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SUB-BUNDLES OF THE COMPLEXIFIED TANGENT BUNDLE

HOWARD JACOBOWITZ AND GERARDO MENDOZA

Abstract. We study embeddings of complex vector bundles, especially line
bundles, in the complexification of the tangent bundle of a manifold. The aim
is to understand implications of properties of interest in partial differential
equations.

1. Introduction

An involutive structure on a smooth n-manifoldM is a smooth sub-bundle V of
the complexified tangent bundle CTM of M that satisfies

[V ,V ] ⊂ V ;

that is, if X and Y are sections of V , then their Lie bracket [X,Y ] is again a section
of V . Involutive structures give rise to complexes of differential operators, and
from that point of view, they are well studied in partial differential equations, both
locally and globally. It is thus natural to ask questions such as how rich the set
of such vector sub-bundles is, and to what extent properties of interest in PDEs
can be satisfied. For example, is every complex vector bundle E → M of rank
≤ dimM realizable as a sub-bundle of CTM? Not generally (obviously), but yes
if rankE ≤ (n + 1)/2 (the stable case). If E can be realized as a sub-bundle of
CTM, can it be realized as an involutive sub-bundle? The answer to this is, not
generally: there are topological conditions, due to Bott [3] and additional secondary
conditions determined by Shulman [24] (see also [29]), that must be satisfied if E
can be realized as an involutive sub-bundle of CTM. For vector bundles of rank
≤ (n + 1)/2, the conditions are vacuous. Other questions one may ask include
whether a locally integrable structure (see Section 7 for the definition) admits a
hypo-analytic structure (defined in Section 8) and which vector bundles can be
embedded in CTM so that they become hypo-complex.

This paper is a start on such studies. Its goal is to gain some understanding of
complex line sub-bundles of the complexified tangent bundle (so involutivity comes
for free) in connection with the PDEs they define. Involutivity together with prop-
erties of interest in PDEs or differential geometry may be very strong conditions on
the manifold. This of course is illustrated by the fact that not all even-dimensional
manifolds admit an almost complex structure (see, for example, [7], [10], [11], [27]),
and those that do may not admit a complex structure (see [12]). Other examples
come from the fact that on any compact orientable 3-manifold, every complex rank
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two vector bundle with first Chern class in 2H2(M,Z) embeds as a sub-bundle
V with V + V = CTM (see Corollary 5.8). However, only for a specified list of
3-manifolds (see [5], [9]) can such a sub-bundle be involutive. These involutive
structures are called elliptic and are equivalent to transversely holomorphic folia-
tions. Note that every compact three-manifold admits an involutive real rank two
bundle, since the manifold admits a codimension one foliation, Wood [32]. Thus in
terms of the characteristic set of the sub-bundle we have two extremes: Every com-
pact three-manifold admits a rank two involutive structure with the characteristic
set equal to the manifold, but only a special class of three-manifolds admits a rank
two involutive structure with the characteristic set empty.

We begin in Section 2 with a basic result about embeddings, and discuss briefly
Bott’s necessary condition for involutivity.

In Section 3 we consider the case of embeddings of complex line bundles E →M
as CR sub-bundles. This just means that one seeks to embed the underlying real
bundle ER in TM. On this aspect of the problem, the work of Thomas [26], [27]
is particularly relevant, since it gives complete answers in a number of cases. We
have also included two theorems of Hirzebruch and Hopf [11] on the existence of
almost complex structures and two-plane fields in compact 4-manifolds.

In Section 4 we consider what happens when E cannot be embedded in the real
tangent bundle. Nevertheless it can be embedded in CTM as a sub-bundle V with
the property that the map < : V → TM is generic. The points where < : V → TM
has nontrivial kernel are the places where the multiplicity of the characteristic set
of V changes, and are therefore of importance in PDEs.

In Section 5 we take on again the problem of embeddability of complex line
bundles, this time on manifolds of dimension 2 and 3. We present other proofs
of embeddability when the manifold is compact and orientable and give another,
elementary proof of a result of Thomas [27].

Section 6, where the manifold is assumed to be a compact orientable surface,
follows Section 4 in spirit in that we determine a number (an integer) as a measure
of the characteristic set of a generically embedded bundle V ⊂ CTM. This number
is determined from the way V is embedded in CTM over the characteristic points.

Sections 7 and 8 are more directly related to other aspects of the PDEs arising
from involutive structures. In Section 7 we consider hypo-complex structures on
an orientable 2-manifold. We recast a result of Treves [30] in a way (see Theorem
7.3) that makes it easy to construct all global hypo-complex structures on such
manifolds. Finally, in Section 8 we show that, at least for rank 1 sub-bundles of
CTM,M of any dimension, there is no topological obstruction to the existence of
hypo-analytic structures. This is in fact just the observation that onceM is given
an analytic structure, the bundle V can be slightly deformed to an analytic one.
We also give an alternate proof in the case of a 2-manifold. It is not known whether
a given locally integrable sub-bundle always admits a hypo-analytic structure, and
it is not known whether a given locally integrable sub-bundle of rank ≥ 2 can be
perturbed to obtain an analytic involutive sub-bundle.

2. Embeddings

Let M be an n-manifold and let E, F → M be complex vector bundles of
respective ranks r and s with r ≤ s. Fix Hermitian metrics on E and F . Any
injective homomorphism E → F is homotopic through injective homomorphisms
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to an isometry φ : E → F . Indeed, there is an R : E → E selfadjoint positive such
that R2 = φ∗φ. Let φ1 = φR−1. Then φ1 is an isometry and

(2.1) φt = φR−1(tId + (1− t)R)

is a homotopy from φ to φ1. So we let π : Isom(E,F ) →M be the bundle whose
fiber over p ∈ M is the space of isometries Ep → Fp and look for a section of this
bundle. Fixing orthonormal bases of Ep and Fp we see that the fiber of Isom(E,F )
is diffeomorphic to the Stiefel variety Vr(Cs), the manifold of r-orthonormal frames
of Cs, which is 2(s− r)-connected (see Husemoller [13, p. 92]).

Theorem 2.2. Suppose that E and F are complex vector bundles as above. If
r ≤ s− (n− 1)/2, then there is an isometry φ : E → F . Furthermore, if n is even,
or if n is odd and r ≤ s− (n+ 1)/2, then any two isometries E → F are homotopic
through isometries.

The proof is an application of Theorem 7.1 in Husemoller [13, p. 21]). The
condition r ≤ s − (n − 1)/2 is equivalent to n − 1 ≤ 2(s − r), which gives the
existence of the isometry, because of the connectedness of the fiber. If n is even, this
condition is also equivalent to n ≤ 2(s−r), which gives the existence of homotopies
between any two embeddings. Also, if n is odd, the condition r ≤ s− (n+ 1)/2 is
again equivalent to n ≤ 2(s−r). The first part of the theorem gives the well-known
result that complex vector bundles F →M split as F = F ′ ⊕ Cr, rankF ′ = [[n/2]]
(see [13, Theorem 1.2, p. 99]. The second part gives stability ([13, Theorem 1.5, p.
100]).

Corollary 2.3. Let E →M have rank r ≤ (n + 1)/2. Then E can be realized as
a sub-bundle of CTM.

Corollary 2.4. Let M be even dimensional, let E → M have rank r ≤ n/2.
Then E can be realized as a sub-bundle of CTM, and any two such embeddings are
homotopic.

Corollary 2.5. Let M be odd dimensional, let E →M have rank r ≤ (n+ 1)/2.
Then E can be realized as a sub-bundle of CTM. If r ≤ (n − 1)/2, any two
embeddings of E in CTM are homotopic.

Suppose the complex vector bundle E →M of rank r ≤ (n+ 1)/2 is embedded
in CTM. Let E′ be complementary to E in CTM. Then 2(rankE′) ≥ n − 1;
so automatically all elements of degree > rankE′ in the ring Chern(E′) (in real
cohomology) generated by the Chern classes of E′ are zero. Thus Bott’s necessary
condition for E to be isomorphic to an involutive sub-bundle, namely the vanishing
of the terms of degree > n − r in the ring Chern(E′), is trivially satisfied; so also
are Shulman’s conditions.

Apparently there is no example of a sub-bundle of CTM of rank ≤ (n + 1)/2
that is not homotopic to an involutive sub-bundle.

3. CR structures of rank 1

If V ⊂ CTM is an involutive structure, then the behavior of the associated
complex of differential operators is primarily controlled by the characteristic set of
V . This set, denoted by CharV , is the union over p ∈M of the sets

Charp V = {ξ ∈ T ∗pM : 〈ξ, v〉 = 0 for all v ∈ Vp}.
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This is a vector space for each p, and dim Charp V ≥ dmin = max(0, n− 2 rankV).
So, if 2 rankV < n, then Charp V contains nonzero covectors. In general, if
2 rankV ≤ n, then there may exist points p where dim Charp V > dmin. These
are the points p such that Vp ∩ TpM 6= 0, equivalently, the points such that
< : Vp → TpM has nontrivial kernel.

A complex structure onM is an involutive sub-bundle V ⊂ CTM with V ⊕V =
CTM. Its characteristic set is just the zero section of T ∗M. A generalization of
this, again with trivial characteristic set, is an elliptic structure: V + V = CTM
(see [15], [21]). When rank(V ∩ V) > 0, the elliptic structure corresponds to a
transversally holomorphic foliation.

A CR structure on a manifold M is an involutive sub-bundle V ⊂ CTM such
that V ∩ V = 0. By the usual convention, an almost CR structure is defined by
omitting the requirement of involutivity. If V is an almost CR structure, CharV is
a sub-bundle of T ∗M; its rank, n − 2 rankV , is called the CR codimension of V .
An almost CR structure of rank 1 is involutive, and therefore is a CR structure.

Since the condition V ∩ V = 0 implies 2 rankV ≤ n, Corollaries 2.4 and 2.5 give
the following:

Corollary 3.1. Suppose E →M can be embedded in two ways as an almost CR
structure. Then the two embeddings are homotopic (though not necessarily through
CR structures).

Note that our definition of almost CR structures includes almost complex struc-
tures.

In Example 5.9 we present a pair of CR structures on S3 that are not homotopic
to each other through CR structures, although they are isomorphic as complex line
bundles and so are homotopic as sub-bundles.

We now recall from MacPherson [17], [18] the definition of a generic homomor-
phism between real or complex vector bundles. Let E, F →M be vector bundles.
The sets

Σk(E,F ) = {ψ ∈ Hom(Ep, Fp) : p ∈M, dim kerψ = k}
are submanifolds of Hom(E,F ), of codimension k(rankF − rankE+ k) if E and F
are real, and codimension 2k(rankF − rankE + k) if E and F are complex vector
bundles. A smooth homomorphism ψ : E → F is said to be generic if it, as a
section of Hom(E,F ), has transversal intersection with each of the submanifolds
Σk(E,F ). If the homomorphism ψ : E → F is generic, then each of the sets

Σk(ψ) = {p : dim ker(ψp : Ep → Fp) = k}
is a submanifold ofM whose codimension is given by the formula above.

Suppose for the rest of this section that F0 →M is a real vector bundle of rank
s. Let F = CF0. Suppose E → M is a complex vector bundle of complex rank
r ≤ s−(n−1)/2 as in Theorem 2.2. Let ER be the underlying real bundle of E. By
a generic embedding φ : E → F we mean a smooth injective homomorphism E → F
such that <φ : ER → F0 is generic. Note that we distinguish generic and generic
embedding. The latter is, to repeat, an embedding whose real part is generic. If φ
is a generic embedding, the sets

ΣRk (φ) = Σk(<φ)

are submanifolds ofM of codimension k(s−2r+k), k ≥ dmin = max(0, 2r−s). For
example, if ER is of rank 2 (i.e., r = 1), the statement that <φ : ER → F0 is generic
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means that for every p ∈ Σ1(<φ), if σ1, σ2 is a frame for ER and η1, . . . , ηs one for
F0 (both near p) with <φ(σ1) = η1 and <φ(σ2) =

∑s
j=2 ajηj , then the functions aj

have independent differentials at p (so are local defining functions for Σ1(<φ) near
p). In particular, if s = n, then ΣR1 (φ) is one-dimensional.

If ψ : ER → F0 is a bundle homomorphism, then φ : E → F defined by

(3.2) φ(σ) = ψ(σ)−
√
−1ψ(

√
−1σ)

is C-linear. It is an embedding if and only if for each p, the kernel of ψp : ERp → F0p

is totally real.

Lemma 3.3. The set of smooth generic embeddings φ : E → F is open and dense
in the set of all smooth vector bundle maps E → F in the Whitney C∞ topology.

Proof. Let φ0 : E → F be arbitrary. There is a generic vector bundle map ψ1 :
ER → F0 close to <φ0. Via the formula in (3.2), ψ1 gives a complex homomorphism
φ1 : E → F . There is a generic φ : E → F near φ1. But if φ is generic, then the
codimension of Σk(φ) is 2k(s− r + k). Since 2(s− r) ≥ n− 1, this codimension is
> n if k > 0, and so Σk(φ) is empty. Thus φ : E → F is injective. The map φ can
be chosen in any prearranged neighborhood of φ0. �

Note that if M is a compact real analytic manifold and E → M a real or
complex vector bundle, then E can be given an analytic structure. If also F →M is
analytic and φ : E → F a continuous homomorphism, then φ can be approximated
by an analytic homomorphism. If φ is generic, or a generic embedding, then this
approximation can also be taken to be generic, or a generic embedding.

We are primarily interested in the case r = 1 and s = n; so suppose 2r ≤ s. In
this case we will say that E embeds in F without real points if there is φ : E → F
such that <φ is injective. If ψ : ER → F0 is injective, then so is the map E → F
defined by (3.2). If φ is an embedding without real points, then φt given by (2.1)
is a homotopy of embeddings without real points.

Lemma 3.4. Let E and F = CF0 be complex vector bundles with Hermitian prod-
ucts. Let φ0 : E → F and suppose that <φ0 is injective. Then φ0 is homotopic to
an isometry φ1 : E → F through maps φt such that <φt is injective.

A simple necessary condition for embeddability without real points is obtained
from the observation that if ER embeds in F0, then F0 splits as F0 = ER ⊕ Θ for
some vector bundle Θ of rank s − 2r. Thus in the formula w(Θ) = w(F0)w(E)−1

relating the Stiefel-Whitney classes of the bundles, the terms of degree > s − 2r
vanish.

Suppose E has complex rank 1. Then w1(E) = 0 because ER is orientable and
so w(E) = 1 +w2(E). For u ∈ H2(M,Z2) the term of degree q in w(F0) (1 + u)−1

is
ϑq(F0, u) =

∑
j+2`=q

wj(F0)u`.

Thus the conditions are

(3.5) ϑs−1(F0, w2(E)) = 0

and ϑs(F0, w2(E)) = 0, which is also

ws(F0) + [ϑs−2(F0, w2(E))]w2(E) = 0.
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The expression in brackets is ws−2(Θ) = e(Θ) mod 2. Since the Euler classes are
related by e(F0) = e(E)e(Θ), one gets that if ER embeds in F0, then

(3.6) ∃v ∈ Hs−2(M,Z) s.t. v mod 2 = ϑs−2(F0, w2(E)) and e(F0) = e(E) v.

Lemma 3.7. Let E →M be a complex line bundle, F0 →M a real bundle of rank
s ≥ (n+ 1)/2. If E embeds in CF0 without real vectors, then (3.5) and (3.6) hold.

If n is even ≥ 4, then wn−1(M) = 0 (Massey [20]). So if ER embeds in TM,
then condition (3.5) reduces to w2(E)ϑn−3(TM, w2(E)) = 0, which is satisfied if
the first Chern class c1(E) ∈ 2H2(M,Z). Note that ϑq(F0, 0) = wq(F0), and recall
that c1(E) maps to w2(E) under reduction mod 2. This and the lemma give half
of the following

Theorem 3.8 (Thomas [26]). SupposeM is compact orientable of dimension n ≡ 2
mod 4. Let E → M be a complex line bundle with c1(E) = 2u, u ∈ H2(M,Z).
Then E embeds in CTM as a CR structure if and only if there is v ∈ Hn−2(M,Z)
such that

v mod 2 = wm−2(TM) and c1(E) v = e(TM).

For odd-dimensional manifolds, Thomas proves the following two theorems.

Theorem 3.9 (Thomas [27]). SupposeM is compact orientable of dimension n ≡ 3
mod 4. Let E →M be a complex line bundle. Then E embeds in CTM as a CR
structure if and only if ϑn−1(TM, w2(E)) = 0.

Theorem 3.10 (Thomas [27]). Suppose n ≥ 5, n ≡ 1 mod 4 and w2(M) = 0.
Then every complex line bundle E →M with c1(E) ∈ 2H2(M,Z) embeds as a CR
structure if and only if wn−1(M) = 0 and

∑[[n/2]]
i=0 dimHi(M,Z2) ≡ 0 mod 2.

Condition (3.6) is absent from Theorem 3.9 because it is implied by condi-
tion (3.5) in the case of odd-dimensional (compact oriented) manifolds, as fol-
lows. If ϑn−1(TM, w2(E)) = 0, then ER can be embedded in TM over the
(n − 1)-skeleton Kn−1 of a triangulation K of M, by Proposition 2.1 in Thomas
[27]. Let Θ → Kn−1 be complementary to an embedding of ER in F0 and let
v′ ∈ Hn−2(Kn−1,Z) be the Euler class of Θ. Since Θ has odd rank, 2v′ = 0. Also,
v′ mod 2 = ι∗ϑn−2(TM, w2(E)), where ι : Kn−1 →M is the inclusion map. Since
ι∗ : Hn−2(M, R) → Hn−2(Kn−1, R) is an isomorphism for any ring R, there is a
class v ∈ Hn−2(M,Z) such that 2v = 0 and v mod 2 = ϑn−2(TM, w2(E)). Since
v is a torsion element, ve(E) = 0 = e(TM). So (3.6) is satisfied by v.

Since ϑ2(TM, w2(E)) = w2(TM) + w2(E), Thomas’ theorem above (Theorem
3.9) gives that CR structures on compact orientable 3-manifolds (so w2(M) = 0)
have first Chern class in 2H2(M,Z), and conversely, that for any u ∈ 2H2(M,Z)
there is a CR structure with c1(E) = u. This is also noted by Thomas (op. cit.).
Below we will restate this result again twice, as Corollary 4.3 and Proposition 5.5,
and give two other proofs.

Also relevant are the two theorems of Hirzebruch and Hopf cited below, and for
which we give their proof for the necessity of the condition.

Let M be compact, orientable, of dimension 4. Suppose TM carries an al-
most complex structure giving the chosen orientation. The Pontrjagin class of M,
p1(M) = −c2(CTM), is then related to the Chern classes of TM by

p1(M) + 2e(M) = c1(TM)2.
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Let S : H2(M,R)×H2(M,R)→ R be the bilinear form

S(α, β) =
∫
M
α ∧ β.

Let τ be the signature of S. Then p1(M)[M] = 3τ ([11, p. 168, Formula (ii)]). So

3τ + 2χ(M) =
∫
M
c1(TM)2

where χ(M) is the Euler characteristic of M. Let

W = {w ∈ H2(M,Z) | ∀ξ ∈ H2(M,Z) : S(w, ξ)− S(ξ, ξ) ≡ 0 mod 2}.

Let Ω = {S(w,w) : w ∈ W}. Hirzebruch and Hopf prove that
∫
M c21(TM) ∈ Ω as

follows. The map H2(M,Z2) 3 v 7→ v2 ∈ H4(M,Z2) is a homomorphism, so given
by multiplication by an element U2 ∈ H2(M,Z2). But U2 = w2 (due to Wu, see
[11, pp. 168 and 169]); so

v2 = w2v ∀v ∈ H2(M,Z2).

Since c1(TM) mod 2 = w2(M), c1(TM) has the property

η2 ≡ c1(TM)η mod 2 ∀η ∈ H2(M,Z),

which means that c1(TM) ∈W . This gives half of

Theorem 3.11 (Hirzebruch-Hopf [11]). LetM be a compact, orientable 4-manifold.
Then M admits an almost complex structure if and only if there is w ∈ W such
that

p1(M) + 2e(M) = w2.

Suppose now that TM admits the complex line bundle E as a (real) sub-bundle.
Let Θ be complementary to E in TM. Since TM and E are oriented, Θ inherits a
canonical orientation. So also Θ admits a complex structure, and therefore so does
TM, with c1(TM) = c1(E) + c2(Θ) and e(TM) = c1(E)c1(Θ). This gives

3τ + 2χ(M) =
∫
M

(c1(E) + c1(Θ))2

as before, and also

3τ − 2χ(M) =
∫
M

(c1(E) − c1(Θ))2

since (c1(E)+ c1(Θ))2− (c1(E)− c1(Θ))2 = 4e(M). Since c1(E)+ c1(Θ) represents
w2(M), c1(E) + c1(Θ) ∈ W . Also, since c1(E) − c1(Θ) ≡ c1(E) + c1(Θ) mod 2,
c1(E)− c1(Θ) ∈ W .

Theorem 3.12 (Hirzebruch-Hopf, op. cit.). Let M be a compact, orientable 4-
manifold. Then M admits an orientable 2-plane bundle if and only if there are w,
w′ ∈W such that

p1(M) + 2e(M) = w2 and p1(M)− 2e(M) = w′
2
.

For other embedding results, see Heaps [10], and, more recently, work by Čadek
and Vanžura, for instance [6], [7].
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4. Generic embeddings of line bundles

Let E →M be a complex line bundle and φ : E → CTM a generic embedding.
The obstruction to the existence of an embedding ER → TM gives information on
the places where the dimension of Charp φ(E) increases. To study this we follow
the classical approach to obstruction theory.

Let E, F → M be real vector bundles of respective ranks r and s over the n-
manifold M. Fix inner products on E and F . As in the complex case discussed in
Section 2, any embedding of E in F is homotopic to an isometric embedding. So we
look for obstructions to the existence of a section of Isom(E,F )→M. The fiber of
this bundle is isomorphic to the Stiefel variety Vr(Rs), which is (s−r−1)-connected
(Husemoller [13, p. 91])). So if K is a triangulation of M, then a section exists
over the (s − r)-skeleton Ks−r of K. Recall (see Steenrod [25], for example) that
since Vr(Rs) is (s − r)-simple, there is a bundle of coefficients Πs−r Isom(E,F )
with fiber the (s − r)-th homotopy group of the fibers of Isom(E,F ), and that,
therefore, a section of Isom(E,F ) over Ks−r defines an element os−r+1(E,F ) ∈
Hs−r+1(M,Πs−r Isom(E,F )) whose vanishing is equivalent to the existence of a
section over Ks−r+1.

In the case of interest here, s = n and r = 2, the fiber of Πn−2 Isom(E,F ),
πn−2(V2(Rn)), is

G =

{
Z n even, n > 2,
Z2 n odd.

So if n is odd, the bundle of coefficients is trivial, and on−1(E,F ) can be regarded as
an element in Hn−1(M,Z2). If n is even and greater than 2, then Πn−2 Isom(E,F )
is trivial if E and F are orientable. Assume then that E and F are orientable in this
case, and fix orientations for these vector bundles. This gives a specific isomorphism
Πn−2 Isom(E,F ) → M× Z, which again allows on−1(E,F ) to be regarded as an
element of Hn−1(M,Z).

Thus the primary obstruction to the existence of an embedding E → F is an
element of Hn−1(M, G). For embeddings of nonorientable 2-plane bundles see
Mello [19], where local coefficients cannot be avoided. Now take M compact n-
dimensional and, if n is even, orientable. This obstruction corresponds by Poincaré
duality to some element b ∈ H1(M, G). We give a geometric construction of b by
relating it to the singular set of a generic bundle map E → F .

Let then ψ : E → F be a generic map. The set Σ ⊂ M at which ψ fails to be
an embedding is a submanifold of dimension 1 (cf. Section 3). Since we are taking
M compact, Σ is a finite union of disjoint circles.

Let γj be one of those circles. Choose some pj ∈ γj and trivializations of E and
F near pj. Let U be a small hypersurface intersecting γj transversally at pj and
let Sn−2

0 be a small sphere in U surrounding pj . For each p ∈ Sn−2
0 we have that

ψ : Ep → Fp is an embedding. Using orthonormal trivializations (oriented if n is
even), we replace this map by Ψ : Sn−2

0 → V2(Rn).
When n is even we assume that M is oriented and that each γj is (arbitrarily)

assigned some orientation. These then induce an orientation on U and hence also
on Sn−2

0 . Let θ : Sn−2 → Sn−2
0 be any diffeomorphism from the standard sphere (of

degree +1, when n is even). We see that Ψ◦θ defines an element bj of πn−2(V2(Rn))
that is independent of the choice of pj ∈ γj and that, when n is even, bj changes
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sign as the orientation of γj is reversed. Let [γj ] ∈ H1(M, G) be the homology class
represented by γj .

Theorem 4.1. Let M be compact of dimension n ≥ 3, let E, F → M be real
vector bundles of respective ranks 2 and n. If n is even, assume that E, F and M
are oriented. The primary obstruction to the existence of an embedding E ↪→ F is
the Poincaré dual of b = Σbj [γj ] ∈ H1(M, G).

Proof. We begin with a generic ψ : E → F with singular set Σ =
⋃
γj . Let K

be a triangulation of M. Perturb ψ, if necessary, to achieve that Σ avoids Kn−2

and is transverse to any (n − 1)-simplex it intersects. Recall the construction of
the obstruction class: Let σ be any oriented (n− 1)-simplex in K. We have a map
f : ∂σ → V2(Rn) which comes from the embedding E ↪→ F on Kn−2 and a choice
of trivializations over σ of E and F (respecting orientations if n is even). As above,
f determines an element of πn−2(V2(Rn)) (note that we are implicitly using that
∂σ inherits an orientation from that of σ). Thus we assign an element of G to any
(n−1)-simplex. That is, we have defined an (n−1)-cochain cn−1 with values in G.
The usual argument shows that this cochain is closed and so defines a cohomology
class [cn−1] = on−1(E,F ) ∈ Hn−1(M, G). This is the primary obstruction class
for embedding E into F .

We now relate on−1(E,F ) ∈ Hn−1(M, G) to b ∈ H1(M, G). If σ does not inter-
sect γj , then the embedding E ↪→ F over Kn−2 extends over σ and so cn−1(σ) = 0;
if σ does intersect γj , then the intersection is transverse and cn−1(σ) = ±bj. When
n is odd, the ambiguity in sign is irrelevant. When n is even, the sign is positive if
the orientation of γj induces on ∂σ the same orientation as the one inherited from
the orientation of σ. Also, in this case, the intersection number of σn−1 and γj is
+1. So, in any event, cn−1(σ) = bjσ

n−1 · γj . Thus for any closed (n − 1)-chain s
we have

cn−1(s) = s · Σbjγj .
Passing to cohomology we see that indeed [cn−1] is the Poincaré dual of b. �

The results for n = 2 are somewhat different. First, the group G is now
π0(V2(R2)), which we take to be Z2. (The two components of V2(R2) correspond to
the two possible orientations of the 2-frame. We arbitrarily choose one component
to represent 0 ∈ Z2.) This contrasts with the fact that G = Z for n even and greater
than 2. As before, we start with an embedding E ↪→ F on the (n − 2)-skeleton.
For n = 2, this means we give embeddings at each vertex of the triangulation. Let
us first assume that E and F are oriented. Then we change whatever is necessary
to make all the maps E ↪→ F at the vertices orientation-preserving. Then we may
extend these maps to E ↪→ F over K1. Hence the primary obstruction o1 is zero.
Also, starting with a map E ↪→ F on a neighborhood of K1, we may find a generic
map with each γj contained in a 2-simplex of the triangulation. So [γj ] = 0 and
thus b = 0. So Theorem 4.1 holds because both quantities are zero. Next, consider
E, F and M not oriented. Now o1 need not be zero and the γj need not lie in 2-
simplices. The previous proof for the non-oriented (odd) case remains valid, and so
o1 = b ∈ H1(M2,Z2). In conclusion, the two-dimensional case has features of the
general even- and odd-dimensional cases.

Next we look at the primary and secondary obstructions in dimensions two and
three for orientable bundles. We have seen that there is no primary obstruction
when n = 2, and we shall show that there is no secondary obstruction when n = 3.
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While the primary obstruction to extending E2 ↪→ F 2 from K0 to K1 for ori-
entable bundles vanishes, there clearly is a secondary obstruction (given by the
difference of the Chern classes) for extending the embedding to all of M. This
obstruction can be computed directly from the winding of the range of ψ around
the singularity curves. We omit the argument, only saying that it reduces to a
simple calculation for some standard examples. A more interesting result starts
with a generic E → F and its characteristic set Σ, rather than building up along
the skeleton. Then the components of Σ need not lie in coordinate patches. This
is done for F = TM in Theorem 6.6 below.

In dimension 3, the primary obstruction can be computed directly and, further-
more, it is the only obstruction.

Theorem 4.2. Let E and F be orientable real vector bundles over an orientable
compact 3-manifold M, rankE = 2, rankF = 3. The only obstruction to an
embedding E ↪→ F is given by w2(F )− w2(E).

Corollary 4.3. E2 embeds into TM3 if and only if c1(E) ∈ 2H2(M,Z).

Remark 4.4. We have already pointed out that this result follows from Theorem
3.9 .

Proof. Let o2 ∈ H2(M,Z2) be the primary obstruction to finding an embedding
E ↪→ F on K2. Let λ : H2(M,Z) → H2(M,Z2) be the map induced by Z → Z2

and let Ẽ be any complex line bundle on M with λ(c1(Ẽ) − c1(E)) = o2. On
K1 we have embeddings Ẽ ↪→ E and E ↪→ V2(R3) and the composition Ẽ ↪→
V2(R3). Denote the obstructions to extending these maps to K2 by k ∈ H2(M,Z),
o2 ∈ H2(M, π1(V2(R3))), and c̃ ∈ H2(M, π1(V2(R3))). Fix some 2-simplex σ2 and
trivializations for Ẽ, E, F . These give rise to maps

f : S1 → SO(2), g : S1 → V2(R3) = SO(3), h : S1 → SO(3).

Let µ : SO(2) → SO(3) be the map SO(2) → SO(2) ⊕ 1 ⊂ SO(3). Then for each
θ ∈ S1, h(θ) = µ(f(θ)) · g(θ) where we are using group multiplication. Denote
by [h] the homotopy class of h ∈ π1(V2(R3)). By a basic result in the homotopy
of topological groups, [h] = [µf ] + [g]. Doing this for each σ2 gives cocycles and,
passing to cohomology, we have

c̃ = cµf + c.

Note that cµf ∈ H2(M, π1(V2(R3))) ∼= H2(M,Z2) is the image under the map
λ : H2(M,Z) → H2(M,Z2) of the obstruction cf ∈ H2(M,Z) to extending f to
K2. Furthermore, this obstruction is up to sign the difference of the Chern classes
c1(Ẽ)− c1(E). Thus

c̃ = λ(c1(Ẽ))− c1(E) + c

= c+ c

= 0.

Hence, there is no obstruction to embedding Ẽ ↪→ F on K2. Since π2(V2(R3)) = 0,
there is no further obstruction and one can embed Ẽ ↪→ F onM. Thinking of Ẽ ⊂
F , we may write F = Ẽ⊕R. Thus, w2(Ẽ) = w2(F ) and so o2 = w2(F )−w2(E). �
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5. Line sub-bundles of CTM in low-dimension

Complex vector bundles over 2- or 3-manifolds are classified by their rank and
first Chern class, since line bundles are classified by their Chern class and any
complex vector bundle F →M of rank r splits as F = L⊕Cr−1 over such manifolds.
This permits an alternate approach to proving embeddability of complex line sub-
bundles in CTM in these low-dimensional manifolds.

For reference we state

Lemma 5.1. Let M be 2- or 3-dimensional. Let E1, E2 →M be complex vector
bundles of the same rank. If c1(E1) = c1(E2), then E1 = E2.

Proposition 5.2. CTM is a trivial vector bundle for any compact orientable two-
or three-dimensional manifold M.

Indeed, ifM is an orientable 3-manifold, then TM itself is trivial. In general, if
F0 →M is a real vector bundle, then 2c2j+1(CF0) = 0. IfM is compact orientable
of dimension 2, this gives c1(CF0) = 0 since H2(M,Z) = Z.

More generally, a result of Peterson [23] (see also Kervaire [16]) shows that CTM
is trivial whenever c(CTM) = 1 except possibly when there exists some nonzero
η ∈ H2j(M,Z), η 6= 0, with (j− 1)!η = 0. So, for instance, ifMn is orientable and
immerses in Rn+1, then CTM is trivial, except possibly when there exists such a
torsion element. Of course, triviality fails when the total Chern class is not 1, for
example, for CT (CPn) whenever n > 1.

Using Proposition 5.2 we can reprove Corollary 2.3 for line bundles over ori-
entable manifolds as follows. Let E →M be complex line bundle. Then E⊕E has
first Chern class equal to 0, so is trivial. So if M is 2-dimensional, then E ⊕ E is
isomorphic to CTM and therefore E embeds in CTM. The same argument works
in the 3-dimensional case. In fact, even if M3 is not orientable, CTM ∼= L ⊗ C2,
and so again E ⊕ E can be embedded in CTM.

Proposition 5.3. Any complex line bundle E over a 2- or 3-dimensional manifold
M is isomorphic to a sub-bundle of CTM.

One can also get the embeddings of rank 2 complex bundles in CTM in the
case of 3-manifolds, as follows. Suppose M is 3-dimensional, orientable or not, let
E →M have rank 2. Let µ = c1(CTM)− c1(E). Let L→M be the line bundle
with c1(L) = µ. Then L can be realized as a sub-bundle of CTM, and admits
a complementary bundle E′. Consequently, c(E′)c(L) and c(E)c(L) are equal to
c(CTM); so c(E) = c(E′). Thus E is isomorphic to E′ ⊂ CTM by Lemma 5.1.

Proposition 5.4. If dimM = 3, any complex rank 2 vector bundle E → M is
isomorphic to a sub-bundle W of CTM.

We now give another proof of Theorem 3.9 in the case of a compact orientable
3-manifoldM. Recall that in this case the necessary and sufficient condition for a
line bundle E to embed as a CR structure is that c1(E) ∈ 2H2(M,Z). Let U be a
nowhere zero vector field onM and let g be some Riemannian metric onM. Let H
denote the two-plane distribution orthogonal to U . Fix an orientation for M and
let J : H → H be rotation by π/2 in the direction chosen such that {U,X, JX} is
positively oriented for some (and therefore for all) nonzero X ∈ H . Then the pair
{H, J} defines a complex line bundle onM and also a CR structure with elements
X − iJX . Denote this line bundle by U⊥. We ask if a given line bundle E can be
realized in this way.
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Proposition 5.5. Let M be a compact, orientable, three-dimensional manifold.
A necessary and sufficient condition for a complex line bundle E over M to be
isomorphic to some U⊥ is that c1(E) ∈ 2H2(M,Z).

Proof. Assume E is isomorphic to some U⊥. Let {U} denote the (trivial) line
bundle spanned by U . Then E ⊕ {U} ∼= M× R3. So, using the underlying real
structure of E, we have for the total Stiefel-Whitney class,

1 = w(E ⊕ {U}) = w(E)w({U}).

In particular, this gives w2(E) = 0, since w({U}) = 1. Thus c1(E) ∈ 2H2(M,Z).
For the converse, we start with a few observations. Consider TS2 as a complex

line bundle. Let ω be the positive generator of H2(S2,Z). Then
a) c1(TS2) = 2ω;
b) ω is the negative of the first Chern class of the canonical line bundle γ →
CP1;

c) complex line bundles overM3 are induced by maps into CP1.
The first observation is a special case of a general result that the top Chern class

of the complex tangent bundle (as opposed to the complexified tangent bundle) of
a complex manifold is the Euler class of the manifold [22, p. 158] and the second
observation is one of the axioms defining Chern classes [13, p. 249].

For the third observation, consider a generic section of a line bundle L on M3.
This section is zero over a one-dimensional submanifold Σ ofM. Since any complex
line bundle is trivial over a small tubular neighborhood of Σ, we may find two open
sets U1, U2 ⊂M with

M = U1 ∪ U2 and L|Uj trivial.

In this situation (where M may be of any dimension) there exists a map

Φ :M→ CP1

such that Φ∗γ = L. It follows that

c1(L) = c1(Φ∗(γ)).

Given the bundle E with c1(E) = 2η we construct Φ :M3 → CP1 with Φ∗(ω) =
η (by applying the third observation to the line bundle L whose Chern class is −η).
We claim that E is isomorphic to Φ∗(TS2) and that Φ∗(TS2) is isomorphic to a
sub-bundle of CTM of the type U⊥. We have

c1(Φ∗(TS2)) = Φ∗(c1(TS2)) = 2η = c1(E).

So E = Φ∗(TS2). If we think of S2 ⊂ R3 we may write Φ = (φ1, φ2, φ3). The
bundle Φ∗(TS2) is given by

{(p,
3∑
j=1

aj∂φj |φ(p)) ∈M× TS2 : aj ∈ R,
∑
j

ajφj(p) = 0}.

Let X1, X2, X3 be global independent vector fields onM and define Ψ : Φ∗TS2 →
TM by

Ψ(p,
3∑
j=1

aj∂φj |φ(p)) =
3∑
j=1

ajXj(p).
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This is injective, hence an embedding of Φ∗(TS2) in TM. Note that Φ∗(TS2) is
orthogonal to U =

∑
i φiXi; so, as a complex bundle, Φ∗(TS2) is isomorphic to U⊥

or (−U)⊥. �
We have also proved:

Lemma 5.6. LetM3 be orientable and let {X1, X2, X3} be an oriented global basis
for TM. Define a Riemannian metric onM by taking this as an orthonormal basis.
Let Φ :M→ S2 ⊂ R3 have components Φ = (φ1, φ2, φ3). Set U =

∑
φiXi. Then

U⊥ = Φ∗(TS2) as complex line bundles.

Remark 5.7. The sufficiency part of Theorem 5.5 is also implicit in the work of
Turaev on Spinc structures [31].

Corollary 5.8. Let M be a compact, orientable, three-dimensional manifold. Let
E be a rank 2 complex vector bundle overM. Then E is isomorphic to a sub-bundle
V ⊂ CTM such that V + V = CTM if and only if c1(E) ∈ 2H2(M,Z).

Proof. Fix a Riemannian metric on M and extend it to a Hermitian metric on
CTM. Suppose that E has been realized as a sub-bundle V such that V + V =
CTM. Then V ∩ V is the complexification of a real line sub-bundle R ⊂ TM.
Let W be the orthogonal of CR in V . Then W and W are CR structures. In
particular, c1(W) ∈ 2H2(M,Z). Since 0 = c1(CTM) = c1(CR ⊕W) + c1(W) and
CR⊕W = V , c1(E) ∈ 2H2(M,Z).

Suppose now that c1(E) ∈ 2H2(M,Z). As in the proof of Proposition 5.4, let
µ = −c1(E) and let L →M be the line bundle with c1(L) = µ. Fix a Hermitian
product on L. Since µ ∈ 2H2(M,Z), L can be realized as a CR structure on
M; so we can find an isometry ψ : LR → TM. Then φ : L → CTM given by
φ(σ) = ψ(σ)−

√
−1ψ(

√
−1σ) is an embedding. For σ ∈ Lp, we have φ(σ) = u1−iu2

with uj ∈ TM and u1 and u2 independent. Complete this to a basis {u1, u2, u3}
of TMp. Now let V be the orthogonal of φ(L) in CTM. Note that c1(V) = c1(E)
and so V is isomorphic to E. Furthermore, Vp is spanned by u1 + iu2 and u3. So
Vp + V̄p = CTM. �

We now show that a bundle might have two realizations U⊥ and Ũ⊥ but these
realizations might not be deformable into each other within this class. In particular,
we find two CR structures on S3 (each of which is trivial as a line bundle because
H2(S3,Z) = 0) that are not deformable into each other through CR structures. For
suppose Φ, Φ̃ :M→ S2 are smooth (or just continuous) with components φi, φ̃i.
Let U =

∑
i φiXi, likewise Ũ . If Φ∗ = Φ̃∗ as maps H2(S2,Z) → H2(M,Z), then

U⊥ is isomorphic to Ũ⊥, but unless Φ is homotopic to Φ̃, U⊥ cannot be deformed
into Ũ⊥ within TM. This translates to: The CR structures {H, J} and {H̃, J̃}
are isomorphic as line bundles but may not be deformable to each other along CR
structures.

Example 5.9. The trivial bundle S3 × C can be realized in two ways as a sub-
bundle of TS3. One way is as the standard CR structure V of S3 ⊂ C2. Let
z1 = x1 +

√
−1x3, z2 = x2 +

√
−1x4 be the coordinates in C2. The vector fields

X1 = x3∂x1 + x4∂x2 − x1∂x3 − x2∂x4 ,

X2 = x4∂x1 − x3∂x2 + x2∂x3 − x1∂x4 ,

X3 = x2∂x1 − x1∂x2 − x4∂x3 + x3∂x4
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form a positively oriented orthonormal frame on S3. As a sub-bundle of CTS3, V is
spanned by X2 +

√
−1X3. So V corresponds to the sub-bundle of TS3 determined

by U ′ = X1, that is, Φ = (1, 0, 0). Let now Φ̃ : S3 → S2 be the Hopf map. Then Φ̃
is not homotopic to a constant map. So it defines a CR structure Ṽ on S3 which
cannot be deformed to the standard structure within CR structures. These two
CR structures are isomorphic because S3 admits only the trivial line bundle as a
complex line bundle.

Note however that Ṽ can be connected to the standard CR structure within the
larger space of deformations of complex line bundles in CTS3. This is true in a
general setting, by Corollary 3.1, but also follows in this case from the fact that
π3(CP2) is trivial.

6. Characteristic sets in dimension 2

Let V be a complex line bundle in CTM2. The characteristic set of V projects
onto the set of points p such that Vp ∩ TpM 6= {0}.

Definition 6.1. V is real at a point p and p is a characteristic point of V if there
is some vector v ∈ TpM such that

Vp = {λv : λ ∈ C}.
We denote the set of characteristic points by Σ(V).

The following three conditions are each equivalent to V being real at p.
(1) The real vector space {<X : X ∈ Vp} is one-dimensional.
(2) For each X ∈ Vp, <X and =X are linearly dependent.
(3) Vp = Vp.

The set of complex lines in CTpM that are real is clearly bijective with the set
of real lines in TpM and so can be identified with a circle. We let P(CTM)→M
be the bundle of all complex lines in CTM and BR = P(TM)→M be the bundle
of real lines in TM regarded as a subset of CTM. The line bundle V defines a
section [V ] of P(CTM), and

[Vp] ∈ BR ⇐⇒ V is real at p.

Remark 6.2. Note that BR is a nontrivial circle bundle for all compact surfaces
M, except the torus and the Klein bottle. This is because a section of BR would
be a field of lines on M. It is well known that only the torus admits a nowhere
zero real vector field. It is equally true, although perhaps not as well known, that
only the torus and the Klein bottle admit real line fields. A simple proof is to fix
a metric and note that the set of unit vectors in the line field provides a double
cover (connected or not) that admits a global nonzero vector field. So M has the
torus for a connected cover and so can be only the torus or the Klein bottle. That
BR is nontrivial for compact, orientable surfaces, except on the torus, also follows
from the fact that c1(B) = 2χ(M) where B is the complex line bundle determined
by BR. This formula is easy to prove using that the map from the sphere bundle
of TM to BR is a 2-fold covering.

The section [V ] of P(CTM) determined by a complex line bundle V in P(CTM)
may or may not intersect the circle bundle BR. For example, when M is oriented,
the complex line bundles T 1,0 and T 0,1 corresponding respectively to a complex
structure on M, compatible with the given orientation, and a complex structure
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of the opposite orientation, give sections that do not intersect BR. Conversely, if a
complex line sub-bundle does not intersect BR it gives a complex structure of one
of these two types (see Lemma 7.4).

Lemma 6.3. BR is a smooth hypersurface in P(CTM) and, whenM is orientable,
separates P(CTM) into two disjoint connected components:

P(CTM) = B+ ∪BR ∪B−.
Proof. The smoothness is easily seen in local coordinates. The decomposition fol-
lows from the immediately preceding remarks about complex structures. �

From the point of view of partial differential equations, the interesting properties
of V are determined by its behavior on the characteristic set Σ = Σ(V). This
suggests the possibility of computing the Chern class of V using only V|Σ. This
indeed can be done in the generic case on an oriented M2.

So let V belong to the open and dense set of complex line bundles with the
property that the intersection of [V ] ⊂ P(CTM) and BR is transverse (that is, V
is generically embedded in CTM, cf. Section 3). Thus Σ decomposes into a union
of simple closed curves

Σ =
⋃
γj .

We assume M is oriented and fix a metric. This determines the sub-bundle T 1,0

of CTM. We have T 1,0 ⊥ T 0,1 and if Z ∈ T 1,0, then |<Z| = |=Z|. Let B+ be
the component of P(CTM)\BR that contains [T 1,0]. Let R be the set of points
where [V ] belongs to B+. In particular, [V ]p = [T 1,0]p can only occur when p ∈ R.
Note also that R is an oriented open submanifold of M with boundary Σ. Since
all complex line bundles on M become trivial when restricted to any proper open
subset, we can find global smooth nonzero sections

τ : R→ T 1,0 and ζ : R→ V .
Set

(6.4) β(p) =
1

|ζ(p)|2 〈τ(p), ζ(p)〉 〈τ(p), ζ(p)〉

and

(6.5) kj =
1

2πi

∫
γj

dβ

β
and k =

∑
kj ,

where Σ has the orientation induced by R. It is immediate that each kj is inde-
pendent of the choices of nonzero sections. On Σ, V = {λX : λ ∈ C} where X is a
real vector and k may be computed using X in place of ζ. Thus we need to “know”
only the section τ .

Theorem 6.6. deg(V) = −k − χ(M).

Here χ(M), as before, is the Euler characteristic of M. Recall the construction
of a line bundle on S2 by means of a gluing function. The winding number of this
function then gives the Chern class. Theorem 6.6 may be thought of as a similar
result. The given bundle V is isomorphic to T 1,0 on R and to T 0,1 onM\R. These
latter two bundles are glued together along Σ to produce V . Again the Chern class
is realized as a winding number. The difference between these results is that here
the Chern class can actually be computed from the restriction of V to Σ whereas in
the classical case one needs to be given, or to calculate, the trivializations over the
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hemispheres. Said somewhat differently, two generic complex line bundles in CTM
that have the same characteristic set Σ and that agree on Σ must be isomorphic
(or conjugate). This contrasts with the fact that any two complex line bundles on
S2 are abstractly isomorphic on the equator.

Example 6.7. Consider the usual projective coordinates on the sphere, call them
z on S2\{south pole} and ζ on S2\{north pole}. Then z = 1

ζ and z2∂z = −∂ζ. It
is easy to see that the sections

e = ∂ζ + ∂z,

f = −∂ζ + ∂z

are globally well-defined and give a trivialization of CTS2. Let E and F denote
the trivial bundles they span. The equator

Σ = {z : |z| = 1} = {ζ : |ζ| = 1}
is the characteristic set for each of these bundles. Using polar coordinates for z, we
see that near Σ, E has a section

(1− r2)∂r + i(r +
1
r

)∂θ

and F has a section

∂r −
i

r

(
1− r2

1 + r2

)
∂θ.

Thus F is a Mizohata structure (see [14]).
To apply the theorem note that for V = F we have that R is the upper hemi-

sphere. So we take τ = ∂z. We naturally use the Fubini-Study metric

|∂z | =
1

1 + |z|2
and we let X = ∂r. Then

β =
〈τ,X〉2
〈X,X〉 =

〈∂z, ∂r〉2
〈∂r, ∂r〉

=
1
8
e−2iθ

and
k =

1
2πi

∫
Σ

dβ

β
= −2.

Thus the theorem yields

deg(F ) = −k − χ(S2) = 0,

as expected since F is trivial. The computation for E is similar.

Proof of the Theorem. The winding number k gives the algebraic number of zeroes
of β in R. Each zero of β in R occurs at a point p where Vp = T 1,0

p . By slightly
perturbing T 1,0 we may assume that the intersection of [V ] and [T 1,0] is transversal.
We shall see that the sign of the zero of β is the same as the sign of the intersection.
Furthermore, as we have seen, all the intersections of [V ] and [T 1,0] occur inR; there
are none in M\R. Thus k gives the algebraic number of intersections of [V ] and
[T 1,0] over all ofM. The formula of the theorem arises from expressing this number
in terms of the integrals of the Chern classes.

We start with the sign conventions. Let E be a complex line bundle onM, and
let σ :M→ E be a section with only nondegenerate zeros. Let Z be the set of zeros
and let p be one of them. Using local coordinates in a neighborhood U of p and a
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trivialization of E (respecting the orientation of M and the complex structure of
E) we have σ(x, y) = (x, y; f(x, y)) with

f : U → C, f(0) = 0, and df(0) 6= 0.

The algebraic sign of the zero at p, denoted by εσ(p) = ±1, is the sign of det
( ax ay
bx by

)
where f = a+ ib.

Lemma 6.8. deg(E) =
∑

p∈Z εσ(p).

This is a well-known result.
Next let V and W be complex line bundles in CTM. If necessary we slightly

perturb one of them in order to have that the submanifolds [V ], [W ] ⊂ P(CTM)
intersect transversally and so at only a finite number of points. We represent
the orientation of M by a global nowhere zero 2-form ω ∈

∧2M. This induces
orientations ω1 ∈

∧2[V ], ω2 ∈
∧2[W ], and ω3 ∈

∧4P(CTM).
By transversality, at each q ∈ [V ] ∩ [W ] we have

ω1 ∧ ω2 = λω3

where λ is a nonzero real number depending on q. Let εV,W(p) be the sign of λ(q).

Definition 6.9.
#(V ,W) =

∑
εV,W(p)

where the summation is over all points p ∈M with Vp =Wp.

We see that this integer is invariant under deformations of the bundles V and
W , and so is also independent of any original perturbation, and that #(V ,W) =
#(W ,V).

To compute εV,W(p0) choose a section Z ofW near p0 of the form Z = ∂x + f∂y
with respect to some oriented coordinates (x, y) and let Z ′ be a section of CTM
near p independent of Z. Then V has a section of the form X = Z + hZ ′ with
h = a +

√
−1b vanishing only at p0. With Z, Z ′ we trivialize P(CTM) on a

neighborhood U of p0 as U × CP1 by mapping ζZ + ζ′Z ′ over p to (p, [ζ, ζ′]). In
this trivialization [W ] is the set of points of the form (p; [1, 0]). Near p0 the section
[V ] is p 7→ [1, h(p)]. From this one sees at once that if h = a+

√
−1b, then εV,W(p)

is the sign of the zero of a+ ib at p0,

εV,W(p0) = sign det
( ax ay
bx by

)
.

In particular, if W = T 1,0, we may use

Z = ∂z, Z ′ = ∂z̄ .

If V intersects T 1,0 transversally at p0, then it has a section X = ∂z + (a + ib)∂z̄
and εV,T 1,0(p) is the sign of the zero of a+

√
−1b. Also, with τ = α∂z ,

β =
1
|ζ|2 〈τ, ζ〉 〈τ, ζ̄〉

=
1
|ζ|2 〈α∂z , ζ〉 〈α∂z , ζ̄〉

=
α2

|ζ|2 (a+ ib).

So the sign of the zero of β agrees with the sign of the intersection; thus,

k = #(V , T 1,0).
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We now relate this number to the Chern classes.

Lemma 6.10. deg(V) + deg(W) = −#(V ,W).

Proof. Let σV :M→ V be a section and perturb it if necessary to have σV 6= 0 at
points of V ∩W . Let π : CTM→W⊥ be projection alongW . Consider the section
of W⊥ given by σ = πσV . We have that σ(q) = 0 implies that either σV(q) = 0
or σV(q) ∈ W but not both. It is a simple computation to see that if σV(q) = 0,
then the zero of σ at q has the same sign as that of σV at q and that if V and W
intersect at q, then the zero of σ has the same sign as the intersection. Thus

deg(W⊥) =
∑
p∈Zσ

εσ(p)

=
∑

p∈ZσV

εσV (p) + #{V ∩W}.

So
− deg(W) = deg(V) + #{V ∩W}.

�

We apply this lemma with W = T 1,0 and use k = #(V , T 1,0) and deg(T 1,0) =
χ(M) to obtain the theorem.

7. Hypo-complex structures

The fact that BR is a separating hypersurface for P(CTM) provides a simple
proof of an interesting result about global partial differential equations. Again M
is an orientable two-dimensional manifold, and V is a complex line bundle in CTM.

Definition 7.1. A distribution f is a solution for V over an open set U if Lf = 0
for every section L of V over U .

Definition 7.2. (M,V) is a hypo-complex structure if for each p ∈M there exists
some open neighborhood U and some C∞ solution Z over U such that any solution
in some neighborhood of p is a holomorphic function of Z near p.

The name reflects the fact that this class of structures is modeled on, but does
not coincide with, the complex structures. Here is the result we seek to prove.

Theorem 7.3. Let (M,V) be a hypo-complex structure. There exists a smooth
family of sub-bundles Vt, 0 ≤ t ≤ 1, that are complex structures for 0 ≤ t < 1 and
with V1 = V.

Lemma 7.4. (M,V) is a complex manifold if for each p ∈M there exists a vector
L ∈ Vp such that <L and =L are linearly independent.

Proof. This is essentially the existence of isothermal coordinates (see, for instance,
[8]). �

Remark 7.5. Fix an orientation forM. If the ordered set {<L,=L} agrees with this
orientation, then so does the orientation of the complex structure that it defines.

Here is the corresponding result for hypo-complex structures. The proof, in
coordinate-free form, may be found in [30, Theorem III.6.2].
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Lemma 7.6. (M,V) is a hypo-complex structure if and only if for each p ∈ M
there exists a smooth section L of V in a neighborhood of p and coordinates (x, y)
such that

L = ∂x + ib(x, y)∂y,
b ≥ 0,

b(x, 0) not identically zero in any neighborhood of x = 0.

Now fix an orientation forM. We say that V is positively oriented at p if ∂x∧∂y
gives the orientation of M; otherwise, V is negatively oriented at p. This makes
sense because if L̃ is also a section of V and (x̃, ỹ) are also local coordinates near p
for which

L̃ = ∂x̃ + ib̃(x̃, ỹ)∂ỹ,

b̃ ≥ 0,

then ∂x̃∧∂ỹ = λ∂x∧∂y with λ > 0. Similarly, it is easy to see that if V is positively
oriented at one point ofM, then it is positively oriented at all points ofM.

Proof of Theorem 7.3. We relate the above lemma to our decomposition

P(CTM) = B+ ∪BR ∪B−.

First, let V be any complex line sub-bundle of CTM. Fix some point p ∈ M and
choose local coordinates and a local section L of V such that

(1) {∂x, ∂y} gives the orientation of M ;
(2) L = ∂x + ib(x, y)∂y.

If at some point q near p, b(q) = 0, then [Vq] ∈ BR. If b(q) > 0, then near q, L
defines a complex structure with the same orientation as M and so [Vq] ∈ B+. In
the remaining case, [Vq] ∈ B−.

Now let V be hypo-complex. Then [V ] is a section of B+∪BR when V is positively
oriented and a section B− ∪BR when V is negatively oriented. We limit ourselves,
without loss of generality, to the positive case. Clearly, there is a fiber-preserving
deformation

φt : B+ ∪BR → B+ ∪BR
with φ1 the identity and φt(B+ ∪ BR) ⊂ B+ for t < 1. So, consider the family of
bundles, Vt, defined by

[Vt]x = φt([V ]x).

We have V1 = V while each Vt, for t < 1, defines a complex structure on M. �

Note we have not used the condition that b(x, 0) is nowhere identically zero. For
example, a real nowhere zero vector field X on a torus is clearly the limit of the
complex structures given by X + iεY , where Y is orthogonal to X .

Corollary 7.7. Let V be a hypo-complex structure on a compact, orientable, two-
dimensional manifold M. Then deg(V) = ±χ(M).
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8. Hypo-analytic structures

Let Mn be a smooth manifold, V ⊂ CTM a sub-bundle of rank r. A condition
on V finer than involutivity is that of local integrability (see [1], [30]): V is locally
integrable if for each p ∈ M there is a neighborhood U of p and Z1, . . . , Zn−r :
U → C smooth with dZ1, . . . , dZn−r independent such that LZi = 0 for all i and
for each section L of V over U .

An even finer condition is that V admits a hypo-analytic structure. A hypo-
analytic structure on M (see [2], [30, Definition III.1.1]) is the datum of a family
of functions

F = {Zα : Uα ⊂M→ Cn−r : α ∈ A, Uα open and connected, Zα smooth}
such that

(1) M =
⋃
α∈A Uα,

(2) for all α ∈ A, dZ1
α, . . . , dZ

n−r
α are independent on Uα, and

(3) for all α, β ∈ A, if p ∈ Uα ∩ Uβ, then there is hαβ holomorphic defined in
a neighborhood of Zβ(p) such that Zα = hαβ ◦ Zβ.

A hypo-analytic structure always determines a locally integrable sub-bundle V of
CTM: v ∈ V if and only if 〈dZiα, v〉 = 0 for all α and i. V is said to admit a hypo-
analytic structure if it arises in this manner, and is referred to as the structure
bundle of the hypo-analytic structure. It is not known whether a locally integrable
sub-bundle always admits a hypo-analytic structure. However,

Proposition 8.1. Let M be a compact orientable manifold. Let E →M be a line
bundle. Then there is a hypo-analytic structure on M whose structure bundle is
isomorphic to E.

Proof. We may assume that M is a real analytic manifold and E a real analytic
bundle. Then E can be realized as a real analytic sub-bundle of CTM. Now apply
Theorem III.1.1 of [30]. �

We will give a more explicit proof in the two-dimensional case. The line bundle
can be realized as a sub-bundle of V ⊂ CTM such that the induced section [V ] :
M→ P(CTM) has transverse intersection with BR. The intersection occurs over
a finite union Σ of closed curves; these are composed of the characteristic points
of V . Let γj be one of those curves. It has a neighborhood U diffeomorphic to an
annulus {z ∈ C : 1/R < |z| < R}, R > 1, with γj mapped onto |z| = 1. Over such
a neighborhood V is trivial. So V has a nonvanishing section

(8.2) α∂z + β∂z

over U . The condition that V is real over |z| = 1 is equivalent to |α/β| = 1 when
|z| = 1, and the transversality condition implies that d|α/β| 6= 0 when |α/β| = 1.
So in a neighborhood of |z| = 1 we have |α(z)/β(z)| = 1 if and only if |z| = 1. Since
neither α nor β vanishes on the characteristic points, we may assume that α never
vanishes on U . Dividing by α, we may thus assume that in (8.2), α = 1. Since
β 6= 0 on U , β = ρe

√
−1ψ for some real-valued functions ψ, ρ with ρ = 1 and dρ 6= 0

when |z| = 1. Let m be the winding number of e
√
−1ψ. If m 6= 0 then, depending on

the sign of ρ−1 on |z| > 1 and the sign of m, β is homotopic to either zm or (z)−m

through functions of the form ρte
√
−1ψt with ψt, ρt smooth, real-valued, dρt 6= 0,

and with ρt = 1 if and only if |z| = 1. If m = 0, then again depending on the
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sign of ρ− 1 on |z| > 1, β is homotopic to |z|4 or 1/|z|4 (the power 4 is chosen for
convenience). These deformations can be taken so as to leave β unchanged near the
boundary of U . Thus V can be deformed through line sub-bundles of CTM keeping
the characteristic set fixed and the condition of transversality valid throughout the
deformation, to one which in suitable neighborhoods Uγj of the components γj of
the characteristic set, with suitable coordinates (x, y), has a section

(8.3)
∂z + zm∂z or ∂z + (z)−m∂z if m 6= 0,

∂z + |z|4∂z or ∂z + |z|−4∂z if m = 0.

We now choose a hypo-analytic structure. For each p ∈ M\Σ, choose a small
coordinate ball Up ⊂ M\Σ centered at p and a solution Zp : Up → C (Defini-
tion 7.1). These solutions give a hypo-analytic (in fact hypo-complex) structure
on M\Σ. The existence of a hypo-analytic structure on M will be completed by
presenting a global solution for each of the vector fields (8.3) in a suitable neigh-
borhood of the circle γ. If V is spanned by ∂z + zm∂z along γ ⊂ Σ (m 6= 0), take
Zγ = 1

m+1z
m+1 − z if m 6= −1, and Zγ = ze−z if m = −1, and if V is spanned

by ∂z + |z|4∂z, take Zγ = z3/3 + 1/z. Likewise one has global solutions in the
remaining cases. On Uγ ∩ Up, Zγ is related to the solution Zp by a holomorphic
function, since there the structure is elliptic. Thus the functions Zp together with
these Zγ give a hypo-analytic structure.

The number kj associated through (6.5) with the vector fields in (8.3) are, for
those in the first line, |m| and −|m|, respectively, and 0 for those in the second.
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