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Abstract

Background: Obesity and type 2 diabetes (T2D) are linked both with host genetics and with environmental factors,

including dysbioses of the gut microbiota. However, it is unclear whether these microbial changes precede disease

onset. Twin cohorts present a unique genetically-controlled opportunity to study the relationships between lifestyle

factors and the microbiome. In particular, we hypothesized that family-independent changes in microbial composition

and metabolic function during the sub-clinical state of T2D could be either causal or early biomarkers of progression.

Methods: We collected fecal samples and clinical metadata from 20 monozygotic Korean twins at up to two time

points, resulting in 36 stool shotgun metagenomes. While the participants were neither obese nor diabetic, they

spanned the entire range of healthy to near-clinical values and thus enabled the study of microbial associations

during sub-clinical disease while accounting for genetic background.

Results: We found changes both in composition and in function of the sub-clinical gut microbiome, including a

decrease in Akkermansia muciniphila suggesting a role prior to the onset of disease, and functional changes

reflecting a response to oxidative stress comparable to that previously observed in chronic T2D and inflammatory

bowel diseases. Finally, our unique study design allowed us to examine the strain similarity between twins, and

we found that twins demonstrate strain-level differences in composition despite species-level similarities.

Conclusions: These changes in the microbiome might be used for the early diagnosis of an inflamed gut and

T2D prior to clinical onset of the disease and will help to advance toward microbial interventions.

Background

The human gut microbiota plays an important role in

health and disease [1, 2] and can be viewed as a mirror

into the host physiology. One of the primary roles of the

microbiota is energy harvest; thus, it is not surprising

that microbial dysbiosis has been associated with various

metabolic disorders, including type 2 diabetes (T2D) [3, 4]

and obesity [5–7]. T2D is often a consequence of obesity.

As the diagnosis is threshold-based, risk of developing

T2D in the near future correlates with high levels of two

biomarkers, fasting blood sugar (FBS) and HbA1c, even

when they do not meet the clinical criteria (HbA1c >6.5 %

or FBS >125). However, the microbial changes that occur

in the sub-clinical state, prior to the onset of disease, have

never been examined, but may potentially be used for

early diagnosis and intervention.

Previous profiles of the gut microbiome during

clinical T2D have found compositional changes be-

tween patients and healthy controls [3, 4], including an

obesity-related change in the abundance ratio of

Bacteroidetes:Firmicutes [5, 8], and a decreased abun-

dance of mucin-degrading Akkermansia muciniphila in

overweight children [9] and pregnant women [10, 11].

However, there is no strong consensus across studies in

taxa changing in obese versus lean individuals [12]. The

causes for this inconsistency may be either technical or

biological. From a technical standpoint, a lack of

consistent standard operating procedures for sample

preparation and sequencing can lead to great variance

between different labs and studies [12]. Biologically, the
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specific composition of the community may be much

less important than its overall functional capability.

Indeed, there is greater consensus between these studies

when microbial functional dysbioses are considered rather

than microbial composition [4]. The gut communities of

T2D patients showed increased capacity for oxidative

stress resistance, and a decreased capacity for flagellar

assembly and riboflavin metabolism [3, 4]. Interestingly,

oxidative stress resistance was also enriched in the guts

of patients with inflammatory bowel diseases (IBD)

[13], potentially indicating that the microbiome is gen-

erally stressed by low-level inflammation and immune

activation, which may be present at the sub-clinical

state of T2D as well.

Despite recent studies associating the microbiome with

T2D [3, 4] and obesity [6, 8], all previous work has exam-

ined individuals with well-established disease. These data

may be further influenced by additional factors, such as

decreased subject mobility, and it is difficult to conclude

from study design whether the observed microbial

changes preceded the onset of disease. Furthermore, these

studies have rarely taken into account the various genetic

backgrounds of the patients. We have addressed these is-

sues by performing the first metagenomic profile of the

gut microbiome of monozygotic (MZ) twins, spanning the

entire healthy range of T2D clinical indicators, including

body mass index (BMI) and fasting blood sugar (FBS).

Identifying gradient-like associations between these pa-

rameters and gut microbiome features in the sub-clinical

state of these diseases will open the way to discover poten-

tial markers for early diagnosis of T2D and obesity.

We found several taxa associated with sub-clinical

changes in BMI, blood pressure, sugar, and triglycer-

ides, including enrichment of the Roseburia genus and

depletion of the Akkermansia muciniphila species.

Additionally, riboflavin and NAD biosynthesis were

metagenomically enriched in participants with high

blood pressure and BMI values. Interestingly, similar

functional enrichments are shared with other gut inflam-

matory conditions such as IBD [13] and clinically-

established T2D [3], suggesting shifts in the gut microbial

population prior to full disease onset that may be either

causal or an early correlative indicator.

Finally, this cohort included a unique combination of

MZ twins and longitudinal sampling, which allowed us

to identify the degree to which specific microbial strains

were shared between the guts of siblings and maintained

over time. Despite the small size of this targeted cohort,

the deep metagenomic sequencing (mean 3.5 Gnt per

sample) combined with a focus on taxa of high relative

abundance (see Methods) enabled us to determine strain

similarity with high resolution in these data. MZ twins

have also been previously observed to share a greater

proportion of gut microbes than unrelated individuals

[6], and some strains appear to be maintained within

the guts of isolated individuals for months to years

[14]. Surprisingly, we observed that while twins in our

MZ cohort indeed share a substantial subset of micro-

bial species, strains within these species differ between

related twins. Thus, the gut microbial similarities of

twins may arise from sources such as genetic pressure

to acquire certain species (but not specific strains), or

from early colonization by the same strains, with subse-

quent genetic divergence over the course of a lifetime.

Ethical consent

Written informed consent was obtained from each partici-

pant. The study protocol was approved by the institutional

review board (IRB) of Samsung Medical Center, Busan

Paik Hospital, and Seoul National University (IRB No.

144-2011-07-11).

Methods

Study participants and specimen collection

The participants were MZ twins who enrolled for the

Healthy Twin study in Seoul and Busan, South Korea.

The zygosity of twins was determined using AmpFlSTR

Identifier Kit with 16 short tandem repeat markers (15

autosomal STR markers + one sex determining marker)

or a questionnaire with a validated accuracy of >90 %

[15]. Details on methodology of this cohort have been

previously described [16].

A total of 36 fecal samples from the participants were

collected: samples from two twin pairs were taken once

and those from eight twin pairs were obtained twice

with an average interval of 2 years. Twins were in the

age range of 30-48 years at the first sampling point.

Fecal samples were taken in conjunction with a health

examination and immediately stored at -25 °C. They

were subsequently transported to the two central clinics

and stored at -80 °C until DNA extraction. Blood sam-

ples were drawn by vein puncture after an overnight fast

and sent to a central laboratory to measure biochemical

factors.

During each visit, individuals also completed a ques-

tionnaire recording life style, medication, and dietary

habits. Anthropometrical measurements (height, weight,

waist circumference, and so on) and biochemical tests

(glucose, hsCRP, total cholesterol, HDL-C, LDL-C, tri-

glyceride, and so on) were also conducted (Additional

file 1: Table S1). The derived homeostasis model assess-

ment (HOMA) index uses the fasting blood sugar and

insulin to predict the insulin resistance of patients

[17] and was calculated as standard (insulin * glu-

cose)/405, both measured after fasting and glucose

levels measured in mg/dL [17].
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Nucleic acid extraction and metagenomic shotgun

sequencing

Total DNA was extracted from each fecal sample using

the MoBio Power Soil DNA Isolation kit (MoBio, Solana

Beach, CA, USA) according to the manufacturer’s instruc-

tions and stored at -80 °C until subsequent analysis. All

samples were sequenced using the Illumina Hiseq2000 in-

strument, which produced paired-end reads of 101 nt,

yielding average 3.5 Gnt per each of fecal samples.

Metagenomic shotgun sequences analysis

The gut microbial composition of each sample was pro-

filed using MetaPhlAn [18]. MetaPhlAn uses a unique

set of markers for each species (and higher level clades)

to estimate the abundance of species in each sample ac-

cording to the number of mapped reads to its markers.

The relative abundances of the gut microbial functional

pathways from metagenomically sequenced communities

were determined using HUMAnN [19]. HUMAnN maps

the sequenced reads to a non-redundant set of genes

extracted from the KEGG database [20] and estimates

the abundance level of each functional module by the

number of matches to member genes fully compatible

with it being carried out by one or more microbes.

Testing for significant associations with the clinical

metadata variables

To identify significant associations between microbial and

phenotypic variables, we applied a linear multivariate re-

gression model specifically adapted to microbiome data

(MaAsLin, Multivariate microbial Association by Linear

models [13]). MaAsLin constructs boosted, additive gen-

eral linear models to associate metadata and transformed

microbial taxonomic or functional relative abundances.

Since microbial community profiles are typically high-

dimensional, boosting is used for feature selection over

potential covariates to identify those most associated

with each microbial feature. Selected metadata are then

used in a general linear model with metadata as predic-

tors and arcsin-square root transformed microbial rela-

tive abundances as the responses. In this study, model

covariates of interest comprised of clinical variables in-

cluded in Additional file 1: Table S1, and each model also

included age, smoking status, sex, and twin as potential

confounders (the latter as a random effect to accommo-

date repeated longitudinal measures).

Comparing strains between samples

We performed taxonomic profiling with MetaPhlAn [18].

Briefly, MetaPhlAn operates by mapping raw sequence

reads to a database of pre-defined clade-specific marker

genes. Markers are those genes occurring in isolates from

a particular clade but not outside of that clade. After map-

ping reads to clade-specific marker genes, the resulting

raw counts are normalized for total marker gene length

and outliers, yielding profiles of: (1) clade relative abun-

dance; (2) marker gene presence/absence; and (3) marker

gene abundance (in reads-per-kb (RPK) units, where 10

RPK would correspond to about ×1 coverage, given our

100 bp reads). Due to gene gain and loss events, an indi-

vidual strain will not necessarily carry all of the markers

associated with its corresponding species. A specific pat-

tern of marker presence and absence can therefore be

used as a molecular ‘barcode’ to identify a strain across

samples. We next compared the marker gene abundance

profiles of various samples (unrelated, twin or self; with

median marker abundance >5 RPK) using a Bray-Curtis

distance.

Generating and analyzing the taxon-function correlation

matrix

Spearman correlation was calculated between the pro-

files of each microbe and each function to generate the

taxon-function correlation matrix. The KEGG database

[20] was used to identify the ‘encoded’ correlations, by

calculating the fraction of its reference sequences that

include sufficient genes for any given module. The mi-

crobial co-occurrence matrix was calculated using spear-

man correlation between all taxa profiles to identify the

‘associated’ correlations.

Comparing Korean and Western microbial populations

The prevalence and average abundances of all clades were

calculated within our cohort and the HMP [21], and these

were compared using Pearson correlation. Prevalence was

defined as percent of samples with >0.001 relative abun-

dance for each species, and average abundance was calcu-

lated only for samples passing that criterion.

Sequence accession numbers and availability

Sequences generated in this study are publicly available

at the European nucleotide archive (ERP002391).

Results
Monozygotic twin cohort and longitudinal metagenomic

profiles

We collected fecal samples from 20 MZ Korean twins

(10 twin pairs) at up to two time points each (12-44

months apart), resulting in 36 samples sequenced using

metagenomic shotgun sequencing. In addition, multiple

clinical parameters were measured at each sampling

point, including body mass index (BMI), fasting blood

sugar (FBS), cholesterol levels (LDL, HDL), fasting blood

insulin (FBI), and renal and liver function (Additional file

1: Table S1), spanning the typical healthy range of these

variables (Additional file 2: Figure S1). Species-level mi-

crobial abundance profiles were inferred using MetaPhlAn

[18], and functional gene and pathway abundance profiles
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were generated using HUMAnN [19]. These microbial

and functional profiles were tested for statistically signifi-

cant association with clinical parameters using the MaA-

sLin [13] sparse multivariate linear model (Fig. 1a).

As is typical in the gut, the taxa that vary most widely

in our cohort were members of the Bacteroidetes, Fir-

micutes, and at lower abundances the Esherichia, Metha-

nobrevibacter, and Bifidobacterium genera (Fig. 1b). The

x-axis depicts mostly the Firmicutes (left) to Bacteroi-

detes (ratio), as observed before [22], with a modest

positive association between Bacteroides and BMI (see

below). The y-axis is dominated by less prevalent or

more variable genera, like Methanobrevibacter (25 %

prevalence) and Bifidobacterium (2.7-3.3 coefficient of

variation; Additional file 3: Table S2). The Esherichia

and Prevotella genera are prevalent in our cohort (92

and 81 %, respectively, see Additional file 3: Table S2),

but only a few individuals have high abundances of one

or both genera, driving their contribution to population

variability. Overall, we found that the prevalence and

abundance profiles of the various taxa in our data are

consistent with those measured in Western populations

[21]; P value = 0.0001 by Pearson correlation; Additional

file 4: Figure S2).

a

b

c d

Fig. 1 Study design for sub-clinical gut microbiome analysis in obesity and type 2 diabetes. a Stool and blood samples were collected at one to

two time points from 10 MZ twin pairs. DNA was extracted from the stool samples and used for shotgun metagenomic sequencing, from which

community composition and function were profiled using MetaPhlAn [18] and HUMAnN [19], respectively. Clinical biomarkers including sugar

metabolism measurements (fasting blood sugar (FBS) and insulin (FBI)), inflammation markers (hsCRP) and others (Additional file 1: Table S1) were

derived from accompanying blood samples. Finally, we determined significant associations between these clinical biomarkers and microbial taxa

and functions using MaAsLin [13]. b Overall covariation of taxonomic profiles and the clinical biomarkers and taxa enriched among distinct sam-

ple subsets. Points represent samples ordinated using metric multidimensional scaling (MDS) by Bray-Curtis dissimilarity, colored by twin pair, with

lines connecting samples from the same individual at different time points. Taxa and metadata are labeled at the point of maximum enrichment

among samples. c Absolute BMI differences between any two ‘Unrelated’ (at time point 1), ‘Twins’ (at time point 1), and the same individuals at the

two different time points (‘Self’). Comparisons are colored by the maximal BMI of the participants involved; P values were calculated using a

t-test. d Taxonomic profile similarities of unrelated, twins, and individuals over time. Comparisons are colored by the maximal age of the

participants involved; P values were calculated using a t-test
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In our cohort, clinical parameters such as BMI (Fig. 1c)

and microbial community composition (Fig. 1d) were both

more similar between twins than between unrelated indi-

viduals, and both were self-similar over time. BMI is most

stable between ‘self ’ samples, especially since no individual

has become obese during this study, and indeed, twins are

more concordant on BMI compared to unrelated [6].

When comparing their microbial composition we found

that, as expected, twins were somewhat more similar

than unrelated [6], but self-samples were significantly

more stable [21], indicating that for both clinical and

microbial phenotypes, longitudinal samples were more

similar than twins, which were in turn more similar

than unrelated.

Phylogenetic and functional diversity in the Korean gut

microbiome

Several organisms were prevalent (present in >50 % of in-

dividuals) in this cohort, although often at relatively low

abundance levels. Some of these are shared with other glo-

bally surveyed populations, while others were unusually

prevalent in this population (Fig. 2a). Shared organisms

included Eubacterium rectale, Roseburia intestinalis, and

Faecalibacterium prausnitzii, which are similarly prevalent

in our cohort and in Western population (94-96 %, 83-

89 %, and 96-97 %, respectively) and with similar relative

abundances (5 %, approximately 1 %, and 2-4 %, respect-

ively), confirming the similarity between this cohort and

Western population.
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Less prevalent organisms included Methanobrevibacter

smithii, the predominant archaeon in the human gut

[23] with the important role of reducing the hydrogen

via methanogenesis. M. smithii here mirrored its rela-

tively low prevalence as seen in Western populations

(25 %, compared to 21 % in the Human Microbiome

Project (HMP)) [21], but with higher average relative

abundance when present (9 %, compared to 0.3 %) [21].

Despite the major differences in the Korean diet and en-

vironment, M. smithii is still the major microbe likely re-

sponsible for this function.

Several organisms, including Bifidobacterium longum,

Escherichia coli, Prevotella copri, and Bacteroides ple-

beius, were significantly more prevalent in our popula-

tion compared to that of the HMP (Additional file 3:

Table S2). It has been previously shown that Prevotella

is more common in international cohorts [24], and in-

deed we found P. copri present in 81 % of our samples,

compared to 16 % in the HMP [21]. Moreover, we found

lower abundance of P. copri in our cohort when present

(approximately 10 % relative abundance), unlike the high

37 % relative abundance found in the individuals who

carry it in the HMP’s Western population [21], although

the overall average of P. copri relative abundance in all

individuals is similar between cohorts (6-8 %).

Another difference between the Korean and Western

populations was Bifidobacterium longum, a microbe that

ferments sugars into lactic acid noted as one of the first

colonizers of the infant gut [25]. It was carried at an un-

usually high prevalence of 94 % (with average relative

abundance of 2.5 %), in contrast to its presence in the

HMP of 59 % prevalence and 0.4 % relative abundance

[21]. Bacteroides plebeius was likewise enriched here,

with 97 % prevalence in our cohort and only 9 % in the

HMP [21]. P. plebius has been previously found in Japa-

nese populations, likely due to its capability to break down

complex carbohydrates specific to seaweed [26], and it

may play a similar role in the guts of Koreans, as this is a

major staple of their diet.

As has been previously observed [21], despite variability

in the composition of the microbiome among these indi-

viduals, the distribution of microbial metabolic processes

remained relatively stable (Fig. 2b, Additional file 5: Figure

S3). One of the most variable modules was the transport

system of autoinducer-2 (AI-2), a quorum-sensing signal-

ing molecule traditionally associated with the Enterobacte-

riaceae and Vibrionaceae [27] and recently characterized

in some Bifidobacterium species [28]. We also see striking

variability in the biosynthesis of GABA, a major neuro-

transmitter in the central nervous system that has also

been recently shown to be produced by some Bifidobac-

terium species [29]. Both these modules had a striking 3.8

coefficient of variance and approximately 18 % prevalence

(compared to 94 % and 60 % in Western population,

respectively) and shared similar abundance profiles in

our data, suggesting a potential link between the two

processes, perhaps through carriage by specific Bifido-

bacterium strains. As a control, we also see several ubi-

quitous ‘housekeeping’ processes such as the ribosome

and translation, glycolysis, and gluconeogenesis were

present at high levels with low variability among indi-

viduals (>4 % average relative abundance and 100 %

prevalence, Additional file 3: Table S2 and Additional

file 5: Figure S3).

Host factors such as BMI associate with some microbes

and processes in a graded fashion

We investigated the relationship between host clinical

phenotype and the gut microbiome by identifying signifi-

cant multivariate linear associations using MaAsLin [13]

(Fig. 3, Additional file 6: Table S3). This model associates

microbial clade or pathway abundances with metadata of

interest (for example, BMI, FBS, triglyceride) while ac-

counting for other covariates (in this case sex, smoking,

age, and the twin pairing; see Methods and Additional file

7: Figure S4). The abundance of Akkermansia muciniphila

was negatively correlated with BMI, FBS, and insulin

levels, for example, all in gradients ranging continuously

over the ranges of these clinical variables and its relative

abundance. This mucin-degrading microbe has been ob-

served to be reduced in the guts of obese mice [30], preg-

nant women [10, 11], and overweight children [9], but this

is the first time this trend has been observed in non-

pregnant adults, especially within the normal range of

BMI and FBS. This suggests the organism may represent

one aspect of the obese gut microbiome that may be of

specifically sub-clinical significance.

Other continuous associations of clades with pheno-

types included a positive correlation between the Bacter-

oides genus and BMI, again spanning a range of the latter

outside of clinical obesity. The Bacteroidetes:Firmicutes

ratio is one of the earliest features of the gut microbiome

suggested to associate with obesity in mice [31], but in this

and other studies [11, 32, 33] associating an increase in

Bacteroidetes with obesity rather than an increase in Fir-

micutes. Both positive and negative associations with the

Bacteroidetes have been found in human populations [34],

suggesting that this finding is not generalizable and de-

pends greatly on factors that may include the underlying

demographics, diet, sample preparation, and analysis (see

Discussion).

We found multiple associations between microbial mo-

lecular function and clinical phenotypes (Fig. 3, Additional

file 6: Table S3), including an increase in riboflavin-,

NAD-, and tetrahydrofolate-biosynthesis and a decrease

in pyruvate ferredoxin oxidoreductase accompanying in-

creasing BMI levels (Fig. 3). Riboflavin and NAD are both

required for the biosynthesis of the reduced form of
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glutathione (GSH) [35], an important antioxidant that al-

leviates the damage done by reactive oxygen species, and

indeed we found that glutathione biosynthesis also in-

creased at higher BMI levels (Additional file 6: Table S3).

The direction of these associations suggests that the gut

microbiota is producing more glutathione, and potentially

processing more from the host, to relieve the increased

oxidative stress at high levels of BMI.

Besides the gradient associations discussed above, we

also identified two unusual threshold-like associations:

BMI with Eubacterium siraeum and blood pressure with

Methanobrevibacter smithii. In both these cases, the mi-

crobe is present only below a certain threshold (22.5 BMI,

and 70 diastolic blood pressure, respectively). Interest-

ingly, these trends do not appear in data collected for the

human microbiome project (Additional file 8: Figure S5)

and maybe unique to our cohort. Such discrete associa-

tions can be very interesting to investigate further, to po-

tentially reveal the mechanism underlying the microbe’s

sensing of host conditions.

Contribution of specific microbes to overall gut

community function

To better understand the relation between the taxo-

nomic compositional profiles and function, we corre-

lated the profiles of each clade with the profiles of each

module (Fig. 4, selected individual scatter plots appear

in Additional file 9: Figure S6). This allows us to

hypothesize which microbes contribute to, depend on,

or associate with specific metabolic and biomolecular

processes carried out by the gut microbiota. In particular,

a positive correlation between a module and microbe can

have two explanations. In some cases, the function may be

encoded in the microbe’s genome (referred to as ‘directly

encoded’ correlations, Additional file 10: Figure S7A). Al-

ternatively, a microbe might correlate with a function not

because it carries it itself, but because it associates with

other microbes that encode it (‘indirectly associated’ corre-

lations). The former indicates microbes that perform a

particular molecular process, the latter those that depend

on its presence elsewhere in the community.

As expected, many ‘encoded’ correlations are found

in our data and each of them induces others that are

‘associated’, based on the species co-occurrence network

as computed using Spearman correlation (Additional

file 10: Figure S7B). One interesting ‘encoded’ example

is a set of archaeal functions, such as coenzyme M bio-

synthesis and archaeal RNA polymerase and ribosome,

correlated with the archaeal species Methanobrevibacter

smithii and Methanosphaera stadtmanae (Fig. 4 Box A).

Correspondingly, we found ‘associated’ correlations be-

tween these archaeal functions and the abundance of

Deltaproteobacteria, Akkermansia muciniphila and Eu-

bacterium siraeum, which co-occur with the archaeal spe-

cies in our data (Fig. 4 Box A; Additional file 10: Figure

S7B Box A). We do not yet know why particularly these

microbes would tend to share the archaeal environment,

but it is interesting to examine if this relationship holds in

other cohorts as well.

Additionally, three metal transport systems (TSs) were

correlated with specific taxa. The manganese/zinc/iron TS

M00319 is an ABC transporter, comprising four proteins,

found originally in Treponema pallidum [36], and this

specific TS is encoded only in the Veillonella species in

our data. In addition to ‘encoded’ correlations between

this TS and three Veillonella species, we identified two
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Fig. 3 Selected significant associations of clinical markers with clade and pathway abundances. Lines represent linear model fit after transform to

accommodate compositional, non-normally distributed data (see Methods) and account for age, sex, smoking, and twin relationships as covariates.

Nominal P values and FDR corrected q-values are assigned by MaAsLin [13]. See Additional file 5: Figure S3 for complete list of significant associations
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‘associated’ correlations with Streptococcus salivarius and

Haemophilus parainfluenzae, co-occurring species with

the Veillonella (Fig. 4 Box B; Additional file 10: Figure S7B

Box B). Similarly, the cobalt/nickel TS M00245 is another

four-protein ABC transporter, estimated to be the most

widespread uptake system for the two metals [37]. This

module is encoded in many microbial species, and spe-

cifically in Eubacterium hallii and Ruminococcus obeum

[38] in our communities, resulting in those encoded

correlations. These were accompanied by additional ‘as-

sociated’ correlations with co-occurring species includ-

ing Dorea longicatena (Fig. 4 Box C; Additional file 10:

Figure S7B Box C). Lastly, two modules involving nickel

TSs (cobalt/nickel M00245 and peptide/nickel M00239),

together with sugar and amino acid metabolism and TS

modules, were ‘encoded’ correlations found in the Bifi-

dobacterium species. Methionine degradation M00035

was also encoded by these organisms, which generates

Fig. 4 Association of taxa with microbial metabolic modules. The relative abundances of 56 total species were Spearman correlated against those

of 87 functional profiles to identify covariation between taxa and metabolic modules (either due to genetic carriage or shared environment).

Pluses and stars indicate nominal P value <0.01 or FDR q-value <0.2, respectively. Yellow marks indicate correlations also found in the corresponding

analysis of HMP data [21] (see Additional file 11: Figure S8). Highlighted boxes are discussed in the main text
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S-adenosyl-L-methionine (SAM), a major methyl donor

in the cell [39], and Bifidobacterium is used outside of

the gut as a source of SAM in the functional food

industry [40].

This cohort’s microbial co-occurrence network

(Additional file 10: Figure S7B) can also explain some

of the negative associations found in our data. For example,

the abundance of Bacteroides xylanisolvens is negatively

correlated with several taxa, including Methanosphaera

stadtmanae and Ruminococcus obeum (Additional file 10:

Figure S7B Box D), resulting in a negative correlation

between these species and modules encoded by B. xyla-

nisolvens, like NAD-, tetrahydrofolate-, and biotin bio-

synthesis (Fig. 4 Boxes D, E, F). Another example is the

negative correlation between Roseburia intestinalis and

E. coli (Additional file 10: Figure S7B Box E), resulting in

the negative associations between E. coli and the Shikimate

pathway, encoded in R. intestinalis genome sequence (Fig. 4

Boxes G, H). Such negative associations can also be the re-

sult of conflicting functionalities between certain microbes

and metabolic functions not present in their genomes.

Interestingly, some correlations are neither ‘encoded’

nor ‘associated’, and we can only hypothesize as to

their cause. One such example is the correlation be-

tween the archaeal functions mentioned above and

abundance of Bacteroides fragilis, Odoribacter splanch-

nicus and Parabacteroides merdae (Fig. 4 Box I). Al-

though these functions are not encoded in any of these

genomes, the gene comB (2-phosphosulfolactate phos-

phatase), which belongs to the coenzyme M biosynthesis

module, is encoded in the genome of Parabacteroides

merdae [38], potentially explaining this association. Such a

correlation might arise due to these organisms’ metabolic

dependence on a function encoded by diverse organisms

in different hosts.

Another interesting example is the positive correlation

between riboflavin biosynthesis and the abundance of

Bacteroides xylanisolvens (Fig. 4 Box E). As discussed

above, we found several compositional and functional

associations with BMI, including Bacteroides, riboflavin-,

NAD-, and tetrahydrofolate- biosynthesis. Indeed, the

latter two are ‘encoded’ correlations with B. xylanisol-

vens, suggesting that the increase in this species abun-

dance in higher levels of BMI is contributing to the

increase in NAD- and tetrahydrofolate- biosynthesis.

Additionally, riboflavin biosynthesis may also be an

‘encoded’ association of B. xylanisolvens and we failed

to identify it as such, potentially due to the incomplete-

ness of current functional databases.

Finally, additional ‘encoded’ correlations were found be-

tween various amino acid transport systems and E. coli

(Fig. 4 Box K). Many of these were detected in at least

some strains of E. coli, due to the combination of E. coli’s

very large pan-genome and the extent to which its strain

variation space is well-covered by the many available refer-

ence genomes. Many of these correlations, like all of this

cohort’s microbe-function correlations, were also found in

the HMP [21] (yellow marks in Fig. 4, and Additional file

11: Figure S8). This suggests both that simple ‘encoded’

correlations recur across populations, as expected, and

that more subtle ‘associated’ microbial dependencies may

be consistent among diverse gut ecologies.

Microbial species, but typically not strains, are shared

between twins

Several studies have observed that related individuals, and

particularly twins, carry more similar microbial communi-

ties than do unrelated individuals [6], and we reproduce

this finding in our cohort (Fig. 1d). However, it has not

been previously determined whether this similarity is due

to ecological pressures that select for similar microbes

among individuals, dispersal effects that cause the acquisi-

tion of identical microbes, or other factors. In cases where

twins in this study shared similar taxonomic profiles and

identical species, we thus tested whether these species

were of the same strain. Defining microbial clades at

genus-, species-, or strain- level is a difficult task [11, 41],

and here we chose to define a strain as a combination of

genomic markers, allowing us to identify dominant, near-

clonal populations. Microbes were strain-typed within

samples by identifying conserved or differential patterns

of unique mobile element loss and gain using MetaPhlAn

(see Methods), which has previously been successful in

differentiating strains among individuals and over time

[21, 42]. In particular, individuals were shown in these pre-

vious analyses to often carry a single dominant strain of

most species [42] and for that strain to be significantly

stable over time [14, 21] (Additional file 12: Figure S9).

Applying this method to our data allowed us to determine:

(1) when twins shared the same strain, in addition to the

same species; and (2) when these strains were retained

within an individual over time.

Remarkably, twins were not significantly more similar

than unrelated in their strain composition (P = 0.15 by

t-test), although (as expected) samples from the same

individual over time were significantly similar (P = 1.34e-7;

Fig. 5a). This suggests that either there is a genetic ten-

dency for twins to retain broadly similar microbial

compositions - but that this does not extend exert se-

lective pressure at the strain level - or that identical

strains acquired earlier in life during colonization have,

by adulthood, evolved sufficiently to differ at multiple

genomic elements. Only in rare cases did strains differ

within individuals over time (Additional file 13: Figure

S10), concordant with occasional sweeps of a replace-

ment strain due to, for example, gene acquisition/loss

or transfer from an external source.
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We quantified the degree to which each microbial

species was represented by the same or different strains

among twins, specifically by calculating for each mi-

crobe the mean distance across genomic elements of all

sample pair-wise comparisons (Additional file 14: Figure

S11, see Methods). While some species retained very simi-

lar strains among twins (for example, Methanobrevibacter

smithii, Fig. 5b), others consistently had more distinct

strains (for example, Prevotella copri, Fig. 5c). While this

detailed analysis is only possible in microbes that are par-

ticularly abundant in multiple samples, it raises the intri-

guing possibility that identical strains acquired early in life

persist in the gut, but evolve rapidly through the gain and

loss of genetic elements.

Discussion
Here, we analyzed metagenomes from 36 fecal samples

drawn from healthy Korean MZ twins over time, identi-

fying associations between T2D-related biomarkers (for

example, BMI, FBS) and microbial clades and functions.

We found, among other examples, that BMI was nega-

tively correlated with the abundance of Akkermansia

muciniphila and positively correlated with riboflavin

and NAD biosynthesis. These associations occurred

over both the pre- and post-onset range of T2D clinical

markers, suggesting that the microbiota may contribute

to or react to changes in the host environment prior to

the onset of disease. Furthermore, functional changes

in the gut microbiome at higher sub-clinical values of

BMI, FBS, and triglycerides resembled the signatures

found in patients with established IBD or T2D, suggest-

ing a shared response to oxidative stress in the gut, in-

duced even at low levels of inflammation or immune

activation. Finally, we found that while twins were more

similar than unrelated individuals in microbial compos-

ition, they often carried different strains of these species.

The computational framework presented here can be eas-

ily applied to other MZ twin cohorts, identifying early mi-

crobial markers of various other diseases, even in their

sub-clinical phase.

Obesity and metabolic syndrome have long been as-

sociated with chronic, low-grade inflammation [43]. For

example, macrophages of obese individuals accumulate

in adipose tissue, where they express pro-inflammatory

cytokines such as TNFa, IL6, and INOS [44], and the

gut microbiota can initiate the inflammation and insu-

lin resistance associated with obesity [34]. Interestingly,

although there was no indication of host inflammation

in our data (as measured by hsCRP), we observed the

microbiome responding to this in the form of decreased

abundance of Akkermansia muciniphila and increased

NAD- and riboflavin-biosynthesis. This collection of

functional changes together specifically enables the re-

charging of glutathione to its reduced form, promoting

redox homeostasis in microbes potentially exposed to an

increasingly hostile, inflammatory, oxidatively stressed en-

vironment the gut.

It is likely that additional compositional and functional

shifts accompany this low-grade inflammation in T2D

and related conditions, which will be better detected in

other, larger cohorts capturing an even broader range of

phenotypes and disease states. Finding common microbial

changes is an important step towards understanding the

cross talk between the gut microbiota and the diseased

host, but whether these shifts are causal, responsive, or

both remains an open question. For example, the micro-

bial response to redox stress is more likely to be reactive,

but microbes that are robust to this environment may

promote its maintenance and thus contribute to immune

activation or obesity. A combination of interventions in

model systems and longitudinal prospective cohort studies

of high-risk individuals, identifying the microbial changes

that occur before the onset and during the early progres-

sion of the diseases, will enable us to determine whether

the microbial shifts trigger host symptoms, or vice versa,

and potentially by what specific molecular mechanisms.

This pattern of microbial functional enrichments dur-

ing inflammation has now been consistent across mul-

tiple studies regardless of their potential causality,

including in other diseases like IBD (Fig. 6), suggesting

a common signature of gut response to low-grade in-

flammation. Interestingly, several studies have exam-

ined whether inflammation can lead to obesity [45–47]

and T2D [48–50] in mice, finding that inflammation

drives the development of insulin resistance (potentially

through the phosphorylation of insulin receptor 1 by a

TNF-α mediated response [51]) and suggesting that

particular intestinal microbial configurations can pro-

mote immune responses driving metabolic dysfunction

[51]. The extent to which the gut microbiota causes

obesity is an area of active research. Many mouse

models, including Lepob, consistently demonstrate an

elevated Firmicutes:Bacteroidetes (F:B) ratio in obese

animals [5, 31]. In contrast, in human cohorts, the rela-

tionship has been much less consistent. The relation-

ship between obesity and the F:B ratio has been

reported as increased [5, 8], decreased [34], and others

have reported no relationship [21, 52], indicating there

is still great variability in current studies. This may

arise either from technical issues, like different sample

or data handling protocols, or from biological reasons,

like true variation between the various cohorts.

Many microbial genes, particularly housekeeping

genes, are transcribed at a basal level, and thus their

measured DNA and RNA levels are well-correlated. In

contrast, other classes of genes such as vitamin and

amino acid biosynthesis are much more dynamically

regulated, so DNA and RNA levels are less correlated
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[53]. While this study measured only DNA abundance

of genes, concurrent examination of the subclinical bio-

marker meta-transcriptome would be an informative

extension of this work.

Finally, a unique dataset comprising shotgun meta-

genomes of MZ twins over time enabled us to find that

although twins are more similar in their species com-

position, they often harbor different strains. This unex-

pected discrepancy between the microbial population

structures of strains versus species in the human

microbiome should be further explored, as it can be

explained by a variety of very distinct ecological and

molecular hypotheses. Hosts with similar genetic pro-

files may exert a modest but continuous selective pres-

sure for the acquisition and maintenance of similar

species in the gut, which could be tested by collecting

data on the degree of shared early life and persistent

environment versus genetics. Alternatively, initially

identical strains acquired from a shared environment,

possibly in early life, may be maintained but diverge

through fixation of genetic drift and laterally trans-

ferred elements over time. Occasional strain differ-

ences within the same individual over time suggest a

fast divergence rate; however, a larger study, with tem-

porally dense sampling of both adults and infants, will

be needed to address this question.

Conclusions
To conclude, this study provides evidence of low-grade

inflammation of the gut with increasing values of obes-

ity- and T2D-related biomarkers. Compositional and

functional microbial signatures indicate the presence of

sub-clinical inflammation in adults increasingly at risk

of these conditions, even before they are reflected by

clinical markers. If these microbial shifts play a causal

role in the onset of obesity or T2D, they may represent

not only novel markers for early diagnosis, but also a

target for preventative therapeutic intervention. Even if

these shifts are not ultimately the primary causal agents

behind their associated diseases, microbial dysbioses

may still be manipulated to avert disease onset, and

their specifics are likely to improve our mechanistic un-

derstanding of host-microbiota interaction and its role

in disease prevention and treatment.
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genes from a specific functional module (row). This matrix accounts for

most of the significant correlations we find on Fig. 4. (B) Taxa co-occurrence

matrix in our data, using Spearman correlation. (ZIP 6726 kb)

Additional file 11: Figure S8. A correlation matrix comparing the

microbial and functional profiles, similar to that show in Fig. 4, calculated

for the Human Microbiome Project [21] data. (PDF 3729 kb)

Nicotinate and nicotinamide 

metabolism

Redox homeostasis:

Short chain fatty acid production:

Glutathione metabolism

Methane metabolism

Propanoate metabolism

Butanoate metabolism

Pentose phosphate pathway

KTwin IBD T2D

Glutathione biosynthesis

Fig. 6 Microbial functional dysbioses common among this study

and the gut microbiome in IBD and T2D. Several microbial

metabolic pathways were determined to be significantly enriched

(red) or depleted (green) relative to the obesity-related clinical

markers collected in our study (KTwin) and in inflammatory bowel

disease (IBD [13]) and/or type 2 diabetes (T2D [3]). Directionality of

association in these common dysbioses was near-uniformly consistent,

as indicated by box color
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Additional file 12: Figure S9. Marker genes abundance profiles for the

Human Microbiome Project data [21] of (A) Akkermansia muciniphila and

(B) Dialister invisus, formatted as in Fig. 5b and c with differential markers

colored in orange. (PDF 3628 kb)

Additional file 13: Figure S10. Marker genes abundance profiles of

(A) Akkermansia muciniphila; (B) Roseburia intestinalis; (C) Bifidobacterium

bifidum; (D) Faecalibacterium prausnitzii, formatted as in Fig. 5b and c.

(ZIP 6685 kb)

Additional file 14: Figure S11. The strain similarity of present microbes

in our data, estimated by the Bray-Curtis distance between self-samples

over time (x-axis) and twin samples (y-axis). Species highlighted in bold

are shown in detail on Fig. 5b and c and Additional file 13: Figure S10.

(PDF 3544 kb)
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