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The distribution of dryland trees and their density, cover, size, mass and carbon
content are not well known at sub-continental to continental scales’™. This
informationisimportant for ecological protection, carbon accounting, climate
mitigation and restoration efforts of dryland ecosystems®™ 5, We assessed more
than 9.9 billion trees derived from more than 300,000 satellite images, covering
semi-arid sub-Saharan Africa north of the Equator. We attributed wood, foliage and
root carbon to every tree in the 0-1,000 mm year " rainfall zone by coupling field

data®, machine learning

2022 satellite data and high-performance computing.

Average carbon stocks of individual trees ranged from 0.54 Mg C haand

63 kg Ctreeinthe arid zone to 3.7 Mg C ha”and 98 kg tree ' in the sub-humid
zone. Overall, we estimated the total carbon for our study area to be 0.84

(+19.8%) Pg C. Comparisons with 14 previous TRENDY numerical simulation
studies® for our area found that the density and carbon stocks of scattered trees
have been underestimated by three models and overestimated by 11 models,
respectively. This benchmarking can help understand the carbon cycle and address
concerns about land degradation®*. We make available a linked database of wood
mass, foliage mass, root mass and carbon stock of each tree for scientists,
policymakers, dryland-restoration practitioners and farmers, who can use it to
estimate farmland tree carbon stocks from tablets or laptops.

Improved knowledge of dryland trees, defined here as having agreen
crown area >3 m*with an associated shadow (Extended Data Fig. 1),
is essential to understand their roles in local livelihoods, economies,
ecosystems, the global carbon cycle and the climate systemin general.
Basic information about the distribution of dryland trees and their
density, cover, size, mass and carbon content are not well known*.
This knowledge is required for understanding the functional traits
of trees in relation to water resources with changes in climate, pre-
dicted increase in aridity and the number and duration of drought
events®>*, The sources of information used to estimate carbon stocks
indrylands include field surveys at plot scale; ecosystem models®;
and low-resolution, moderate-resolution and high-resolution satellite
images* ™, which are used to infer bulk properties such as averages
of tree cover, dry masses and carbon density per unit area at a much
coarser spatial scale thanindividual trees.

Although most emphasis is put on the development of advanced
monitoring techniques for forested ecosystems, none of these sources
combine wide/total coverage and representation of each individual
tree®. Reaching this level of detail is critical for dryland monitoring
and management because dryland trees grow isolated and in highly
variable size and density. Most current studies producing or using
areal averages of tree cover, wood mass or carbon stocks in drylands
are either at the very local level or the information for drylands is
derived from global maps®, which are rarely trained and validated in
drylands and often apply the same method onboth forests and dryland
vegetation® %, Although national tree inventories exist for few dryland
countries, theamount of labour required and their uncertainty are high.
Asaresult, all existing assessments on dryland carbon stocks are highly
uncertain, very difficult to validate and do not provide the means fora
detailed characterization at the level of individual trees™. Furthermore,
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Fig.1|Wood, foliage and root carbon 0f9,947,310,221 trees withcrown
area>3 m*across 9.7 million km>were mapped. a, Our study covered the
southern Sahara, the Sahel and the northern Sudanian zone of Africaand
showed the aggregated carbon density (foliage + wood + root) per hectare for
9,947,310,221 tree crowns from the 0-1,000 mm year” mean precipitationarea.
Theisohyets mark the 150,300, 600 and 1,000 mm year ' rainfall zones

the contribution of different dry-mass components—wood, foliage
and root mass—to the overall carbon stock is unknown at large scales.

At the same time, it remains unknown whether ecosystem models
quantify the rightamount of carbon and the lack of validation of global
models or mapsindry areas fuels narratives of possible underestima-
tion or overestimation of carbon stocks of drylands and their role in
accelerating or mitigating climate change'*'®. The missing information
ontreesatthelevel ofindividualsis decisive forimproved management
of woody resources in drylands: to accurately monitor deforestation
spurred by clearing of trees for cropping, mining, infrastructure and
urban development®. Furthermore, accurate monitoring of the tree
resource at the level of individual trees is instrumental for tree-planting
initiatives, for reporting the correct number of trees and carbon stocks
for national reporting schemes, such as the Paris Agreement, or to have
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(from north tosouth). b, Example showing the woody carbon stock of each single
tree foran agroforestry areain Senegal. ¢, Mean tree carbon density at the 5th,
25th, 75thand 95th percentiles along the rainfall gradient for wood, foliage and
rootcarbon.d, Meancarbonstock ofindividual trees at the 5th,10th, 25th, 75th,
90thand 95th percentiles along the rainfall gradient. Our definition of atree is
agreen leaf crown >3 m*withan associated shadow (Extended Data Fig. 1).

areliable system that allows payments for environmental services to
farmers and villages. Although deforestation and afforestation areas
can be accurately mapped using current methods and data in forest
ecosystems, no monitoring system exists for trees outside forests and
their carbon pools®.

At present, large amounts of funding are being allocated to
dryland-restoration activities and the monitoring of success or fail-
ure is based on local inventories lacking large-scale assessments of
survivalrates of planted trees. The Great Green Wall of the Sahara and
the Sahelinitiative has recently been subject to renewed interest and
increased investments® >, This initiative was conceived to address
the increasing challenges of desertification and drought, food inse-
curity and poverty in the wake of climate change. Yet the tracking of
projects and their successfulness remains a great challenge, as no
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Fig.2|Comparisonsbetween current aboveground carbon-density maps
and our estimations derived from 9.9 billion trees. a, Aboveground carbon
density from state-of-the-art maps using satellite data®™. Tree carbon from
thisstudyis derived fromwood + foliage carbon plotted with +1standard
deviationinthegreyzone.b, Aboveground carbon stocks aggregated over the
0-1,000 mm yearrainfall zone. Our estimations (grey colour) of 0.68 Pg are
wood +foliage carbon. The combined uncertainty from neural netareamapping,
tree crown omission and commission errors, and allometric conversion of
tree crownsinto tree wood, foliage and root carbon was +19.8% (Methods).

¢, Vegetation carbon density from the mean of 14 TRENDY dynamic ecosystem

monitoring systemisin place. Equally important, large-scale monitor-
ing of single trees will create afoundation for establishingimproved
knowledge on the functional traits of dryland trees, such as survival,
growth and mortality, controlled by the complex interplay between
biotic and abiotic factors®. Afforestation initiatives should also be
rooted in asolid ecological understanding of the local environment
toavoid causing water shortages for small-holder farming systems®.

The combined use of very-high-resolution satellite images and artifi-
cialintelligence madeit possible toidentifyisolated trees and map their
crown areaatlarge scales, covering the western Sahara-Sahel-Sudan
areas'. This approach of mapping individual trees has been extended
toa7.5-times-larger areacovering the drylands across Africa, fromthe
Atlantic Ocean to the Red Sea from 9.5° N to 24° N latitude between
the 0 and 1,000 mm year isohyets, using 326,523 satellite images at
a50-cmspatial resolution, and coupled with machine learning to map
9.9 billion trees (Fig.1and Methods). The large-scale mapping of indi-
vidual tree crowns provides an unprecedented opportunity to apply
allometric equations to estimate carbon stocks derived from foliage,
wood and root dry masses atlocal scales tolarge regions, here close to
10,000,000 km?*(Extended DataFig. 2). We take this step to assess the
woody carbon pool by adding up tree-by-tree values, calculated using
allometricequationsto predict foliage, wood and root dry masses from
crown area multiplied by the average carbon concentration (0.47).
These allometric equations were established by destructive sampling
oftrees from 26,27 and 5 species, respectively, selected within a rainfall
gradient from 150 to 800 mm year™. Comparisons with allometric
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models and data fromsixindividual TRENDY models for aboveground and
belowground carbon?are compared with our tree carbon with aboveground
herbaceous carbon added from passive microwaves®. d, Aboveground carbon
density from the LPJ-GUESS model®, selected here asit uses trees outside the
prescribed forest fraction, and our estimations are compared along the rainfall
gradient. L-VOD* was converted to carbon density using coefficients froma
linear correlation with our map (Extended DataFig. 4). Aboveground herbaceous
carbonwas derived fromref.¢. The samplesize for the 0-1,000 mm year™
rainfallzone was 9,947,310,221 tree crowns >3 m?.

equations established in wetter tropical areas ensure applicability of
these equations to wetter zones, at least up to 1,000 mm year ' rainfall®,
We estimated the combined uncertainty fromthe allometric equations
and the tree crown detection to be +19.8%.

The information of carbon stocks of 9.9 billion trees is compared
with a set of state-of-the-art TRENDY ecosystem models? as well as
current satellite-observation-based regional carbon stock maps® ™. We
introduce apublicly available ‘viewer’, which allows farmers, villagers,
policymakers and all stakeholders to retrieve the foliage wood and
root masses and the corresponding carbon stock of each tree using a
mobile device. We expect that this could improve not only the amount
ofinformation available but also the reporting and monitoring of trees
andtheir carbonstocks at various scales, from the individual field plot
to country scales.

Carbon stocks at the treelevel

We applied a deep-learning-based tree mapping on a large num-
ber of satellite images and measured 9,947,310,221 tree crowns:
all woody plants with a shadow and a crown area >3 m? from the
hyper-arid (0-150 mm year™), arid (150-300 mm year™), semi-arid
(300-600 mm year™) and dry sub-humid (600-1,000 mm year™)
rainfall zones of tropical Africa north of the Equator and south of the
Sahara (Fig.1). The average carbon stock of a single tree is 51 kg Cin
the hyper-arid, 63 kg Cinthe arid, 72 kg Cin the semi-arid and 98 kg C
inthe sub-humid zone. The individual tree information was projected
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Fig. 4 |Different components of the viewer. This example shows Widou singletreesto the hectarescale.d, Our viewerincludes allinformation from
Thiengoly in semi-arid Senegal surrounded by tree plantations, which are atoc. Thisonline tool providesinformation on crown area; foliage, wood and
partly related to a Great Green Wall** project aiming to increase tree density root carbon of single trees; and aggregates carbon to the hectare scale. These
andimprovelivelihoodsinthe Sahel. a, Tree crown segmentations from the datacanbeaccessed by policymakers and stakeholders to monitor areas of
neural net mapping.b, Wood, foliage and root carbon calculated for each tree interest. The viewer canbe accessed at https://trees.pgc.umn.edu/app.

(Methods). ¢, Carbon density per hectare aggregated from carbon stocks of
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Fig.5|Monitoring at thelevel of single trees from Khombole, Senegal.
a,b,A50-cm-scaleimage from 2002 (a) and a50-cm-scale satellite image from
2021 (b) showingan agroforestry areaat the same location. Tree cover has
increased between2002 and 2021and the average carbon density of both areas
was calculated and increased from 6 to 10 Mg ha™. Alarge number of trees grow

to the area by calculating the carbon density in Mg C ha™, which was
onaverage 0.03 Mg C ha'inthe hyper-arid, 0.54 Mg C ha™inthearid,
1.54 Mg C ha™in the semi-arid and 3.73 Mg C ha™ in the sub-humid
zone. Although foliage mass has a small overall fraction of the total
dry mass (3%), it isan important variable for quantification of browse
potential and serves as a proxy for other ecosystem processes, such as
transpiration, photosynthesis and nutrient cycling. The proportion of
root mass is on average 15-20% of the total mass.

Current carbon map and model comparisons

We compared our aboveground carbon-density maps (foliage + wood)
derived fromindividual trees with current state-of-the-art maps (Fig.2
and Extended DataFig. 3) available at moderate spatial resolutions of
30-1,000 m. Thetemporal dynamics were assessed by low-frequency
passive microwaves (L-VOD)***, which has emerged as a tool for the
assessment of carbon stock dynamics at the 25 x 25-km spatial scale
(Extended Data Fig. 4). Moreover, we compared carbon-density maps
and dynamics with dynamic ecosystem models from the TRENDY
database with a 50 x 50-km grid cell size?*. None of these maps were
designed specifically for drylands; most dynamic ecosystem models
and satellite-based models are developed and trained for forest eco-
systems and, in the case of the TRENDY models, used meteorological
forcings and prescribed vegetation maps that contain further uncer-
tainties for comparative purposes.

Existing carbon-density maps compare differently with our assess-
ment based on individual trees and there is little spatial agreement
among the maps (Fig. 2a,b). Notably, although areas of scattered trees
having arelatively low carbon density are largely mapped as zero carbon
in previous maps except for ref.°, areas of denser tree cover and some
areastypically without trees, such aswetlands, irrigated croplands and
desert mountains, have considerably higher values than our assess-
ment. This leads to an overall higher carbon stock of the areacompared
with our results. Although we do not map herbaceous vegetationin our
study, the tree cover we map can be used to disaggregate herbaceous
vegetation from trees (Extended Data Fig. 5).

At regional scales, dynamic ecosystem model vegetation carbon
shows a considerable variability, but the mean follows our estimates of
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onfarmlands, keeping the soils fertile and reducing the need for fallow periods.
Thegreyscale of the background images indicates the carbon density per
hectare, whereas the colour scale shows the carbon content of individual trees.
Thisisagood example of the tree restoration monitoring potential in our study
area.

herbaceous, wood, foliage and root carbon along the rainfall gradient
(Fig. 2¢). Notably, whereas previous studies assumed that ecosystem
models underestimated dryland carbonstocks, our results show overall
higher values from the model outputs as compared with the assess-
ment based on individual trees, although large variations between
models exist. Only considering aboveground carbon, the example of
LPJ-GUESS shows slightly lower values than our assessment up to about
800 mm year'rainfall (Fig. 2d).

Both ecosystem models and previous satellite-based carbon maps
diverge markedly from our results beyond 700-800 mm year ™ rainfall.
All other maps assume a continuous increase beyond this rainfall zone,
yetour results reach aplateauat 800 mm year " and no further increase
in carbon is observed with higher rainfall up to 1,000 mm year™. We
acknowledge that the uncertainty of our results increases with denser
canopy cover and that we miss all understory vegetation. However,
statistical evaluations of the rainfall-tree density relationship from our
dataindicate thatneither carbonstocks per tree (Fig.1d) nor tree cover
further increased between 800 and 1,000 mm year™ rainfall (Fig. 3a).
Trees with crown area <50 m? make up 88% of the total number of trees,
whereas trees in the semi-arid and sub-humid zones constitute 90% of
the total carbonin our study (Fig. 3).

Application at the treelevel

The comparison with dynamic global vegetation models and existing
biomass maps shows some similar patterns at coarse scale, yet none of
these maps canbe used to derive information at the level of individual
trees needed to support policymakers and decision-makers. For this
reason, we introduce a viewer (Fig. 4), which is built on Mapbox and
OpenStreetMap, and can be accessed online by everyone and from
anywhere. The viewer includes all 9.9 billion trees as objects, and the
wood, foliage and root mass can be accessed individually for each of
them. As an example, we show the area of Widou Thiengoly, an area
in Senegal in which tree planting for the Great Green Wall has been
promoted over the past decades (Fig. 4a). Although previous assess-
mentsonthesuccess of tree plantations were based on narratives, visual
interpretations or site visits, the viewer provides an unbiased tool for
evaluating success and failure of initiatives, as well as quantifying the
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Fig. 6| Comparison of different aboveground carbon-density maps.
We show the aboveground carbon density for our study areacompared with
different sources. Areas beyond 1,000 mm year rainfall are masked out. Data

carbon stocks gained by each planted tree or lost by each removed/
dead tree. The example shown in Fig. 4 illustrates that high-density
plantations in this arid region reach carbon-density values of about
5Mg C ha™ (Fig. 1c), but the survival rate of planted trees has been a
long-lasting concern that needs to be carefully monitored to be able
to assess the efficacy of Sahelian tree-planting programmes.

Another example shows an agroforestry regionin Senegal, north of
Khombole that has arelatively high density of trees, which hasincreased
the carbon stocks of the region considerably. The example area shown
in Fig. 5 has almost doubled carbon density between 2002 and 2021
(Fig.5).

Discussion

Our assessment is a large-scale estimation of wood, foliage and root
carbonatthelevel ofindividual trees. The finding that global ecosystem
models and previous carbon-density maps estimate higher carbon
stocksin Africandrylands compared with our assessment based on 9.9
billionindividual trees seems surprising, as current tree-cover maps are
notableto correctly account for scattered trees and thus should consid-
erably underestimate the number of treesin these areas'. The explana-
tion for this apparent paradox—higher tree cover but less carbon—is
related to the fact that previous models are rarely developed, trained
and validated with plots of very sparse tree cover, thus leaving high

Mg C

[ No carbon

are from Santoro etal." (a), Baccinietal.” (b), Hananetal.’ (c), Bouvet et al.® (d)
and Tucker et al. (this paper; foliage + wood) (e). See also Fig. 2a and Extended
DataFig.3.

uncertainty for drylands with scattered trees. Consequently, areas with
scattered trees are often represented by zero values (Fig. 6), whereas
the carbon density of larger groups of trees may be overestimated in
previous assessments, as these areas are wrongly considered as dense
forests. In essence, most previous assessments do not accurately map
carbon density below 10 Mg C ha™, if at all, and may overestimate the
carbon stocks of dryland ‘forests’. Moreover, if the regionis taken as a
whole, green crops and herbaceous vegetation affect optical images,
whereas steep topography and wetlands/irrigated areas affect theradar
backscatter, both predicting higher carbon stocks than our estima-
tions. Although we used allometric equations specifically developed
from locally sampled field data®, 95% of the trees we mapped had a
crownarea<78 m2 Thisintroduces a small uncertainty in carbon values
for the 5% of tree crowns >78 m?in more humid areas, where trees are
taller and/or larger.

Nevertheless, the divergence between our results and previous
assessments in higher-rainfall zones needs to be further investigated
and our maps should be used with caution beyond 800 mm yearrain-
fall. Theindirectinclusion of the tree height and the application of the
same equation to all tree species are uncertainty factors that will be
assessed in future versions of the dataset. Finally, the fact that larger
trees shade out smaller trees in areas of dense tree cover makes the
method based on individual tree counting less suited to more humid
areas.
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Herbaceous dry mass can contribute considerably to the annual
carbon density. However, most herbaceous plants of the region are
annuals that die off each year and do not constitute a residual carbon
stockbut have ahighinter-annual variability. The herbaceous mass used
in our study*® shows the seasonal peak value, which drops by about 25%
within only a few weeks (Extended Data Figs. 1a and 5). Traditionally,
remotely sensed separation of herbaceous vegetation from woody
foliage is challenging with both optical and radar satellite data. We
overcome this by measuring individual tree crown areas.

The carbon difference between ecosystem models and our study
canbe explained by different forest fractions assumed by each model
(Extended DataFig. 6). Most of the dynamic global vegetation models
donotsimulate trees outside forests and woody carbonis usually asum
of predefined forest areas. Differences may also result froma simplistic
implementation of disturbances, in particular, fire, grazing and the
fact that we did not include belowground herbaceous carbon in our
estimates. Still, the results of the dynamic vegetation models are closer
to our estimations than previously assumed and the inclusion of our
data may improve future modelling results, leading to more realistic
forecasts of the impact of climate change on drylands.

Dryland trees are notonly acarbon stock but also provide ecosystem
services that are valuable to the environment and support local liveli-
hoods, including timber, fuel wood, protection against soil erosion
andloss, soil fertilization, shade and nutrition for tree crops®™. The ben-
efits ofincreased tree cover are many and establishing an operational
monitoring system for dryland treesis critically needed. The dynamics
of growth and mortality of trees outside forests goes undetected by
conventional monitoring systems based on satellite imagery with a
spatial resolution>10 m. Although our current assessment at the level
ofindividual trees does not yetinclude atemporal dimension (except
forthe exemplary case providedinFig.5), itis abaseline of the number,
mass and carbon stock of trees outside forests at the sub-continental
scale. The publicly available viewer makes thisinformation accessible
for scientists, policymakers, stakeholders and individual farmers, who
can easily quantify woody carbon stocks of a given area, down to the
level of asingle tree growing in a private yard.

A next step will be adding a temporal dimension to the wall-to-wall
mapping we describe and we expect it to be possible from this source
of data, atleast with decadal time steps. This will facilitate addressing
theimpact of droughts, restoration and policies at various scales, down
to the level of individual trees. High spatial resolution is the key to
improved treeinventoriesindrylands. The ever-increasing availability
of satellite images will make continental-scale assessments of carbon
poolsand dynamics at theindividual tree level realistic in near-real time.
This will be key to developing robust schemes for dryland management
plans needed to achieve the United Nations’ Sustainable Development
Goals. Our paperis astep inthat process.

Online content

Anymethods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competinginterests; and statements of data and code availability
are available at https://doi.org/10.1038/s41586-022-05653-6.
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Methods

Overview

This study establishes a framework for mapping carbon stocks at
the level of individual trees at a sub-continental scale in semi-arid
sub-Saharan Africa north of the Equator. We used satellite imagery
from the early dry season (Extended Data Fig. 1). The deep learning
method developed by a previous study’ allowed us to map billions of
discrete tree crowns at the 50-cm scale from West Africa to the Red
Sea. Thenwe used allometry to convert tree crown areainto tree wood,
foliage and root carbon for the 0-1,000 mm year precipitation zone
inwhich our allometry was collected (Extended Data Fig. 2). We intro-
duce aviewer thatenables the billions of trees to be viewed at different
scales, with information on location, metadata of the Maxar satellite
image used, tree crown area and the estimated wood, foliage and root
carbon contentbased onour allometry (Fig.4). We also make available
our output data forthe1,000 mm year™ precipitation zone southward
t09.5° N latitude withinformation onlocation, precipitation, metadata
of the Maxar satellite image used, tree crown area, tree wood carbon,
tree root carbon and tree leaf carbon.

Satelliteimagery

We used 326,523 Maxar multispectral images from the QuickBird-2,
GeoEye-1, WorldView-2 and WorldView-3 satellites collected from 2002
t02020 from November to March from 9.5° N to 24° N latitude within
Universal Transverse Mercator (UTM) zones 28-37 for Africa (Extended
DataTable1a). These images were obtained by NASA through the Next-
View License from the National Geospatial-Intelligence Agency. Data
were assembled over several years with afocus onlater years toachieve
arelatively recent and complete wall-to-wall coverage.

When using satellite data from different satellites over several years,
with varying sun-target-satellite angles, with varying radiometric
calibration of satellite spectral bands and different atmospheric com-
positions through which the surface is imaged, there are two possi-
bilities for using hundreds of thousands of satellite images together
quantitatively. One approach, used extensively in NASA’s, NOAA’s and
the European Space Agency’s Earth-viewing satellite programmes, is
to quantitatively inter-calibrate radiometrically the satellite channels
through time; correct these data for time-dependent atmospheric
effects such as aerosols, clouds, haze, smoke, dust and other atmos-
pheric constituent effects and then normalize the viewing perspective
to the same sun-target-satellite angle®. Another approach is to use
the satellite data as collected; assemble training data of trees viewed
from different satellites under different sun-target-satellite angles,
different times, different atmospheric conditions and use machine
learning with high-performance computing to performthe tree map-
ping at the 50-cm scale. The key to successful machine learning is to
account for all the sources of variation within the domain of study
in the training data to ensure accurate identification of trees under
all circumstances. We included trees viewed substantially off-nadir,
trees collected under different aerosol optical thicknesses, trees col-
lected under cirrus cloud conditions, trees viewed in the forward and
backward scandirections, trees on sandy soils, trees on clay soils, trees
onburnscars, treesin laterite areas and trees in riverine settings. Our
training data were collected by one team member and are a carefully
selected manual delineation of 89,899 individual trees under arange of
atmospheric conditions, viewing perspectives and ecological settings.

All multispectral and panchromatic bands associated with our
Maxar images were orthorectified to a common mapping basis. We
next pan-sharpened all multispectral bands to the 0.5-mscale with the
associated panchromaticband. The absolute locational uncertainty of
pixels at the 0.5-mscale from orbit is approximately 11 m, considering
theroot-mean-square location errors among the QuickBird-2, GeoEye-1,
WorldView-2 and WorldView-3 satellites (Extended Data Table 1). We
formed the normalized difference vegetation index (NDVI)** from

every image in the traditional way from the pan-sharpened red and
near-infrared bands. We also associated the panchromatic band with
the NDVIband and ensured that the panchromaticand NDVIbands were
highly co-registered. The NDVI was used to distinguish tree crowns
fromnon-vegetated background because the images were taken from
aperiod when only woody plants were photosynthetically active in
this area®. Our training data were labelled on images from the early
dryseasonwhen only trees have green leaves. Because most semi-arid
savannah trees continue to photosynthesize in the early dry season
after herbaceous vegetation senesces, green leaf tree crowns are easily
mapped because of their higher NDVIvalues than their senescent herba-
ceous vegetation surroundings. We substantiate this by analysis 0of 308
individual trees using NDVItime series with 4-m PlanetScope imagery
thatemphasized theimportance of satellite data from the November,
December andJanuary early dry-season months (Extended Data Fig.1).

We next formed our data into mosaics by applying a set of decision
rules, resultingin acollection of 16 x 16-km tiles withineach UTM zone
from 9.5° N to 24° N latitude for Africa. The initial round of scoring
considered percentage cloud cover, sun elevation angle and sensor
off-nadir angle: preference was given toimagery that had lower cloud
cover, then higher sunelevation angle and finally view angles closest to
nadir. Inthe second round of scoring, selections were assigned priority
to favour early dry-season months and off-nadir view angles: prefer-
ence was giventoimagery from November, December and January with
off-nadir angle less than £15°; second to imagery from November to
January with off-nadir angle between +15° and +30°; third to imagery
from February or March with off-nadir angle less than +15°; and finally to
imagery from February or March with off-nadir angle between +15° and
+30°. Image mosaics were necessary to eliminate multiple counting of
trees. We formed mosaics using 94,502 images for tree segmentation,
with 94% of these being from November, December and January. Ninety
percent of our selected mosaic imagery was within +15° of nadir, 87%
were acquired between 2010 and 2020 and 94% were from the early dry
season (Extended Data Fig. 7). Asummary of month, year, solar eleva-
tion and off-nadir angle by UTM zone can be found in Supplemental
Information Fig. 1.

Possible obscuration of the surface by clouds totalled 4.1% of our
input mosaic dataarea and aerosol optical depth >0.6 at 470-nm (ref. *°)
areastotalled 3.4% of our input data. However, we mapped 691,477,772
treesinour possible cloud-cover-affected and aerosol-affected areas,
indicating that cloud and aerosol effects were lower than these num-
bers. Inaddition, 0.9% of our input data did not process. We include a
datalayer in our viewer for these three conditions.

Mapping tree crowns with deep learning

We used convolutional neural network models developed by a previ-
ous study’. The models were trained with manually delineated and
annotated 89,899 individual trees along anorth-south gradient from
0to 1,000 mm year rainfall'. Only features that showed a distinct
crown area and associated shadow wereincluded, which excluded small
bushes, grass tussocks, rocks and other features that might have green
leaves or cast a shadow from our classification. All training data and
model training was donein UTM zones 28 and 29. Because tree floristic
diversity in the 0-1,000 mm year™ zone of our study is highly similar
from the Atlantic Ocean to the Red Sea across Africa* *, we added no
further training data as our study moved further eastward. We used
state-of-the-art deep learning to segment trees crowns at the 50-cm
scale'. We used two different models based on a U-Net architecture,
one for lower-rainfall desert regions with <150 mm year™ precipitation
and one for regions with average annual precipitation >150 mm year™.
Details about the network architecture, training process and hyper-
parameter choices can be found in ref. ', Previous evaluation showed
that early dry-season images performed better than late dry-season
images, which was alimitation of our previous study. We reduced this
error by using early dry-season images with only 6% of our area being
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covered by images from February and March. The models were also
designed to separate clumped trees by highlighting spaces between
different crowns during the learning process, similar to a strategy for
separating touching cells in microscopic imagery?.

Allometry
Very-high-resolution satellite images and deep learning have achieved
mappingofindividual trees over large areas'. Each tree is georeferenced
in the satellite data and defined by crown area. The challenge was to
develop allometric equations for foliage, wood and root dry masses
or carbon based on crown area regardless of species. This was met by
reanalysing existing Sahelian and Sudanian woody plant data from
destructive sampling. Overall, the seasonal maximum foliage, wood
androot dry masses were measured on 900, 698 and 26 trees or shrubs
from 27,26 and 5 species, respectively, for which crown area was also
measured. Several allometric regression models tested for foliage,
wood or root masses are power functions and independent of species.
All the regression outputs were inter-compared for fit indicators, by
systematic estimates of prediction uncertainty and by root-to-wood
ratios and foliage-to-wood ratios over the range of crown areas. This
resultedinaset of ordinary least squares log-log equations with crown
areaastheindependentvariable. The Sahelian and Sudanianallometry
equations were also compared with published allometry equations for
tropical trees, primarily from more humid tropics, which are generally
based onstem diameter, tree height and wood density. Our allometric
predictions are within the range of other allometry predictions, rein-
forcingthe confidencein their use beyond the Sahelian and Sudanian
domains into sub-humid savannahs for discrete trees”.

Onthebasis of ref., we predicted the wood (w), foliage (f) and root
(r) dry mass as functions of the crown area (A) of a single tree as:

mass,,(A) =3.9448 x A110%8 (N, = 698)
mass(A) = 0.2693 x A%**1 (N; = 900)
mass,(4) = 0.8339 x A"173% (N. = 26)

The tree mass components of wood, leaves and roots were combined
to predict the total mass(A4) in kg of a tree from its crown area A in m*

mass(A) = mass,, (A) + mass(A) + mass,(A4)

Asinref.!,acrownareaofsize A >200 m>wassplitinto| A/100 |areas
of size100 m?and one area with the remaining m?if necessary. We con-
verted dry mass to carbon by multiplying with a factor of 0.47 (ref. **).

Uncertainty analysis

We evaluated the uncertainty of our tree crown area mapping and car-
bon estimationintwo ways. First, we quantified our tree crown mapping
omission and commission errors by inspecting randomly selected areas
from UTM zones 28-37, validating that our neural network generalized
over UTM zones consistently (Extended Data Fig. 8).

Second, we quantified therelative error of our tree crown area estima-
tion. We consider the uncertainty 4, of aquantity xand the correspond-
ing relative uncertainty 6, defined by the absolute and relative error,
respectively®. To assess the relative error in crown area estimation
resulting from errors by the neural network, we considered external
validation data from ref.', which were not used in the model-building
process. We considered expert-labelled tree crowns as well as the pre-
dicted tree crowns from 78 plots of 256 x 256 pixels. The hand-labelled
setcontained 5,925 trees and the system delineated 5,915 trees. The total
hand-labelled tree crown area was 118,327 m? and the neural network
predicted 121,898 m2. This gave a relative error in crown areamapping
of §,rea = 3.3%. We matched expert-labelled and predicted tree crowns
and computed the root-mean-square error (RMSE) per tree, taking
overlapping areas and missed trees into account (see Extended Data
Fig.8). We estimated the allometric uncertainty (6,omeric) UsSing the data

from ref. ' (see below). The two relative errors 8,,., and 6,jomeric WEre
combined to anoverall uncertainty estimate for the carbon prediction
of £19.8% (see below).

Omission and commission errors

We evaluated our tree crown mapping accuracy by analysis of 1,028
randomly selected 512 x 256-pixel areas over the 9.5° N to 24° N lati-
tude within UTM zones 28-37. Because the drier 60% of our study
area only contains 1% of the 9,947,310,221 trees we mapped in the
0-1,000 mm year ' rainfall zone, we applied an 80% bias for selecting
evaluation areas above the 200 mm year™ precipitation line*, as >98%
of treeidentifications were above the 200 mm year™ precipitationiso-
line.Identified tree polygons were further categorized into tree crown
area classes from 0-15 m?,15-50 m?, 50-200 m*and >200 m?, with a
total of 50,570 trees evaluated. Although a previous study reported
greatest uncertainty inboth the smallestand largest area classes', our
more expansive work found the greatest uncertainty in our smallest
tree class. We excluded from evaluation any tiles that had annual
precipitation*® >1,000 mm year™ and all areas that were devoid of
vegetation, leaving us with 850 areas.

Seven members of our team evaluated the accuracy in terms of com-
mission and omission by tree crown area classes for the 850 areas. Input
data provided for every area were the NDVI layer, the panchromatic
shadow layer and the neural net mapping results in each of the four
crown area classes. Ancillary data available to evaluators included
the centre coordinates for comparison with Google Earth data, the
Funk et al.* rainfall, the acquisition date of the area evaluated and the
viewing perspective.

We identified areas wrongly classified as tree crowns (commission
errors), missed trees (omission errors) and crown areas correspond-
ingto clumped trees (Extended DataFig. 8). Clumped trees were most
common for >200 m? tree crown area. They were rare in the 3-15 m?
and 15-50 m? tree classes, which comprise 88% of our tree crowns.
In the 850 patches, the number of trees ranged from one tree to 326
trees, withatotal of 50,570 trees evaluated and 3,765 errorsidentified.
Overall, the commission and omission error rates were 4.9% and 2.7%,
respectively, anet uncertainty of 2.2%.

Allometric uncertainty estimation

The prediction of tree carbon from the crown area for a single tree
based oncrownareaaloneisinherently uncertain***8, As the allometric
equations are based on three different datasets, we compute their
uncertainties independently, combine them and put themin relation
to the total carbon measured in the three datasets.

The allometric equations were established using an optimal
least-squares fit of an affine linear model predicting the logarithmic
carbon from the logarithmic tree crown area'. To estimate the uncer-
tainty of the allometric equations, we repeated the fitting usingrandom
subsampling. The datasets were randomly splitinto training data (80%)
forfitting the allometric equations and validation data (20%) for assess-
ing the uncertainty. For example, from the root measurements,
(A3, - (Ay,3,), We compute g = - 3% y and ji = - 3% mass,(4).
The correspondingerroris A, = 178 —ﬁrl.

Because the total carbon for a tree with a certain crown area is the
sum of the three carbon components, we add the absolute uncertain-
ties assuming independence®.

[ 12 2 2
Aallometric = Af +Aw +Ar
_ Zallometric Rk in Wthh

and compute the relative uncertainty as 6,ometric =
mass

the average mass .., is given by the sum of the averages for wood (u1,,),
leaves (i) and root (1,). This process was repeated ten times, resulting
inamean relative uncertainty of

A

6al|ometric =19.5%.



Total carbon uncertainty

We combine the uncertainties from the neural net mapping and our
allometric equations, which canbe viewed as considering (1 + A)-(1+ B)
withA and Bbeing random variables with standard deviations §,,., and
B.iometric- Neglecting higher-order and interaction terms, we combine

the two sources of uncertainty to 6 ~ |6, + Sj..omemc , resulting in
an uncertainty in total tree carbon for our study of +19.8%. See also
Extended Data Fig. 9 for the RMSEs of our predicted crown areas cal-
culated on external validation data from ref.?, binned on the basis of
the 50th quantiles of the hand-labelled crown areas and converted also
into carbon. Extended Data Fig. 10 is a flow diagram summarizing our
methods.

Our viewer

Visualizing our large tree-mapping dataset in an interactive format
was essential for quality-control purposes, exploration of the data
and hypothesis creation. Creating aweb-based viewer serves the pur-
pose of being the initial point of interaction with our dataset for fellow
researchers, local stakeholders or the general public. The visualization
of more than 10 billion trees in a web browser required maintaining
performance, interactivity and individual metadata for each polygon.
Users should be able to zoom in to any area within the dataset to view
individual tree polygons and query their statistics while at the same
time accurately depicting the overall trends of the dataset at lower
zoom levels. The visualization also needed to clearly denote where
data were missing or possibly affected by clouds or aerosols. Finally,
the extent and origin of the source imagery, its acquisition date and
apreview of theimagery needed to be available. To accomplish these
goals, avector-tile-based approach was taken, with the data visualized
inaMapbox GLJS map within aReact web application. To create vector
tiles covering the entire study area, we developed a data-processing
pipeline using high-performance computing resources to transform
the datainto compatible formats, as well as to package, optimize and
combine the vector tiles themselves.

We used two tracks to store and visualize the results of this study on
the web: vector polygon dataand generalized rasters representing tree
crowndensity. At the native spatial resolution of 50 cm, the map shows
the full-resolution tree polygon dataset. At lower-spatial-resolution
zoom levels, rasterized representations of tree density are shown.
Visualizing generalized rasters in place of vector polygons improves
performance substantially. As users zoom in to higher spatial resolu-
tions, theraster layer fades away and is replaced by the full-resolution
polygonlayer. Once zoomed far enough toresolveindividual polygons,
users can click to select a polygon to show a map overlay containing
various properties of the tree, as well as the date on which the source
imagery was acquired and a link to preview the source imagery.

Rainfall data. We used the rainfall data of Funk et al. to estimate
annual rainfall at 5.6-m grids*¢. We averaged the available data from
1982 t0 2017 and extracted the mean annual rainfall for each mapped
tree and bilinearly interpolated it to 100 x 100-mresolution. The rain-
fall data were also used to classify the study area into mean annual
precipitation zones: hyper-arid from 0-150 mm year™, arid from 150-
300 mm year™, semi-arid from 300-600 mm year™ and sub-humid
from 600-1,000 mm yearzones. The rainfall data are found at https://
data.chc.ucsb.edu/products/CHIRPS-2.0/africa_monthly/ (ref. *¢).

Data availability

The viewer can be accessed at https://trees.pgc.umn.edu/app. The
Funk et al. rainfall data*® are freely available at https://data.chc.
ucsb.edu/products/CHIRPS-2.0/africa_monthly/. Commercial
very-high-resolution satellite images were acquired through NASA
under the NextView Imagery End User License Agreement. The

copyright remains at Maxar, Inc. and redistribution is not possible.
However, the derived products produced by this study are publicly
available at the Oak Ridge National Laboratory’s Distributed Active
Archive Center: https://doi.org/10.3334/ORNLDAAC/2117. Please con-
tact C.T.,M.B. or P.H. for more specificrequests. A detailed description
of our processed data for the 95,402 selected mosaicimages, including
output data, specific cutlines affected by aerosol optical depth and
cloud cover; data distributions for year, month, solar azimuth angle
and off-nadir angle for each UTM zone segment in our study, can also
be found at https://doi.org/10.3334/ORNLDAAC/2117.

Code availability

The tree detection framework based on U-Net is publicly available at
https://zenodo.org/record/3978185. Please contact A.K., C.I., M.B. or
J.M. for support and more information.
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Extended DataFig.1|Planet NDVItime series for 308 trees contrasted with
thebackground NDVIfrom the samearea. a, Note the separationbetween
thetree NDVIvalues and the background NDVI for the dry-season months of
November to March. b, False-colour tree crown NDVIimage from WorldView-3
at30-cmspatial resolution showing green leaf vegetationinred colours.
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Individual trees are evident, with greenleaftree crowns with associated
shadows. Our mapping of trees with machine learning is based on trees defined
as having atree crown of at least 3.0 m?with anassociated shadow. Areas of low
vegetation do not cast shadows sufficiently to be classified as trees. The areas
inaandbarecloseto13°31’N x2°40’E.
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Extended DataFig.2|Allometricequations for convertingtree crown
areasinto dry wood mass, dry root mass and dry foliage mass. a, Allometric
equationbased ontree crown areato predict wood mass was established from
698 Sahelian and Sudanian woody plants of 27 species. The power model was
fitted using log-log regression. The stored carbonis estimated from dry mass
by multiplying with a factor of 0.47. Datawere collected in the 0-800 mm year™
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long-term precipitation zone (see ref. ). The plot also shows the cumulative
percentage up to 15 m?and 50 m?crown area (50% and 88.4%, respectively) of
the predicted treesinour study (95% of which had crown areas less than 78 m?).
b,c,Sameasinabutforfoliage and root mass. The foliage and root allometric
equations were established from 900 trees of 26 species and 26 trees of five
species, respectively.
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Extended DataFig.3|Comparisonbetween aboveground carbon-density eachrainfall zone, defined by 100 mm year™ steps, between our aboveground
mapsand our dataderived from 9,947,310,221 trees. a, Scatter plots showing carbon density (foliage + wood) with the estimates and current state-of-the-art
thespatialagreementat the pixel level withall datasets aggregated to1 x 1-km aboveground carbon-density maps®™ and our data. See also Fig. 2a.

grids, with our data plotted on the xaxes. b, We correlated all 1 x 1-km pixels for
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Extended DataFig.4 | Temporalchangesin carbondensity. a, Scatter plot
between the passive microwave L-VOD** and our carbon density (wood + foliage)
aggregated to 25 x 25-kmgrids. b, Thelinear relationship seeninawas used to
convertannual L-VOD to the unit carbon density. L-VOD aboveground woody
carbon density as well as TRENDY models® values (all vegetation carbon)
were averaged over the study area for the 0-1,000 mm year rainfall zone

for the period 2011-2019. Correlating L-VOD from the dry season, to avoid

the complication of herbaceous vegetation, with our carbon-density map
aggregated to 25 x 25-kmresolution showed amoderately high level of
agreement (r= 0.72); however, the strong scattering especially in low-rainfall
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areas also showed that the uncertainty was high, impeding the use of L-VOD*’
forlocal applicationsin arid areas. Nevertheless, the linear relationship was
used to convert L-VOD to the unit carbon density to derive temporal dynamics
in carbon density, which showed stable woody carbon stocks during 2010-2019
(about 2.0 Mg C year™) for this region, without clear trend or inter-annual
variations, suggesting that none of droughts, deforestation or restoration had
ameasurableimpacton carbonstocks over the past decade. TRENDY models
showed avariety of responses but the ensemble showed asimilar behaviour as
L-VOD, althoughwhen herbaceous vegetation and belowground biomass were
included, avariety of different magnitudes resulted.
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Extended DataFig.5|Seasonal comparisonbetween MODIS NDVIfroma
0.25°x0.25°areaand field data collections of dry herbaceous biomass
productioninkg ha™near Agoufou, Mali within the MODIS area.a, The
MODIS 8-day time-step datashowed the NDVI maximum and minimum range
from2000to2021inthegrey-coloured portion, with MODIS NDVItime series
by years for2004 to0 2010 and the average MODIS NDVIfrom2001t0 2021.

b, Aboveground herbaceous dry mass biweekly in situ measurements for a
rangeland field sitein Mali*’ centred at 15.4625° Nby 1.4886° W. These showed
highinter-annual and intra-annual herbaceous dry mass variability, sharp
increasesinherbaceous dry mass during the wet season and rapid decreases in
early dryseason at the few-metres scale. The MODIS NDVI data showed similar
temporal trendsto the herbaceous dry-mass variationsinb for2004-2010 and

Jan Feb Mar Apr

puttheseinto context ofthe2000-2021MODISrecord for a 0.25° x 0.25° area.
Trees wasroughly 3% of the total vegetation cover in this areaand thus
herbaceous vegetation dominates. The species compositioninbwas dominated
by annual grasses, such as Aristida mutabilis, Cenchrus biflorus and Brachiaria
xantholeuca, and annual dicotyledons, suchas Zorniaglochidiata and Tribulus
terrestris. The datainbwere fromalx 1-kmlocationand were selected to be
representative of thearea. The MODIS NDVIdatainaare available for all users,
withinstructions for use for the MODIS record from 2000 to the present*.
Our tree crown data provide the means to separate primary productioninto
herbaceous and tree fractions for semi-arid areas and willimprove carbon
residence understandingin areas of mixed tree and herbaceous vegetation.
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Extended DataFig. 6 | Forest fractions of different TRENDY?** models.
Thefigure shows the percentage of forest areas assumed by each model along
therainfall gradient. Woody biomass in most models mainly comes from
predefined forest areas and consequently resultsinahigh degree of variation

inthe semi-arid area of our study. Thisisan example of the utility of our tree-

mappingresults for more accurate depiction of semi-arid trees for numerical
simulation modelling.
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Extended DataFig.7|Candidate and selected satelliteimages for our
analysis. a, 326,523 Maxar images covering 90,097,073 km?from November to
Marchwere available for our study and were acquired from2002to 2020.

b, Thedistribution by month of all satellite dataina. The selected imagery

for processing (see Methods) by year totalled 94,502 images that covered
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9,685,324 km?
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9,685,324 km>with 87% of the satellite data from 2010 t0 2020 (c) and 94% of
theselected images were from the early dry-season months of November,
DecemberandJanuary (d). We had a9.3:1arearatio of available imagery to
selected input datafor analysis. See also Extended Data Table 1a.
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Extended DataFig. 8| Evaluation of the tree crown mapping omissionand
commission errors. The performance of the tree crown predictions was

evaluated for1,028 randomly selected 512 x 256-pixel areas from UTM zones

28-37,with approximately 100 areas for eachUTM zone. The patches were

extracted with an 80% bias towards precipitation*®above 200 mm year™, as
most treeidentifications are above the 200 mm year'isoline.178 areas were

excluded from evaluation because the rainfallwas >1,000 mm year " or the
areaswere devoid of trees. Atotal of 50,740 trees were evaluated. a, Class
breakdown of our 3,765 omission and commission errors. b, Class numbers of
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allthetrees evaluated. c, Summarizes the number of trees, errors of commission
and omissionand the number of trees by error classes. The highest percentage
ofbinned-error classes, from15%to>25%, occurred in areas with few trees and
resulted from mixed tree and bush confusion for <8% of all trees evaluated.

By contrast, the lowest binned-error classes, from 0% to 15%, had 92% of all trees
evaluated. Inthe 850 patches, the number of trees ranged from one tree to
326trees, withatotal of 50,740 trees evaluated and 3,765 errorsidentified.
Overall, the commission and omission error rates were 4.9%and 2.7%,
respectively, anetuncertainty of 2.2%.
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Extended DataFig.9|Tree crown and carbon errors. The RMSEs of our merged into multi-polygons before calculating the RMSE. The crown areas of
predicted crown areas calculated on external validation datafromref.’, binned ~ missed tress counted aserrors. For calculating the corresponding RMSE of
onthe basis of the 50th quantiles of the hand-labelled crown areas. In 78 plots predicted carbon, werelied onthe allometricequations givenin Extended Data
of256 x 256 pixels, the hand-labelled set contained 5,925 trees and the system Fig.2a-c. The abscissahas alogarithmic scaleand 95% of our 9.9 billion tree
delineated 5,915trees. These crown areas were matched using inner spatial crowns had crown areas <78 m? (Fig. 3b).

join.Multiple overlapping hand-labelled or predicted tree crown areas were
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datawe produced, fromtree (1) to tree (10").




Article

Extended Data Table 1| The November to March Maxar satellite images considered and the number selected for our analysis

by UTM zone
al.JTM Zone Total Images Sel;‘::;:or GeoEye-1 QuickBird-2 WorldView-2 WorldView-3
32628 42,388 8,026 1,557 1,501 3,897 1,071
32629 29,244 9,883 2,208 2,198 4,334 1,143
32630 32,671 10,155 2,518 2,130 4,401 1,106
32631 34,611 10,158 2,384 2,049 4,554 1,171
32632 32,210 9,971 2,397 1,876 4,651 1,047
32633 34,918 10,097 2,688 2,082 4,310 1,017
32634 31,555 10,144 2,353 2,288 4,637 866
32635 36,663 9,975 2,269 2,099 4,595 1,012
32626 36,934 10,156 2,003 1,932 5,061 1,160
32637 15,329 5,937 1,079 1,353 2,742 763
ALL 326,523 94,502 21,456 19,508 43,182 10,356
b. Quickbird-2 GeoEye-1 WorldView-2 WorldView-3
Oct. 2001-Feb. 2015 Nov. 2008 Oct. 2009 Aug. 2014
15 km & 55 cm 15.3km & 41 cm 16.4 km & 46 cm 13.1km & 31 cm
Panchromatic, Visible, | Panchromatic, Visible, | Panchromatic, Visible, | Panchromatic, Visible,
& Near IR & Near IR & Near IR Near IR, & SWIR
23 m CE90 4.0 m CE90 5.0 m CE90 3.7 m CE90
10.8 m RMSE 2.7 m RMSE 3.0 m RMSE 2.5 m RMSE

a, We started with 326,523 candidate images and selected 94,502 for processing for the area of 9.5°N to 24°N latitude from the Atlantic Ocean to the Red Sea for the months of November to
March. 87% of data selected for processing were acquired from 2010 to 2020 and 94% of the selected satellite images were from November to January. Each image had a panchromatic and
NDVI component that was used to identify trees with canopy area 3m? or greater in the early dry season. b, Specific satellite information for the four Maxar satellites used in our study includes
the period of operation or the launch date, the nadir swath width, the nadir panchromatic spatial resolution and the spectral regions available. The relative geolocation accuracies of the four
Maxar satellites used in our study are expressed in circular error probabilities or CEQO units, meaning that a given point will be within a specific radius 90% of the time, and in terms of RMSEs,
which are one standard deviation of the residuals or distance-prediction errors. Our satellite data were resampled to a 50-cm spatial resolution for the panchromatic band and that band was
used to panchromatically sharpen the NDVI to 50cm. See also https://resources.maxar.com/data-sheets/quickbird; https://resources.maxar.com/data-sheets/geoeye-1; https://resources.
maxar.com/data-sheets/worldview-2; and https://resources.maxar.com/data-sheets/worldview-3.
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https://resources.maxar.com/data-sheets/worldview-3
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