-Y. Lee, C.-H. Lin, S.-W. Yen, and H.-J. Chen, “A Natural Pen-
and-Paper Like Sketching Interface for Modeling and Animation,”
Proc. Int’l Conf. Computer Animation and Social Agents (CASA '07),
pp- 87-92, 2007.

S. Bruckner and M.E. GrLoller, “Style Transfer Functions for
Mustrative Volume Rendering,” Computer Graphics Forum, vol. 26,
pp. 715-724, 2007.

E. Reinhard, M. Ashikhmin, B. Gooch, and P.S. Shirley, “Color
Transfer between Images,” IEEE Computer Graphics and Applica-
tions, vol. 21, no. 5, pp. 34-41, Sept./Oct. 2001.

P-H. Lin and T.-Y. Lee, “Camera-Sampling Field and Its
Applications,” IEEE Trans. Visualization and Computer Graphics,
vol. 10, no. 3, pp. 241-251, May/June 2004.

Chung-Ren Yan received the BS and MS
degrees from the Department of Computer
Science and Information Engineering, Chung-
Hua University, Hsinchu, Taiwan, in 2000 and
2002, respectively. He is currently working toward
the PhD degree in the Department of Computer
Science and Information Engineering, National
Cheng-Kung University, Tainan, Taiwan. His
research interests include computer graphics,
texture synthesis, and image processing.

Ming-Te Chi received the BS degree in geo-
graphy from the National Taiwan University,
Taipei, in 2000 and the MS degree from the
Department of Computer Science and Informa-
tion Engineering, National Cheng Kuang Uni-
versity, Tainan, Taiwan, in 2003. He is currently
working toward the PhD degree in the Depart-
ment of Computer Science and Information
Engineering, National Cheng-Kung University.
His research interests include computer gra-

phics and nonphotorealistic rendering.

Tong-Yee Lee received the PhD degree in
computer engineering from Washington State
University, Pullman, in May 1995. Now, he is a
professor in the Department of Computer
Science and Information Engineering, National
Cheng-Kung University, Tainan, Taiwan. He is
an associate editor of the IEEE Transactions on
Information Technology in Biomedicine from
2007 to 2010. He is also on the editorial advisory
board of the Journal Recent Patents on En-
gineering, an editor of the Journal of Information Science and
Engineering and a region editor of the Journal of Software Engineering.
His current research interests include computer graphics, nonphotor-
ealistic rendering, image-based rendering, visualization, virtual reality,
surgical simulation, medical visualization and medical system, and
distributed and collaborative virtual environments. He leads the
Computer Graphics Group, Visual System Laboratory, National
Cheng-Kung University (http://graphics.csie.ncku.edu.tw/). He is a
member of the IEEE and the ACM.

Wen-Chieh Lin received the BS and MS
degrees in control engineering from the National
Chiao-Tung University, Hsinchu, Taiwan, in
1994 and 1996, respectively, and the PhD
degree in robotics for dynamic near-regular
texture tracking and manipulation from Carnegie
Mellon University, Pittsburgh, in 2005. Since
2006, he has been with the Department of
Computer Science and the Institute of Multi-
media Engineering, National Chiao-Tung Uni-
versity, as an assistant professor. His current research interests include
computer vision, computer graphics, and computer animation. He is a
member of the IEEE and the IEEE Computer Society.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

