
This work has been accepted for publication in the Proceedings of VIUF Fall ’97 Conference. Copyright may
be transferred without notice, after which this version will be superseded and may no longer be accessible.

1

SUAVE: Painless Extension for an Object-Oriented VHDL

Peter J. Ashenden
Dept. Computer Science

The University of Adelaide, SA 5005
Australia

petera@cs.adelaide.edu.au

Philip A. Wilsey and Dale E. Martin
Dept. ECECS, PO Box 210030

University of Cincinnati
Cincinnati, OH 45221- 0030,USA

phil.wilsey@uc.edu, dmartin@ececs.uc.edu

Abstract

The SUAVE project aims to introduce object-oriented ex-
tensions to data modeling into VHDL in a way that does not
disturb the existing language or its use. Designers regular-
ly define abstract data types by using aspects of VHDL’s
type system, subprograms, and packages. The SUAVE ap-
proach builds on these basic mechanisms by strengthening
the facilities for encapsulation and adding an inheritance
mechanism. In addition to supporting object-orientation,
these extended mechanisms improve the expressiveness of
VHDL across the modeling spectrum, from high-level to
gate-level. By choosing an incremental and evolutionary
approach to extensions, SUAVE avoids major additions to
the language that would complicate choice of mechanisms
for expressing a design. This paper outlines the SUAVE ex-
tensions and illustrates their use through some examples.
The mechanisms and examples are readily understood as
incremental extensions to current modeling practices,
hence “painless extension.”

1. Introduction

VHDL is widely used by designers of digital systems for
specification, simulation and synthesis. Increasingly, de-
signers are using VHDL at high levels of abstraction as part
of the system-level design process. At this level of abstrac-
tion, the aggregate behavior of a system is described in a
style that is similar to that of software. Data is modeled in
abstract form, rather than using any particular binary repre-
sentation, and functionality is expressed in terms of inter-
acting processes that perform algorithms of varying
complexity. A subsequent partitioning step in the design
process may determine which aspects of the modeled be-

havior are to be implemented as hardware subsystems, and
which are to be implemented as software.

Experience in the software engineering community has
lead to adoption of object-oriented design and program-
ming techniques for managing complexity through ab-
stract data types (ADTs) and re-use [8]. Features included
in programming languages to support these techniques are
abstraction and encapsulation mechanisms, inheritance,
and genericity. The term “object-based” is widely used to
refer to a language that included abstraction and encapsula-
tion mechanisms [21]. The term “object-oriented” is used
to refer to a language that additionally includes inheri-
tance.

While VHDL can be used for modeling at the system
level, it has some deficiencies that make the task more dif-
ficult than it would otherwise be. These difficulties center
around language features (or lack of some features) for sup-
porting complexity management. VHDL is currently
somewhat less than object-based, as its encapsulation
mechanism are weak. It is certainly not object-oriented, as
it does not include any form of inheritance. While it does
include a mechanism for genericity, that mechanism is se-
verely limited, allowing only parameterization of units by
constant values. We have discussed these issues in a pre-
vious paper [2].

SUAVE aims to improve support for high-level model-
ing in VHDL by extending the language with features for
object-orientation and genericity in a way that does not dis-
turb the existing language or its use. As well as adding spe-
cific language features, some existing features are
generalized, the facilities for encapsulation are strength-
ened, and an inheritance mechanism is added. Private
types and private parts in packages support improved en-
capsulation. Type derivation, record type extension, and
class-wide types with dynamic dispatching support inheri-
tance. We have previously argued [3] that, in addition to

* This work was partially supported by Wright Laboratory under USAF contract F33615- 95- C- 1638.

2

supporting object-orientation, these extensions improve
the expressiveness of VHDL across the modeling spectrum
from high-level to gate-level.

By choosing an incremental and evolutionary approach
to extensions, SUAVE avoids major additions to the lan-
guage that would complicate choice of mechanisms for ex-
pressing a design. Furthermore, the implementation
burden is not large, and there is no performance penalty in
simulation or synthesis if the mechanism are not used. The
SUAVE approach is similar to that proposed by Mills [15]
and by Schumacher and Nebel [18]. It is contrasted with
others that have been proposed [7, 10, 17, 20, 22], that add
new, separate mechanisms for combining abstraction, en-
capsulation, and inheritance for object-orientation. Such
mechanisms replicate aspects of the existing features of
VHDL, making design choices for expressing a model
more complex.

This paper outlines the SUAVE extensions for object-
orientation and illustrates their use through some exam-
ples. (The SUAVE extensions for genericity are described
in a companion paper [4]. More complete presentation of
the extensions can be found in the SUAVE report [5].)
Most of the features added to VHDL are adapted from fea-
tures in Ada-95 [14], and are included largely for the same
reasons that they are included in Ada-95 [6]. Section 2 of
this paper outlines the design principles and objectives that
were followed in deciding how to extend VHDL. Subse-
quent sections describe the extensions in detail and illus-
trate them with examples. Section 3 describes the
extensions to the type system of VHDL to support type der-
ivation, extension and class-wide programming. Section 4
describes the extensions that improve the encapsulation
features of VHDL. In combination, the extensions in these
two sections turn VHDL into an object-oriented language.
We conclude in Section 5 by summarizing how the mecha-
nisms and examples are readily understood as incremental
extensions to current modeling practices, hence “painless
extension.”

2. SUAVE Design Objectives

A previous paper [3] reviews the issues to be addressed in
extending VHDL for high-level modeling and discusses
principles that should govern the design of language exten-
sions. As a result of that analysis, a number of design ob-
jectives were formulated for SUAVE:

Sto improve support for high-level behavioural modeling
by improving encapsulation and information hiding
capabilities and providing for hierarchies of abstraction,

Sto improve support for re-use and incremental develop-
ment by allowing further delaying of bindings through
type-genericity and dynamic polymorphism,

Sto preserve capabilities for synthesis and other forms of
design analysis,

Sto support hardware/software co-design through im-
proved integration with programming languages (e.g.,
Ada),

Sto support refinement of models through elaboration of
components rather than through repartitioning, and

Sto preserve correctness of existing models within the ex-
tended language.

Since SUAVE is an extension of the existing VHDL lan-
guage, it is important that the extensions integrate well
with all aspects of the existing language. In designing the
SUAVE extensions, the design principals followed during
the restandardization of VHDL that lead to the current lan-
guage [13] were adopted in addition to those listed above.
The goal was to preserve what Brooks refers to as the “con-
ceptual integrity” of the language [9].

3. Extensions to the Type System
Object-oriented languages support re-use and incremental
development through the mechanism of inheritance.
SUAVE extends the type system of VHDL by adopting the
object-oriented features of Ada-95, including inheritance
through type derivation and tagged types with extension on
derivation.

3.1 Derived Types and Inheritance

For a type defined in a package, the operations (procedures
and functions) defined in the package are called the primi-
tive operations of the type. A new type can be defined as
being derived from a parent type. In that case, the derived
type inherits the set of values and the primitive operations
of the parent type. An inherited operation can be overrid-
den by defining a new operation with the same name but
with operands of the derived type. Furthermore, additional
primitive operations can be defined for the derived type.
SUAVE adopts the Ada notation for defining a derived
type, for example:

type event_count is new natural;

The derived type is distinct from, but related to, the parent
type. Use of derived types helps avoid inadvertent mixing
of conceptually different values, and thus improves the ex-
pressiveness of the language.

3.2 Tagged Types and Type Extension

As in Ada-95, a record type in SUAVE may include the re-
served word tagged in its definition. Such a type is called
a tagged type. An object of a tagged type includes a run-

3

time tag that identifies the specific type used to create the
object. The tag is used for dynamic dispatching, which is
described below. A tagged record type may be extended by
deriving a new type with a record extension containing
additional record elements. This is the origin of the term
“programming by extension,” sometimes used to describe
the Ada-95 approach. The derived type is also a tagged
type that can be further extended. Since all elements in the
parent type are also in the derived type, inherited opera-
tions of the parent type can be applied to objects of the ex-
tended type. However, any overriding or newly defined
operations for the extended type can only be applied to the
extended type (or its derivatives), since they may refer to
the elements in the extension.

As an example, consider a type and operations repre-
senting an instruction set for a RISC CPU. All instructions
have an opcode. ALU instructions additionally have fields
for the source and destination register numbers. Thus an
ALU instruction can be considered as an extension of a
base instruction with just an opcode. This can be expressed
in SUAVE by defining the following in a package:

type instruction is
tagged record

opcode : opcode_type;
end record instruction;

function privileged (instr : instruction;
mode : protection_mode)
return boolean;

procedure disassemble (instr : instruction;
file output : text);

type ALU_instruction is
new instruction with record

destination,
source_1, source_2 : register_number;

end record ALU_instruction;
procedure disassemble (instr : ALU_instruction;

file output : text);

The subprograms privileged and disassemble are primi-
tive operations of instruction and are inherited by derived
types. The type ALU_instruction is derived from instruction
and has four elements: the opcode element inherited from
instruction, and the three register number elements defined
in the extension. A version of the function privileged is in-
herited from instruction with the instr parameter being of
type ALU_instruction. The disassemble instruction defined
for ALU_instruction overrides that inherited from instruc-
tion.

3.3 Abstract Types and Subprograms

An abstract type is a tagged type that is intended for use
solely as the parent of some other derived type. Objects

may not be declared to be of an abstract type. An abstract
subprogram is one that has no body (and requires none), be-
cause it is intended to be overridden when inherited by a de-
rived type. Abstract types and subprograms allow
definition of types that include common properties and op-
erations, but which must be refined by derivation of types
that represent concrete objects.

As an illustration, consider refinement of the instruction
type to represent memory reference instructions using dis-
placement addressing mode. Such instructions include a
base register number and an offset. The type for these in-
structions is declared abstract, since it is intended to be the
parent type for load and store instruction types. More pre-
cisely,

type memory_instruction is
abstract new instruction with record

base : register_number
offset : integer:

end record memory_instruction;
function effective_address_of

(instr : memory_instruction);
procedure perform_memory_transfer

(instr : memory_instruction) is abstract;

The function effective_address_of is not abstract, since
it can calculate the result using the data in a memory_in-
struction record. The function can be inherited “as is” by
derived types. The procedure perform_memory_transfer,
on the other hand, is declared abstract since the direction
of transfer depends on whether a memory instruction is a
load or a store. The derived types must provide overriding
non-abstract implementations of this procedure. Examples
are derived types for load and store instructions, as follows:

type load_instruction is
new memory_instruction with record

destination : reg_number;
end record load_instruction;

procedure perform_memory_transfer
(instr : load_instruction);

procedure disassemble (instr : load_instruction;
file output : text);

type store_instruction is
new memory_instruction with record

source : reg_number;
end record store_instruction;

procedure perform_memory_transfer
(instr : store_instruction);

procedure disassemble (instr : store_instruction;
file output : text);

Objects cannot be declared to be of type memory_in-
struction, but they can be declared to be of type load_in-
struction or store_instruction.

4

3.4 Class-Wide Types and Operations

One of the most important aspects of object-oriented pro-
gramming is the use of classes. SUAVE adopts the Ada-95
mechanism of class-wide types to deal with classes. This
contrasts with languages such as Simula [11], C++ [19]
and Java [12] that introduce a special construct for classes.
(See our paper that compares the two approaches [1].)

Class-wide types are denoted using the ’Class attribute.
For a tagged type T, the class-wide type denoted T’Class is
the union of T and all types derived directly or indirectly
from T. The type T is called the root of the class-wide type.
For example, the class-wide type instruction’class denotes
the hierarchy of types rooted at instruction, and including
ALU_instruction, memory_instruction, load_instruction and
store_instruction.

An object of a class-wide type can have a value of any
specific type in T’Class. Such an object is called polymor-
phic, meaning that it can take on values of different types
during its lifetime. SUAVE allows constants, dynamically
allocated variables and signals to be of a class-wide type.
When an operation is applied to an object of a class-wide
type, the tag of the value is used to determine the specific
type, and thus to determine which primitive operation to in-
voke. This is called dynamic dispatching, or late binding,
and is an essential aspect of object-oriented languages. As
an example, consider the following signal declaration and
application of an operation:

signal fetched_instruction : instruction’class;

disassemble (fetched_instruction);

If the value of the signal is of type instruction, the version
of disassemble for that type is invoked. However, if the
value of the signal is of one of type load_instruction, the
overriding version defined for load_instruction values is in-
voked. The choice is made dynamically at the time of the
call.

While there are no primitive operations of a class-wide
type, a subprogram may have a parameter of a class-wide
type. Such a subprogram is called a class-wide operation.
For example:

procedure execute (instr : instruction’class);

Since the parameter is polymorphic, dynamic dispatching
may be required for operations on the parameter within the
subprogram.

As a final example in this section, consider an instruc-
tion register that can jam a TRAP instruction in place of the
store instruction. First, two constants are declared for the
TRAP instruction and an undefined instruction:

constant halt_instruction : instruction
:= instruction’(opcode => op_halt);

constant undef_instruction : instruction
:= instruction’(opcode => op_undef);

Next, the entity is declared:
entity instruction_reg is

port (load_enable : in bit;
jam_halt : in bit;
instr_in : in instruction’class;
instr_out : out instruction’class);

end entity instruction_reg;

The ports instr_in and instr_out are signals of a class-wide
type and so may take on values of any of the types in the
instruction hierarchy. A behavioral architecture body for
the register is:

architecture behavioral of instruction_reg is
begin

store : process (load_enable, jam_halt,
instr_in) is

type instruction_ptr is
access instruction’class;

variable stored_instruction : instruction_ptr
:= new undef_instruction;

begin
if jam_halt = ’1’then

deallocate (stored_instruction);
stored_instruction := new halt_instruction;

elsif load_enable = ’1’then
deallocate (stored_instruction);
stored_instruction := new instr_in;

end if;
instr_out <= stored_instr.all;

end process store;

end architecture behavioral;

The process implements the register storage using the
local variable stored_instruction. Since a variable cannot
be of a class-wide type, stored_instruction is defined as an
access value, pointing to a dynamically allocated object of
type instruction’class. It is initialized to the undefined in-
struction. When a HALT instruction is to be jammed, a new
instruction object initialized to the halt instruction value is
allocated. Similarly, when an input instruction is to be
stored, a new instruction object of the corresponding spe-
cific type is allocated and initialized to the input instruc-
tion. The designated instruction object is assigned as the
output of the register.

4. Extensions for Encapsulation

A data type in VHDL is characterized by a set of values,
specified by a type definition, and a set of operations. An
abstract data type (ADT) is one in which the concrete de-
tails of the type definition are hidden from the user of the

5

ADT. The user may only use the operations of the ADT to
manipulate values. ADTs are important tools for managing
complexity in a large design.

VHDL currently includes the package feature, which
can be used to define an ADT. The concrete type and asso-
ciated operations are declared in the package declaration,
and the implementations of the operations are declared in
the package body. While this approach allows the imple-
mentation details of the operations to be hidden from the
ADT user, it exposes the details of the concrete type. A user
may inadvertently (or deliberately) modify values of the
concrete type directly, rather than by using the provided op-
erations. This can potentially place the ADT value in an
inconsistent state. It also reduces the maintainability of the
design.

SUAVE extends the type system and package feature of
VHDL to provide secure encapsulation of information in
an ADT. It adopts the mechanisms of private types and pri-
vate parts in packages from Ada-95. This meets one of the
design objectives for SUAVE: to improve encapsulation
and information hiding.

As a first step, the use of packages is generalized by al-
lowing them to be declared as part of most declarative re-
gions in a model, not just as library units. SUAVE allows
a package declaration and body to be declared in an entity
declaration, an architecture body, a block statement, a gen-
erate statement, a process statement, and a subprogram
body. Thus, the concept of a package is changed from that
of a “heavy-weight” library-level unit to that of a “light-
weight” declarative item. This is important, since pack-
ages are used to declare types and operations defining
classes, as well as instances of generic packages (see
Ashenden et al [4]).

4.1 Private Parts and Private Types

The second extension of the package feature is to allow a
package declaration to be divided into a visible part and a
private part, as follows:

package name is
. . . - - visible part

private
. . . - - private part

end package name;

Items declared in the visible part are exported and may be
referred to by users of the package. Items declared in the
private part, on the other hand, are not visible outside the
package. When using a package to define an ADT, the type
is declared as a private type in the visible part of the pack-
age, along with the specifications of the primitive opera-
tions of the type. A private type declaration only provides

the name of the type. The concrete details of the type are
declared separately in the private part of the package.

As an example, the following package defines an ADT
for complex numbers:

package complex_numbers is
type complex is private;
constant i : complex;
function cartesian_complex (re, im : real)

return complex;
function re (C : complex) return real;
function im (C : complex) return real;
function polar_complex (r, theta : real)

return complex;
function “abs”(C : complex) return real;
function arg (C : complex) return real;
function “+”(L, R : complex) return complex;
function “- ”(L, R : complex) return complex;
function “*”(L, R : complex) return complex;
function “/”(L, R : complex) return complex;

private
type complex is

record
r, theta : real;

end record complex;
end package complex_numbers;

A user of this package can declare objects of type complex
and invoke operations on complex numbers, for example:

signal x, y, z : complex
:= cartesian_complex(0.0, 0.0);

. . .
z <= x * y after 20 ns;

However, the fact that complex numbers are represented in
polar form is hidden. Indeed, the representation may be
changed without requiring changes to the user’s code.

4.2 Private Extensions

SUAVE adopts the Ada-95 mechanisms for integrating en-
capsulation with inheritance. A private type can be de-
clared to be tagged, indicating that it can be used as the
parent of a derived type. The concrete details remain hid-
den in the private part of the package. A tagged private
type can also be declared abstract if it should not be directly
instantiated. For example, a network packet at the media-
access level of a protocol suite might be declared as fol-
lows:

package MAC_level is
type MAC_packet is abstract tagged private;
. . .

private

6

type MAC_packet is tagged record
. . .

end record MAC_packet;

end package MAC_level;

A tagged private type can be extended using type der-
ivation, as described in Section 3. However, for the derived
type to take on the form of a secure ADT, it should be de-
clared as a private extension. This allows the details of the
extension to be encapsulated. For example, the network
packet type defined above may be extended with payload
information to form a network-level packet:

package network_level is

type network_packet is
new MAC_packet with private;

. . .

private

type network_packet is
new MAC_packet with record

. . .
end record network_packet;

end package network_level;

A user of this package knows that a network-level packet
is derived from a MAC-level packet, and thus inherits all
of the operation applicable to a MAC-level packet. The
concrete details of both types, however, remain hidden.

4.3 Contractual Details

In adopting the Ada-95 features for private types into
VHDL, some minor changes were required to take account
of interactions with VHDL-specific features. In particular,
VHDL prohibits signals from being of a type that includes
access values. The reason for the restriction is that signals
are the communication medium between processes, which
execute concurrently. If processes were to pass access val-
ues between one another, the designated variable would be
shared and thus liable to uncontrolled concurrent access.
Furthermore, in a parallel implementation of a simulator,
different processes may execute in different address spaces
or on different processors. An access value created in one
process may be meaningless in the addressing context of
another.

SUAVE requires that a private type whose concrete im-
plementation includes an access value to indicate the fact
in the private type declaration with the keywords access
private. The same requirement applies to a private exten-
sion that includes an access value. Such types cannot be
used for signals. Indication of the existence of an access
type in the concrete type can be viewed as a form of con-
tract between the type provider and users. Absence of the
indication is contract that the concrete type does not in-

clude access values. In the case of a signal of a class-wide
type, there may be a derived type in the class that includes
an access value. While this cannot be checked during anal-
ysis, it can be determined at elaboration time, since the
complete hierarchy covered by the class is known at that
time.

Another form of contract that can be specified relates to
assignment. If a private type includes the keyword limited,
assignment is not allowed by the user of the type, and the
equality operator is not predefined. This feature is adopted
from Ada, and is useful for types denoting linked data
structures. Assignment normally involves element-wise
copying of values, and equality involves element-wise
comparison. For linked structures, deep copy and deep
comparison may be more appropriate. The type is declared
limited in the visible part of the package, and copy and
equality operations are provided. The implementations of
the operations have full view of the type, and so can imple-
ment the required deep copy and comparison.

As an example of the two forms of contractual detail de-
scribed in this section, consider the following ADT for a set
of test vectors:

package test_vector_lists is

type list is limited access private;

constant empty_list : list;

procedure copy (from : in list; to : out list);
impure function “=”(L, R : list) return boolean;
procedure add (L : inout list;

test : in test_vector);
. . .

private

type element_node;
type element_ptr is access element_node;
type list is new element_ptr;

end package test_vector_lists;

The list type is represented by the private type list, whose
concrete representation is a singly-linked list of elements.
Since the type includes access values, the keyword access
is included in the private type declaration. Further, since
the intended semantics of list assignment is to copy the ele-
ments to the target, the private type is made limited. Hence
the package provides a copy operation and an equality op-
eration. The body of the package is outlined as follows.

package body test_vector_lists is

type element_node is record
next_element : element_ptr;
element : test_vector;

end record element_node;

constant empty_list : list
:= list (element_ptr’(null));

7

procedure copy (from : in list;
to : out list) is . . .

. . .
end package body test_vector_lists;

This illustrates a further extension to VHDL made by
SUAVE: constants and constant parameters may include
access values. This improves the expressiveness of the lan-
guage by allowing constants to be of an ADT whose imple-
mentation happens to include access values. It also allows
operations of such an ADT to be written functions with
constant in-mode parameters of the type and a result of the
type.

5. Conclusion

In this paper we have described the SUAVE extensions to
VHDL to improve its support for modeling at all levels of
abstraction. We have presented the features that provide
object-orientation as a combination of improved abstrac-
tion, encapsulation and inheritance mechanisms. We de-
scribe the new features for genericity in a companion paper
[4]. Most of the features are drawn from Ada-95 and are
adapted to integrate with modeling features that are specif-
ic to VHDL. Drawing on Ada is appropriate, since VHDL
was originally strongly influenced by Ada. In a sense,
SUAVE is an evolution of VHDL that parallels the evolu-
tion from Ada-83 to Ada-95.

SUAVE improves modeling support by generalizing
and extending existing mechanisms, rather than by adding
whole new features, hence the suggestion that SUAVE is a
“painless extension.” In particular, SUAVE avoids replica-
tion of the abstraction & encapsulation mechanisms al-
ready provided by the package feature. Adding a separate
class feature, as proposed in Objective VHDL [17], for ex-
ample, replicates many aspects of packages and so compli-
cates a designer’s choice of expression of design intent.

Space considerations preclude a more detailed defini-
tion of the features added in SUAVE. The interested reader
can find a more complete description in the SUAVE report
[5]. Work is now in progress to implement the extensions
within the framework of the SAVANT project [16].

References
[1] P. J. Ashenden and P. A. Wilsey, A Comparison of Al-

ternative Extensions for Data Modeling in VHDL,
Dept. Computer Science, University of Adelaide,
Technical Report TR-02/97, ftp://ftp.cs.adelaide.
edu.au/pub/VHDL/TR-data-modeling.ps, 1997.

[2] P. J. Ashenden and P. A. Wilsey, “Considerations on
Object-Oriented Extensions to VHDL,”Proceedings
of VHDL International Users Forum Spring 1997
Conference, Santa Clara, CA, pp. 109- 118, 1997.

[3] P. J. Ashenden and P. A. Wilsey, Principles for Lan-
guage Extension to VHDL to Support High-Level
Modeling, Dept. Computer Science, University of
Adelaide, Technical Report TR-03/97, ftp://ftp.cs.
adelaide.edu.au/pub/VHDL/TR-principles.ps, 1997.

[4] P. J. Ashenden and P. A. Wilsey, “Reuse Through
Genericity in SUAVE,”Proceedings of VHDL Inter-
national Users Forum Fall 1997 Conference, Wash-
ington, DC, 1997.

[5] P. J. Ashenden, P. A. Wilsey, and D. E. Martin,
SUAVE Proposal for Extensions to VHDL for High-
Level Modeling, Dept. Computer Science, Universi-
ty of Adelaide, Technical Report to be published,
ftp://ftp.cs.adelaide.edu.au/pub/VHDL/TR-
extension.ps, 1997.

[6] J. Barnes, Ed. Ada 95 Rationale, vol. 1247. Berlin,
Germany: Springer-Verlag, 1997.

[7] J. Benzakki and B. Djaffri, “Object Oriented Exten-
sions to VHDL: the LaMI Proposal,”Proceedings of
Conference on Hardware Description Languages
’97, Toledo, Spain, pp. 334- 347, 1997.

[8] G. Booch, Object-Oriented Analysis and Design with
Applications. Redwood City, CA: Benjamin/Cum-
mins, 1994.

[9] F. P. Brooks, Jr., The Mythical Man-Month, Anniver-
sary ed. Reading, MA: Addison-Wesley, 1995.

[10] D. Cabanis and S. Medhat, “Classification-Orienta-
tion for VHDL: A Specification,” Proceedings of
VHDL International Users Forum Spring ’96 Con-
ference, Santa Clara, CA, pp. 265- 274, 1996.

[11] O. J. Dahl and K. Nygaard, “Simula: An Algol Based
Simulation Language,” Communications of the
ACM, vol. 9, no. 9, pp. 671- 678, 1966.

[12] J. Gosling, B. Joy, and G. L. Steele, The Java Lan-
guage Specification. Reading, MA: Addison-
Wesley, 1996.

[13] IEEE, Standard VHDL Language Reference Manual.
Standard 1076-1993, New York, NY: IEEE, 1993.

[14] ISO/IEC, Ada 95 Reference Manual. International
Standard ISO/IEC 8652:1995 (E), Berlin, Germany:
Springer-Verlag, 1995.

[15] M. T. Mills, Proposed Object Oriented Programming
(OOP) Enhancements to the Very High Speed Inte-
grated Circuits (VHSIC) Hardware Description Lan-
guage (VHDL), Wright Laboratory, Dayton, OH,
Tech. Report WL-TR-5025, 1993.

[16] MTL Systems Inc., Standard Analyzer of VHDL Ap-
plications for Next-generation Technology (SA-
VANT). MTL Systems, Inc, http://www.mtl.com/
projects/savant/, 1996.

8

[17] M. Radetzki, W. Putzke, W. Nebel, S. Maginot, J.-M.
Bergé, and A.-M. Tagant, “VHDL Language Exten-
sions to Support Abstraction and Re-Use,”Proceed-
ings of Workshop on Libraries, Component
Modeling, and Quality Assurance, Toledo, Spain,
1997.

[18] G. Schumacher and W. Nebel, “Inheritance Concept
for Signals in Object-Oriented Extensions to
VHDL,” Proceedings of Euro-DAC ’95 with Euro-
VHDL ’95, Brighton, UK, pp. 428- 435, 1995.

[19] B. Stroustrup, The C++ Programming Language.
Reading, MA: Addison-Wesley, 1986.

[20] S. Swamy, A. Molin, and B. Covnot, “OO-VHDL:
Object-Oriented Extensions to VHDL,” IEEE Com-
puter, vol. 28, no. 10, pp. 18- 26, 1995.

[21] P. Wegner, “Dimensions of Object-Based Language
Design,” ACM SIGPLAN Notices, vol. 22, no. 12,
Proceedings of OOPSLA ’87, pp. 168- 182, 1987.

[22] J. C. Willis, S. A. Bailey, and R. Newschutz, “A Pro-
posal for Minimally Extending VHDL to Achieve
Data Encapsulation Late Binding and Multiple In-
heritance,” Proceedings of VHDL International Us-
ers Forum Fall ’94 Conference, McLean, VA, pp.
5.31- 5.38, 1994.

