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SU„2… formulation of the t-J model: Application to underdoped cuprates
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We develop a slave-boson theory for thet-J model at finite doping that respects an SU~2! symmetry: a
symmetry previously known to be important at half filling. The mean-field phase diagram is found to be
consistent with the phases observed in the cuprate superconductors, which containd-wave superconductor,
spin-gap, strange metal, and Fermi-liquid phases. The spin-gap phase is best understood as the staggered flux
phase, which is nevertheless translationally invariant for physical quantities. The physical electron spectral
function shows small Fermi segments at low doping that continuously evolve into the large Fermi surface at
high-doping concentrations. The close relation between the SU~2! and the U~1! slave-boson theory is dis-
cussed. The low-energy effective theory for the low-lying fluctuations is derived and additional lying modes
@which were overlooked in the U~1! theory# are identified.@S0163-1829~98!08109-0#
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I. INTRODUCTION

It is well established that high-temperature supercond
tivity appears in cuprates when holes are doped into the
ent compound, which is understood to be Mott-Hubbard
tiferromagnetic~AF! insulators. Since the parent compou
is insulating only by virtue of strong correlation, it stands
reason that a strongly correlated model is the requisite s
ing point to describe the cuprates. The simplest such mo
is the two-dimensionalt-J model and a large effort has bee
made to study how the phase diagram evolves from
Heisenberg antiferromagnet when a concentrationx of holes
is introduced. The doping of a Mott-Hubbard insulator is
relatively new problem in condensed-matter physics and
volves issues quite different from the doping of a band in
lator. A key question is the evolution of the Fermi surfa
with doping. At low doping, the unit cell is doubled in th
AF state and the first holes will form small pockets, n
unlike the doping of band insulators. The pockets are c
tered at (p/2,p/2).1 On the other hand, when the hole co
centration is large, it is known that a large Fermi surface
formed, with an area given by 12x, in agreement with Lut-
tinger theorem.2 The point is that the local moments on th
copper are now counted as part of the conduction elec
that makes up the Fermi sea. The key question is how
evolution takes place as a function of doping. It seems q
likely that the state for intermediate doping may contain f
tures not encountered before. Indeed, concepts such as q
tum spin liquid states and spin-charge separation were in
duced early on and much work has gone into
development of a formal theory that exhibits some of th
features.3 One line of approach is to start from mean-fie
570163-1829/98/57~10!/6003~19!/$15.00
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decoupling4–7 and study fluctuations about the mean-field s
lution, which turns out to be a U~1! gauge theory.8–10 On the
experimental front, much work has focused on the und
doped region, defined as the region of hole concentra
between the onset of superconductivity and the maximalTc ,
because many anomalous properties are found in the me
state in this regime. For example, unlike optimally dop
systems where the magnetic susceptibilityx and the Knight
shift are temperature independent, underdoped cuprates
erally show a reduction inx below 400 K or so.11 At the
same time the specific heat is found to be suppressed rel
to theT linear behavior expected for conventional metals12

This behavior suggests the formation of a gap in the exc
tion spectrum. This gap also shows up in thec-axis
frequency-dependent conductivity,13 but the conductivity in
the plane is not so strongly affected. The in-plane dc cond
tivity shows a suppression below about 200 K relative to
linear T resistivity observed at higher temperatures. T
suppression can be attributed to a reduction of the width
the Drude-like peak by a factor of 2 with little effect on th
spectral weight.14 The reduction of the conductivity is due t
the scattering rate rather than to the carrier concentratio15

These observations suggest that the gap appears only in
spin and not the charge degrees of freedom in the t
dimensional plane and has been loosely referred to as
spin gap. We should add that the strongest gaplike beha
has been seen in the Cu NMR relaxation rate and in neu
scattering, both of which are sensitive to spin excitation
momentum Q5(p,p). This latter phenomenon usuall
starts at a lower temperature of order 200 K and it has b
argued that it is observed only in bilayer or trilay
materials.11,16We shall take the point of view that the beha
6003 © 1998 The American Physical Society
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6004 57LEE. NAGAOSA, NG, AND WEN
ior at (p,p) may be a more delicate issue depending
nesting properties at the Fermi surface, etc., and for the
of the paper we shall use the term ‘‘spin gap’’ to refer
properties mentioned earlier that are characteristic of sin
layer as well as multilayer cuprates.

Very recently, angle-resolved photoemission experime
have yielded important information concerning the electro
excitations of underdoped cuprates. It was discovered th
gap in the spectral functions already existed in the nor
state.17,18 Furthermore, the size of this gap and its depe

dence onkW space is similar to thed-wave-type gap observe
in the superconducting state. The difference is that in
normal state, the gap appears to close in a finite segment
(p/2,p/2), leaving a ‘‘Fermi-surface segment.’’ If this en
ergy gap is related to the spin gap, this observation give
important boost to the notion of spin-charge separation. T
is because when an electron is removed from the plane, a
photoemission and inc-axis conductivity, one is forced to
pay the energy cost to break the singlet pairs in the pla
whereas for in-plane conductivity, charge transport may
cur within the spin singlet sector. Such a behavior is in fac
natural consequence of the mean-field phase diagram o
t-J model that has been in existence for some time.6,7 In this
theory the constraint of no double occupancy is enforced
writing the electron operatorca i in terms of auxiliary fermi-
ons and boson particlesca i5 f a ibi

† and demanding that eac
site is occupied by either a fermion or a boson. In a me
field treatment, the order parametersx i j 5^ f a i

† f a j& and D i j

5^ f 1i f 2 j2 f 2i f 1 j& describe the formation of singlets env
sioned in Anderson’s resonating valence-bond~RVB!
picture.3 Above the Bose condensation temperature of
bosons, spin charge separation occurs at the mean-field l
In particular, in the underdoped regime the fermions
paired in ad-wave state, leading to a gap in the spin exci
tion but no gap in the charge excitation. This scena
has been used as an explanation of the spin-
phenomenon.19,20

While the conventional U~1! mean-field theory has man
attractive features, it suffers from a number of defects. Fi
when an attempt was made to improve the theory by incl
ing gauge fluctuations, it was found that thed-wave state
was unstable.21 Second, in the underdoped regime, there
indications that the system is unstable to the spontane
generation of gauge fluxes at finite wave vectors.22 Such in-
stabilities will lead to a breaking of translation symmetry th
is not observed experimentally. We note that it has b
suggested recently that a modifiedd-wave state with a large
gap at the (0,p) point and vanishing gap along a segme
near (p/2,p/2) may be stable against gauge fluctuations23

However, the question about finite wave-vector instabilit
remains. Such considerations motivated us to produce a
mulation of the constraint that generalizes the SU~2! theory
for the half-filledt-J model to thet-J model away from half
filling.24 Our hope is that since SU~2! gauge symmetry is an
exact symmetry at half filling, the mean-field approximati
of our formulation may capture more accurately the lo
energy degrees of freedom and may be a better starting p
for smallx. Indeed, we found that in the underdoped regio
the mean-field solution may be understood as ad-wave pair-
ing state, or equivalently as a staggered-flux (s-flux! phase,
n
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where the gauge flux alternates on even or odd sublatti
These states are related by local SU~2! gauge transformations
and do not break translational symmetry. Furthermore, th
states are connected smoothly to thep-flux phase at half
filling that has large excitation energy at the (0,p) point,
comparable to that at (0,0). This is in agreement with p
toemission experiments on the insulating cuprates, sugg
ing that the AF state may resemble thep-flux phase at short
distances.25,26 Furthermore, in the experiment the state
(0,p) moves towards the Fermi surface with doping, whi
can be understood in the mean-field theory as a gradual c
ing of the spin gap. In this work24 we also introduced a
residual attraction between the boson and fermions and s
that this gives to Fermi-surface segments near the (p/2,p/2)
point that grows with doping. Thus the SU~2! mean-field
theory allows us to answer the fundamental question of h
the Fermi surface evolves from hole pockets near
(p/2,p/2) point near half filling to a large Fermi surface fo
large-doping concentration.

In this paper we give a more detailed description of t
SU~2! theory and we also offer an alternative formulatio
that has some advantage over the original SU~2! mean-field
theory, particularly in the approach to large doping. Mo
specifically, in Sec. II we show that the SU~2! theory is in-
timately related to the original U~1! theory. This leads us to
a formulation in terms of as model of slowly varying boson
fields. This is discussed in Secs. III and IV. In Sec. V w
present detailed calculations of the electron spectral funct
comparing the original SU~2! mean-field approach and th
presents-model formulation. We also made some modific
tions of the interaction potential between fermions a
bosons, which lead to considerable improvement of the sp
tral function when compared with experiments. In Sec.
we discuss the collective excitations of the theory, which
SU~2! gauge fields, and we point out the important massl
gauge fields in different parts of the phase diagram. In p
ticular, the existence of a massless mode in the stagg
flux phase is an important feature of the SU~2! theory com-
pared to the U~1! formulation. We also briefly discuss th
response to an electromagnetic field of the normal and su
conducting states.

II. RELATION OF THE SU „2… FORMULATION TO U „1…

THEORY

Affleck et al.27 pointed out that thet-J model at half fill-
ing obeys an exact SU~2! symmetry. They introduced the
SU~2! doublets

c1i5S f 1i

f 2i
† D , c2i5S f 2i

2 f 1i
† D ~1!

to represent the destruction of a spin up and spin down
site i , respectively. This expresses the physical idea tha
physical up spin can be represented by an up-spin fermio
the absence of a down-spin fermion once the constrain
imposed. The theory is invariant under the local transform
tion ca i→gica i , whereg is a 232 matrix representation o
the SU~2! group. In the original formulation, which we sha
refer to as the U~1! theory, this symmetry is broken upon th
introduction of holes.
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57 6005SU~2! FORMULATION OF THE t-J MODEL: . . .
In Ref. 24 a formulation of the constraint of no doub
occupation in thet-J model was introduced that preserv
the SU~2! symmetry even away from half filling. The ke
step is the introduction of a doublet of bosons

hi5S b1i

b2i
D ~2!

on each site, so that the physical electron operator can
written as an SU~2! singlet, i.e.,

c1i5
1

A2
hi

†c1i5
1

A2
~b1i

† f 1i1b2i
† f 2i

† !,

c2i5
1

A2
hi

†c2i5
1

A2
~b1i

† f 2i2b2i
† f 1i

† !. ~3!

The t-J Hamiltonian

H5(
^ i , j &

@J~SW i•SW j2
1
4 ninj !2t~ca i

† ca j1H.c.!# ~4!

can now be written in terms of our fermion-boson~FB!
fields. The Hilbert space of the FB system is larger than t
of the t-J model. However, the local SU~2! singlets satisfy-

ing ( 1
2 ca i

† tWca i1bi
†tWbi)uphys&50 form a subspace that i

identical to the Hilbert space of thet-J model. On a given
site, there are only three states that satisfy the above
straint. They aref 1

†u0&, f 2
†u0&, and 1/A2(b1

†1b2
†f 2

†f 1
†)u0&

corresponding to a spin-up electron, and a spin-down e
tron, and a vacancy, respectively. Furthermore, the
Hamiltonian, as a SU~2! singlet operator, acts within the sub
space and has the same matrix elements as thet-J Hamil-
tonian. The projection to the physical subspace is acc
plished by introducing a set of three auxiliary field
a0i

l , l 51,2,3, on each sitei . The partition function is
written after a standard Hubbard-Stratonovich transforma
as

Z5E Dh Dh†Dc Dc†DaW 0DU expS 2E
0

b

L; D , ~5!

where the LagrangianL; is given by

L;5
J̃

2(̂
i j &

Tr@Ui j
† Ui j #1

1

2(
i , j ,a

ca i
† ~]td i j 1 J̃Ui j !ca j

1(
i ,l

a0i
l S 1

2
ca i

† t l ca i1hi
†t l hi D

1(
i , j

hi
†@~]t2m!d i j 1 t̃ Ui j #hj . ~6!

The matrix

Ui j 5F2x i j* D i j

D i j* x i j
G , ~7!

wherex i j represents fermion hopping andD i j represents fer-
mion pairing, respectively, andJ̃53J/8, t̃ 5t/2.28 The
density of physical holes equals the total density of boso
be

at

n-

c-
B

-

n

s

^12ca i
† ca i&5^hi

†hi&5^b1
†b11b2

†b2&5x ~8!

and is enforced by the chemical potentialm.
The a0i

l enforces the local constraint

^ 1
2 ca i

† t l ca i1hi
†t l hi&50. ~9!

In particular, forl 53 we have

^ f a i
† f a i1b1i

† b1i2b2i
† b2i&51. ~10!

The Lagrangian is invariant under the local SU~2! transfor-
mation

ca i→gi
†ca i , hi→gi

†hi , Ui j→gi
†Ui j gj ,

a0i
l t l →gi

†a0i
l t l gi2gi]tgi

† , ~11!

wheregi(t) is a 232 matrix that represents an SU~2! group
element.

Equations~5! and ~6! are a faithful representation of th
t-J model, just as the more standard U~1! representation is.
The two representations must be equivalent, as long as
include all the fluctuations. To understand the relation
tween the SU~2! and the U~1! theory, we will rewrite the
SU~2! theory to make it as similar to the U~1! theory as
possible. In Appendix A we will do the reverse, i.e., we w
start with the U~1! theory and write it in the form of the
SU~2! theory; we will also discuss some subtleties of t
relation.

The key ingredient is that the two-component boson fi
in the SU~2! representation is nothing but an SU~2! rotation
of the standard slave bosonbi , i.e.,

hi5gi S bi

0D . ~12!

The matrixgi can be parametrized as

gi5S zi1 2zi2*

zi2 zi1*
D , ~13!

with the constraint(azia* zia51, which is satisfied by the
parametrization

zi15e2 i ~a/2!e2 i ~f/2!cos
u

2
, zi25e2 i ~a/2!ei ~f/2!sin

u

2
.

~14!

It is natural to introduce the isospin vectorIW

IW5za* tWabzb5~sin u cosf,sin u sin f,cosu!. ~15!

Furthermore, it is easy to check that

git3gi
†5tW• IW. ~16!

ThusIW has the meaning of the local quantization axis para
etrized by the polar coordinatesu andf. The anglea in zi
andgi is redundant and can be absorbed into the phase obi
in Eq. ~12!. Using Eq.~12! we can write Eqs.~5! and~6! as

Z5E Dg Db Db†Dc Dc†DaW 0DU expS 2E
0

b

L8D ,

~17!
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where

L85
J̃

2(̂
i j &

Tr~Ui j
† Ui j !1

1

2(
i , j ,a

ca i
† @~]t1aW 0•tW !d i j 1 J̃Ui j #ca j

1(
i , j

bi* S ]t2m1
1

2
Tr$t3@gi

†aW 0•tWgi2~]tgi
†!gi #%d i j

1
t̃

2
Tr@~11t3!gi

†Ui j gj # D bj . ~18!

We see that the path integral of the SU~2! theory is very
similar to that of the U~1! theory. Here note that the first lin
of Eq. ~18! is invariant against the local gauge transform
tion ~11!. To see this we transform of the integral variabl
ca i5gi

†c̃a i , gi
†Ui j gj5Ũ i j , and gi

†aW 0•tWgi2(]tgi
†)gi

5 ãW 0•tW . Then Eqs.~17! and ~18! become

Z5E Dg Db Db†Dc̃ Dc̃†D ãW 0DŨ expS 2E
0

b

L̃ 8D
~19!

and

L̃ 85
J̃

2(̂
i j &

Tr@Ũ i j
† Ũ i j #

1
1

2(
i , j ,a

c̃ ia
† F S ]t1 (

a51

3

ã0
ataD d i j 1 J̃ Ũ i j G c̃ j a

1(
i

bi
†~]t2m1 ã0

3!bi2 t̃ (
i , j

x i j bj
†bi . ~20!

Note thatL̃ 8 no longer depends ong so that theg integral
can be dropped. If we drop thea0

1,2 integral, Eqs.~19! and
~20! have the same form as the U~1! formulation with an
exception that theret̃ is replaced byt52 t̃ . It is not our
purpose to derive the exact equivalence between the U~1!
and SU~2! path integrals, but rather we want to point o
how low-lying fluctuations in the SU~2! formulation may be
reproduced in the U~1! picture.

The U~1! mean-field theory corresponds to fixingg to be
unity ~so that IW5 ẑ) and findingUi j

0 and aW 0
(0) , which mini-

mizes the action after summing overc andb. In the under-
doped region, it was found thatUi j

(0) corresponds tod-wave
pairing of fermions. Thus the SU~2! symmetry at half filling
is broken by the boson term for finitex. At the same time, it
is clear that forx!1, there is a host of U~1! mean-field states
Ui j 5gi

†Ui j
(0)gj that are close in energy to thed-wave state.

Since these states are degenerate atx50, we may expect an
energy cost of orderxJ per hole orx2J per unit cell. An
example of special interest is the staggered flux phase
has a Dirac spectrumEk5Ajk

21Dk
2 at (p/2,p/2). Since the

density of states of the Dirac spectrum is linear in energy,
energy cost is;mF

3/DJ for a given fermion chemical poten
tial. To satisfy the fermion number constraint,mF'AxDJ so
that in this case the energy cost is expected to beADJ x3/2

per unit cell. At finite temperatures, we expect that the
low-energy configurations should be included in the partit
-

at

e

e
n

function sum. This additional degree of freedom is just re
resented by the functional integral overg in Eq. ~17! and this
is the motivation for adopting the SU~2! formulation.

In Ref. 24 a mean-field theory was introduced for t
SU~2! action~5! and~6!. The mean field is a saddle point o
the action with respect toUi j andaW 0, after integrating over
c,c† andh, h†, which is possible because the action is qu
dratic in these variables. We find that the mean-field ph
diagram is only slightly modified from the U~1! case and
consists of six different phases.~i! In the staggered flux
(s-flux! phase

Ui ,i 1 x̂52t3x2 i ~2 ! i x1 i yD,

Ui ,i 1 ŷ52t3x1 i ~2 ! i x1 i yD, ~21!

and a0i
l 50. In the U~1! slave-boson theory, the staggere

flux phase breaks translational symmetry. Here the break
of translational invariance is a gauge artifact.
fact, a site-dependent SU~2! transformation Wi
5exp@ i (21)i x1 i y(p/4)t1# maps thes-flux phase to the
d-wave pairing phase of the fermions:Ui ,i 1 x̂,ŷ52xt3
6Dt1, which is explicitly translationally invariant. In the
s-flux phase the fermion and boson dispersions are given
6Ef and 6Eb , where Ef5A(e f2a0

3)21h f
2, e f5

22 J̃ (coskx1cosky)x, h f522 J̃ (coskx2cosky)D, with a
similar result forEb with J̃ replaced byt̃ . Sinceia0

350 we
have^ f a i

† f a i&51 and^b1
†b1&5^b2

†b2&5x/2. ~ii ! The p-flux
phase is the same as thes-flux phase, except herex5D. ~iii !
The uniform RVB ~URVB! phase is described by Eq.~21!
with a0i

l 5D50. ~iv! A localized spin phase hasUi j 50 and
a0i

l 50, where the fermions cannot hop.~v! The d-wave su-
perconducting~SC! phase is described byUi ,i 1 x̂,ŷ52xt3

6Dt1 and a0
3Þ0, a0

1,250, ^b1&Þ0, and^b2&50. ~vi! The
Fermi-liquid ~FL! phase is similar to the SC phase, exce
that there is no fermion pairing (D50).

The connection with the U~1! mean-field theory is now
clear by using Eq.~18!. The SU~2! mean-field consists o
fixing Ui j 5Ui j

(0) and aW 05aW 0
(0) . For each$gi% the integral

over c,c†, b,b† gives the free energy of a U~1! mean-field
theory with

Ui j ~g!5gi
†Ui j

~0!gj ~22!

and

aW 0•tW5gi
†a0

~0!
•tWgi1gi

†]tgi . ~23!

Upon integration over$gi%, we see that the SU~2! mean-field
theory includes the U~1! mean-field state$Ui j

(0) ,aW 0
(0)% and all

the configurations$Ui j ,aW 0% connected to it by SU~2! rota-
tions. Thus, forx!1 all the low-energy excitations are in
cluded in the partition sum. This is the reason why we b
lieve the SU~2! mean-field theory is a better starting point f
underdoped cuprates.

We note that with the exception of the superconduct
and Fermi liquid phases,aW 0

(0)50 in the SU~2! mean-field
solution. This means that^ f a i

† f a i&51 and the constraint~10!
is satisfied bŷ b1

†b1&2^b2
†b2&50. Unlike the U~1! case, the

density of fermions is not necessarily 12x. It is this feature
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that allows the staggered-flux andd-wave states to be gaug
equivalent descriptions in thes-flux phase, for instance. On
consequence is that the node in the gap function of the
mion excitation is pinned at (p/2,p/2). In Ref. 24 it was
found that by including an attraction between the boson
fermion due to the exchange ofa0 fluctuations, Fermi-
surfacelike features can be recovered in the physical elec
spectral weight that is shifted away from (p/2,p/2).

A similar situation appears in the URVB phase. The f
mion Fermi surface encloses area 1 and one must go be
mean-field theory to produce electron Fermi-surfacelike f
tures that obey the Luttinger theorem. The problem is e
more serious in the FL phase. Even thougha0

3 is now not
equal to zero, the fermion Fermi surface area approach
2x only very slowly with increasingx and decreasing tem
perature. The FL state exists only forx>J/t, so the motiva-
tions behind the SU~2! mean-field theory are no longer ap
plicable. Nevertheless, this observation means that the S~2!
mean-field theory does not evolve towards the U~1! mean-
field theory in a way that is acceptable.

We believe the origin of these difficulties lies in fixin
aW 0

(0) as a mean-field parameter from the beginning. ForaW 0
(0)

50, the constraint is satisfied on the average by^h†tWh&50.
For example, this implieŝb1i

† b2i&50. Using Eqs.~13! and

~15!, this suggests that the isospin vectorIW is randomized so
that ^ IW i&50. On the other hand, as we approach the sup
conducting phase boundaryTc from above or the Fermi-
liquid boundary from the URVB side, the boson fieldhi
becomes phase coherent and we expect that it shoul
slowly varying in space and time. In these regions, the sh
range correlation of the boson field is not captured by
SU~2! mean-field theory. This motivates us to formulate
alternative effective theory for the SU~2! partition function,
which we shall refer to as thes-model description.

Our strategy is to pick a mean-field configurationUi j
(0)

and consider a slowly varying configurationhi in Eq. ~6! or,
equivalently, a slowly varyinggi andb in Eq. ~18!. For each
configuration,aW 0 is solved to satisfy the constraint locally
after performing the integral overc,c†. Thus, in principleaW 0

is a functional of$hW i%. Our final goal is to produce an effec
tive Lagrangian for$hW i% that will take the form of some
nonlinears model to describe the low-energy physics of t
problem. This is the opposite limit to the SU~2! mean-field
theory: The assumption of a uniformaW 0 is valid when thehi
configurations are rapidly varying on the scale of the ferm
correlation length, which is of orderj05eF /D in the s-flux
phase. This picture is valid at high temperatures, whereas
s-model approach is expected to be applicable near the
perconducting transition and the crossover to the Fer
liquid state. The truth most likely lies in between the tw
extreme limits in most parts of the phase diagram and it w
be of interest to explore the consequences of both limits

It is clear that anyŨ i j
(0) related toUi j

(0) by a SU~2! gauge
transformation will give an equivalent description. Thus w
can start with any U~1! mean-field configuration. In prin
ciple, we should optimize the parametersx andD at the end
of the calculation, but in practice we expect these parame
to be not so different from that given by the U~1! mean-field
r-

d

on

-
nd
-
n

1

r-

be
t-
e

n

he
u-
i-
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rs

theory. We also find that a judicial choice ofUi j
(0) that ex-

hibits the symmetry of a given phase yields as model that
exhibits the proper symmetry. As a first example we disc
the URVB state.

III. s MODEL OF THE FERMI LIQUID
AND THE URVB PHASES

In U~1! mean-field theory the matrixUi j
(0) in the URVB

state is given byUi j
(0)5(

0
2x i j*

x i j

0 ). Here we make the choice

x i j 5 ix0, so thatUi j
(0)5 ix0I is proportional to the identity

element. ThusUi j
(0) itself is invariant under a global SU~2!

transformation.
For a0

15a0
250 the bosonsb1 andb2 are diagonalized by

the energy dispersion

Eb
1,2522tx0~sinkx1sinky!6a0

32m. ~24!

In the Fermi-liquid phase, the boson condenses to the bot
of the band, located for this choice of gauge atQ0
5(p/2,p/2).

As explained in Ref. 24 the SU~2! mean-field theory so-
lution for the Fermi liquid is given bya0

3,0 andb1 contains

a Bose-condensed part so that^b1&5b0eiQW i•rW. Note that at
finite T, thermal excitations makêb2

†b2&Þ0. From Eqs.~8!
and ~10! we see that the fermion density

K (
a

f ia
† f iaL 512x12^b2

†b2& ~25!

is not equal to 12x, so that Luttinger theorem is not obeye
As discussed in the Introduction, this motivates us to try
s-model approach, where we write

hi5 h̃ ie
iQW 0•rW ~26!

and look forh̃ i that is slowly varying in space andt. We can
further parametrizeh̃ i5gi(0

b). Locally we can considergi

5g0 as constant. By introducingc̃5gi
†c we see thatL8 in

Eq. ~18! takes the U~1! form

L85
1

2(
i , j ,a

c̃ ia
† @~]t1aW 08•tW !d i j 1 J̃Ui j

~0!#c̃ ia1(
i , j

bi*

3S ]t2m1
1

2
Tr@t3~aW 08•tW !#d i j

1
t̃

2
Tr@~11t3!Ui j

~0!# D bj , ~27!

where

aW 08•tW5gi
†aW 0•tWgi2~]tg

†!g. ~28!

The local U~1! mean-field solution of Eq.~26! is given by
aW 085a00ẑ anda00 is the fermion chemical potential chosen

a way that ensures that thec̃ fermion density is 12x. From
Eqs.~26! and ~16! we find that

aW 0i5a00IW~gi !. ~29!
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The physical electron Green function in the SU~2! theory

G~rW,t!52^Tt@c1~rW,t!c1
†~0W ,0!#&

52
1

2
^Tt@h†~rW,t!c1~rW,t!c1

†~0W ,0!h~0W ,0!#&.

~30!

Assumingb is Bose condensed, we have, within the me
field theory,

G~r ,t!52
1

2
b0

2^Tt@ f̃ 1~rW,t! f̃ 1
†~0,0!#&1~ incoherent part!.

~31!

The fermion partc̃a and therefore the physical electro
Fermi surface now satisfy the Luttinger theorem in th
slowly varying approximation.

We would like to remark that the electron Green functi
in the U~1! theory has the form

G~rW,t!52^Tt@c↑~rW,t!c↑
†~0W ,0!#&

52^Tt@b†~rW,t! f ↑~rW,t! f ↑
†~0W ,0!b~0W ,0!#&. ~32!

The U~1! mean-field Green function is

G~r ,t!52b0
2^Tt@ f ↑~rW,t! f ↑

†~0,0!#&1~ incoherent part!
~33!

after the boson condensation. Although the coherent part
the same dispersion relation, the quasiparticle weight in
U~1! mean-field Green function is twice the quasipartic
weight in the SU~2! mean-field Green function.

We next derive an explicit expression for thes-model
Lagrangian by expanding ina0 and integrating out the fer
mion. This is a systematic procedure for smallx. Starting
from Eq. ~5!, the fermion integration yields a contributio
2Tr ln(]t1 J̃Uij

(0)2iaW0•tW). An expansion inaW 0 to quadratic
order yields the term

L8F5 (
q,vn

1

2
a0

a~q,vn!a0*
b~q,vn!p00

ab~q,vn!, ~34!

where

p00
ab~q,vn!5E

0

b

dt eivnt(
i

e2 iqW •~rW i2rW j !

3^c i
†tac i~t!c j

†tbc j~0!&. ~35!

For the URVB state,p00
ab5p00

(0)dab , where p00
(0) may be

expanded for smallq and uvnu,q as

p00
~0!~q,v!5p01C18J

21q21C28J
22

uvnu
q

. ~36!

The coefficientp052C08J
21, and C08 , C18 , and C28 are

constants of order unity. The leading term gives a contri
tion 2C08Jua0u2. The negative sign is a reminder that th
mean fielda0 is a saddle point with the stable direction alo
the imaginary axis. We shall see that this negative sign yie
correctly a repulsive interaction between the bosons.
-

as
e

-

s

We expand inh̃ about the bottom of the boson bands a
the effective Lagrangian takes the form

Le f f5 h̃†]t h̃1
1

2mb
u] i h̃ u22m h̃†h̃

1D1mb
21~ h̃†h̃ !21ubu2aW 0~rW,t!• IW~rW,t!

1
1

2(
q,vn

ua0~q,vn!u2p00
~0!~q,vn!. ~37!

The D1 term is used to model the repulsion between bos
and D1 is of order unity for infinite on-site repulsion. W
have rewritten the coupling betweenh̃ and aW 0 using Eqs.
~16! and ~12!. Since Eq.~37! is quadratic ina0, it can be
eliminated, yielding a fermion contribution to the Lagrangi

L9F52
1

2(
q,vn

ubu4IW* ~q,vn!• IW~q,vn!

p00
~0!~q,vn!

'2
1

2
ubu4 (

q,vn

IW* ~q,vn!• IW~q,vn!

3S 2C0J1C1Jq21C2

uvnu
q D . ~38!

Using IW• IW[1, the first term is1
2 C0Jubu4 and it modifies the

D1 term in Eq. ~37! to D185D11C0J. For J,t, this is a
small correction. To obtain a description in terms of thez
fields z5(z1 ,z2), wherez1 ,z2 are defined in Eq.~13!, we
write h̃5(b01db)z and integrate out thedb field. We find

Le f f5
2

3

mb

D18
uz†]tzu21ub0u2z†]tz1

x

2mb
u] izu21LF ,

~39!

LF5
1

2
x2J(

q,vn

IW* ~q,vn!• IW~q,vn!S C1q21C2

uvnu
q D .

~40!

We have approximatedb2 by x andb0 is a constant of order
Ax at low temperature. The first term in Eq.~40! is a ferro-
magnetic Heisenberg interaction between the isospins. U
the usualCP1 representation, it can be written as

C1

2
x2Ju~] i2 i Ã i !zu2, ~41!

where

Ãi5
i

2
@z†] iz2~] iz

†!z#. ~42!

Note that whereas the boson part in Eq.~39! has the full O~4!
symmetry, the fermion part has only O~3! symmetry because
it is independent of the overall phasea. The second term in
Eq. ~40! describes dissipation due to particle-hole excitatio
of the Fermi sea. Note that the fermion contribution is p
portional tox2J, which is smaller than the boson contribu
tion, which is proportional toxt even in the overdoped re
gion (xt>J). For example, ifT.x2J we can ignore the
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fermion term and if we further make the classical appro
mation, we conclude that at high temperatures the syste
described by the classical O~4! model. There is no phas
transition but instead there is a crossover temperature o
der xt below which the phase coherence length grows ex
nentially. This is opposed to the U~1! mean-field theory
where there is a Kosterlitz-Thouless transition. Of course
transition is destroyed when gauge fluctuations are taken
account.29 However, in our case vortex excitations are d
stroyed by SU~2! fluctuations and we can expect a suppr
sion of the development of phase coherence in the SU~2!
formulation due to the addition of low-lying degrees of fre
dom. It is interesting to ask what the nature of these lo
energy excitations is. In the effective Lagrangian~39!, the
degeneracy for constantz is a gauge symmetry: Any consta
z is related by a global gauge transformation to the U~1!
URVB state. Whenz is slowly varying, we can use Eq.~22!
to see that in the U~1! representation,Ui j 5 ix0gigj

† is gen-
erated, which in general contains pairing amplitudesD i j as
well as modifications of the hopping termx i j which affects
both the boson and fermion energy. This is in contrast to
U~1! formulation, where only the phase fluctuation ofx i j is
included. Thus we may view the SU~2! formulation as a way
to discover low-lying excitations that were not so obvious
the U~1! picture. To complete the discussion of the low-lyin
excitations we need to introduce gauge fields to the effec
Lagrangian. This will be done in a later section.

IV. s MODEL OF THE SUPERCONDUCTING
AND THE STAGGERED-FLUX PHASES

We repeat the procedure in the preceding section for
staggered-flux phase by choosing an appropriateUi j

(0) matrix.
Once again anyUi j

(0) that are related by gauge transform
tions will give the same result, but it will be convenient
use aUi j

(0) that exhibits the symmetry of the state. We ha
noted before that in the SU~2! mean-field theory, thes-flux
state breaks the SU~2! symmetry down to U~1!. This moti-
vates us to choose the followingUi j

(0) to describe thes-flux
phase.

We choose the following ansatz to describe thes-flux
phase:

Ui ,i 1 x̂
~0!

52 ix2~21! it3D, Ui ,i 1 ŷ
~0!

52 ix1~21! it3D,
~43!

and

a0
l ~ i !5a0

l 1~21! i ã0 . ~44!

Note thatUi j
(0) is invariant under globalt3 rotations. In the

momentum spacec i5( ie
2 ikW• iWck , we have

Hmean
f 5 J̃(

k
8~ck

† ,ck1Q
† !

3S Vk1a0
l t l Wk1Q1 ã0

l t l

Wk1 ã0
l t l Vk1Q1a0

l t l D S ck

ck1Q
D ,
-
is

r-
-

is
to
-
-

-

e

e

e

Hmean
b 5 t̃ (

k
8~hk

† ,hk1Q
† !S Vk1a0

l t l Wk1Q1 ã 0
l t l

Wk1 ã0
l t l Vk1Q1a0

l t l D
3S hk

hk1Q
D , ~45!

where

Vk522x~sin kx1sin ky!522xak ,

Wk522i t3D~sin kx2sin ky!522i t3Dgk , ~46!

and(k8 represents summation over half of the Brillouin zon
To study the boson-condensed phase at low temperatu

let us first assume thatã 0
l 50. In this case the boson ban

bottom is atk5(p/2,p/2) if a0
l is not too large. Thus the

condensed boson has the form

S b1~ i !

b2~ i !
D 5S b1

b2
D e2 i ~ i x1 i y!p/2. ~47!

For such a boson condensation the boson free energy i
even function ofã 0

l . We also note that

M ~kx ,ky ,a0
l , ã 0

l !5S Vk1a0
l t l Wk1Q1 ã 0

l t l

Wk1 ã 0
l t l Vk1Q1a0

l t l D
5S 22xak1a0

l t l 2iDt3gk1 ã 0
l t l

22iDt3gk1 ã 0
l t l 2xak1a0

l t l D
~48!

satisfies

M ~kx ,ky ,a0
l , ã 0

l !5S 1

1

21

21

D
3M ~ky ,kx ,a0

l ,2 ã 0
l !

3S 1

1

21

21

D . ~49!

Thus the fermion free energy is also an even function ofã 0
l .

Therefore,ã 0
l 50 is a self-consistent solution.

We would like to remark thatUi j in Eq. ~43! does not
contain any fermion pairing. However, the boson condens
induces nonzeroa0

l . A nonzeroa0
1,2 induces a pairing con-

densate of the fermions. But whena0
1,250 there is no pairing

and the fermions are in a normal Fermi-liquid state.
Now we are ready to discuss some basic physical pro

ties of our ansatz for different orientation of the condens
(b1 ,b2). Without lose of the generality, we may assum
b1 /b2 to be real. In this casea0

250. We see that whenb1

5b2 ~in this casea0
350) the ansatz describes a translati

and rotation invariant state. This state is equivalent to
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usuald-wave paired state in the U~1! mean-field theory after
an SU~2! gauge transformation. It describes ad-wave super-
conducting state~with a finite chemical potential! of the t-J
model. Whenb1Þb2 and b1b2Þ0, we havea0

3Þ0 anda0
1

Þ0. There is a pairing condensate in the fermions. The
satz describes a superconducting state of thet-J model that
also breaks the translation symmetry. The quasiparticle e
tations have finite gap except at four isolated points n
(6p/2,6p/2). Whenb1Þ0 andb250, we havea0

3Þ0 and
a0

1,250. There is no pairing condensate in the fermions. T
ansatz, despite the boson condensate, does not correspo
a superconducting state. It instead describes a Fermi liq
with broken translation symmetry and small pocketli
Fermi surfaces. This result is obtained through a later ca
lation of electromagnetic response.

At high enough temperatures, the thermal fluctuatio
make^b1&5^b2&5^a0

l &50. In this case the ansatz describ
a translation and rotation invariant metallic state, which
just thes-flux phase studied in Ref. 24

In order to derive as model for theh̃ field, we integrate
out the fermions as before. The difference now is thatp00

ab

5p00
a dab , where p00

x 5p00
y Þp00

z . We find that p00
x (0)

'C18J, whereasp00
z (0)50 for aW 050. This is becausepz is

the density-density response function andpz(0) is the com-
pressibility of the fermion that vanishes due to the vanish
density of states in the middle of the band. For finitea0

3 we

find that p00
z (0)5C28a0

3 . Now we can eliminateaW 0 to ex-
tremize the action. The problem retains rotational symme
in the x-y plane, but is anisotropic in thez direction. For
example, for IW in the x-y plane, we havea0

350 and the
energy of the mean-field state is

EMF524txx1
J

2C18
x2. ~50!

On the other hand, forIW5 ẑ, we havea0
15a0

250. Eliminat-
ing a0

3 we find the mean-field energy to be

EMF524txx1
2J

3AC28
x3/2. ~51!

This result indicates that the boson condensate tends to
in the manifold that satisfiesub1u5ub2u, i.e., I z50. As
pointed out earlier, this state is equivalent to thed-wave
pairing state as opposed to the stateIW5 ẑ, which corresponds
to the staggered-flux state with finite chemical potential.

We can follow the procedure of Sec. III to derive an e
fective Lagrangian for thez field. The important difference is
the appearance of the anisotropy energy. Ignoring the gr
ent terms from the fermion contribution, we can write dow
the effective Lagrangian

Leff5
2

3

mb

D1
uz†]tzu21xz†]tz1

x

2mb
u] izu21

x2J8

2C1
4uz1z2u2

1
x2J8

2C3
~ uz1u22uz2u2!2. ~52!
n-

i-
ar

e
d to
id

u-

s

s

g

y

tay

i-

The last two terms are introduced phenomenologically
model the breaking of the O~3! symmetry down tox-y sym-
metry whenC1ÞC3. This is adequate forIW near thex-y
plane but, strictly speaking, needs further modification n
the north and south poles, due to the singular behavior of
energy cost given by Eq.~51!.

To gain some understanding of the phases of the non
ears model, let us consider the classical limit where thet
dependence ofz is neglected. If (z1 ,z2) is restricted to the
manifold of minimum energy, i.e.,IW is in thex-y plane, the
model is equivalent to twox-y models, with the Kosterlitz-
Thouless transition atTKT'(1/4mb)px. This temperature
scale will be suppressed by fluctuations ofIW out of thex-y
plane because the energy cost per unit area is onlyx2J. How-
ever, we need to introduce gauge fields to Eq.~52! before the
low-lying excitations can be fully discussed.

V. THE ELECTRON SPECTRAL FUNCTION
IN THE s-MODEL DESCRIPTION

In this section we compute the physical electron Gre
function G(rW,t) assuming that we are in the disorder
phase of thes-model description. We have within the mea
field theory

G~rW,t!52
1

2
^Tth

†c~rW,t!c†~0,0!h& ~53!

'GB~rW,t!GF~rW,t!, ~54!

where

GB~rW,t!5^Tt@h†~rW,t!h~0,0!#&,GF~rW,t!

52^Tt@ c̃~rW,t!c̃ †~0,0!#&. ~55!

The boson Green function contains two parts. Note tha
temperatureT most bosons are in states that have energie
order T from the bottom of the boson band. Thus at hi
energies the boson Green function is given by the sing
boson Green functionGB

s as if no other bosons are presen
The imaginary part of this part of boson Green function e
tends the whole bandwidth of the boson band. At low en
gies~of orderT), the boson Green function is determined
those nearly condensed bosons at low energies. Thus we
assume that bosons do condense and the second part o
boson Green function can be approximated by const3eiQbrW,
whereQb is the momentum of the bottom of the boson ban
From the above discussion we see that the mean-field e
tron Green function has the form

Ge
~0!5const3eiQbrWGF1Gin

~0! . ~56!

The second term comes from the convolution ofGB
(s) andGF

and is the incoherent part of the Green function. The fi
term is the coherent part since its imaginary part is given
discreted functions. ~Note those discreted-function peaks
should really have a finite width of orderT if the bosons do
not really condense as in thes-flux and URVB phases.! It is
this coherent part that gives rise to the quasiparticle pe
observed in photoemission experiments. The more exact
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pression ofGe
(0) is given by Eq.~C1! in Appendix C. At low

temperatures the lengthy expression can be simplified a

Ge
~0!~v,k!.

x

2F @v f~k!#2

v2E2
f ~k!

1
@uf~k!#2

v2E1
f ~k!

G1Gin
~0! . ~57!

The incoherent part satisfies

E
2`

1`dv

p
ImGin

~0!5
1

2
, ~58!

which can be shown by using Eq.~C1!.
In the following we go beyond the mean-field theory a

discuss several corrections to the mean-field Green func
As low energies, bosons are nearly condensed. The b
fields (b1 ,b2) @or gi(t)# change slowly in the time direction
~within a range of order 1/T) and in the spatial direction
~within a range of orderaAt/T). Thus locally we may think
there is really a boson condensation and calculate the~mean-
field! electron Green function in the boson-condensed ph
Since in the different regions the boson fields (b1 ,b2) point
to different directions, the total Green function can be o
tained by averaging the mean-field Green functions for
the directions. We would like to point out that the fermio
Green functions are different for different directions of t
boson fields because different local boson fields give ris
different locala0

l that enforces the constraint.
The above picture of calculating the electron Green fu

tion naturally comes from ours-model treatment of the
SU~2! theory. The averaging weights for different directio
are determined from thes model. We now make the crud
approximation that we are in the high-temperature phas
the s model, where all slowly varying configurationsz are
equally likely.

We have already seen in Sec. III that this procedure yie
a Fermi surface that obeys the Luttinger theorem in
Fermi-liquid phase where the bosons are condensed an
the URVB phase where the bosons are nearly conden
The fluctuations of the boson fields in the URVB phase w
give rise to finite broadening of the quasiparticle peaks.
now perform the same procedure in thes-flux phase.

For each uniform configurationgi5g, ImGF(v,k) in
general contains fourd-function peaks as a function ofv.
~Note that for generalg we have both translation symmetr
breaking and fermion pairing.! After averaging over all ori-
entations ofg, we get a translation invariant electron Gre
function. This averaging also gives quasiparticle peaks
intrinsic width and line shape.

Figure 1 presents a numerical calculation of the elect
spectral function using the above approximation. We h
chosenJ̃5J/2 andx51 so that the fermion band bottom
at around22J, to be consistent with experiments. We ha
set t̃ 5t52J so that the incoherent part of the spectral fun
tion extends from28t5216J to 0, in order to agree with
the numerical results. We have also setD/x50.2 so that the
gap near (0,p) is about 0.4J. Roughly, the spectral function
is similar to that of ad-wave paired state with a spin ga
around (0,6p) and (6p,0) of orderDspin;0.4J. However,
the line shape and linewidth are quite different. If one pl
ImG(v50,k) one can see that wings toward (0,p) and
n.
on

e.

-
ll

to

-

of

s
e
in
d.

l
e

n

n
e

-

s

(0,p) at two sides of the peak@at (p/22d,p/22d)# are
enhanced by the averaging. It is because wheng51,
ImG(v50,k) has a Fermi pocket around (6p/2,6p/2).
We see that the averaging overg pushes thed-wave spec-
trum towards a spectrum that shows a segment of Fe
surface.

In the above calculation of the spectral function, we on
include some simple fluctuations~i.e., the uniform fluctua-
tions of boson field!. One may wonder how reliable th
above result is. In the following we calculate ImGe by in-
cluding some different fluctuations. We find that the sp
gaps around (0,6p) and (6p,0) are quite robust. However
the low-energy spectral function near (6p/2,6p/2) ~to-
gether with the positions and the shapes of the Fermi s
ments! are sensitive and are essentially determined by
fluctuations. Although different fluctuations have differe
effects, they in general stretch Fermi points of the mean-fi
theory into Fermi segments.

The dominant effect of fluctuations is to bind the boso
and the fermion into an electron. This corresponds to
effective attraction between the bosons and the fermio
One way to include this effect is to use the diagram in Fig
to approximate the electron Green function, which cor
sponds to an effective short-range interaction of the form

2
V

2
~c†h!~h†c!52Vc†c, ~59!

with V,0. We get

Ge5
1

~Ge
~0!!211V

. ~60!

FIG. 1. Electron spectral function. Thex axis is the frequency.
The curves are for the following values ofk, from top down to
bottom: ~a! k5(2p/4,p/4)→(p/4,3p/4), ~b! k5(2p/8,p/8)
→(3p/8,5p/8), ~c! k5(0,0)→(p/2,p/2), and ~d! k5(0,p)
→(0,0). We have chosenJ51.

FIG. 2. Diagram for renormalized electron Green function. T
solid ~dashed! line is the fermion~boson! propagator.
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6012 57LEE. NAGAOSA, NG, AND WEN
However, in general, fluctuations induce more complica
interactions. A more careful treatment can be found in A
pendix C, where we treat two different kinds of fluctuation
The first one is the fluctuation ofa0

l , which induces the
following interaction between the fermions and the boson

c†tWc•h†tWh. ~61!

The second one~whose importance was pointed out b
Laughlin30! is the fluctuation ofux i j u, which induces

2t~c†h! j~h†c! i522tcj
†ci . ~62!

This is nothing but the original hopping term. We expect t
coefficient t to be reduced due to screening, but in the f
lowing we adopt the form

V~k!5U12t~coskx1cosky! ~63!

for V in Eq. ~60!. Here the first and the second term com
from the first and the second kind of fluctuations. In Figs
and 4 we plot the electron spectral function calculated fr
Eq. ~60!. We have chosenJ̃5J/2, t̃ 5t52J, x51, D/x

FIG. 3. Electron spectral function. The curves are for the f
lowing values of k, from top to bottom: ~a! k5(2p/4,
p/4)→(p/4,3p/4), ~b! k5(2p/8,p/8)→(3p/8,5p/8), ~c! k
5(0,0)→(p/2,p/2), and~d! k5(0,p)→(0,0). We have chosenJ
51. The paths of the four momentum scans are shown in Fig.

FIG. 4. The points describe the dispersion of the quasipart
peaks for thes-flux phase in Fig. 3. The vertical bars are propo
tional to the peak values of ImGU , which are proportional to the
quasiparticle weight.
d
-
.

:

e
-

s

50.4, x50.1, andT50.1J. Here we chooseD/x50.4, so
that the renormalized gap near (0,p) is about 0.4J. The
valueU is determined from requiring the renormalized ele
tron Green function to satisfies the sum rule

E
0

`dv

2pE d2k

~2p!2
ImGe5x. ~64!

Note that the mean-field electron Green function in Eq.~C1!
does not satisfy this sum rule

E
0

`dv

2pE d2k

~2p!2
ImGe

~0!5x/4. ~65!

We find that the gap near (0,6p) and (6p,0) survives
the inclusion of gauge andux i j u fluctuations. However, spec
tral functions near (6p/2,6p/2) are modified. The Ferm
point at (p/2,p/2) for the mean-field electron Green functio
Ge

(0) is stretched into a Fermi segment as shown in Fig
We would like to point out that the electron Green functi
obtained here does not show any ‘‘shadow band’’ atv50,
i.e., ImGe(0,k) does not have any peak outside t
(0,p)-(p,0) line as the mirror image of the peaks that app
inside the (0,p)-(p,0) line.

The spectral function obtained here is qualitatively simi
but quantitatively different from the one obtained in Ref.
through a similar calculation. The only difference is that he
we include an additional term 2t(coskx1cosky). Without
this term the quasiparticle peaks near (0,0) get stron
renormalized and become very strong. The quasiparticle
ergies near (0,0) get pushed so high that they are ne
degenerate with the energy gap near (0,p). Those features
obviously disagree with experimental observations. After
cluding the 2t(coskx1cosky) term the agreement with ex
periments improved a lot. Due to a cancellation between
U and 2t(coskx1cosky) neark5(0,0), the quasiparticle en
ergies and spectral weights near (0,0) are quite close to
mean-field values and the gap at (0,p) now can be quite
different from the quasiparticle energy at (0,0).

The incoherent part of the electron spectral function c
tains two broad peaks, each with a width about 4t. The in-
coherent part of the electron spectral function is roug
given by the boson density of states. In the SU~2! theory, the
bosons experience the staggered flux, which causes
double-peak structure in the boson density of states an
the incoherent part of the electron spectral function. As

-

.

le

FIG. 5. Solid linesa, b, c, andd are paths of the four momen
tum scans in Fig. 3. The solid curves are a schematic represent
of the Fermi segments where the quasiparticle peak crosses the
energy.
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57 6013SU~2! FORMULATION OF THE t-J MODEL: . . .
changek, the relative weight of the two broad peaks chang
due to thek dependence of the coherence factorsu and v.
The mean-field results of the double-peak structure and
way in which the relative weight changes agree quite w
with the numerical calculations.31 However, the numerica
calculations also observed certain shift of the positions of
two peaks ask changes. The mean-field results do not ha
this shift. If we include only theU term the peak positions in
the renormalized electron spectral function still do not sh
much. However, if we include both theU and 2t(coskx
1cosky) terms the peak positions start to shift in a w
similar to what is observed in numerical calculations, as
been pointed out by Laughlin in Ref. 30.

The electron spectral functions calculated above h
pretty sharp peaks even at high energies~say forv'22J)
in contrast to experimental findings that quasiparticle pe
are much wider at high energies. This discrepancy can
resolved by including the self-energy of the fermion due
the gauge fluctuation. One can show that the self-ene
from the diagram in Fig. 6 is proportional tov andk. Thus
the lifetime is proportional to the inverse of the quasiparti
energy. To include this effect, we may assume the elec
Green function to have the form

Ge
~0!.

x

2F @v f~k!#2

v2E2
f ~k!2 ig~v!

1
@uf~k!#2

v2E1
f ~k!2 ig~v!

G1Gin ,

~66!

Ge5
1

~Ge
~0!!211U

. ~67!

If we assume the decay rate of the fermion to beg(v)
5uvu1g0, the resulting spectral function is quite similar
the line shapes observed in experiments.

To summarize, we have considered three models that
different types of fluctuations. First is the locally condense
boson picture. In this picture the quasiparticle peaks ob
intrinsic linewidths and line shapes. Also, this picture allo
us to recover the Fermi surface that has the Luttinger volu
in the URVB phase and the Fermi-liquid phase. Second
the short-range attraction between the bosons and the fe
ons. Those interactions are mainly due to thea0

l gauge and
ux i j u fluctuations, which stretch the Fermi points of mea
field Green function into Fermi segments. This attraction c
also make the electron Green function satisfy the spec
weight sum rule of thet-J model. Third is the decay o
fermions (g}v) due to the gauge fluctuations. This effe
broadens the quasiparticle peaks at high energies and m
the spectral function look quite similar to the ones obser
in experiment.

FIG. 6. Self-energy diagram for the fermion Green functio
The solid~dashed! line is the fermion~gauge! propagator.
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VI. GAUGE FIELDS

We next investigate the low-lying excitations of the effe
tive action. We first consider the URVB state. Starting fro
Eq. ~39!, it is natural to introduce the transverse compon
of the gauge fieldsaW i by the standard replacement

] i→] i1 iaW i•tW1 ieAW i . ~68!

Recall that in the U~1! case, transverse gauge field enforc
the constraint that the sum of the fermion and boson cur
should vanish. Here the three components of the gauge
ai

l , l 51,2,3 enforce the vanishing of the analogoust l cur-
rents corresponding to thet l density constraint given in Eq
~9!. An important difference is that in the SU~2! formulation
the external electromagnetic field couples only to the bos
because the physical electron density is given in terms of
boson density by Eq.~8!, whereas in the U~1! formulation
one is free to couple theAW field to the boson or fermion, and
the physical response function is the same after including
screening by the U~1! gauge field, leading to the Ioffe-Larkin
combination rules. We shall see how these rules are rec
ered or modified in the SU~2! case.

In the URVB case, it is most convenient to rotate loca
to the U~1! formulation as done in Eq.~27!. For gi slowly
varying in space, we have

Ui j
~0!→gi

†Ui j
~0!gj5Ui j

~0!1 ix0~]agj
†!gj , ~69!

where i 5 j 1a. This is becauseUi j
(0) is invariant under any

global rotation. The second term in Eq.~69! gives rise to the
usual transformation property of SU~2! gauge fields:

aW 08•tW5g†aW 0•tWg1~]0g†!g, aW i8•tW5g†aW i•tWg2 i ~] ig
†!g
~70!

after combining with Eq.~23!. In the rotated frame, the fer
mion c̃ obeys the U~1! mean-field solution with a chemica
potential that enforces the fermion density to be 12x. We
can now expand to quadratic order inam8 . The effective La-
grangian takes the form

Leff5 h̃†~]t1aW 08•tW1eA0! h̃1
1

2mb
u~] i1 iai8W •tW1 ieAi ! h̃ u2

2m h̃†h̃1D1mb
21~ h̃†h̃ !2

1
1

2
am8

l ~q,vn!an8
m~2q,2vn!pmn

l m~q,v!, ~71!

where h̃5(b,0),

pmn
l m~q,v!5^ j m

l ~q,vn! j n
m~2q,2vn!&, ~72!

j 0
l 5c̃†t l c̃ , ~73!

j a
l 5 i @ c̃†t l ]ac̃2~]ac̃†!t l c̃ #. ~74!

The spatial components are purely transverse

pmn
l m5S dmn2

qmqn

q2 D p'
l m~q,v! ~75!

.
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6014 57LEE. NAGAOSA, NG, AND WEN
and in the URVB statep'
l m5d l mp' . This gives rise to

three degenerate transverse gauge modes that are mass
the URVB state. This is confirmed by explicit calculation
Appendix B. In the Fermi-liquid phaseb is Bose condensed
and these modes are massive due to the Anderson-H
mechanism.

It is now clear from Eq.~71! that only the componen
am8

(3) is capable of screening theAW field. Thus it is the com-
ponent of the gauge field parallel to the quantization axis
the rotated frame that plays the role of the U~1! gauge field.
Equation~71! becomes

Leff5b†~]t1a08
31eA0!b1

1

2mb
u~] i1ai8

~3!1eAi !bu2

2mubu21D1mb
21ubu41

1

2mb
@~ai8

~1!!21~ai8
~2!!2#ubu2

1
1

2
am8

l ~q,vn!an8
l ~2q,2vn!pmn

l ~q,v!. ~76!

The coupling of the perpendicular componentsl 51,2 to b
may be approximated by the expectation value
^(ai8

l )2&ubu2, which simply renormalizes the chemical p
tentialm. Theai

3 component can be integrated out and giv
rise to the Ioffe-Larkin combination rule

~pmn!215~pmn
B !211~pmn

F !21, ~77!

where pF is the l 53 component, i.e., the usual densit
density response function of the fermions. Equation~76! also
shows that even in the SU~2! formulation, only a single com-
ponent of the gauge field couples to the boson phase
plays an important role in suppressing the phase coher
of the boson, just as in the U~1! theory.

We next turn our attention to thes-flux phase. The main
difference is that theUi j

0 matrix is invariant only under at3

rotationgi5exp(iut3), so that the SU~2! symmetry is broken
down to U~1!. This produces a mass in thel 51,2 modes
and only thel 53 gauge mode remains massless. This
also checked by explicit calculation in Appendix B. Pheno
enologically, we are led to the following effective Lagran
ian by gauging Eq.~52! and keeping only theam

3 component
of the gauge field:

Leff5
2mb

D1
uz†D0zu21 ixz†D0z2

x

2mb
uDizu22

4x2 J̃

2C1
uz1z2u2

2
x2 J̃

2C3
~ uz1u22uz2u2!21

1

2
am

3 pmnan
3 , ~78!

wherepmn is the polarization tensor of the fermions foram
3

gauge field andD05]t1eA01a0
3t3 and Di5] i1 ieAi

1 iai
3t3.

Equation~78! describes the low-lying excitations of th
underdoped regime: The superconducting and the spin
phases correspond to the ordered and thermally disord
phases ofLeff , respectively. We defer a full discussion
this problem to the future. Here we give a qualitative disc
sion of the superfluid density in the low-temperature pha
ss in

gs

n

f

s

nd
ce

s
-

ap
ed

-
e.

We integrate outam
3 in the standard way and we find th

following dependence of the transverse electromagnetic fi
AW i :

Leff5~eAi !
2

x

mb
F12

~z†t3z!2

11mbp' /xG , ~79!

wherep i j 5p'(d i j 2qiqj /q2). The coefficient ofAi
2 is the

superfluid density. On the minimum energy manifolduz1u
5uz2u the second term in Eq.~79! vanishes and the supe
fluid density is exactlyx. This is thed-wave state as we
discussed earlier. On the other hand, when the vectoIW
points towards the north or south pole,uz1z2u50 and we
havez†t3z561. In this case the fermion spectrum is that
the staggered-flux phase with a finite chemical potential. T
responsepmn for this orientation ofIW is that of a metal,
which vanishes in the limitv,q→0,v,q. In this case the
two terms in Eq.~79! cancel and we find thatrs50, i.e., the
staggered-flux phase is not a superfluid. In general, we
pect that in the superconducting phase fluctuations ofIW away
from the equator will cause a reduction of the superflu
density due to the second term of Eq.~79!. For a more com-
plete treatment, we will need more detailed information
pmn and its dependence onIW, which will be discussed else
where.

VII. CONCLUSION

The main result of this paper is the derivation of the
fective low-energy Lagrangian in terms of the boson fieldsz1
andz2 and their coupling to gauge fields. These are given
Eq. ~39! together with Eq.~68! for the URVB and Fermi
liquid phases and Eq.~78! for the s-flux and underdoped
superconducting phases. In the case of the URVB phase
the Fermi liquid phase, we show that thes-model approach
allows a smooth crossover to the U~1! mean-field descrip-
tion, recovering all the desirable properties such as the L
tinger theorem for the Fermi surface area and the Io
Larkin combination rules. This is a considerab
improvement over the SU~2! mean-field theory.

In the staggered-flux phase thes-model description offers
some insight into the connection of the SU~2! with the U~1!
theory. The staggered-flux phase is the disordered phas
the effective Lagrangian~78! so that we may interpret the
spin-gap phase as fluctuations amongd-wave state ands-flux
states and a variety of states in between. While the ph
diagram is quite similar to the U~1! theory, the collective
excitations are very different. In the U~1! theory the gauge
mode acquires a large mass gap of order (12x)J. In the
SU~2! theory there are three gauge modes, two are mas
with mass of orderD, while one remains massless. We b
lieve the low-lying gauge modes may help stabilize th
phase. In any case, the massless gauge modes will lea
large fluctuation effects, which we have not truly explored
this paper.

We also performed extensive numerical work to explo
the consequence of thes-model description for photoemis
sion experiments. We find that within the uncertainties of
theory the qualitative features are not that different from
SU~2! mean-field theory once the boson-fermion attract
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57 6015SU~2! FORMULATION OF THE t-J MODEL: . . .
was included. We find an energy gap in the electron sp
trum, large near (0,p) and vanishing along a Fermi segme
near (p/2,p/2). The precise size and location of these s
ments is beyond the accuracy of the present theory, but tkW
dependence is that of a broadenedd-wave gap. We conside
the agreement of this feature with the experiment to
strong support of the present approach. The SU~2! theory
naturally describes an unusual superconducting trans
that is not associated with opening or closing of spin g
We have not treated gauge fluctuations adequately in
paper for us to describe the energy dependence or the
shape of the spectral function, so that at present deta
questions that distinguish the energy gap as measured
the leading edge or from the ‘‘centroid’’ of the spectral fe
ture remain unanswered.

We expect the SU~2! mean-field theory to be applicable
high temperatures and thes-model description to be mor
accurate near the phase boundary to the superconducting
the Fermi-liquid phases. This is because the fermions
spond to local fluctuations in the boson fields on a len
scale ofjF5J/T in the URVB phase andjF5J/D in the
s-flux phase. On the other hand, the boson fluctuations ar
a scalejB5(t/T)1/2 for T.TBE

(0) andjB5x21/2 for T,TBE
(0) ,

where TBE
(0)5pxt is a mean-field Bose-condensation te

perature. WhenjF.jB , we expect the fermion to averag
over the local boson fluctuations and the SU~2! mean-field
theory is appropriate, whereas thes-model approach re
quires thatjF,jB . The difficulty is that forT,TBE

(0) we do
not have a good understanding ofjB because the coherenc
of the bosons is greatly suppressed by gauge fluctuation
principle, we should solve thes model to obtainjB to obtain
a self-consistent solution, but that is beyond the scope of
present paper. This is why we explore the consequence
both methods and it is fortunate that the results are qua
tively similar in thes-flux phase.

One important outcome of the present work is that it
clear that the transition to the superconducting state is v
different from the conventional BCS theory. In BCS theo
Tc is controlled by the closing of an energy gap in the el
tronic excitation spectrum. In the present case,Tc is con-
trolled by boson fluctuations of our effective Lagrangian. W
also note that the effective Lagrangian is not of the conv
tional Ginsburg-Landau form with a simple complex ord
parameter. The internal gauge degrees of freedom, pa
etrized byf and u @see Eq.~14!#, plays an important role
For example, long range phase coherence can be destr
by u fluctuations. Thus our picture of the normal phase~the
disordered phase of thes model! is very different from that
suggested by a number of workers,32–34based on the idea o
phase fluctuations or a conventional BCS order paramete
the latter picture normal state transport is due to chargee
collective modes, whereas we have chargee metallic carri-
ers. We believe the absence of signatures of strong super
ducting fluctuations in the normal state favors our point
view.
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APPENDIX A: RELATION BETWEEN U „1… AND SU„2…

THEORY

We start with the usual U~1! slave boson formalism wher
the operatorcis

† creating an electron with spins on sitei is
represented by the spinon~fermion! operatorf is

† and the ho-
lon ~boson! operatorbi as

cis
† 5 f is

† bi . ~A1!

The physical states satisfy the local constraint

S (
s

f is
† f is1bi

†bi21D uphys&50. ~A2!

Then the partition functionZ of the t-J model is represented
in terms of the functional integral as

Z5E Dc Dc†Db Db* DU Da0expS 2E
0

b

L D , ~A3!

with the LagrangianL given by

L5
J̃

2(̂
i j &

Tr@Ui j
† Ui j #

1
1

2(
i , j ,a

c ia
† F S ]t1 (

a51

3

a0
ataD d i j 1 J̃Ui j Gc j a

1(
i

bi
†~]t2m1a0

3!bi2t(
i , j

x i j bj
†bi

5LF1LB . ~A4!

where the first line is the LagrangianLF for the fermions and
the second line is the contributionLB from the doped holes
Here the SU~2! matrix Ui j has the spinon pairing order pa
rameterD i j and the hopping order parameterx i j as the ma-

trix elements, i.e.,Ui j 5@
D i j

2x i j*
x i j

D i j* #. The spinorc ia is given

by Eq. ~1!. We have introduced threea0’s. The three-
componenta0

3 is the time component of the U~1! gauge field
corresponding to the constraint~A2!. The components 1 and
2 correspond to the constraint

^phys8u f i1f i2uphys&5^phys8u f i1
† f i2

† uphys&50, ~A5!

which are redundant27 and are left out in the usual U~1!
formulation.

Now we consider the SU~2! gauge transformation, which
is defined as the rotation of the spinorc i in terms of a SU~2!
matrix gi as

c i→c̃ i5gi
†c i , Ui j→Ũ i j 5gi

†Ui j gj ,

a05 (
a51

3

a0
ata→ ã05gi

†a0gi2~]tgi
†!gi . ~A6!
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The LagrangianLF for the fermions remains invariant wit
respect to the gauge transformation~A6!, while the holon
contribution LB changes. Then away from the half filling
(U,a0) and (Ũ, ã0) are physically different configurations
Next we divide the functional integral overU and a0 into
two parts, i.e., the representative (U (0),a0

(0)) and those that
are related to it by the SU~2! rotation g as g†U (0)g and a0

5gi
†a0

(0)gi2(]tgi
†)gi :

E DU Da0F~U,a0!

5E DU ~0!Da0
~0!E Dg F„g†U ~0!g,gi

†a0
~0!gi

2~]tgi
†!gi…. ~A7!

No two members of (U (0),a0
(0)) are related by any SU~2!

rotation g. We change the notation of the Grassmann va
able in Eq.~A3! to c̃ and then we change the Grassma
integral variables toc5gc̃ , c†5c̃†g† to obtain

Z5E Dc Dc†Db Db* DU ~0!Da0
~0!Dg

3expF2E
0

b

dtL8~c,c†,b,b* ,U ~0!,a0
~0! ,g!G .

~A8!

The Lagrangian is given by

L85
J̃

2(
^ i , j &

Tr~Ui j
† Ui j !

1
1

2(
i , j ,a

c ia
† @~]t1a0

~0!!d i j 1 J̃Ui j
~0!#c j a

1(
i , j

bi* F S ]t2m1
1

2
Tr$t3@gi

†a0
~0!gi2~]tgi

†!gi #% D d i j

2
t

2
Tr@~11t3!gi

†Ui j
~0!gj #Gbj . ~A9!

We now parametrizegi in terms of zi using Eq.~13! and
bind thez with the slave bosonb to define the SU~2! boson
h5(b1/b2) as

bia5ziabi . ~A10!

This can be represented by

hi5giFbi

0 G . ~A11!

Now the LagrangianL8 in Eq. ~A9! is written in terms ofb1
andb2 instead ofb andg. First the Berry phase term is
i-

(
i

Fbi* ]tbi2
1

2
Tr@t3~]tgi

†!gi #bi* bi G
5(

i
Fbi* ]tbi1

1

2S (
a

~zia* ]tzia2zia]tzia* !bi* bi D G
5(

i
Fbi* ]tbi1(

a
zia* ]tziabi* bi G5(

i ,a
bia* ]tbia ,

~A12!

where we have used the relation(aza* za51 and
]t((aza* za)5(a(za]tza* 1za* ]tza)50. Next the hopping
term of the boson is written as

2
t

2
Tr@~11t3!gi

†Ui j
~0!gj #bi* bj52thi

†Ui j
~0!hj . ~A13!

In summary, the partition functionZ is written as

Z5E Dc Dc†Dh Dh†DU ~0!Da0
~0!expS 2E

0

b

L̃ D ,

~A14!

with the LagrangianL̃ given by

L̃5
J̃

2(
^ i , j &

Tr@Ui j
~0!†Ui j

~0!#1
1

2(
i , j ,a

c ia
† @~]t1a0

~0!!d i j

1 J̃Ui j
~0!#c j a1(

i
hi

†~]t2m1a0
~0!!hi2t(

i , j
hi

†Ui j
~0!hj .

~A15!

Now the Lagrangian is invariant with respect to the SU~2!
gauge transformation given in Eq.~11!. Then the constraint
that no two configurations (U (0),a0

(0)) are related byg can be
relaxed because it gives only the constant gauge volu
Then we can drop (0) fromU anda0. This has the form of
the SU~2! gauge theory proposed by Wen and Lee. Howev
we note that in the latter theory, the last term in Eq.~A15! is
replaced byt̃ ( i j hi

†Ui j
(0)hj , where t̃ 5t/2. A possible source

of this difficulty is that in Eq.~A4! we impose three con
straints using three Lagrangian multipliersa0

a , whereas in
the standard U~1! formulation, only a single Lagrangian mu
tiplier a0 is used. We cannot justify this procedure becau
the three constraints involve noncommuting operators. A
other possible source of discrepancy is that in going fr
integration overb and g to integration overh, a Jacobian
may be necessary.

APPENDIX B: MICROSCOPIC DERIVATION
OF GAUGE FIELDS

In this appendix we describe the microscopic derivat
of the gauge fields in each of the mean-field states. We be
by giving several arguments for when the gauge field is
pected to be massless. We then show by explicit calcula
that for the URVB phase there are three massless transv
gauge fields. Finally, we present a calculation of the pro
gator of the massless gauge field in thes-flux phase after
integrating out the fermions. Because we are interested in
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low-energy dynamics, we consider only the massless ga
fields. The first task is to identify the massless gauge fie
For this purpose let us consider the following gaug
invariant term that appears in the free energy:35

F5Tr~Pi j , . . . ,kUii 8Pi 8 j 8, . . . ,k8
† Ui 8 i !, ~B1!

where

Pi j , . . . ,k5Ui j U jl •••UmkUki ~B2!

is the product of U ’s along a closed loop i→ j
→•••→k→i. When we writeUi j as

Ui j 5Ui j
~0!eiai j 5Ui j

~0!eiai j
a ta, ~B3!

with Ui j
(0) the mean-field configuration, we obtain the follow

ing contribution to the free energy ofai j
a :

dF5Tr~Pi j , . . . ,k
~0! Uii 8

~0!eia
ii 8
a

taPi 8 j 8, . . . ,k8
~0!† e2 ia

ii 8
a

taUi 8 i
~0!

!

5Tr~Ui 8 i
~0!Pi j , . . . ,k

~0! Uii 8
~0!eia

ii 8
a

taPi 8 j 8, . . . ,k8
~0!† e2 ia

ii 8
a

ta!.

~B4!

Then if P(0) does not commute withta , Eq. ~B4! gives the
mass to the gauge fieldaa. For example, if P(0)5c01
1c3t3, with c’s being constants,

eiaP~0!e2 ia5P~0!1 i @a,P~0!#1
1

2
i 2

†a,@a,P~0!#‡1•••

5c011c3t31c3~a1t22a2t1!

2
c3

2
@~a1!21~a2!2#t31•••, ~B5!

and a1 and a2 becomes massive. This is nothing but t
Higgs mechanism, whereP is the Higgs field that is site
variable belonging to the adjoint~vector! representation of
SU~2!. The condensation ofP breaks the symmetry from
SU~2! to U~1! and only one gauge field, i.e.,a3 in the above
example, remains massless. On the other hand, ifP(0)

5c01 for every elementary plaquette,P(0) for arbitrary
closed loop is const3 1 independent of the gauge choice.
this case we can choose a gauge whereUi j

(0)}1 and all the
gauge fieldsa1,a2,a3 remain massless. Now we apply th
general consideration above to the each mean-field state
chose the gauge where the link variableUi j

(0) for each state is
given by

Uii 1x
~0! 5Uii 1y

~0! 5 ix01 ~B6!

for the URVB state, while

Uii 1x
~0! 52xt32 i ~21! i x1 i yD,

Uii 1y
~0! 52xt31 i ~21! i x1 i yD ~B7!

for s-flux andp-flux states. Then the product ofU ’s along
an elementary plaquettePpl

(0) is obtained as

Ppl
~0!5x0

41 ~B8!
ge
s.
-

e

for URVB state, and

Ppl
~0!5@~x22D2!224x2D2#164ixD~x22D2!t3

~B9!

for s-flux andp-flux states. Then it can be easily seen that
URVB andp-flux (x5D) states, all the gauge fields rema
massless while onlya3 remains massless in thes-flux state.
For thep-flux state we can choose the gauge where

Uii 1x
~0! 5 i ~21! i yx1, Uii 1y

~0! 5 ix1. ~B10!

Now we explicitly derive the effective action for th
gauge fields up to the quadratic orders. We start from
Lagrangian in Eq.~6!. We divide the link variableUi j anda0
into the mean-field value and the fluctuation around it

Ui j 5Ui j
~0!1dUi j , a05a0

~0!1da0 . ~B11!

Integrating out the fermions and bosons, we obtain the ef
tive action fordUi j andda0 ,

Seff5 J̃ (
^ i , j &

Tr@~Ui j
~0!†1dUi j

† !~Ui j
~0!1dUi j !#2TrFln~2GF0

21

1da01 J̃dUi j !1TrBln~2GB0
211da01tdUi j !, ~B12!

where J̃53J/8 and TrF and TrB are the fermionic and
bosonic traces. The Green functionsGF0 and GB0 in the
mean-field state are given by

GF0
215 ivn2a0

~0!2 J̃Ui j
~0! , GB0

215 iv l2mB2a0
~0!2tUi j

~0! .
~B13!

Now we can expand Eq.~B12! as

Seff5S01S11S21•••5 J̃ (
^ i , j &

Tr@Ui j
~0!†Ui j

~0!#

1 J̃ (
^ i , j &

Tr@Ui j
~0!†dUi j 1dUi j

† Ui j
~0!#

1Tr@GF0~da01 J̃dUi j !#

2Tr@GB0~da01tdUi j !#1 J̃ (
^ i , j &

Tr@dUi j
† dUi j #

1
1

2
TrF@GF0~da01 J̃dUi j !GF0~da01 J̃dUi 8 j 8!#

2
1

2
TrB@GB0~da01tdUi j !

3GB0~da01tdUi 8 j 8!#1•••. ~B14!

The mean-field equation is obtained from the condition t
the first-order terms indU vanish@here we chose the form
Eq. ~B7! for the s- and p-flux states, but the mean-fiel
equations obtained are valid also for the URVB state by s
ting D50 andx5x0#:
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Jx̃5E
2p

p d2k

~2p!2FJx̃gk
2

4Ek
@122 f ~2 J̃Ek!#

1
txgk

2

4Ek
@n~2mB22tEk!2n~2mB12tEk!#G ,

J̃D5E
2p

p d2k

~2p!2
F J̃Dhk

2

4Ek
@122 f ~2 J̃Ek!#

1
tDhk

2

4Ek
@n~2mB22tEk!2n~2mB12tEk!#G ,

~B15!

where

gk5coskx1cosky , hk5coskx2cosky ,

Ek5A~xgk!
21~dhk!

2, ~B16!

and f (x) andn(x) are the Fermi and Bose distribution fun
tions, respectively. The condition that the first-order terms
da0 vanish gives Eq.~9!, which is satisfied by the mean-fiel
solutions.

Now we study the second-order termsS2. From the con-
siderations given above we consider only the gauge fie
that commute withP(0). First consider the URVB andp-flux
states, whereUi j

(0)}1 and all the gauge fields remain mas
less. When we make a gauge transformation

Ui j
~0!→Ui j 5giUi j

~0!gj
† ~B17!

the action does not change. Let us takegi5eiu ita. If gi com-
mutes withUi j

(0) , we have

Ui j 5Ui j
~0!ei ~u i2u j !ta. ~B18!

If we consider this as an expansiondUi j aboutUi j
(0) which

corresponds to a pure gauge configuration, we can see
the coefficient of the second-order term inai j

a 5u i2u j van-
ishes for anya51,2,3 for the URVB andp-flux phases and
only for a53 for thes-flux phase.

Generally, the second-order contributionS2 can be writ-
ten as

S25
1

2(a,b
(
m,n

(
q,ivn

Pmn
ab~q,ivn!am

a ~q,ivn!an
b~2q,2 ivn!

~B19!

and the above consideration guarantees the masslessne
aa and leads to the condition

Pmn
ab~q50,ivn50!50. ~B20!

Here a,b51,2,3 for the URVB andp-flux states, whilea
5b53 for thes-flux state.

To make things more clear, we describe here the exp
calculation for the URVB state. Taking the gauge choice
Eq. ~B6!, the mean-field equation is obtained as
n

s

-

hat

s of

it
f

Jx̃05
1

2E2p

p d2k

~2p!2
@ J̃ g̃ kf ~22Jx̃0g̃ k!

1t g̃ kn~2mB22tx0g̃ k!#, ~B21!

where g̃ k5sinkx1sinky . At first glance this appears differ
ent from Eq.~B15!, but it can be shown by using partia
integration that Eq.~B15! is reduced to Eq.~B21! by setting
D50 andx5x0. This can be also written as

Jx̃052E
2p

p d2k

~2p!2
@ J̃2x0g̃ k

2f 8~22Jx̃0g̃ k!

1t2x0g̃ k
2n8~2mB22tx0g̃ k!#, ~B22!

where f 8(x)5] f (x)/]x@n8(x)5]n(x)/]x#.
Now we consider the second-order contributionS2. The

gauge fields are related todUi j as

dUii 1m5dUii 1m
† 52x0aii 1m

a ta . ~B23!

Then the couplingSint between the fermions~bosons! with
the gauge field is written as

Sint52
1

AbN (
a,m,n

(
k,q

coskm@2Jx̃0am
a ~q!ck1q/2tack2q/2

12tx0am
a ~q!hk1q/2tahk2q/2#, ~B24!

wherec,c† are spinors. NowS2 is explicitly given by

S25 (
a,m,n

(
q

@2Jx̃0
2dmn2Pmn

Fab~q!2Pmn
Bab~q!#am

a ~q!an
b

3~2q!, ~B25!

where

Pmn
Fab~q!54dabJ̃2x0

2E
2p

p d2k

~2p!2
coskm

3coskn

f ~jk1q/2!2 f ~jk2q/2!

ivm2jk1q/21jk2q/2
, ~B26!

wherejk522Jx̃0g̃ k . A similar expression is obtained fo
Pmn

Bab(q). It can be easily seen that in the limitq→0,

Pmn
Fab(q)1Pmn

Bab(q)→2Jx̃0
2dmn by using the mean-field

equation ~B22!. A similar cancellation is obtained fo
a1,a2,a3 in the p-flux state and fora3 in the s-flux state.

Finally, we present a calculation of the gauge field prop
gator when the fermions are integrated out, i.e., we comp
Pmn

Fab(q,ivn)5Pmn
Fab(q,ivn)2Pmn

Fab(q50,ivn50) in terms
of the continuum approximation in the limit of sma
vFq,vn , andT compared withJ. For the URVB state, this
calculation is exactly the same as in the U~1! case described
in Ref. 10. For thes-flux state, we consider the following
effective Lagrangian for the fermions in the continuum a
proximation:
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L5E d2r c1
†@Dt22iJx̃~Dx1Dy!s3t3

1 i2 J̃D~Dx2Dy!s2#c1

1E d2r c2
†@Dt22iJx̃~Dx2Dy!s3t31 i2 J̃D~Dx

1Dy!s2#c2 , ~B27!

where Dm5]m1 i ã m
3 . Since the problem has relativisti

symmetry, it is convenient to introduceãm5(2 ia0 ,ax ,ay).
The spinor c1 @c2# describes the fermions nea
6(p/2,p/2) @6(p/2,2p/2)# in k space. Because of th
double periodicity in the gauge choice of Eq.~B7!, k andk
1(p,p) are coupled ands ’s are the Pauli matrices describ
ing this 232 space in addition to the original isospin spa
spanned byt matrices. When we integrated over the ferm
ons in Eq.~B27!, the following integralgmn(q) appears:

gmn~q!5E d3k

~2p!3

km~k1q!n

k2~k1q!2 , ~B28!

where k5(k0 ,k1 ,k2)5(v,kW ) is the vector in 211 dimen-
sions.

By using Feynman’s trick, i.e.,

1

ab
5E

0

1 dz

@az1b~12z!#2 , ~B29!

the integral is transformed as

gmn~q!55E
0

1

dzE d3k

~2p!3

km~k1q!n

@~k1zq!21z~12z!q2#2

5E
0

1

dzE d3k

~2p!3

km
2 dmn1z~12z!qmqn

@k21z~12z!q2#2 . ~B30!

Now gmm(q) is diverging if the ultraviolet cutoffL for k
integration is infinity. This is cured if one considersgmn(q)
2gmn(0), which is converging whenL→`. Using

E d3k

~2p!3

1

k2~k1q!2 5
1

8q
,

whereq5AqW 21v2, we obtain

gmn~q!2gmn~0!5
qmqn2dmnq2

8q E
0

1

dzAz~12z!

5
qmqn2dmnq2

8q
. ~B31!

Using Eqs.~B31! and ~B32!, we obtain the effective action
of the gauge field at zero temperature

Seff5(
q

1

qF J̃2xD f xy~q! f xy~2q!1
x21D2

16xD

3@ f 0x~q! f 0x~2q!1 f 0y~q! f 0y~2q!#G , ~B32!
where f mn5]m ãn2]n ãm . The coefficient ofaman of this
expression gives the inverse of the gauge propagator th
correct for smallq andv in the lattice model.

APPENDIX C: ELECTRON SPECTRAL FUNCTION

The more exact expression of the mean-field elect
Green functionGe

(0) is given by

Ge
~0![^T~c↑c↑

†!&

5
1

N

1

2(q
@ub~q2k!uf~q!1vb~q2k!v f~q!#2

3 (
a51,2

$nb@Ea
b~q2k!#1nF@Ea

f ~q!#%

3
1

v2@Ea
f ~q!2Ea

b~q2k!#2 id
1

1

N

1

2

3(
q

@ub~q2k!v f~q!2vb~q2k!uf~q!#2

3 (
a51,2

$nb@Ea
b~q2k!#1nF@E2a

f ~q!#%

3
1

v2@E2a
f ~q!2Ea

b~q2k!#2 id
. ~C1!

HereN is the number of sites and

E6
f ~k!56A~ek

f !21~hk
f !2,

ek
f 52Jx̃~coskx1cosky!,

hk
f 52 J̃D~coskx2cosky!,

E6
b ~k!56A~ek

b!21~hk
b!22mB ,

ek
b52tx̃~coskx1cosky!,

hk
f 52 t̃ D~coskx2cosky!,

uf ,b~k!5
1

A2
A11

ek
f ,b

A~ek
f ,b!21~hk

f ,b!2
,

v f ,b~k!5
1

A2

hk
f ,b

uhk
f ,bu
A12

ek
f ,b

A~ek
f ,b!21~hk

f ,b!2
.

nb, f(E) are boson or fermion occupation numbers at ene
E. The incoherent part comes from the terms contain
nf(E6

f ). One can show that ImGin
(0)50 for v.0 and

E dv

2p
ImGin

~0!5
1

2
. ~C2!
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The coherent parts come from the terms containingnb(E2
b ).

Note thatnb@E2
b (k)# is almost zero except near (0,0) an

(p,p). Approximating those peaks byd functions in k
space, we get

Ge
~0!~k!.

x

2F @v f~k!#2

v2E2
f ~k!

1
@uf~k!#2

v2E1
f ~k!

G1Gin . ~C3!

Next we will consider effects of fluctuations. We wi
consider two different types of fluctuations. The first one
the fluctuations ofa0

l whose effect is modeled by the effe
tive short-range interaction between the fermions and
bosons:

c†tWch†tWh . ~C4!

The second one is the fluctuations ofux i j u that induces

2t~h†c! i~c†h! j522tcicj
† . ~C5!

In the s-flux phase the electron operatorc†51/A2c†h

mixes with an operatorc̃ †51/A2c†t3h. We find that

^T c̃ k1Q
† ck

†&[ iGQ
(0) with Q5(p,p) is nonzero and given by

GQ
~0!~k!5

1

N

1

2(q
@uf~q!ub~q2k!1v f~q!vb~q2k!#

3@v f~q!ub~q2k!2uf~q!vb~q2k!#

3 (
a,b51,2

ab$nb@Eb
b~q2k!#1nF@Ea

f ~q!#%

3
1

v2@Ea
f ~q!2Eb

b~q2k!#2 id
~C6!

.
x

2
v f~k!uf~k!S 2

1

v2E1
f ~k!

1
1

v2E2
f ~k!

D 1G̃in .

~C7!

FIG. 7. Electron spectral function forU2 /U1521/3. The
curves are for the following values ofk, from top to bottom:~a! k
5(2p/4,p/4)→(p/4,3p/4), ~b! k5(2p/8,p/8)→(3p/8,5p/8),
~c! k5(0,0)→(p/2,p/2), and~d! k5(0,p)→(0,0). We have cho-
senJ51.
s

e

Since the interaction couples to bothc and c̃ , we have to
invert a 232 matrix to calculate the electron Green functio
Noting that^ckck&5^ c̃ k

† c̃ k
†& and introducing

G5S Ge
~0!~k! 2 iGQ

~0!~k!

GQ
~0!~k! Ge

~0!~k1Q!
D , ~C8!

we find that the electron Green function is the~1,1! compo-
nent of the 232 matrix

Ge5FG211S U1 0

0 U2
D G

11

21

. ~C9!

Note that whenU250 Eq.~C9! reduces to Eq.~60!. U1,2 are
obtained by rewriting the interaction~C4! in the c and c̃
basis:

Uc†tWch†tWh53Uc†c2U
1

2
c†tWhh†tWc ~C10!

53Uc†c2U c̃ † c̃1•••.
~C11!

The term represented by the ellipsis has the fo
c†t1,2hh†t1,2c and does not contribute to the electron Gre
function. ThusU153U andU252U for the interaction in
Eq. ~C4!.

At low energies the interactions are dressed by ferm
bubbles. Because theam

3 gauge field is massless in thes-flux
phase, its fluctuations mediate a long-range interaction. T
the interactionc†t3ch†t3h is enhanced at low energies. T
study this effect let us consider an extreme case, which
the interaction

Uc†t3ch†t3h ~C12!

5Uc†c1U c̃† c̃1•••. ~C13!

FIG. 8. Electron spectral function forU2 /U151. The curves
are for the following values ofk, from top to bottom:~a! k5
(2p/4,p/4)→(p/4,3p/4), ~b! k5(2p/8,p/8)→(3p/8,5p/8), ~c!
k5(0,0)→(p/2,p/2), and ~d! k5(0,p)→(0,0). We have chosen
J51.
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The term represented by the ellipsis does not contribut
the electron Green function. Thus the electron Green fu
tion in this case is given by Eq.~C9! with U15U25U.

From the above discussion, it is also easy to see that
interaction induced by theux i j u fluctuations modifies only
U1:

Ge5FG211S U112t~coskx1cosky! 0

0 U2
D G

11

21

.

~C14!

In summary, if we treat bosons as a free Bose gas
include the attraction induced by the gauge andux i j u fluctua-
tions, the electron Green function is approximately given
Eq. ~C14!. However, different treatments of fluctuations r
sult in U2 /U1 in a range from21/3 to 1 and absolute mag
nitudes ofU1,2 are of ordert.
u

Jp

ds

n

to
c-

he

d

y

In Figs. 7 and 8 we plot the electron spectral function
U2 /U1521/3,1. We have chosenJ̃5J/2, t̃ 5t52J, x
51, D/x50.4, x50.1, andT50.1J. The valueU1 is
determined from requiring the renormalized electron Gre
function to satisfies the sum rule

E
0

`dv d2k

~2p!3
ImGe5x. ~C15!

The main purpose of the above study is to understand
ambiguity in the electron spectral function due to our unc
tainty in treating gauge fluctuation. We find that the gap n
(06p) and (6p,0) survives the inclusion of gauge fluctua
tion. However, spectral functions near (6p/2,6p//2) are
modified. Forv,0 the electron spectral functions are qu
similar for the three different choices ofU2 /U1521/3,0,1.
However, forv.0 the spectral functions show some notab
differences.
ys.
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