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Abstract

Thermolysis of the iron(IV) nitride complex PhB(tBuIm)3Fe≡N with styrene leads to formation of 

the high spin iron(II) aziridino complex PhB(tBuIm)3Fe-N(CH2CHPh). Similar aziridination 

occurs with both electron-rich and electron-poor styrenes, while bulky styrenes hinder the 

reaction. The aziridino complex PhB(tBuIm)3Fe-N(CH2CHPh) acts as a nitride synthon, reacting 

with electron poor styrenes to generate their corresponding aziridino complexes, i.e. aziridine 

cross-metathesis. Reaction of PhB(tBuIm)3Fe-N(CH2CHPh) with Me3SiCl releases the N-

functionalized aziridine Me3SiN(CH2CHPh) while simultaneously generating PhB(tBuIm)3FeCl. 

This closes a synthetic cycle for styrene azirdination by a nitride complex. While the less hindered 

iron(IV) nitride complex PhB(MesIm)3Fe≡N reacts with styrenes below room temperature, only 

bulky styrenes lead to tractable aziridino products.
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The facile reactivity of aziridines, coupled with their ability to undergo highly regio- and 

stereoselective transformations, makes them important and versatile synthons in the 

preparation of small molecules (e.g. pharmaceuticals) and materials (e.g. medical 

devices).[1] The aziridine moiety is also found in some natural products and synthetic 

compounds that have interesting or useful biological properties, making them of interest as 

synthetic targets in their own right.[2]
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Given their importance, it is not surprising that numerous schemes for the synthesis of 

aziridines have been devised.[3] A particularly appealing strategy involves the catalytic 

transfer of nitrenes to alkenes, which has been extensively investigated and a wide range of 

metal-based catalysts have been reported.[4] These catalysts include many examples of iron-

based complexes that are catalysts for aziridine synthesis by sulfilimine transfer.[5] More 

recently, the family of iron-based catalysts has been expanded to include complexes that 

facilitate alkyl- and arylnitrene transfer to styrenes and aliphatic alkenes.[6]

Transition metal nitrides might also be expected to show similar reactivity, in which a two 

electron nitrogen atom transfer reaction from the nitride to the alkene leads to formation of a 

coordinated aziridino ligand. A conceptually attractive feature of such a reaction is that the 

newly-formed aziridino ligand provides a platform for accessing a wider range of N-

functionalized aziridines than is possible by current nitrene transfer strategies. However, the 

majority of nitride ligands are notoriously unreactive, and examples of nitride ligands 

reacting with hydrocarbons are notable for their rarity.[7] To the best of our knowledge, 

there is only one example of alkene aziridination by a nitride complex, in which addition of 

pyridine to the RuVI nitride complex [(salchda)Ru≡N]+ (salchda = N,N′-bis(salicylidene)-o-

cyclohexyldiamine dianion) activates the nitride ligand towards alkene aziridination.[8] A 

handful of other nitride complexes have been reported to react with alkenes although 

aziridino ligand formation does not occur, e.g. cis-[(terpy)Os(N)Cl2]+ inserts the nitrogen 

atom into the C=C bond of stilbene and conjugated dienes, generating azallenium 

products.[9]

In contrast to the low reactivity of most transition metal nitride complexes, the iron(IV) 

complexes PhB(RIm)3Fe≡N (R = tBu 1, Mes 2) which are supported by bulky 

tris(carbene)borate ligands (Fig. 1),[10],[11] are able to access diverse reaction pathways. 

Thus, we have chronicled two electron nitrogen atom transfer reactions to substrates such as 

C≡O, C≡NR and PR3,[10],[11a],[12],[13] one electron reactions with hydrogen atom donors 

and organic radicals,[11b],[14] and cycloadditions with conjugated dienes.[14]

A detailed experimental and computational investigation into the reaction of 2 with 

phosphines has provided evidence for the ambiphilic nature of the nitride ligand.[13] An 

important observation from this study is that the transition state for nitrogen atom transfer 

involves a σ-symmetry interaction between the nitride LUMO and phosphine HOMO as 

well as a π-symmetry interaction between the nitride HOMO and the phosphine LUMO. 

Since this orbital interaction is reminiscent of bonding between low valent metals and 

unsaturated hydrocarbons, we were stimulated to investigate the reactivity of iron(IV) 

nitrides towards alkenes. In this communication we report the reactions of 1 and 2 with a 

range of styrenes, which leads to formation of the corresponding iron(II) aziridino 

complexes. Evidence for the reversibility of aziridino ligand formation as well as the ability 

to release an N-functionalized aziridine from the metal is also demonstrated.

Heating a solution of complex 1 with excess styrene leads to formation of the high spin (S = 

2) iron(II) aziridino complex PhB(tBuIm)3Fe-N(CH2CHPh) 3 in high yield (Scheme 1). The 

molecular structure of 3 has been determined by single crystal X-ray diffraction (Scheme 1, 

inset). To the best of our knowledge, this the first structurally characterized complex 
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featuring an anionic aziridino, rather than neutral aziridine, ligand. The aziridino C(20)-N(5) 

and C(21)-N(5) bonds of 3 are shorter and the C(20)-N(5)-C(21) bond angle larger than is 

observed for neutral aziridine ligands, where the corresponding metrics average 1.486(1) Å 

and 59.5(1.0) °, respectively.[15] As expected from the anionic nature of the aziridino ligand, 

the Fe(1)-N(5) bond length is shorter than observed in iron aziridine complexes[16] but 

similar to high spin iron(II) amido complexes.[17] As with the latter complexes, the nitrogen 

atom of the aziridino ligand in 3 is planar, with the sum of angles around N(5) = 359.9(6)°. 

The other metrical parameters are unexceptional for a high spin iron(II) tris(carbene)borate 

complex.[11],[12],[13],[18]

Complex 1 reacts similarly with other styrenes, although the reaction is sensitive to the size 

of the styrene substrate. While all para-substituted styrenes investigated provide the 

corresponding aziridino complexes, as do o-(CH3)C6H4C(H)=CH2 and C10H7CH=CH2, 

there is no reaction with the bulkier styrene 2,4,6-(CH3)2C6H3C(H)=CH2. In addition, no 

reaction between 1 and β-substituted styrenes, e.g. C6H5C(H)=C(H)CH3, is observed.

While the reactions of nitride complex 1 generally require heat, the reactions of nitride 

complex 2 occur under ambient conditions. Thus, 2 reacts at room temperature with 3,5-

(CF3)2C6H3CH=CH2 and C10H7C(CH3)=CH2 to afford the corresponding high spin iron(II) 

aziridino complexes 4 and 5 as the sole reaction products (Scheme 2). These complexes 

have also been structurally characterized, showing similar metrical parameters to 3, except 

for significant pyramidalization of the aziridino nitrogen atom (sum of angles around N(7) = 

336.2(9) ° and 348.2(4) ° for 4 and 5, respectively). While 2 reacts with these bulky styrenes 

under very mild conditions, even below room temperature, the reaction scope of this 

complex is generally more limited than that of 1, with less bulky styrene substrates leading 

to the formation of intractable products.

These synthetic results therefore establish an unusual transformation for a nitride ligand, in 

which two-electron nitrogen atom transfer to styrenes provides the corresponding aziridino 

complexes. As mentioned above, there are a handful of transition metal nitride complexes 

that react with alkenes,[9] and in only one instance does a two-electron nitrogen atom 

transfer reaction occur to generate the three-membered aziridine ring.[8]

Intriguingly, the aziridino complex 3 can be used as an iron nitride synthon. Specifically, 

heating 3 with (p-NO2C6H4)CH=CH2 leads to formation of the aziridino complex 

PhB(tBuIm)3Fe-N(CH2CH(p-(NO2)C6H4)) and styrene, i.e. aziridine cross-metathesis 

(Scheme 3). Similar aziridine cross-metathesis occurs when 3 is treated with electron-poor 

styrenes such as (p-ClC6H4)CH=CH2 and (p-CF3C6H4)CH=CH2, although no reaction 

occurs with more electron rich styrenes. While detailed studies aimed at elucidating the 

aziridination mechanism are ongoing, this cross metathesis reactivity strongly suggests the 

aziridination reaction to be reversible.

In contrast to the reactions with styrenes, which lead to aziridino ligand formation, neither 

nitride complex reacts with aliphatic alkenes. However, it is possible to independently 

prepare an iron(II) aziridino complex that would result from such a reaction. Treating 

PhB(tBuIm)3FeCl with LiN(CH2CHCH3) yields the corresponding aziridino complex 
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PhB(tBuIm)3Fe-N(CH2CHCH3) 6 in high yield (Scheme 4). This complex, which has also 

been structurally characterized,[15] shows no propensity for releasing propene under thermal 

or photochemical conditions, nor does it undergo aziridine cross-metathesis reactions with 

added styrenes. These results therefore suggest that a kinetic barrier prevents the iron 

nitrides from accessing similar aziridination reactivity with aliphatic alkenes.

As suggested at the outset, the iron(II) aziridino complexes have potential application as 

synthons for a range of N-functionalized aziridines. In a proof-of-concept experiment, 

treating the aziridino complex 3 with one equivalent Me3SiCl leads to quantitative formation 

of the iron(II) complex PhB(tBuIm)3FeCl and the corresponding N-silylated aziridine 

Me3SiN(CH2CHPh). To the best of our knowledge, N-silylated aziridines are not accessible 

by current nitrene transfer strategies.[19] In addition, since the iron(II) chloride complex is 

readily converted to 1,[18] this reaction establishes a synthetic cycle for styrene aziridination 

using an iron(IV) nitride (Scheme 5). Preliminary results suggest that access to other N-

functionalized aziridines will be similarly facile, as illustrated by the synthesis of the N-

methylated aziridine MeN(CH2CHPh) by reaction of 3 with MeI.

In summary, the reactivity of a suitable iron(IV) nitrides allows a cycle for the synthesis of 

N-functionalized aziridines to be developed. Work to investigate the mechanism of the 

aziridination reaction is underway, as are efforts to develop catalytic cycles for the synthesis 

of range of N-functionalized aziridines using iron(IV) nitride complexes.
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Figure 1. 
The iron(IV) nitrides PhB(RIm)3Fe≡N (R = tBu 1, Mes 2).
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Scheme 1. 
Reaction of 1 with a range of styrenes, leading to formation of the corresponding aziridino 

complexes. Inset: X-ray crystal structure of 3, where Ar = C6H5. Thermal ellipsoids at 50%, 

hydrogen atoms and most of the tris(carbene)borate ligand omitted for clarity. Fe(1) – N(5) 

1.935(4); Fe(1) – C(1) 2.092(4); Fe(1) – C(8) 2.109(6); N(5) – C(20) 1.417(11); N(5) – 

C(21) 1.317(14); C(20) – C(21) 1.476; C(1) – Fe(1) – C(8) 90.58(16); Fe(1) – N(5) – C(20) 

142.0(5); Fe(1) – N(5) – C(21) 152.5(6); C(20) – N(5) – C(21) 65.3(6).
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Scheme 2. 
Reaction of 2 with bulky styrenes to afford the corresponding aziridino complexes 4 and 5. 

Inset: X-ray crystal structures of 4 (left) and 5 (right). Thermal ellipsoids at 50%, hydrogen 

atoms and most of the tris(carbene)borate ligand omitted for clarity.
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Scheme 3. 
Aziridine cross-metathesis.
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Scheme 4. 
Synthesis of PhB(tBuIm)3Fe-N(CH2CHCH3) 6.
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Scheme 5. 
Synthetic cycle for styrene aziridination by an iron(IV) nitride complex.
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