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Sub-continental-scale carbon stocks of 
individual trees in African drylands
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The distribution of dryland trees and their density, cover, size, mass and carbon 
content are not well known at sub-continental to continental scales1–14. This 
information is important for ecological protection, carbon accounting, climate 
mitigation and restoration efforts of dryland ecosystems15–18. We assessed more 
than 9.9 billion trees derived from more than 300,000 satellite images, covering 
semi-arid sub-Saharan Africa north of the Equator. We attributed wood, foliage and 
root carbon to every tree in the 0–1,000 mm year−1 rainfall zone by coupling field 
data19, machine learning20–22, satellite data and high-performance computing. 
Average carbon stocks of individual trees ranged from 0.54 Mg C ha−1 and 
63 kg C tree−1 in the arid zone to 3.7 Mg C ha−1 and 98 kg tree−1 in the sub-humid 
zone. Overall, we estimated the total carbon for our study area to be 0.84 
(±19.8%) Pg C. Comparisons with 14 previous TRENDY numerical simulation 
studies23 for our area found that the density and carbon stocks of scattered trees 
have been underestimated by three models and overestimated by 11 models, 
respectively. This benchmarking can help understand the carbon cycle and address 
concerns about land degradation24–29. We make available a linked database of wood 
mass, foliage mass, root mass and carbon stock of each tree for scientists, 
policymakers, dryland-restoration practitioners and farmers, who can use it to 
estimate farmland tree carbon stocks from tablets or laptops.

Improved knowledge of dryland trees, defined here as having a green 
crown area >3 m2 with an associated shadow (Extended Data Fig. 1), 
is essential to understand their roles in local livelihoods, economies, 
ecosystems, the global carbon cycle and the climate system in general. 
Basic information about the distribution of dryland trees and their 
density, cover, size, mass and carbon content are not well known2–5. 
This knowledge is required for understanding the functional traits 
of trees in relation to water resources with changes in climate, pre-
dicted increase in aridity and the number and duration of drought 
events30,31. The sources of information used to estimate carbon stocks 
in drylands include field surveys at plot scale; ecosystem models23; 
and low-resolution, moderate-resolution and high-resolution satellite 
images4–14, which are used to infer bulk properties such as averages 
of tree cover, dry masses and carbon density per unit area at a much 
coarser spatial scale than individual trees.

Although most emphasis is put on the development of advanced 
monitoring techniques for forested ecosystems, none of these sources 
combine wide/total coverage and representation of each individual 
tree5. Reaching this level of detail is critical for dryland monitoring 
and management because dryland trees grow isolated and in highly 
variable size and density. Most current studies producing or using 
areal averages of tree cover, wood mass or carbon stocks in drylands 
are either at the very local level12 or the information for drylands is 
derived from global maps13, which are rarely trained and validated in 
drylands and often apply the same method on both forests and dryland 
vegetation6–8. Although national tree inventories exist for few dryland 
countries, the amount of labour required and their uncertainty are high. 
As a result, all existing assessments on dryland carbon stocks are highly 
uncertain, very difficult to validate and do not provide the means for a 
detailed characterization at the level of individual trees14. Furthermore, 
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the contribution of different dry-mass components—wood, foliage 
and root mass—to the overall carbon stock is unknown at large scales.

At the same time, it remains unknown whether ecosystem models 
quantify the right amount of carbon and the lack of validation of global 
models or maps in dry areas fuels narratives of possible underestima-
tion or overestimation of carbon stocks of drylands and their role in 
accelerating or mitigating climate change12,18. The missing information 
on trees at the level of individuals is decisive for improved management 
of woody resources in drylands: to accurately monitor deforestation 
spurred by clearing of trees for cropping, mining, infrastructure and 
urban development24. Furthermore, accurate monitoring of the tree 
resource at the level of individual trees is instrumental for tree-planting 
initiatives, for reporting the correct number of trees and carbon stocks 
for national reporting schemes, such as the Paris Agreement, or to have 

a reliable system that allows payments for environmental services to 
farmers and villages. Although deforestation and afforestation areas 
can be accurately mapped using current methods and data in forest 
ecosystems, no monitoring system exists for trees outside forests and 
their carbon pools32.

At present, large amounts of funding are being allocated to 
dryland-restoration activities and the monitoring of success or fail-
ure is based on local inventories lacking large-scale assessments of 
survival rates of planted trees. The Great Green Wall of the Sahara and 
the Sahel initiative has recently been subject to renewed interest and 
increased investments33–35. This initiative was conceived to address 
the increasing challenges of desertification and drought, food inse-
curity and poverty in the wake of climate change. Yet the tracking of 
projects and their successfulness remains a great challenge, as no 
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Fig. 1 | Wood, foliage and root carbon of 9,947,310,221 trees with crown  
area >3 m2 across 9.7 million km2 were mapped. a, Our study covered the 
southern Sahara, the Sahel and the northern Sudanian zone of Africa and 
showed the aggregated carbon density (foliage + wood + root) per hectare for 
9,947,310,221 tree crowns from the 0–1,000 mm year−1 mean precipitation area. 
The isohyets mark the 150, 300, 600 and 1,000 mm year−1 rainfall zones  

(from north to south). b, Example showing the woody carbon stock of each single 
tree for an agroforestry area in Senegal. c, Mean tree carbon density at the 5th, 
25th, 75th and 95th percentiles along the rainfall gradient for wood, foliage and 
root carbon. d, Mean carbon stock of individual trees at the 5th, 10th, 25th, 75th, 
90th and 95th percentiles along the rainfall gradient. Our definition of a tree is 
a green leaf crown >3 m2 with an associated shadow (Extended Data Fig. 1).
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monitoring system is in place. Equally important, large-scale monitor-
ing of single trees will create a foundation for establishing improved 
knowledge on the functional traits of dryland trees, such as survival, 
growth and mortality, controlled by the complex interplay between 
biotic and abiotic factors32. Afforestation initiatives should also be 
rooted in a solid ecological understanding of the local environment 
to avoid causing water shortages for small-holder farming systems33.

The combined use of very-high-resolution satellite images and artifi-
cial intelligence made it possible to identify isolated trees and map their 
crown area at large scales, covering the western Sahara–Sahel–Sudan 
areas1. This approach of mapping individual trees has been extended 
to a 7.5-times-larger area covering the drylands across Africa, from the 
Atlantic Ocean to the Red Sea from 9.5° N to 24° N latitude between 
the 0 and 1,000 mm year−1 isohyets, using 326,523 satellite images at 
a 50-cm spatial resolution, and coupled with machine learning to map 
9.9 billion trees (Fig. 1 and Methods). The large-scale mapping of indi-
vidual tree crowns provides an unprecedented opportunity to apply 
allometric equations to estimate carbon stocks derived from foliage, 
wood and root dry masses at local scales to large regions, here close to 
10,000,000 km2 (Extended Data Fig. 2). We take this step to assess the 
woody carbon pool by adding up tree-by-tree values, calculated using 
allometric equations to predict foliage, wood and root dry masses from 
crown area multiplied by the average carbon concentration (0.47). 
These allometric equations were established by destructive sampling 
of trees from 26, 27 and 5 species, respectively, selected within a rainfall 
gradient from 150 to 800 mm year−1. Comparisons with allometric 

equations established in wetter tropical areas ensure applicability of 
these equations to wetter zones, at least up to 1,000 mm year−1 rainfall19. 
We estimated the combined uncertainty from the allometric equations 
and the tree crown detection to be ±19.8%.

The information of carbon stocks of 9.9 billion trees is compared 
with a set of state-of-the-art TRENDY ecosystem models23 as well as 
current satellite-observation-based regional carbon stock maps6–11. We 
introduce a publicly available ‘viewer’, which allows farmers, villagers, 
policymakers and all stakeholders to retrieve the foliage wood and 
root masses and the corresponding carbon stock of each tree using a 
mobile device. We expect that this could improve not only the amount 
of information available but also the reporting and monitoring of trees 
and their carbon stocks at various scales, from the individual field plot 
to country scales.

Carbon stocks at the tree level
We applied a deep-learning-based tree mapping on a large num-
ber of satellite images and measured 9,947,310,221 tree crowns: 
all woody plants with a shadow and a crown area >3 m2 from the 
hyper-arid (0–150 mm year−1), arid (150–300 mm year−1), semi-arid 
(300–600 mm year−1) and dry sub-humid (600–1,000 mm year−1) 
rainfall zones of tropical Africa north of the Equator and south of the 
Sahara (Fig. 1). The average carbon stock of a single tree is 51 kg C in 
the hyper-arid, 63 kg C in the arid, 72 kg C in the semi-arid and 98 kg C 
in the sub-humid zone. The individual tree information was projected 
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Fig. 2 | Comparisons between current aboveground carbon-density maps 
and our estimations derived from 9.9 billion trees. a, Aboveground carbon 
density from state-of-the-art maps using satellite data6–11. Tree carbon from  
this study is derived from wood + foliage carbon plotted with ±1 standard 
deviation in the grey zone. b, Aboveground carbon stocks aggregated over the 
0–1,000 mm year−1 rainfall zone. Our estimations (grey colour) of 0.68 Pg are 
wood + foliage carbon. The combined uncertainty from neural net area mapping, 
tree crown omission and commission errors, and allometric conversion of  
tree crowns into tree wood, foliage and root carbon was ±19.8% (Methods).  
c, Vegetation carbon density from the mean of 14 TRENDY dynamic ecosystem 

models and data from six individual TRENDY models for aboveground and 
belowground carbon23 are compared with our tree carbon with aboveground 
herbaceous carbon added from passive microwaves36. d, Aboveground carbon 
density from the LPJ-GUESS model23, selected here as it uses trees outside the 
prescribed forest fraction, and our estimations are compared along the rainfall 
gradient. L-VOD37 was converted to carbon density using coefficients from a 
linear correlation with our map (Extended Data Fig. 4). Aboveground herbaceous 
carbon was derived from ref. 36. The sample size for the 0–1,000 mm year−1 
rainfall zone was 9,947,310,221 tree crowns >3 m2.
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represent only 30% of the area in our study. The per cent carbon density 
contribution by rainfall zones is linearly related to the tree carbon density 
(Mg C ha−1) reported in Fig. 1c by a factor of 2.5. b, A total of 88.4% of our mapped 
trees had crown areas <50 m2. The average tree crown area in the 0–150 mm year−1 
zone was 15.1 m2, for the 150–300 mm year−1 zone it was 18.4 m2, for the  
300–600 mm year−1 zone it was 20.9 m2 and for the 600–1,000 mm year−1 zone 
it was 28.1 m2. Only 11.6% of our mapped trees had crown areas >50 m2 and less 
than 0.6% had crown areas >200 m2.
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Fig. 4 | Different components of the viewer. This example shows Widou 
Thiengoly in semi-arid Senegal surrounded by tree plantations, which are 
partly related to a Great Green Wall34 project aiming to increase tree density 
and improve livelihoods in the Sahel. a, Tree crown segmentations from the 
neural net mapping. b, Wood, foliage and root carbon calculated for each tree 
(Methods). c, Carbon density per hectare aggregated from carbon stocks of 

single trees to the hectare scale. d, Our viewer includes all information from  
a to c. This online tool provides information on crown area; foliage, wood and 
root carbon of single trees; and aggregates carbon to the hectare scale. These 
data can be accessed by policymakers and stakeholders to monitor areas of 
interest. The viewer can be accessed at https://trees.pgc.umn.edu/app.
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to the area by calculating the carbon density in Mg C ha−1, which was 
on average 0.03 Mg C ha−1 in the hyper-arid, 0.54 Mg C ha−1 in the arid, 
1.54 Mg C ha−1 in the semi-arid and 3.73 Mg C ha−1 in the sub-humid 
zone. Although foliage mass has a small overall fraction of the total 
dry mass (3%), it is an important variable for quantification of browse 
potential and serves as a proxy for other ecosystem processes, such as 
transpiration, photosynthesis and nutrient cycling. The proportion of 
root mass is on average 15–20% of the total mass.

Current carbon map and model comparisons
We compared our aboveground carbon-density maps (foliage + wood) 
derived from individual trees with current state-of-the-art maps (Fig. 2 
and Extended Data Fig. 3) available at moderate spatial resolutions of 
30–1,000 m. The temporal dynamics were assessed by low-frequency 
passive microwaves (L-VOD)36,37, which has emerged as a tool for the 
assessment of carbon stock dynamics at the 25 × 25-km spatial scale 
(Extended Data Fig. 4). Moreover, we compared carbon-density maps 
and dynamics with dynamic ecosystem models from the TRENDY 
database with a 50 × 50-km grid cell size23. None of these maps were 
designed specifically for drylands; most dynamic ecosystem models 
and satellite-based models are developed and trained for forest eco-
systems and, in the case of the TRENDY models, used meteorological 
forcings and prescribed vegetation maps that contain further uncer-
tainties for comparative purposes.

Existing carbon-density maps compare differently with our assess-
ment based on individual trees and there is little spatial agreement 
among the maps (Fig. 2a,b). Notably, although areas of scattered trees 
having a relatively low carbon density are largely mapped as zero carbon 
in previous maps except for ref. 9, areas of denser tree cover and some 
areas typically without trees, such as wetlands, irrigated croplands and 
desert mountains, have considerably higher values than our assess-
ment. This leads to an overall higher carbon stock of the area compared 
with our results. Although we do not map herbaceous vegetation in our 
study, the tree cover we map can be used to disaggregate herbaceous 
vegetation from trees (Extended Data Fig. 5).

At regional scales, dynamic ecosystem model vegetation carbon 
shows a considerable variability, but the mean follows our estimates of 

herbaceous, wood, foliage and root carbon along the rainfall gradient 
(Fig. 2c). Notably, whereas previous studies assumed that ecosystem 
models underestimated dryland carbon stocks, our results show overall 
higher values from the model outputs as compared with the assess-
ment based on individual trees, although large variations between 
models exist. Only considering aboveground carbon, the example of 
LPJ-GUESS shows slightly lower values than our assessment up to about 
800 mm year−1 rainfall (Fig. 2d).

Both ecosystem models and previous satellite-based carbon maps 
diverge markedly from our results beyond 700–800 mm year−1 rainfall. 
All other maps assume a continuous increase beyond this rainfall zone, 
yet our results reach a plateau at 800 mm year−1 and no further increase 
in carbon is observed with higher rainfall up to 1,000 mm year−1. We 
acknowledge that the uncertainty of our results increases with denser 
canopy cover and that we miss all understory vegetation. However, 
statistical evaluations of the rainfall–tree density relationship from our 
data indicate that neither carbon stocks per tree (Fig. 1d) nor tree cover 
further increased between 800 and 1,000 mm year−1 rainfall (Fig. 3a). 
Trees with crown area <50 m2 make up 88% of the total number of trees, 
whereas trees in the semi-arid and sub-humid zones constitute 90% of 
the total carbon in our study (Fig. 3).

Application at the tree level
The comparison with dynamic global vegetation models and existing 
biomass maps shows some similar patterns at coarse scale, yet none of 
these maps can be used to derive information at the level of individual 
trees needed to support policymakers and decision-makers. For this 
reason, we introduce a viewer (Fig. 4), which is built on Mapbox and 
OpenStreetMap, and can be accessed online by everyone and from 
anywhere. The viewer includes all 9.9 billion trees as objects, and the 
wood, foliage and root mass can be accessed individually for each of 
them. As an example, we show the area of Widou Thiengoly, an area 
in Senegal in which tree planting for the Great Green Wall has been 
promoted over the past decades (Fig. 4a). Although previous assess-
ments on the success of tree plantations were based on narratives, visual 
interpretations or site visits, the viewer provides an unbiased tool for 
evaluating success and failure of initiatives, as well as quantifying the 
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Fig. 5 | Monitoring at the level of single trees from Khombole, Senegal.  
a,b, A 50-cm-scale image from 2002 (a) and a 50-cm-scale satellite image from 
2021 (b) showing an agroforestry area at the same location. Tree cover has 
increased between 2002 and 2021 and the average carbon density of both areas 
was calculated and increased from 6 to 10 Mg ha−1. A large number of trees grow 

on farmlands, keeping the soils fertile and reducing the need for fallow periods. 
The greyscale of the background images indicates the carbon density per 
hectare, whereas the colour scale shows the carbon content of individual trees. 
This is a good example of the tree restoration monitoring potential in our study 
area.
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carbon stocks gained by each planted tree or lost by each removed/
dead tree. The example shown in Fig. 4 illustrates that high-density 
plantations in this arid region reach carbon-density values of about 
5 Mg C ha−1 (Fig. 1c), but the survival rate of planted trees has been a 
long-lasting concern that needs to be carefully monitored to be able 
to assess the efficacy of Sahelian tree-planting programmes.

Another example shows an agroforestry region in Senegal, north of 
Khombole that has a relatively high density of trees, which has increased 
the carbon stocks of the region considerably. The example area shown 
in Fig. 5 has almost doubled carbon density between 2002 and 2021 
(Fig. 5).

Discussion
Our assessment is a large-scale estimation of wood, foliage and root 
carbon at the level of individual trees. The finding that global ecosystem 
models and previous carbon-density maps estimate higher carbon 
stocks in African drylands compared with our assessment based on 9.9 
billion individual trees seems surprising, as current tree-cover maps are 
not able to correctly account for scattered trees and thus should consid-
erably underestimate the number of trees in these areas1. The explana-
tion for this apparent paradox—higher tree cover but less carbon—is 
related to the fact that previous models are rarely developed, trained 
and validated with plots of very sparse tree cover, thus leaving high 

uncertainty for drylands with scattered trees. Consequently, areas with 
scattered trees are often represented by zero values (Fig. 6), whereas 
the carbon density of larger groups of trees may be overestimated in 
previous assessments, as these areas are wrongly considered as dense 
forests. In essence, most previous assessments do not accurately map 
carbon density below 10 Mg C ha−1, if at all, and may overestimate the 
carbon stocks of dryland ‘forests’. Moreover, if the region is taken as a 
whole, green crops and herbaceous vegetation affect optical images, 
whereas steep topography and wetlands/irrigated areas affect the radar 
backscatter, both predicting higher carbon stocks than our estima-
tions. Although we used allometric equations specifically developed 
from locally sampled field data19, 95% of the trees we mapped had a 
crown area <78 m2. This introduces a small uncertainty in carbon values 
for the 5% of tree crowns >78 m2 in more humid areas, where trees are 
taller and/or larger.

Nevertheless, the divergence between our results and previous 
assessments in higher-rainfall zones needs to be further investigated 
and our maps should be used with caution beyond 800 mm year−1 rain-
fall. The indirect inclusion of the tree height and the application of the 
same equation to all tree species are uncertainty factors that will be 
assessed in future versions of the dataset. Finally, the fact that larger 
trees shade out smaller trees in areas of dense tree cover makes the 
method based on individual tree counting less suited to more humid 
areas.
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Herbaceous dry mass can contribute considerably to the annual 

carbon density. However, most herbaceous plants of the region are 
annuals that die off each year and do not constitute a residual carbon 
stock but have a high inter-annual variability. The herbaceous mass used 
in our study36 shows the seasonal peak value, which drops by about 25% 
within only a few weeks (Extended Data Figs. 1a and 5). Traditionally, 
remotely sensed separation of herbaceous vegetation from woody 
foliage is challenging with both optical and radar satellite data. We 
overcome this by measuring individual tree crown areas.

The carbon difference between ecosystem models and our study 
can be explained by different forest fractions assumed by each model 
(Extended Data Fig. 6). Most of the dynamic global vegetation models 
do not simulate trees outside forests and woody carbon is usually a sum 
of predefined forest areas. Differences may also result from a simplistic 
implementation of disturbances, in particular, fire, grazing and the 
fact that we did not include belowground herbaceous carbon in our 
estimates. Still, the results of the dynamic vegetation models are closer 
to our estimations than previously assumed and the inclusion of our 
data may improve future modelling results, leading to more realistic 
forecasts of the impact of climate change on drylands.

Dryland trees are not only a carbon stock but also provide ecosystem 
services that are valuable to the environment and support local liveli-
hoods, including timber, fuel wood, protection against soil erosion 
and loss, soil fertilization, shade and nutrition for tree crops15. The ben-
efits of increased tree cover are many and establishing an operational 
monitoring system for dryland trees is critically needed. The dynamics 
of growth and mortality of trees outside forests goes undetected by 
conventional monitoring systems based on satellite imagery with a 
spatial resolution >10 m. Although our current assessment at the level 
of individual trees does not yet include a temporal dimension (except 
for the exemplary case provided in Fig. 5), it is a baseline of the number, 
mass and carbon stock of trees outside forests at the sub-continental 
scale. The publicly available viewer makes this information accessible 
for scientists, policymakers, stakeholders and individual farmers, who 
can easily quantify woody carbon stocks of a given area, down to the 
level of a single tree growing in a private yard.

A next step will be adding a temporal dimension to the wall-to-wall 
mapping we describe and we expect it to be possible from this source 
of data, at least with decadal time steps. This will facilitate addressing 
the impact of droughts, restoration and policies at various scales, down 
to the level of individual trees. High spatial resolution is the key to 
improved tree inventories in drylands. The ever-increasing availability 
of satellite images will make continental-scale assessments of carbon 
pools and dynamics at the individual tree level realistic in near-real time. 
This will be key to developing robust schemes for dryland management 
plans needed to achieve the United Nations’ Sustainable Development 
Goals. Our paper is a step in that process.
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Methods

Overview
This study establishes a framework for mapping carbon stocks at 
the level of individual trees at a sub-continental scale in semi-arid 
sub-Saharan Africa north of the Equator. We used satellite imagery 
from the early dry season (Extended Data Fig. 1). The deep learning 
method developed by a previous study1 allowed us to map billions of 
discrete tree crowns at the 50-cm scale from West Africa to the Red 
Sea. Then we used allometry to convert tree crown area into tree wood, 
foliage and root carbon for the 0–1,000 mm year−1 precipitation zone 
in which our allometry was collected (Extended Data Fig. 2). We intro-
duce a viewer that enables the billions of trees to be viewed at different 
scales, with information on location, metadata of the Maxar satellite 
image used, tree crown area and the estimated wood, foliage and root 
carbon content based on our allometry (Fig. 4). We also make available 
our output data for the 1,000 mm year−1 precipitation zone southward 
to 9.5° N latitude with information on location, precipitation, metadata 
of the Maxar satellite image used, tree crown area, tree wood carbon, 
tree root carbon and tree leaf carbon.

Satellite imagery
We used 326,523 Maxar multispectral images from the QuickBird-2, 
GeoEye-1, WorldView-2 and WorldView-3 satellites collected from 2002 
to 2020 from November to March from 9.5° N to 24° N latitude within 
Universal Transverse Mercator (UTM) zones 28–37 for Africa (Extended 
Data Table 1a). These images were obtained by NASA through the Next-
View License from the National Geospatial-Intelligence Agency. Data 
were assembled over several years with a focus on later years to achieve 
a relatively recent and complete wall-to-wall coverage.

When using satellite data from different satellites over several years, 
with varying sun–target–satellite angles, with varying radiometric 
calibration of satellite spectral bands and different atmospheric com-
positions through which the surface is imaged, there are two possi-
bilities for using hundreds of thousands of satellite images together 
quantitatively. One approach, used extensively in NASA’s, NOAA’s and 
the European Space Agency’s Earth-viewing satellite programmes, is 
to quantitatively inter-calibrate radiometrically the satellite channels 
through time; correct these data for time-dependent atmospheric 
effects such as aerosols, clouds, haze, smoke, dust and other atmos-
pheric constituent effects and then normalize the viewing perspective 
to the same sun–target–satellite angle38. Another approach is to use 
the satellite data as collected; assemble training data of trees viewed 
from different satellites under different sun–target–satellite angles, 
different times, different atmospheric conditions and use machine 
learning with high-performance computing to perform the tree map-
ping at the 50-cm scale. The key to successful machine learning is to 
account for all the sources of variation within the domain of study 
in the training data to ensure accurate identification of trees under 
all circumstances. We included trees viewed substantially off-nadir, 
trees collected under different aerosol optical thicknesses, trees col-
lected under cirrus cloud conditions, trees viewed in the forward and 
backward scan directions, trees on sandy soils, trees on clay soils, trees 
on burn scars, trees in laterite areas and trees in riverine settings. Our 
training data were collected by one team member and are a carefully 
selected manual delineation of 89,899 individual trees under a range of 
atmospheric conditions, viewing perspectives and ecological settings.

All multispectral and panchromatic bands associated with our 
Maxar images were orthorectified to a common mapping basis. We 
next pan-sharpened all multispectral bands to the 0.5-m scale with the 
associated panchromatic band. The absolute locational uncertainty of 
pixels at the 0.5-m scale from orbit is approximately ±11 m, considering 
the root-mean-square location errors among the QuickBird-2, GeoEye-1, 
WorldView-2 and WorldView-3 satellites (Extended Data Table 1). We 
formed the normalized difference vegetation index (NDVI)39 from 

every image in the traditional way from the pan-sharpened red and 
near-infrared bands. We also associated the panchromatic band with 
the NDVI band and ensured that the panchromatic and NDVI bands were 
highly co-registered. The NDVI was used to distinguish tree crowns 
from non-vegetated background because the images were taken from 
a period when only woody plants were photosynthetically active in 
this area36. Our training data were labelled on images from the early 
dry season when only trees have green leaves. Because most semi-arid 
savannah trees continue to photosynthesize in the early dry season 
after herbaceous vegetation senesces, green leaf tree crowns are easily 
mapped because of their higher NDVI values than their senescent herba-
ceous vegetation surroundings. We substantiate this by analysis of 308 
individual trees using NDVI time series with 4-m PlanetScope imagery 
that emphasized the importance of satellite data from the November, 
December and January early dry-season months (Extended Data Fig. 1).

We next formed our data into mosaics by applying a set of decision 
rules, resulting in a collection of 16 × 16-km tiles within each UTM zone 
from 9.5° N to 24° N latitude for Africa. The initial round of scoring 
considered percentage cloud cover, sun elevation angle and sensor 
off-nadir angle: preference was given to imagery that had lower cloud 
cover, then higher sun elevation angle and finally view angles closest to 
nadir. In the second round of scoring, selections were assigned priority 
to favour early dry-season months and off-nadir view angles: prefer-
ence was given to imagery from November, December and January with 
off-nadir angle less than ±15°; second to imagery from November to 
January with off-nadir angle between ±15° and ±30°; third to imagery 
from February or March with off-nadir angle less than ±15°; and finally to 
imagery from February or March with off-nadir angle between ±15° and 
±30°. Image mosaics were necessary to eliminate multiple counting of 
trees. We formed mosaics using 94,502 images for tree segmentation, 
with 94% of these being from November, December and January. Ninety 
percent of our selected mosaic imagery was within ±15° of nadir, 87% 
were acquired between 2010 and 2020 and 94% were from the early dry 
season (Extended Data Fig. 7). A summary of month, year, solar eleva-
tion and off-nadir angle by UTM zone can be found in Supplemental 
Information Fig. 1.

Possible obscuration of the surface by clouds totalled 4.1% of our 
input mosaic data area and aerosol optical depth >0.6 at 470-nm (ref. 40) 
areas totalled 3.4% of our input data. However, we mapped 691,477,772 
trees in our possible cloud-cover-affected and aerosol-affected areas, 
indicating that cloud and aerosol effects were lower than these num-
bers. In addition, 0.9% of our input data did not process. We include a 
data layer in our viewer for these three conditions.

Mapping tree crowns with deep learning
We used convolutional neural network models developed by a previ-
ous study1. The models were trained with manually delineated and 
annotated 89,899 individual trees along a north–south gradient from 
0 to 1,000 mm year−1 rainfall1. Only features that showed a distinct 
crown area and associated shadow were included, which excluded small 
bushes, grass tussocks, rocks and other features that might have green 
leaves or cast a shadow from our classification. All training data and 
model training was done in UTM zones 28 and 29. Because tree floristic 
diversity in the 0–1,000 mm year−1 zone of our study is highly similar 
from the Atlantic Ocean to the Red Sea across Africa41–43, we added no 
further training data as our study moved further eastward. We used 
state-of-the-art deep learning to segment trees crowns at the 50-cm 
scale1. We used two different models based on a U-Net architecture, 
one for lower-rainfall desert regions with <150 mm year−1 precipitation 
and one for regions with average annual precipitation >150 mm year−1. 
Details about the network architecture, training process and hyper-
parameter choices can be found in ref. 1. Previous evaluation showed 
that early dry-season images performed better than late dry-season 
images, which was a limitation of our previous study. We reduced this 
error by using early dry-season images with only 6% of our area being 
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covered by images from February and March. The models were also 
designed to separate clumped trees by highlighting spaces between 
different crowns during the learning process, similar to a strategy for 
separating touching cells in microscopic imagery22.

Allometry
Very-high-resolution satellite images and deep learning have achieved 
mapping of individual trees over large areas1. Each tree is georeferenced 
in the satellite data and defined by crown area. The challenge was to 
develop allometric equations for foliage, wood and root dry masses 
or carbon based on crown area regardless of species. This was met by 
reanalysing existing Sahelian and Sudanian woody plant data from 
destructive sampling. Overall, the seasonal maximum foliage, wood 
and root dry masses were measured on 900, 698 and 26 trees or shrubs 
from 27, 26 and 5 species, respectively, for which crown area was also 
measured. Several allometric regression models tested for foliage, 
wood or root masses are power functions and independent of species. 
All the regression outputs were inter-compared for fit indicators, by 
systematic estimates of prediction uncertainty and by root-to-wood 
ratios and foliage-to-wood ratios over the range of crown areas. This 
resulted in a set of ordinary least squares log–log equations with crown 
area as the independent variable. The Sahelian and Sudanian allometry 
equations were also compared with published allometry equations for 
tropical trees, primarily from more humid tropics, which are generally 
based on stem diameter, tree height and wood density. Our allometric 
predictions are within the range of other allometry predictions, rein-
forcing the confidence in their use beyond the Sahelian and Sudanian 
domains into sub-humid savannahs for discrete trees19.

On the basis of ref. 19, we predicted the wood (w), foliage (f) and root 
(r) dry mass as functions of the crown area (A) of a single tree as:

A A N

A A N

A A N

mass ( ) = 3.9448 × ( = 698)

mass ( ) = 0.2693 × ( = 900)

mass ( ) = 0.8339 × ( = 26)

w
1.1068

w

f
0.9441

f

r
1.1730

r

The tree mass components of wood, leaves and roots were combined 
to predict the total mass(A) in kg of a tree from its crown area A in m2:

A A A Amass( ) = mass ( ) + mass ( ) + mass ( )w f r

As in ref. 1, a crown area of size A > 200 m2 was split into ⌊ ⌋A/100  areas 
of size 100 m2 and one area with the remaining m2 if necessary. We con-
verted dry mass to carbon by multiplying with a factor of 0.47 (ref. 44).

Uncertainty analysis
We evaluated the uncertainty of our tree crown area mapping and car-
bon estimation in two ways. First, we quantified our tree crown mapping 
omission and commission errors by inspecting randomly selected areas 
from UTM zones 28–37, validating that our neural network generalized 
over UTM zones consistently (Extended Data Fig. 8).

Second, we quantified the relative error of our tree crown area estima-
tion. We consider the uncertainty Δx of a quantity x and the correspond-
ing relative uncertainty δx defined by the absolute and relative error, 
respectively45. To assess the relative error in crown area estimation 
resulting from errors by the neural network, we considered external 
validation data from ref. 1, which were not used in the model-building 
process. We considered expert-labelled tree crowns as well as the pre-
dicted tree crowns from 78 plots of 256 × 256 pixels. The hand-labelled 
set contained 5,925 trees and the system delineated 5,915 trees. The total 
hand-labelled tree crown area was 118,327 m2 and the neural network 
predicted 121,898 m2. This gave a relative error in crown area mapping 
of δarea = 3.3%. We matched expert-labelled and predicted tree crowns 
and computed the root-mean-square error (RMSE) per tree, taking 
overlapping areas and missed trees into account (see Extended Data 
Fig. 8). We estimated the allometric uncertainty (δallometric) using the data 

from ref. 19 (see below). The two relative errors δarea and δallometric were 
combined to an overall uncertainty estimate for the carbon prediction 
of ±19.8% (see below).

Omission and commission errors
We evaluated our tree crown mapping accuracy by analysis of 1,028 
randomly selected 512 × 256-pixel areas over the 9.5° N to 24° N lati-
tude within UTM zones 28–37. Because the drier 60% of our study 
area only contains 1% of the 9,947,310,221 trees we mapped in the 
0–1,000 mm year−1 rainfall zone, we applied an 80% bias for selecting 
evaluation areas above the 200 mm year−1 precipitation line46, as >98% 
of tree identifications were above the 200 mm year−1 precipitation iso-
line. Identified tree polygons were further categorized into tree crown 
area classes from 0–15 m2, 15–50 m2, 50–200 m2 and >200 m2, with a 
total of 50,570 trees evaluated. Although a previous study reported 
greatest uncertainty in both the smallest and largest area classes1, our 
more expansive work found the greatest uncertainty in our smallest  
tree class. We excluded from evaluation any tiles that had annual  
precipitation46 >1,000 mm year−1 and all areas that were devoid of  
vegetation, leaving us with 850 areas.

Seven members of our team evaluated the accuracy in terms of com-
mission and omission by tree crown area classes for the 850 areas. Input 
data provided for every area were the NDVI layer, the panchromatic 
shadow layer and the neural net mapping results in each of the four 
crown area classes. Ancillary data available to evaluators included 
the centre coordinates for comparison with Google Earth data, the 
Funk et al.46 rainfall, the acquisition date of the area evaluated and the 
viewing perspective.

We identified areas wrongly classified as tree crowns (commission 
errors), missed trees (omission errors) and crown areas correspond-
ing to clumped trees (Extended Data Fig. 8). Clumped trees were most 
common for >200 m2 tree crown area. They were rare in the 3–15 m2 
and 15–50 m2 tree classes, which comprise 88% of our tree crowns. 
In the 850 patches, the number of trees ranged from one tree to 326 
trees, with a total of 50,570 trees evaluated and 3,765 errors identified. 
Overall, the commission and omission error rates were 4.9% and 2.7%, 
respectively, a net uncertainty of 2.2%.

Allometric uncertainty estimation
The prediction of tree carbon from the crown area for a single tree 
based on crown area alone is inherently uncertain47,48. As the allometric  
equations are based on three different datasets, we compute their 
uncertainties independently, combine them and put them in relation 
to the total carbon measured in the three datasets.

The allometric equations were established using an optimal 
least-squares fit of an affine linear model predicting the logarithmic 
carbon from the logarithmic tree crown area19. To estimate the uncer-
tainty of the allometric equations, we repeated the fitting using random 
subsampling. The datasets were randomly split into training data (80%) 
for fitting the allometric equations and validation data (20%) for assess-
ing the uncertainty. For example, from the root measurements, 
A y A y( , ), …, ( , )1 1 N Nr r

, we compute μ y= ∑N i
N

ir
1

=1r
r  and μ Aˆ = ∑ mass ( )N i

N
ir

1
=1 rr

r . 
The corresponding error is Δ μ μ= | − ^ |r r r .

Because the total carbon for a tree with a certain crown area is the 
sum of the three carbon components, we add the absolute uncertain-
ties assuming independence45.

Δ Δ Δ Δ+ +allometric f
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and compute the relative uncertainty as δ =
Δ

μallometric
allometric

mass
, in which 

the average mass μmass is given by the sum of the averages for wood (μw), 
leaves (μf) and root (μr). This process was repeated ten times, resulting 
in a mean relative uncertainty of

δ = 19.5%.allometric



Total carbon uncertainty
We combine the uncertainties from the neural net mapping and our 
allometric equations, which can be viewed as considering (1 + A)·(1 + B) 
with A and B being random variables with standard deviations δarea and 
δallometric. Neglecting higher-order and interaction terms, we combine 

the two sources of uncertainty to ≃δ δ δ+area
2

allometric
2

, resulting in  
an uncertainty in total tree carbon for our study of ±19.8%. See also 
Extended Data Fig. 9 for the RMSEs of our predicted crown areas cal-
culated on external validation data from ref. 1, binned on the basis of 
the 50th quantiles of the hand-labelled crown areas and converted also 
into carbon. Extended Data Fig. 10 is a flow diagram summarizing our 
methods.

Our viewer
Visualizing our large tree-mapping dataset in an interactive format 
was essential for quality-control purposes, exploration of the data 
and hypothesis creation. Creating a web-based viewer serves the pur-
pose of being the initial point of interaction with our dataset for fellow 
researchers, local stakeholders or the general public. The visualization 
of more than 10 billion trees in a web browser required maintaining 
performance, interactivity and individual metadata for each polygon. 
Users should be able to zoom in to any area within the dataset to view 
individual tree polygons and query their statistics while at the same 
time accurately depicting the overall trends of the dataset at lower 
zoom levels. The visualization also needed to clearly denote where 
data were missing or possibly affected by clouds or aerosols. Finally, 
the extent and origin of the source imagery, its acquisition date and 
a preview of the imagery needed to be available. To accomplish these 
goals, a vector-tile-based approach was taken, with the data visualized 
in a Mapbox GL JS map within a React web application. To create vector 
tiles covering the entire study area, we developed a data-processing 
pipeline using high-performance computing resources to transform 
the data into compatible formats, as well as to package, optimize and 
combine the vector tiles themselves.

We used two tracks to store and visualize the results of this study on 
the web: vector polygon data and generalized rasters representing tree 
crown density. At the native spatial resolution of 50 cm, the map shows 
the full-resolution tree polygon dataset. At lower-spatial-resolution 
zoom levels, rasterized representations of tree density are shown. 
Visualizing generalized rasters in place of vector polygons improves 
performance substantially. As users zoom in to higher spatial resolu-
tions, the raster layer fades away and is replaced by the full-resolution 
polygon layer. Once zoomed far enough to resolve individual polygons, 
users can click to select a polygon to show a map overlay containing 
various properties of the tree, as well as the date on which the source 
imagery was acquired and a link to preview the source imagery.

Rainfall data. We used the rainfall data of Funk et al. to estimate  
annual rainfall at 5.6-m grids46. We averaged the available data from 
1982 to 2017 and extracted the mean annual rainfall for each mapped 
tree and bilinearly interpolated it to 100 × 100-m resolution. The rain-
fall data were also used to classify the study area into mean annual  
precipitation zones: hyper-arid from 0–150 mm year−1, arid from 150–
300 mm year−1, semi-arid from 300–600 mm year−1 and sub-humid 
from 600–1,000 mm year−1 zones. The rainfall data are found at https://
data.chc.ucsb.edu/products/CHIRPS-2.0/africa_monthly/ (ref. 46).

Data availability
The viewer can be accessed at https://trees.pgc.umn.edu/app. The 
Funk et al. rainfall data46 are freely available at https://data.chc.
ucsb.edu/products/CHIRPS-2.0/africa_monthly/. Commercial 
very-high-resolution satellite images were acquired through NASA 
under the NextView Imagery End User License Agreement. The 

copyright remains at Maxar, Inc. and redistribution is not possible. 
However, the derived products produced by this study are publicly 
available at the Oak Ridge National Laboratory’s Distributed Active 
Archive Center: https://doi.org/10.3334/ORNLDAAC/2117. Please con-
tact C.T., M.B. or P.H. for more specific requests. A detailed description 
of our processed data for the 95,402 selected mosaic images, including 
output data, specific cutlines affected by aerosol optical depth and 
cloud cover; data distributions for year, month, solar azimuth angle 
and off-nadir angle for each UTM zone segment in our study, can also 
be found at https://doi.org/10.3334/ORNLDAAC/2117.

Code availability
The tree detection framework based on U-Net is publicly available at 
https://zenodo.org/record/3978185. Please contact A.K., C.I., M.B. or 
J.M. for support and more information.
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Extended Data Fig. 1 | Planet NDVI time series for 308 trees contrasted with 
the background NDVI from the same area. a, Note the separation between 
the tree NDVI values and the background NDVI for the dry-season months of 
November to March. b, False-colour tree crown NDVI image from WorldView-3 
at 30-cm spatial resolution showing green leaf vegetation in red colours. 

Individual trees are evident, with green leaf tree crowns with associated 
shadows. Our mapping of trees with machine learning is based on trees defined 
as having a tree crown of at least 3.0 m2 with an associated shadow. Areas of low 
vegetation do not cast shadows sufficiently to be classified as trees. The areas 
in a and b are close to 13° 31′ N × 2° 40′ E.



Extended Data Fig. 2 | Allometric equations for converting tree crown  
areas into dry wood mass, dry root mass and dry foliage mass. a, Allometric 
equation based on tree crown area to predict wood mass was established from 
698 Sahelian and Sudanian woody plants of 27 species. The power model was 
fitted using log–log regression. The stored carbon is estimated from dry mass 
by multiplying with a factor of 0.47. Data were collected in the 0–800 mm year−1 

long-term precipitation zone (see ref. 19). The plot also shows the cumulative 
percentage up to 15 m2 and 50 m2 crown area (50% and 88.4%, respectively) of 
the predicted trees in our study (95% of which had crown areas less than 78 m2). 
b,c, Same as in a but for foliage and root mass. The foliage and root allometric 
equations were established from 900 trees of 26 species and 26 trees of five 
species, respectively.
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Extended Data Fig. 3 | Comparison between aboveground carbon-density 
maps and our data derived from 9,947,310,221 trees. a, Scatter plots showing 
the spatial agreement at the pixel level with all datasets aggregated to 1 × 1-km 
grids, with our data plotted on the x axes. b, We correlated all 1 × 1-km pixels for 

each rainfall zone, defined by 100 mm year−1 steps, between our aboveground 
carbon density (foliage + wood) with the estimates and current state-of-the-art 
aboveground carbon-density maps6–11 and our data. See also Fig. 2a.



Extended Data Fig. 4 | Temporal changes in carbon density. a, Scatter plot 
between the passive microwave L-VOD36 and our carbon density (wood + foliage) 
aggregated to 25 × 25-km grids. b, The linear relationship seen in a was used to 
convert annual L-VOD to the unit carbon density. L-VOD aboveground woody 
carbon density as well as TRENDY models23 values (all vegetation carbon)  
were averaged over the study area for the 0–1,000 mm year−1 rainfall zone  
for the period 2011–2019. Correlating L-VOD from the dry season, to avoid  
the complication of herbaceous vegetation, with our carbon-density map 
aggregated to 25 × 25-km resolution showed a moderately high level of 
agreement (r = 0.72); however, the strong scattering especially in low-rainfall 

areas also showed that the uncertainty was high, impeding the use of L-VOD37 
for local applications in arid areas. Nevertheless, the linear relationship was 
used to convert L-VOD to the unit carbon density to derive temporal dynamics 
in carbon density, which showed stable woody carbon stocks during 2010–2019 
(about 2.0 Mg C year−1) for this region, without clear trend or inter-annual 
variations, suggesting that none of droughts, deforestation or restoration had 
a measurable impact on carbon stocks over the past decade. TRENDY models 
showed a variety of responses but the ensemble showed a similar behaviour as 
L-VOD, although when herbaceous vegetation and belowground biomass were 
included, a variety of different magnitudes resulted.
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Extended Data Fig. 5 | Seasonal comparison between MODIS NDVI from a 
0.25° × 0.25° area and field data collections of dry herbaceous biomass 
production in kg ha−1 near Agoufou, Mali within the MODIS area. a, The 
MODIS 8-day time-step data showed the NDVI maximum and minimum range 
from 2000 to 2021 in the grey-coloured portion, with MODIS NDVI time series 
by years for 2004 to 2010 and the average MODIS NDVI from 2001 to 2021.  
b, Aboveground herbaceous dry mass biweekly in situ measurements for a 
rangeland field site in Mali49 centred at 15.4625° N by 1.4886° W. These showed 
high inter-annual and intra-annual herbaceous dry mass variability, sharp 
increases in herbaceous dry mass during the wet season and rapid decreases in 
early dry season at the few-metres scale. The MODIS NDVI data showed similar 
temporal trends to the herbaceous dry-mass variations in b for 2004–2010 and 

put these into context of the 2000–2021 MODIS record for a 0.25° × 0.25° area. 
Trees was roughly 3% of the total vegetation cover in this area and thus 
herbaceous vegetation dominates. The species composition in b was dominated 
by annual grasses, such as Aristida mutabilis, Cenchrus biflorus and Brachiaria 
xantholeuca, and annual dicotyledons, such as Zornia glochidiata and Tribulus 
terrestris. The data in b were from a 1 × 1-km location and were selected to be 
representative of the area. The MODIS NDVI data in a are available for all users, 
with instructions for use for the MODIS record from 2000 to the present50.  
Our tree crown data provide the means to separate primary production into 
herbaceous and tree fractions for semi-arid areas and will improve carbon 
residence understanding in areas of mixed tree and herbaceous vegetation.



Extended Data Fig. 6 | Forest fractions of different TRENDY23 models.  
The figure shows the percentage of forest areas assumed by each model along 
the rainfall gradient. Woody biomass in most models mainly comes from 
predefined forest areas and consequently results in a high degree of variation 

in the semi-arid area of our study. This is an example of the utility of our tree- 
mapping results for more accurate depiction of semi-arid trees for numerical 
simulation modelling.
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Extended Data Fig. 7 | Candidate and selected satellite images for our 
analysis. a, 326,523 Maxar images covering 90,097,073 km2 from November to 
March were available for our study and were acquired from 2002 to 2020.  
b, The distribution by month of all satellite data in a. The selected imagery  
for processing (see Methods) by year totalled 94,502 images that covered 

9,685,324 km2 with 87% of the satellite data from 2010 to 2020 (c) and 94% of 
the selected images were from the early dry-season months of November, 
December and January (d). We had a 9.3:1 area ratio of available imagery to 
selected input data for analysis. See also Extended Data Table 1a.



Extended Data Fig. 8 | Evaluation of the tree crown mapping omission and 
commission errors. The performance of the tree crown predictions was 
evaluated for 1,028 randomly selected 512 × 256-pixel areas from UTM zones 
28–37, with approximately 100 areas for each UTM zone. The patches were 
extracted with an 80% bias towards precipitation46 above 200 mm year−1, as 
most tree identifications are above the 200 mm year−1 isoline. 178 areas were 
excluded from evaluation because the rainfall was >1,000 mm year−1 or the 
areas were devoid of trees. A total of 50,740 trees were evaluated. a, Class 
breakdown of our 3,765 omission and commission errors. b, Class numbers of 

all the trees evaluated. c, Summarizes the number of trees, errors of commission 
and omission and the number of trees by error classes. The highest percentage 
of binned-error classes, from 15% to >25%, occurred in areas with few trees and 
resulted from mixed tree and bush confusion for <8% of all trees evaluated.  
By contrast, the lowest binned-error classes, from 0% to 15%, had 92% of all trees 
evaluated. In the 850 patches, the number of trees ranged from one tree to  
326 trees, with a total of 50,740 trees evaluated and 3,765 errors identified. 
Overall, the commission and omission error rates were 4.9% and 2.7%, 
respectively, a net uncertainty of 2.2%.
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Extended Data Fig. 9 | Tree crown and carbon errors. The RMSEs of our 
predicted crown areas calculated on external validation data from ref. 1, binned 
on the basis of the 50th quantiles of the hand-labelled crown areas. In 78 plots 
of 256 × 256 pixels, the hand-labelled set contained 5,925 trees and the system 
delineated 5,915 trees. These crown areas were matched using inner spatial 
join. Multiple overlapping hand-labelled or predicted tree crown areas were 

merged into multi-polygons before calculating the RMSE. The crown areas of 
missed tress counted as errors. For calculating the corresponding RMSE of 
predicted carbon, we relied on the allometric equations given in Extended Data 
Fig. 2a–c. The abscissa has a logarithmic scale and 95% of our 9.9 billion tree 
crowns had crown areas <78 m2 (Fig. 3b).



Extended Data Fig. 10 | Flow chart of the different components of our paper. 
We show the satellite data used, how these data were organized for processing 
with our machine learning software and the requisite training data, and how the 
resulting segmentation of ten-billion-tree crown area resulted. We then show 

the conversion of tree crown area in tree wood, root and leaf carbon at the tree 
level for ten billion trees. Last, we show the use of our viewer to enable use of the 
data we produced, from tree (1) to tree (1010).
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Extended Data Table 1 | The November to March Maxar satellite images considered and the number selected for our analysis 
by UTM zone

a, We started with 326,523 candidate images and selected 94,502 for processing for the area of 9.5° N to 24° N latitude from the Atlantic Ocean to the Red Sea for the months of November to 
March. 87% of data selected for processing were acquired from 2010 to 2020 and 94% of the selected satellite images were from November to January. Each image had a panchromatic and 
NDVI component that was used to identify trees with canopy area 3 m2 or greater in the early dry season. b, Specific satellite information for the four Maxar satellites used in our study includes 
the period of operation or the launch date, the nadir swath width, the nadir panchromatic spatial resolution and the spectral regions available. The relative geolocation accuracies of the four 
Maxar satellites used in our study are expressed in circular error probabilities or CE90 units, meaning that a given point will be within a specific radius 90% of the time, and in terms of RMSEs, 
which are one standard deviation of the residuals or distance-prediction errors. Our satellite data were resampled to a 50-cm spatial resolution for the panchromatic band and that band was 
used to panchromatically sharpen the NDVI to 50 cm. See also https://resources.maxar.com/data-sheets/quickbird; https://resources.maxar.com/data-sheets/geoeye-1; https://resources.
maxar.com/data-sheets/worldview-2; and https://resources.maxar.com/data-sheets/worldview-3.

https://resources.maxar.com/data-sheets/quickbird
https://resources.maxar.com/data-sheets/geoeye-1
https://resources.maxar.com/data-sheets/worldview-2
https://resources.maxar.com/data-sheets/worldview-2
https://resources.maxar.com/data-sheets/worldview-3
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