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Abstract

We prove that a two sided sub-Gaussian estimate of the heat kernel on an infinite weighted
graph takes place if and only if the volume growth of the graph is uniformly polynomial and
the Green kernel admits a uniform polynomial decay.
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1 Introduction

Consider the heat equation
∂f

∂t
= ∆f , (1.1)

where f = f(t, x) is a function of t > 0 and x ∈ R
n, and ∆ is the Laplace operator in R

n. The
fundamental solution to (1.1) is given by the classical Gauss-Weierstrass formula

f(t, x) =
1

(4πt)n/2
exp

(
−|x|2

4t

)
.

The function pt(x, y) = f(t, x − y) is called the heat kernel of the Laplace operator.
In the past three decades, there have been numerous works devoted to estimates of heat

kernels in various settings (see, for example, books and surveys [4], [15], [16], [25], [35], [52],
[55], [65], [66]). These are parabolic equations with variable coefficients, the heat equation
on Riemannian manifolds, the discrete heat equation on graphs, and the heat semigroups on
general metric measure spaces including fractal-like sets. Despite of the high diversity of the
underlying spaces and equations, in many important cases the heat kernel is naturally defined
and, moreover, admits the so-called Gaussian estimates.

For any metric measure space M with distance d and measure µ, denote by B(x, r) the open
metric ball of radius r centered at x, and by V (x, r) its measure µ. Suppose first that M is
either a discrete group or a Lie group, with properly defined d, µ and the heat kernel pt(x, y).
Assume that the volume growth of M is polynomial; that is, for some α > 0,

V (x, r) � rα (1.2)

(here the sign � means that the ratio of both sides of (1.2) stays between two positive constants).
Then the heat kernel on M admits the following Gaussian estimate (see [64], [37])

pt(x, y) � t−α/2 exp
(
−d2(x, y)

ct

)
(1.3)

(where the positive constant c may be different for the upper and lower bounds). The heat
kernel in R

n obviously satisfies (1.3) with α = n.
Suppose now that M is a complete manifold with nonnegative Ricci curvature. Then the

following estimate of Li and Yau [47] is well-known

pt(x, y) � 1
V (x,

√
t)

exp
(
−d2(x, y)

ct

)
. (1.4)

In particular, if V (x, r) � rα then the heat kernel satisfies again the estimate (1.3).

2



As we see, for groups of the polynomial growth and for nonnegatively curved manifolds,
the heat kernel is fully determined (up to constant factors) by the volume growth function. In
other words, the potential theory on such spaces is characterized by a single parameter α – the
exponent of the volume growth.

The presence of the Gaussian estimates (1.3) or (1.4) reflects certain properties of the space
M . In particular, (1.4) implies that the Markov process Xt with the transition density pt(x, y)
has the diffusion speed of the order t

1
2 . The latter means that the process Xt started at a point

x first exits the ball B(x,R) at the time t � R2.
The development of Markov processes on fractals and the fractal like graphs ( [7], [10], [30],

[36], [40], [41], [42], [44], [45], [59], [67] etc.) has led to construction of homogeneous metric
spaces M where the process Xt has the diffusion speed of the order t

1
β , with some β > 2. Such a

process Xt is referred to as subdiffusive, and is characterized by two parameters α and β, which
determine sub-Gaussian estimates of the heat kernel:

pt(x, y) � t−α/β exp

(
−

(
dβ(x, y)

ct

) 1
β−1

)
. (1.5)

Here α is the exponent of the volume growth as in (1.2). The Gaussian estimate (1.3) is a
particular case of (1.5) for β = 2.

Barlow and Bass [7] showed that the sub-Gaussian estimates (1.5) with β > 2 can take place
not only on singular spaces such as fractals but also on smooth Riemannian manifolds, for a
certain range of time. Similar estimates hold for random walks on certain fractal-like graphs [8],
[39]. It has become apparent that a large and interesting class of homogeneous spaces features
sub-Gaussian estimates of the heat kernel. The potential theory on such spaces is determined
by the two parameters and hence, cannot be recovered only from the volume growth1.

A natural question arises:

How do we characterize those spaces that admit sub-Gaussian estimates (1.5) of the
heat kernel?

If M is a complete noncompact Riemannian manifold then the validity of the Gaussian
estimate (1.3) is known to be equivalent to the following two conditions: the volume growth
(1.2) and the Poincaré inequality

λ
(N)
1 (B(x, r)) ≥ c

r2
, (1.6)

where λ
(N)
1 (B) is the first nonzero eigenvalue of the Neumann boundary value problem in the

ball B (see [53], [31]; similar results are known also for graphs [28] and for abstract local
Dirichlet spaces [57]). It may be tempting to conjecture that by replacing in (1.6) r2 by rβ, one
obtains equivalent conditions for sub-Gaussian estimates. However, this conjecture is false. At
the present time, no similar characterization of the spaces with sub-Gaussian estimates seems
to be known. All examples of spaces where (1.5) is proved are fractal-like spaces featuring a
self-similarity structure.

The purpose of this paper is to provide a new approach to obtaining sub-Gaussian estimates
of the heat kernel. Our point of departure is the understanding that, apart from the uniform
volume growth V (x, r) � rα, we have to introduce additional hypotheses, which would contain

1The parameters α and β must satisfy the inequalities 2 ≤ β ≤ α + 1, which seem to be the only constraint
on α and β. We are indebted to Martin Barlow for providing us with the evidence for the latter.
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the second parameter β and provide the necessary homogeneity of the space (just the uniform
volume growth is not enough for the latter).

Let g(x, y) be the Green kernel on M ; that is

g(x, y) =
∫ ∞

0
pt(x, y)dt.

Recall that, in R
n, g(x, y) = cn |x − y|−(n−2) if n > 2 and g ≡ ∞ if n ≤ 2.

Our general result says the following:

Given the parameters α > β ≥ 2, the two-sided sub-Gaussian estimate

pt(x, y) � t−α/β exp

(
−

(
dβ(x, y)

ct

) 1
β−1

)
(1.7)

holds if and only if

V (x, r) � rα and g(x, y) � d(x, y)−(α−β). (1.8)

We do not specify here the ranges of the variables x, y, t, r because they are different for
different settings. In the present paper, we treat the case when the underlying space is a graph,
and the time is also discrete. However, the graph case contains already all difficulties. We
present the proof in the way that only minimal changes are required to pass to a general setting
of abstract metric spaces, which will be dealt with elsewhere. The exact statements are given
in the next section. Note that our result is new even for the Gaussian case β = 2.

Hypothesis (1.8) consists of two conditions of different nature. The first one is a geometric
condition of the volume growth whereas the second is an estimate of a fundamental solution to an
elliptic equation. Neither of them separately implies the heat kernel bounds (1.7). Surprisingly
enough, the exponent β which provides the scaling of the space and time variables for a parabolic
equation, can be recovered from an elliptic equation, although combined with the volume growth.

The paper is arranged as follows. In Section 2, we state the main result – Theorem 2.1. In
Section 3, we introduce the necessary tools such as the discrete Laplace operator, its eigenvalues,
the mean exit time, etc. In Section 4 we describe the scheme of the proof of Theorem 2.1 as well
as some consequences. In particular, we mention some other conditions equivalent to (1.7). The
actual proof of Theorem 2.1 consists of many steps that are considered in details in Sections 5
- 15.

notation
The letters c, C are reserved for positive constants not depending on the variables in question.

They may be different on different occurrences, even within the same formula. All results of
the paper are quantitative in the sense that the constants in conclusions depends only on the
constants in hypotheses.

The relation f � g means that the ratio of the functions f and g is bounded from above and
below by positive constants, for the specified range of the variables. If one of those functions

contains a sub-Gaussian factor exp
(
−

(
dβ

ct

) 1
β−1

)
then the constant c in exp may be different

for the upper and lower bounds (cf. (1.7)).
We use a number of lettered formulas such as (UE), (LE) etc., to refer to the most important

and frequently used conditions. In the appendix, we provide a complete list of all such formulas.
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2 Statement of the main result

Throughout the paper, Γ denotes an infinite, connected, locally finite graph. If x, y ∈ Γ then
we write x ∼ y provided x and y are connected by an edge. The graph is always assumed
nonoriented; that is x ∼ y is equivalent to y ∼ x. We do not exclude loops so that x ∼ x is
possible. If x ∼ y then xy denotes the edge connecting x and y. The distance d(x, y) is the
minimal number of edges in any edge path connecting x and y.

Assume that graph Γ is endowed by a weight µxy, which is a symmetric nonnegative function
on Γ × Γ such that µxy > 0 if and only if x ∼ y. Given µxy, we define also a measure µ on
vertices by

µ(x) :=
∑
y∼x

µxy

and
µ(A) :=

∑
x∈A

µ(x),

for any finite set A ⊂ Γ. The couple (Γ, µ) is called a weighted graph. Here µ refers both to the
weight µxy and to the measure µ.

Any graph Γ admits a standard weight, which is defined by µxy = 1 for all edges xy. For
such a weight, µ(x) is equal to the degree of the vertex x, which is the number of its neighbors.

Any weighted graph has a natural Markov operator P (x, y) defined by

P (x, y) :=
µxy

µ(x)
. (2.1)

Clearly, we have ∑
y∈Γ

P (x, y) = 1 (2.2)

and
P (x, y)µ(x) = P (y, x)µ(y). (2.3)

For the Markov operator P , there is an associated random walk Xn, jumping at each time n ∈ N

from a current vertex x to a neighboring vertex y with probability P (x, y). The process Xn is
Markov and reversible with respect to measure µ. If µ is the standard weight on Γ then Xn is
called a simple random walk on Γ.

Conversely, given a countable set Γ with a measure µ and a Markov operator P (x, y) on Γ
satisfying (2.3), the identity (2.1) uniquely determines a symmetric weight µxy on Γ × Γ. Then
one defines edges xy as those pairs of vertices for which µxy �= 0, and obtains a weighted graph
(Γ, µ). One has to assume in addition that the resulting graph Γ is connected and locally finite.

Let Pn denote the n-th convolution power of the operator P . Alternatively, Pn(x, y) is the
transition function of the random walk Xn, i.e.

Pn(x, y) = Px (Xn = y) .

Define also the transition density of Xn, or the heat kernel, by

pn(x, y) :=
Pn(x, y)

µ(y)
.

As obviously follows from (2.3), pn(x, y) = pn(y, x).
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The only a priori assumption which we normally make about the transition probability is
the following:

P (x, y) ≥ p0, ∀x ∼ y, (p0)

where p0 is a positive constant. Due to (2.2), hypothesis (p0) implies that the degree of each
vertex x ∈ Γ is uniformly bounded from above. The latter is in fact equivalent to (p0), provided
Xn is a simple random walk.

By sub-Gaussian heat kernel estimates on graphs we will mean the following inequalities:

pn(x, y) ≤ Cn−α/β exp

(
−

(
d(x, y)β

Cn

) 1
β−1

)
(UE)

and

pn(x, y) + pn+1(x, y) ≥ cn−α/β exp

(
−

(
d(x, y)β

cn

) 1
β−1

)
, n ≥ d(x, y), (LE)

where x, y are arbitrary points on Γ and n is a positive integer.
Let us comment on the differences between (UE) and (LE). First observe that pn(x, y) = 0

whenever n < d(x, y). (Indeed, the random walk cannot get from x to y in a number of steps
smaller than d(x, y).) Therefore, the restriction n ≥ d(x, y) in (LE) is necessary. We could
assume the same restriction in (UE) but if pn(x, y) = 0 then (UE) is true anyway. Another
difference – using pn + pn+1 in (LE) in place of pn in (UE) – is due to the parity problem.
Indeed, if the graph Γ is bipartite (for example, Z

D) then pn(x, y) = 0 whenever n and d(x, y)
have different parities. Therefore, the lower bound for pn cannot hold in general, and we state
it for pn + pn+1 instead. Alternatively, one could say that the lower bound holds either for pn

or for pn+1. The structure of the graph may cause one of pn, pn+1 to be small (or even vanish)
but it is not possible to decide a priori which of these two terms admits the lower bound (see
Section 14 for more details).

Denote by B(x,R) a ball on Γ of radius R centered at x, and by V (x,R) its measure; that is

B(x,R) := {y ∈ Γ : d(x, y) < R} , V (x,R) := µ(B(x,R)).

We say that the graph (Γ, µ) has the regular volume growth of degree α if

V (x,R) � Rα, ∀x ∈ Γ, R ≥ 1. (V )

The Green kernel of (Γ, µ) is defined by

g(x, y) :=
∞∑

n=0

pn(x, y).

Assuming that α > β, the estimates (UE) and (LE) imply, upon summation in n,

g(x, y) � d(x, y)−γ , ∀x �= y (G)

where γ = α − β. It turns out that (G) together with the volume growth condition (V ) is
sufficient to recover the heat kernel estimates (UE) and (LE), as is stated in the following main
theorem.

Theorem 2.1 Let α > β > 1, and let γ = α − β. For any infinite connected weighted graph
(Γ, µ) satisfying (p0), the following equivalence holds

(V ) + (G) ⇐⇒ (UE) + (LE).
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Remark 2.1 Under hypotheses (V ) and (G), some partial heat kernel estimates were obtained
by A.Telcs [62].

It is well known that a simple random walk in Z
D admits the Gaussian estimate

cn−D/2 exp
(
−d2(x, y)

cn

)
≤ pn(x, y) ≤ Cn−D/2 exp

(
−d2(x, y)

Cn

)
, (2.4)

the lower bound being subject to the restrictions n ≡ d(x, y)(mod 2) and d(x, y) ≤ n. Similar
Gaussian estimates were proved also for more general graphs, under various assumptions (see
[37], [54], [22], [28]). It is easy to see that (2.4) is equivalent to (UE) + (LE) for α = D and
β = 2 (see Section 14 for the parity matters).

Barlow and Bass [8] constructed a family of graphs – graphical Sierpinski carpets (resembling
in the large scale the multi-dimensional Sierpinski carpet), which are characterized by the two
parameter α and β, and heat kernels on those graphs satisfy the sub-Gaussian estimates (UE)
and (LE). In general, the parameters α and β in (UE) and (LE) must satisfy the following
inequalities

2 ≤ β ≤ α + 1, (2.5)

which can be seen as follows. By [9, Theorem 2.1], the lower bound in (V ) implies the on-
diagonal upper bound pn(x, x) ≤ Cn−α/(α+1). By the result of [48], the upper bound in (V )
implies the on-diagonal lower bound pn(x, x) ≥ c (n log n)−α/2. Comparing these estimates with
the on-diagonal lower and upper bounds implied by (LE) and (UE), we obtain (2.5) (cf. [4,
Theorem 3.20 and Remark 3.22], [59], as well as Lemma 5.4 below).

The sub-Gaussian estimates for different α and β are related as follows. Consider the right
hand side of (UE) and (LE) as a function of α and β. It is easy to see that it decreases as
β and α/β simultaneously increase (assuming d(x, y) ≥ n). In particular, (UE) gets stronger
(and (LE) gets weaker) on increasing of α with constant β, whereas in general there is no
monotonicity in β.

The estimates (UE) and (LE) were proved by Jones [39] for the graphical Sierpinski gasket.
The latter is a graph which is obtained from an equilateral triangle by a fractal-like construction
(see Fig. 1). The reason for a subdiffusive behaviour of the random walk on such graphs is that
they contain plenty of “holes” of all sizes, which causes the random walk to spend more time on
circumventing the obstacles rather than on moving away from the origin.

Figure 1 A fragment of the graphical Sierpinski gasket
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It is possible to show that (V ) and (G) imply β ≥ 2 (see Lemma 5.4). The assumption α > β
is necessary to ensure the finiteness of the Green function. It is known that either g(x, y) is finite
for all x, y or g ≡ ∞. In the first case the graph (Γ, µ) is called transient and the second case -
recurrent (for example, Z

D is transient if D ≥ 3 and recurrent otherwise). Hence, Theorem 2.1
serves only transient graphs.

The question of finding equivalent conditions for the sub-Gaussian estimates (UE) and (LE)
is equally interesting for recurrent graphs. By the way, the graph on Fig. 1 is recurrent2. Indeed,
the volume function on this graph obviously admits the estimate

V (x, r) ≤ Cr2,

which implies the recurrence (see [18], [66]). Alternatively, one can see directly that α < β
because the parameters α and β for Sierpinski gasket are α = log 3

log 2 and β = log 5
log 2 (see [4]).

Some hints on the recurrent case are given below in Section 4.

3 Preliminaries

If P is the Markov operator of a weighted graph (Γ, µ) and if I is the identity operator then
∆ := P − I is called the Laplace operator of (Γ, µ). For any set A ⊂ Γ, denote by A the set
containing all vertices of A and all their neighbors. If a function f is defined on A then ∆f is
defined on A and

∆f(x) =
∑
y∼x

P (x, y)f(y) − f(x) =
1

µ(x)

∑
y∈Γ

(∇xyf)µxy , (3.1)

where
∇xyf := f(y) − f(x).

Note that although the summation in the second sum in (3.1) runs over all vertices y, the
summand is nonvanishing only if y ∼ x.

The following is a discrete analogue of the Green formula: for any finite set A and for all
functions f and g defined on A,∑

x∈A

∆f(x)g(x)µ(x) =
∑

x∈A,y/∈A

(∇xyf) g(x)µxy −
1
2

∑
x,y∈A

(∇xyf) (∇xyg) µxy . (3.2)

We say that a function v is harmonic in set A if v is defined in A and ∆v = 0 in A. Similarly,
we say that a function v is superharmonic if ∆v ≤ 0. Observe that the inequality ∆v ≤ 0 is
equivalent to

v(x) ≥
∑
y∼x

P (x, y)v(y).

The latter implies, in particular, that the infimum of a family of superharmonic functions is
again superharmonic.

For any nonempty set A ⊂ Γ, let c0(A) be the set of functions on Γ whose support is finite
and is in A. Denote by ∆A the Laplace operator with the vanishing Dirichlet boundary condition
on A; that is

∆Af(x) :=
{

∆f, x ∈ A,
0, x /∈ A.

2Plenty of examples of transient graphs and fractals with sub-Gaussian heat kernel bounds can be found in
[4], [7], [8].
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The operator ∆A is symmetric with respect to the measure µ and is nonpositive definite. More-
over, it is essentially self-adjoint in L2(A,µ).

For a finite set A, denote by |A| its cardinality. If A is finite and nonempty then the operator
−∆A has |A| nonnegative eigenvalues which we enumerate in the increasing order and denote
as follows:

λ1(A) ≤ λ2(A) ≤ ... ≤ λ|A|(A).

It is known that all eigenvalues λi(A) lie in the interval [0, 2] and that λ1(A) ∈ [0, 1] (see for
example [19], [22, Section 3.3]). The smallest eigenvalue λ1(A) admits the variational definition

λ1(A) = inf
f∈c0(A)

−(∆f, f)
(f, f)

= inf
f∈c0(A)

1
2

∑
x∼y(∇xyf)2µxy∑
x f2(x)µ(x)

, (3.3)

where
(f, g) :=

∑
x∈Γ

f(x)g(x)µ(x).

If A = B(x,R) then we write for simplicity

λ(x,R) := λ1(B(x,R)).

Given a nonempty set A ⊂ Γ, let XA
n be the random walk on (Γ, µ) with the killing condition

outside A. Its Markov operator PA(x, y) is defined by

PA(x, y) :=
{

P (x, y), x, y ∈ A,
0, otherwise.

The transition function PA
n (x, y) of XA

n is defined inductively: PA
0 (x, y) = δxy and

PA
n+1(x, y) =

∑
z∈Γ

PA
n (x, z)PA(z, y) =

∑
z∈Γ

PA(x, z)PA
n (z, y). (3.4)

As easily follows from (3.4), the function un(x) = PA
n (x, y) satisfies in A × N the discrete heat

equation
un+1 − un = ∆Aun . (3.5)

The heat kernel pA
n (x, y) of XA

n is defined by

pA
n (x, y) :=

PA
n (x, y)
µ(y)

.

As follows from (2.1), pA is symmetric in x and y. In particular, the kernel pA
n (x, y) satisfies the

heat equation (3.5) both in (n, x) and (n, y). If f(x) is a function on A then the function

un(x) := PA
n f(x) =

∑
y∈A

pA
n (x, y)f(y)µ(y)

solves in A × N the heat equation (3.5) with the initial data u0 = f and the boundary data
un(x) = 0 if x /∈ A.

The Green function of XA
n is defined by

GA(x, y) :=
∞∑

n=0

PA
n (x, y).
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The alternative definition is that the function GA(x, y) is the infimum of all positive fundamental
solutions of the Laplace equation in A. If the Green function is finite then, for any y ∈ A, we have
∆AGA(·, y) = −δy. The opposite case, when GA(x, y) ≡ +∞, is equivalent to the recurrence of
the process XA

n .
The Green kernel gA(x, y) is defined by

gA(x, y) =
GA(x, y)

µ(y)
=

∞∑
n=0

pA
n (x, y).

Clearly, the Green kernel is symmetric in x, y. Therefore, if gA is finite then gA is superharmonic
in A with respect to both x and y, and is harmonic away from the diagonal x = y. Observe
that if µ(x) � 1 (which in particular follows from (V )) then GA(x, y) � gA(x, y) and pA

n (x, y) �
PA

n (x, y).
It is easy to see that the kernels pA

n (x, y) and gA(x, y) increase on enlarging of A and tend
to the global kernels pn(x, y) and g(x, y) (defined in Section 2) as an increasing sequence of sets
A exhausts Γ.

If A is finite and nonempty then it makes sense to consider the Dirichlet problem in A{
∆u = f in A,

u = h in A \ A,
(3.6)

where f and h are given function on A and A \ A respectively. As follows easily from the
maximum principle, the solution u exists and is unique. For a finite set A, c0(A) is identified
with all functions on A extended by 0 outside A. Then the equation

∆Au = f ,

where u and f are in c0(A), is equivalent to the Dirichlet problem (3.6) with h = 0. Its solution
is given by means of the Green operator GA as follows:

u(x) = −GAf(x) = −
∑

y

GA(x, y)f(y). (3.7)

In other words, we have GA = (−∆A)−1 .
For any set A ⊂ Γ and a point x ∈ Γ, define the mean exit time EA(x) by

EA(x) :=
∑
y∈A

GA(x, y). (3.8)

As follows from the above discussion, the function EA(x) solves the following boundary value
problem in A: {

∆u = −1 in A,
u = 0 outside A.

(3.9)

Denote by TA the first exit time from set A for the process Xn; that is,

TA := min{k : Xk /∈ A}.
We claim that EA(x) = Ex(TA), which justifies the term “mean exit time” for EA. Indeed, TA

coincides with the cardinality of all n = 0, 1, 2, ... for which XA
n is in A; that is,

TA =
∞∑

n=0

1{XA
n ∈A} ,
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whence

Ex(TA) =
∞∑

n=0

Px

(
XA

n ∈ A
)

=
∞∑

n=0

∑
y∈A

PA
n (x, y) =

∑
y∈A

GA(x, y) = EA(x).

If A = B(x,R) then we use a shorter notation

E(x,R) := EB(x,R)(x).

Another function associated with the exit time is the exit probability defined by

ΨA
n (x) := Px {Xk /∈ A for some k ≤ n} = Px {TA ≤ n} . (3.10)

In other words, ΨA
n (x) is the probability that the random walk Xk started at x will at least once

exit A by time n. Alternatively, ΨA
n (x) can be defined as the solution un(x) to the following

initial boundary value problem in A × N


un+1 − un = ∆un,
u0(x) = 0, x ∈ A,
un(x) = 1, x /∈ A and n ≥ 0.

(3.11)

If A = B(x,R) then we will use the shorter notation

Ψn(x,R) := ΨB(x,R)
n (x).

In conclusion of this section, we prove two useful consequences of the condition (p0):

P (x, y) ≥ p0, ∀x ∼ y. (p0)

Proposition 3.1 If (p0) holds then, for all x ∈ Γ and R > 0 and for some C = C(p0),

V (x,R) ≤ CRµ(x). (3.12)

Remark 3.1 Inequality (3.12) implies that, for a bounded range of R, V (x,R) � µ(x).

Proof. Let x ∼ y. Since P (x, y) = µxy

µ(x) and µxy ≤ µ(y), the hypothesis (p0) implies
p0µ(x) ≤ µ(y). Similarly, p0µ(y) ≤ µ(x). Iterating these inequalities, we obtain, for arbitrary x
and y,

p
d(x,y)
0 µ(y) ≤ µ(x). (3.13)

Another consequence of (p0) is that any point x has at most p−1
0 neighbors. Therefore, any ball

B(x,R) has at most CR vertices inside. By (3.13), any point y ∈ B(x,R) has measure at most
p−R
0 µ(x), whence (3.12) follows.

Proposition 3.2 Assume that the hypothesis (p0) holds on (Γ, µ). Let function v be nonnegative
in A and superharmonic in A. Then, for all points x, y ∈ A, such that x ∼ y, we have v(x) �
v(y).

Proof. Indeed, the superharmonicity of v implies

v(x) ≥
∑
z∼x

P (x, z)v(z) ≥ P (x, y)v(y),

whence v(x) ≥ p0v(y) by (p0). In the same way, v(y) ≥ p0v(x) whence the claim follows.
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4 Outline of the proof and its consequences

The proof of Theorem 2.1 consists of many steps. Here we describe the logical order of these
steps. The rest of the paper is arranged such that each section treats a certain topic correspond-
ing to one or more steps in the proof of Theorem 2.1.

Apart from the conditions (V ), (G), (UE) and (UE) described in Section 2, we introduce
here some more lettered conditions that are widely used in the proof.

We say that the Faber-Krahn inequality holds on (Γ, µ) if, for some positive exponent ν,

λ1(A) ≥ cµ(A)−1/ν , (FK)

for all nonempty finite sets A ⊂ Γ. In particular, (FK) holds in Z
D with ν = D/2. If Γ is

infinite and connected and if µ is the standard weight on Γ then (FK) automatically holds with
ν = 1/2 (see [9, Prop. 2.5]). We will be interested in (FK) with ν = α/β where α and β are
the parameters from (UE) and (LE), in which case we have ν > 1.

An easy consequence of (UE) is the diagonal upper estimate

pn(x, x) ≤ Cn−α/β, (DUE)

for all x ∈ Γ and n ≥ 1.
Consider the following estimates for the mean exit time and the exit probability:

E(x,R) � Rβ (E)

for all x ∈ Γ, R ≥ 1, and

Ψn(x,R) ≤ C exp

(
−

(
Rβ

Cn

) 1
β−1

)
, (Ψ)

for all x ∈ Γ, R > 0 and n ≥ 1. For example, (E) and (Ψ) hold in Z
D with β = 2.

The part (V )+(G) =⇒ (UE) of Theorem 2.1 is proved by the following chain of implications.

(V ) + (G)
⇓Prop.5.5 ⇓Prop.6.3

(FK) (E)
⇓Prop.5.1 ⇓Prop.7.1

(DUE) (Ψ)︸ ︷︷ ︸
⇓Prop.8.1

(UE)

The relations between the exponents α, β, γ and ν involved in all conditions are as follows:

α − β = γ and α/β = ν.

Given (DUE) and (Ψ), one obtains easily the full upper bound (UE) using the approach
of Barlow and Bass [6] (see Section 8). The method of obtaining the Faber-Krahn inequality
(FK) from (V ) and (G) is based on ideas of Carron [14]. The implication (FK) =⇒ (DUE) is a
discrete modification of the approach of the first author [32]. The implication (V )+(G) =⇒ (E)
was originally proved by the second author [59], and here we give a simpler proof for that.
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The crucial part of the proof of the upper estimate (UE) is the implication (E) =⇒ (Ψ).
The following nearly Gaussian estimate is true always, without assuming (E) or anything else:

Ψn(x,R) ≤ C
V (x,R)

µ(x)
exp

(
−R2

Cn

)
(4.1)

(see [58] and [33, p.355]). However, (4.1) is not good enough for us even if neglecting the factor
V (x,R) in front of the exponential. Indeed, the range of n for which we will apply (Ψ), is n > R
(see the proof of Proposition 8.1). Assuming β > 2, we have in this range

(
Rβ

n

) 1
β−1

>
R2

n
,

so that (Ψ) is stronger than (4.1).
We provide here an entirely new argument for (E) =⇒ (Ψ), which is based on investigation

of solutions of the equation ∆v = λv. The function v can be estimated by comparing it to
∆u = −1 (and the latter is related to the mean exit time). On the other hand, the function
(1+λ)nv(x) satisfies the discrete heat equation and, hence, can be compared to ΨA

n (x) by using
the parabolic comparison principle (see Section 7 for details). Another proof of (E) =⇒ (Ψ) can
be obtained by using the probabilistic method of Barlow and Bass [5], [6], [7].

Before we consider the proof of the lower bound (LE), let us introduce the following condi-
tions.

The near-diagonal lower estimate

pn(x, y) + pn+1(x, y) ≥ cn−α/β , if d(x, y) ≤ δn1/β, (NLE)

for some positive constant δ. Obviously, (NLE) is equivalent to (LE) in the range d(x, y) ≤
δn1/β.

As an intermediate step, we will use the following diagonal lower estimate for the killed
random walk:

p
B(x,R)
2n (x, x) ≥ cn−α/β , if n ≤ εRβ, (DLE)

for some positive constant ε.
We say that the Harnack inequality holds on (Γ, µ) if, for any ball B(x, 2R) ⊂ Γ and for any

nonnegative function u in B(x, 2R) which is harmonic in B(x, 2R),

max
B(x,R)

u ≤ H min
B(x,R)

u , (H)

for some constant H ≥ 1. The Harnack inequality reflects certain homogeneity of the graph.
For example, it holds for Z

D with the standard weight but fails on the connected sum of two
copies of Z

D as well as on a binary tree.
The scheme of the proof of (V ) + (G) =⇒ (LE) is shown on the diagram below. From the

previous diagram, we know already that the conditions (FK) and (E) follow from (V ) + (G),
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as well as the implications (FK) =⇒ (DUE) and (E) =⇒ (Ψ).

(V ) + (G)
⇓Prop.5.5,6.3︷ ︸︸ ︷

(FK) (E) (G)
⇓Prop.5.1 ⇓Prop.7.1 ⇓Prop.10.1

(DUE)
⇓Prop.12.3

[deriv]

(Ψ) + (V )︸ ︷︷ ︸
⇓Prop.9.1

(DLE) + (E)

(H)
⇓Prop.11.2

[osc]︸ ︷︷ ︸
⇓Prop.13.1

(NLE) + (V )︸ ︷︷ ︸
⇓Prop.13.2

(LE)

The central point in the diagram is Proposition 13.1, where (NLE) is obtained from (DUE),
(DLE), (E), and (H). The proof goes through the intermediate steps that are denoted here
by [osc] and [deriv]. The former refers to the oscillation inequality (11.7) obtained from (H)
in Propositions 11.1 and 11.2, and the latter refers to the upper estimate (12.5) for |pn+2 − pn|
obtained from (DUE) in Proposition 12.3.

The idea of obtaining (NLE) by means of an elliptic Harnack inequality seems to have
appeared independently in the papers by P.Auscher [2], [3], M.Barlow and R.Bass [6], [7], [8],
and W.Hebisch and L.Saloff-Coste [38]. Basically, one views the heat equation for the heat
kernel as an elliptic equation

∆(pn + pn+1) = f, where f = pn+2 − pn.

The elliptic Harnack inequality and the upper bound for E(x, r) allow to estimate the oscillation
of pn + pn+1 via f . (In the continuous setting, the latter argument is classical and is due to
J.Moser [49].)

On the other hand, the on-diagonal upper bound for pn implies a suitable estimate for the
discrete time derivative pn+2 − pn. The fact that (DUE) implies certain estimate of the time
derivative of the heat kernel is well-known. In the context of manifolds it goes back to S.Y.Cheng,
P.Li, and S.-T.Yau [17] and E.B.Davies [26], [27] (see also [34]); in the discrete setting it follows
from the results of E.Carlen, S.Kusuoka, and D.Stroock [13] and T.Coulhon and L.Saloff-Coste
[23]; and in the setting of fractals it is proved by M.Barlow and R.Bass [7].

Having an upper bound for the oscillation of pn + pn+1 and the on-diagonal lower bound for
pn + pn+1, one obtains (NLE). The final step in the proof – the implication (NLE) + (V ) =⇒
(LE) – is done by using the classical chaining argument of J.Moser [50] and D.Aronson [1].

The method of obtaining (DLE) from (Ψ) and (V ) used in Proposition 9.1, is well known.
Its various modifications can be found in [6], [11], [21], [24], [48], [56] and possibly in other
places.

The claim that the Green kernel estimate (G) implies the elliptic Harnack inequality (H)
would not surprise experts. In the context of the uniformly elliptic operators in R

D, this was first
observed by E.M.Landis [46, p.145-146] and then was elaborated by N.Krylov and M.Safonov
[43] and E.Fabes and D.Stroock [29]. However, this claim becomes rather nontrivial for arbitrary
graphs (and manifolds) because of topological difficulties. We provide here a new, simple and
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general proof of the implication (G) =⇒ (H), which is based on the potential theoretic approach
of A.Boukricha [12].

Finally, the converse implication (UE) + (LE) =⇒ (V ) + (G) is quite straightforward and is
proved in Proposition 15.1.

As a consequence of the above diagrams, we see that the following equivalence takes places:

(FK) + (V ) + (E) + (H) ⇐⇒ (UE) + (LE).

It is possible to show that this equivalence is true also for recurrent graphs. Furthermore, the
Faber-Krahn inequality (FK) turns out to follow from (V ) + (E) + (H) so that

(V ) + (E) + (H) ⇐⇒ (UE) + (LE). (4.2)

The condition (H) ensures here a necessary homogeneity of the graph whereas (V ) and (E)
provide the exponents α and β, respectively.

Another consequence of the proof is that

(V ) + (UE) + (H) ⇐⇒ (UE) + (LE) (4.3)

(see Remark 15.1). There is a number of conditions given in terms of capacities, eigenvalues
etc., which can replace (E) or (UE) in (4.2) and (4.3), respectively. In the presence of (V ) and
(H), the purpose of the other condition is to recover the exponent β in (UE) and (LE). Note
that if β = 2 then (UE) in (4.3) can be replaced by (DUE) (cf. [38]).

The complete proofs of (4.2), (4.3) and other related statements will be given elsewhere.

5 The Faber-Krahn inequality and on-diagonal upper bounds

Recall that a Faber-Krahn inequality holds on (Γ, µ) if there are constants c > 0 and ν > 0 such
that, for all nonempty finite sets A ⊂ Γ,

λ1(A) ≥ cµ(A)−1/ν (FK)

We discuss here relationships between eigenvalues estimates like (FK) and estimates of the
Green kernel, heat kernel and volume growth. The outcome will be the following implications

(V ) + (G) =⇒ (FK) =⇒ (DUE),

which are contained in Propositions 5.5 and 5.1, respectively, and which constitute a part of the
proof of Theorem 2.1.

Proposition 5.1 Let (Γ, µ) satisfy (p0), and let ν be a positive number. Then the following
conditions are equivalent:

(a) The Faber-Krahn inequality (FK);

(b) The on-diagonal heat kernel upper bound, for all x ∈ Γ and n ≥ 1,

pn(x, x) ≤ Cn−ν; (DUE)

(c) The estimate of the level sets of the Green kernel, for all x ∈ Γ and t > 0,

µ{y : g(x, y) > t} ≤ Ct−
ν

ν−1 (5.1)

provided ν > 1.
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The analogue of Proposition 5.1 for manifolds was proved by G.Carron [14]. The equivalence
(a) ⇐⇒ (b) was proved also in [32] for heat kernels on manifolds, and in [20, Proposition V.1]
for random walks satisfying in addition the condition infx P (x, x) > 0.

We will provide detailed proof only for the implications (a) =⇒ (b) and (c) =⇒ (a) which we
use in this paper. The implication (b) =⇒ (c) can be proved in the following way. By a theorem
of N.Varopoulos [63], (DUE) implies a Sobolev inequality. Then one applies argument of [14,
Proposition 1.14] (adapted to the discrete setting) to show that (5.1) follows from the Sobolev
inequality.

Note that our proof of (a) =⇒ (b) goes through for any ν > 0. If ν > 1 then one could apply
the approach of [14] using a Sobolev inequality as an intermediate step between (a) and (b). In
general, we use instead a Nash type inequality which will be obtained in the following lemma.

Lemma 5.2 Let (Γ, µ) be a weighted graph (which is not necessarily connected). Assume that,
for any nonempty finite set A ⊂ Γ,

λ1(A) ≥ Λ(µ (A)), (5.2)

where Λ(·) is a nonnegative nonincreasing function on (0,∞). Let f(x) be a nonnegative function
on Γ with finite support. Denote∑

x∈Γ

f(x)µ(x) = a and
∑
x∈Γ

f2(x)µ(x) = b.

Then, for any s > 0,
1
2

∑
x∼y

(∇xyf)2µxy ≥ (b − 2sa) Λ(a/s). (5.3)

Proof. If b − 2sa < 0 then (5.3) trivially holds. So, we can assume in the sequel that

s ≤ b

2a
. (5.4)

Since b ≤ amax f, (5.4) implies s < max f and, therefore, the following set

As = {x ∈ Γ : f(x) > s} .

is nonempty (see Fig. 2).

A
As={f > s}

f(x)

Γ

Figure 2 Sets A and As

Consider function h = (f − s)+. This function belongs to c0(As) whence we obtain, by the
variational property (3.3) of eigenvalues,

1
2

∑
x∼y

(∇xyh)2µxy ≥ λ1(As)
∑
x∈Γ

h2(x)µ(x). (5.5)
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Let us estimate all terms in (5.5) via f . We start with the obvious inequality

f2 ≤ (f − s)2+ + 2sf = h2 + 2sf,

which holds for any s ≥ 0. It implies h2 ≥ f2 − 2sf whence∑
x∈Γ

h2(x)µ(x) ≥ b − 2sa. (5.6)

The definition of As implies µ(As) ≤ a/s whence, by (5.2)

λ1(As) ≥ Λ (µ (As)) ≥ Λ(a/s). (5.7)

Clearly, we have also ∑
x∼y

(∇xyh)2µxy ≤
∑
x∼y

(∇xyf)2µxy.

Combining this with (5.7), (5.6) and (5.5), we obtain (5.3).
We will apply Lemma 5.2 for function Λ(v) = cv−1/ν . Choosing s = b

4a in (5.3) we obtain

1
2

∑
x∼y

(∇xyf)2µxy ≥ c a−2/νb1+1/ν . (5.8)

This is a discrete version of the Nash inequality (cf. [51], [13]).
Proof of (a) =⇒ (b) in Proposition 5.1.
STEP 1. Let f be a nonnegative function on Γ with finite support. Denote for simplicity

b =
∑
x∈Γ

f2(x)µ(x) and b′ =
∑
x∈Γ

[Pf(x)]2µ(x),

where P is the Markov operator of (Γ, µ). Then we have

b − b′ = (f, f)L2(Γ,µ) − (Pf, Pf)L2(Γ,µ) = (f, (I − P2)f)L2(Γ,µ).

Clearly Q := P2 is also a Markov operator on Γ reversible with respect to µ, and it is associated
with another structure of a weighted graph on the set Γ. Denote this weighted graph by (Γ∗, µ∗).
As a set, Γ∗ coincides with Γ and the measures µ and µ∗ on vertices are the same. On the other
hand, points x, y are connected by an edge on Γ∗ if there is a path of length 2 from x to y in Γ,
and the weight µ∗

xy on edges of Γ∗ is defined by

µ∗
xy = Q(x, y)µ(x).

Denote by ∆∗ the Laplace operator of (Γ∗, µ∗). Then ∆∗ = P2 − I and, by the Green formula
(3.2),

b − b′ = −
∑
x∈Γ

f(x)∆∗f(x)µ(x) =
1
2

∑
x,y∈Γ

(∇xyf)2µ∗
xy. (5.9)

STEP 2. If A is a nonempty finite subset of Γ then [22, Lemma 4.3] says that3

λ∗
1(A) ≥ λ1(A) , (5.10)

3The proof of (5.10) is based on the variational property (3.3) and on the fact that all eigenvalue of −∆A

belong to the interval [λ1(A), 2 − λ1(A)].
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where λ∗
1(A) is the first eigenvalue of −∆∗

A. By the Faber-Krahn inequality (FK) for the graph
(Γ, µ), we obtain

λ∗
1(A) ≥ cµ(A)−1/ν . (5.11)

Since (p0) and Proposition 3.1 imply

µ(A) ≤
∑
x∈A

V (x, 2) ≤ C
∑
x∈A

µ(x) = Cµ(A) = Cµ∗(A),

(5.11) yields (FK) for the graph (Γ∗, µ∗).

Remark 5.1 The only place where (p0) is used in the proof of (a) =⇒ (b) is to ensure that
µ(A) ≤ Cµ(A). If this inequality holds for another reason then the rest of the proof goes in the
same way.

STEP 3. For some fixed y ∈ Γ, denote fn(x) = pn(x, y) and

bn =
∑
x∈Γ

f2
n(x)µ(x) = p2n(y, y).

Then fn+1 = Pfn and we obtain by (5.9)

bn − bn+1 =
1
2

∑
x,y∈Γ

(∇xyfn)2µ∗
xy.

The graph (Γ∗, µ∗) satisfies (FK) so that Lemma 5.2 can be applied. Since∑
x∈Γ

fn(x)µ(x) =
∑
x∈Γ

Pn(x, y) = 1 ,

(5.8) yields
1
2

∑
x,y∈Γ

(∇xyfn)2µ∗
xy ≥ c b1+1/ν

n ,

whence
bn − bn+1 ≥ cb1+1/ν

n . (5.12)

In particular, we see that bn > bn+1.
Next we apply an elementary inequality

ν(x − y) ≥ xν − yν

xν−1 + yν−1
, (5.13)

which is true for all x > y > 0 and ν > 0. Taking x = b
−1/ν
n+1 and y = b

−1/ν
n , we obtain from

(5.13) and (5.12)

ν(b−1/ν
n+1 − b−1/ν

n ) ≥ b−1
n+1 − b−1

n

b
−(ν−1)/ν
n+1 + b

−(ν−1)/ν
n

=
bn − bn+1

b
1/ν
n+1bn + b

1/ν
n bn+1

≥ cb
1+1/ν
n

2b1+1/ν
n

=
c

2
,

whence
b
−1/ν
n+1 − b−1/ν

n ≥ c

2ν
= const.

Summing up this inequality in n, we conclude b
−1/ν
n ≥ cn and bn ≤ Cn−ν.
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Since bn = p2n(y, y), we have proved that, for all y ∈ Γ and n ≥ 1,

p2n(y, y) ≤ Cn−ν, (5.14)

which is (DUE) for all even times.
STEP 4. By the semigroup identity, we have, for any 0 < k < m,

pm(x, y) =
∑
z∈Γ

pm−k(x, z)pk(z, y)µ(z). (5.15)

In particular, if m = 2n, k = n and y = x then

p2n(x, x) =
∑
z∈Γ

p2
n(x, z)µ(z). (5.16)

On the other hand, (5.15), the Cauchy–Schwarz inequality and (5.16) imply

p2n(x, y) =
∑
z∈Γ

pn(x, z)pn(z, y)µ(z) ≤
[∑

z∈Γ

p2
n(x, z)µ(x)

] 1
2
[∑

z∈Γ

p2
n(y, z)µ(z)

] 1
2

,

whence
p2n(x, y) ≤ p2n(x, x)1/2p2n(y, y)1/2. (5.17)

Together with (5.14), this yields p2n(x, y) ≤ Cn−ν, for all x, y ∈ Γ. This implies (DUE) also for
odd times if we observe that, by (5.15) and (2.2),

p2n+1(x, y) =
∑
z∈Γ

p2n(x, z)P (z, y) ≤ max
z∈Γ

p2n(x, z). (5.18)

Proof of (c) ⇒ (a) in Proposition 5.1. Let A be a nonempty finite subset of Γ and let
f ∈ c0(A) be the first eigenfunction of −∆A. We may assume that f ≥ 0. Let us normalize f
so that max f = 1 and let x0 ∈ A be the maximum point of f . The equation −∆Af = λ1(A)f
implies, by (3.7),

f(x) = λ1(A)
∑
y∈A

GA(x, y)f(y)

whence, for x = x0,

1 = λ1(A)
∑
y∈A

GA(x0, y)f(y) ≤ λ1(A)
∑
y∈A

GA(x0, y)

and

λ1(A) ≥

max

x∈A

∑
y∈A

GA(x, y)


−1

. (5.19)

On the other hand, for any x ∈ A,∑
y∈A

GA(x, y) =
∑
y∈A

gA(x, y)µ(y) =
∫ ∞

0
µ {gA(x, ·) > t} dt.

Fix some t0 > 0 and estimate the integral above using (5.1), gA ≤ g and the fact that

µ {gA(x, ·) > t} ≤ µ(A).
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Then we obtain∑
y∈A

GA(x, y) ≤
∫ t0

0
µ(A)dt +

∫ ∞

t0

Ct−
ν

ν−1 dt = µ(A)t0 + Ct
− 1

ν−1

0 .

Let us choose t0 � µ(A)−
ν−1

ν to equate the two terms on the right-hand side, whence∑
y∈A

GA(x, y) ≤ Cµ(A)1/ν . (5.20)

Finally, (5.20) and (5.19) imply (FK).

The second result of this section will be preceded by two lemmas. We say that a weighted
graph (Γ, µ) satisfies the doubling volume condition if

V (x, 2R) ≤ CV (x,R), ∀x ∈ Γ, R > 0. (D)

Clearly, (D) is a weaker assumption than (V ).

Lemma 5.3 If (Γ, µ) satisfies (D) then, for all x ∈ Γ and R > 0,

λ(x,R) ≤ C

R2
(5.21)

Proof. Let us apply the variational property (3.3) with the test function

f(y) = (R − d(x, y))+ ∈ c0(B(x,R)).

Since |∇yzf | ≤ 1, (3.3) and (D) imply

λ(x,R) ≤
1
2

∑
y∼z(∇yzf)2µyz∑
y f2(y)µ(y)

≤ CV (x,R)
R2V (x,R/2)

≤ C ′

R2
,

which was to be proved.
The next lemma was proved in [59] but we give here a shorter proof.

Lemma 5.4 Let (Γ, µ) satisfy (p0). If (V ) and (G) hold, with some positive parameters α and
γ, then α − γ ≥ 2 .

Proof. By (5.19), we have

λ(x,R)−1 ≤ max
y∈B(x,R)

∑
z∈B(x,2R)

G(y, z). (5.22)

By (G) and Proposition 3.2, G(y, y) is uniformly bounded from above. Using (G) to estimate
G(y, z) for y �= z and (V ), we obtain

∑
z∈B(y,2R)

G(y, z) = G(y, y) +
�log2 R�∑
i=−1

∑
z∈B(y,2−iR)\B(y,2−i−1R)

g(y, z)µ(z)

≤ C + C

�log2 R�∑
i=−1

(
2−iR

)−γ
V (y, 2−iR)

≤ C


1 +

�log2 R�∑
i=−1

(
2−iR

)α−γ


 . (5.23)
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A straightforward computation of the sum (5.23) yields, for large R,

∑
z∈B(y,2R)

G(y, z) ≤ C




Rα−γ , α > γ,
log2 R, α = γ,
1, α < γ.

(5.24)

Combining (5.22) and (5.24), we obtain

λ(x,R) ≥ c




R−(α−γ), α > γ,

(log2 R)−1 , α = γ,
1, α < γ.

(5.25)

By Lemma 5.3, we have (5.21) which together (5.25) implies α − γ ≥ 2.

Proposition 5.5 Let (Γ, µ) satisfy (p0). If (V ) and (G) hold, with some positive parameters α
and γ, then the Faber-Krahn inequality (FK) holds with the parameter ν = α

α−γ .

Proof. Note that, by Lemma 5.4, we have α > γ so that ν is positive and, moreover, ν > 1.
Let us verify that

µ{y : g(x, y) > t} ≤ const t−α/γ . (5.26)

Then (5.1) would follow with ν = α
α−γ , which implies (FK), by Proposition 5.1.

The upper bound in (G) and (p0) imply that, for all x, y (including the case x = y - see
Proposition 3.2),

g(x, y) ≤ C min(1, d(x, y)−γ). (5.27)

If t ≥ C then the set {y : g(x, y) > t} is empty, and (5.26) is trivially true.
Assume now t ≤ C. Then (5.27) implies

µ{y : g(x, y) > t} ≤ µ{y : d(x, y) < (t/C)−1/γ} = V (x, (t/C)−1/γ).

Since R := (t/C)−1/γ ≥ 1, we can apply here the upper bound from (V ) and obtain (5.26).

6 The mean exit time and the Green kernel

The purpose of this section is to verify the part (V ) + (G) =⇒ (E) of the proof of Theorem 2.1.
Recall that (E) stands for the condition

E(x,R) � Rβ, ∀x ∈ Γ, R ≥ 1. (E)

Alongside the mean exit time EA(x), consider the maximal mean exit time EA defined by

EA := sup
y

EA(y). (6.1)

If A = B(x,R) then we write E(x,R) := EB(x,R). We will use also the following hypothesis:

E(x,R) ≤ CE(x,R), ∀x ∈ Γ, R > 0 (E)
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Proposition 6.1 The upper bound in (E) implies, for all x ∈ Γ and R ≥ 1,

E(x,R) ≤ CRβ. (6.2)

The lower bound in (E) implies
E(x,R) ≥ cRβ . (6.3)

Consequently, (E) implies (E) and

E(x,R) � Rβ. (6.4)

Proof. To show (6.2), let us observe that, for any point y ∈ B(x,R), we have B(x,R) ⊂
B(y, 2R), whence

E(x,R) = sup
y∈B(x,R)

EB(x,R)(y) ≤ sup
y∈B(x,R)

EB(y,2R)(y) = sup
y∈B(x,R)

E(y, 2R) ≤ CRβ.

The lower bound (6.3) is obvious by E ≤ E. Finally, (E) follows from (E) and (6.4) if R ≥ 1,
and (E) holds trivially if R < 1.

Proposition 6.2 For any nonempty finite set A ⊂ Γ, we have

λ1(A) ≥ (EA)−1. (6.5)

Proof. Indeed, this is a combination of (5.19) and definition of E (see (3.8) and (6.1)).
The next statement was proved in [59].

Proposition 6.3 Let (Γ, µ) satisfy (p0). If (V ) and (G) hold, with some positive parameters α
and γ, then (E) holds as well with β = α − γ.

Proof. Denote A = B(x,R). Applying (3.8), the obvious inequality gA ≤ g, as well as (V )
and (G), we obtain (cf. (5.23) and (5.24))

E(x,R) =
∑
y∈A

gA(x, y)µ(y) ≤
∑
y∈A

g(x, y)µ(y) ≤ CRα−γ .

Observe that, by Lemma 5.4, we know already that α > γ.
For the lower bound of E(x,R), let us prove that

gA(x, y) ≥ c d(x, y)−γ , ∀y ∈ B(x, εR) \ {x} (6.6)

provided ε > 0 is small enough. Consider the function

u(y) = g(x, y) − gA(x, y)

which is harmonic in A. By the maximum principle, its maximum is attained at the boundary
of A whence, by (G),

0 ≤ u(y) ≤ CR−γ .

Therefore,
gA(x, y) = g(x, y) − u(y) ≥ c d(x, y)−γ − CR−γ . (6.7)

If R is large enough and if d(x, y) ≤ εR with a small enough ε then the second term in (6.7) is
absorbed by the first one whence (6.6) follows.
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Summing up (6.6) over y we obtain (cf. (5.23) and (5.24))

E(x,R) =
∑
y∈A

gA(x, y)µ(y) ≥
∑

y∈B(x,εR)\{x}
gA(x, y)µ(y) ≥ cRα−γ .

If R is not big enough then the above argument does not work. However, in this case we
argue as follows. If the random walk starts at x then TB(x,R) ≥ R. Hence, we always have
E(x,R) = Ex(TB(x,R)) ≥ R which yields the lower bound in (E), provided R ≤ const.

Assuming that (V ) and (E) hold, there are the following general relations between the
exponents α and β: if the graph transient then 2 ≤ β ≤ α; and if it is recurrent then 2 ≤ β ≤ α+1
(see [59]; see also [60], [61] for various definitions of dimensions of graphs).

7 Sub-Gaussian term

The following statement is crucial for obtaining the off-diagonal upper bound of the heat kernel.
It contains the part (E) =⇒ (Ψ) of the proof of Theorem 2.1.

Proposition 7.1 Assume that the graph (Γ, µ) possesses the property (E). Then, for all x ∈ Γ,
R > 0 and n ≥ 1, we have

Ψn(x,R) ≤ C exp

(
−

(
Rβ

Cn

) 1
β−1

)
. (Ψ)

We start with the following lemma.

Lemma 7.2 Assume that the hypothesis (E) holds on (Γ, µ). Let A = B(x0, r) be an arbitrary
ball on Γ and let v be a function on A such that 0 ≤ v ≤ 1. Suppose that v satisfies in A the
equation

∆v = λv, (7.1)

where λ is a constant such that
λ ≥ (EA)−1. (7.2)

Then
v(x0) ≤ 1 − ε , (7.3)

where ε > 0 depends on the constants in hypothesis (E) (see Fig. 3).

Figure 3 The value of the function v at the point x0 does not exceed 1 − ε.
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Proof. Denote for simplicity u(x) = EA(x) and recall that u ∈ c0(A) and ∆u = −1 in A
(cf. (3.9)). Denote also

λ0 := (EA)−1 =
1

maxu
.

Consider the function w = 1 − λ0
2 u. Then 1

2 ≤ w ≤ 1 and, in A,

∆w =
λ0

2
≤ λ0w ≤ λw.

Since v ≤ 1 and w = 1 outside A, the maximum principle for the operator ∆ − λ implies that
v ≤ w in A. In particular,

v(x0) ≤ w(x0) = 1 − λ0

2
u(x0) ≤ 1 − u(x0)

2max u
.

The hypothesis (E) yields
u(x0)
maxu

=
E(x0, r)
E(x0, r)

≥ c,

whence (7.3) follows.

Lemma 7.3 Assume that (Γ, µ) satisfies (E). Let A = B(x0, R) be an arbitrary ball on Γ, and
let v be a function on A such that 0 ≤ v ≤ 1. If v satisfies in A the equation (7.1) with a
constant λ such that

CR−β ≤ λ < λ (7.4)

then
v(x0) ≤ exp

(
−cλ1/βR

)
. (7.5)

Here λ is an arbitrary constant, C is some constant depending on the condition (E), and c > 0
is some constant depending on λ and on the condition (E).

Proof. Condition (E) implies (E) and E(x,R) � Rβ (see Proposition 6.1). Choose the
constant C in (7.4) so big that the lower bound in (7.4) implies λ ≥ E(x,R)−1. Then, by
Lemma 7.2, we obtain v(x0) ≤ 1 − ε. If we have in addition

λ1/βR ≤ const (7.6)

then (7.5) is trivially satisfied. In particular, if R is in the bounded range then (7.6) is true
because λ is bounded from above by (7.4).

Hence, we may assume in the sequel that

R > C ′ and λ > C ′′ R−β, (7.7)

with large enough constants C ′ and C ′′ (in particular, C ′′ � C). The point of the present lemma
is that it improves the previous one for this range of R and λ. Choose a number r from the
equation λ = Cr−β, where C is the same constant as in (7.4). The above argument shows that
Lemma 7.2 applies in any ball of radius r. Let xi, i ≥ 1, be a point in the ball B(x0, (r + 1)i) in
which v takes the maximum value in this ball, and denote mi = v(xi) (see Fig. 4). For i = 0,
we set m0 = v(x0).
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Figure 4 The points xi where v(x) takes the maximum values.

For each i ≥ 0, consider the ball Ai = B(xi, r). Since

Ai ⊂ B(xi, r + 1) ⊂ B(x0, (r + 1)(i + 1)),

we have
max

Ai

v ≤ mi+1.

Applying Lemma 7.2 to the function v/mi+1 in the ball Ai, we obtain

mi ≤ (1 − ε)mi+1.

Iterating this inequality k := �R/(r + 1)� times and using mk ≤ 1, we conclude

v(x0) = m0 ≤ (1 − ε)k. (7.8)

By the conditions (7.7) and (7.4) and by the choice of r, we have

k � R

r
� λ1/βR,

so that (7.8) implies (7.5).

Lemma 7.4 Assume that (Γ, µ) satisfies (E). Let A = B(x0, R) be an arbitrary ball on Γ , and
let wn(x) be a function in A×N such that 0 ≤ w ≤ 1. Suppose that w solves in A×N the heat
equation

wn+1 − wn = ∆wn (7.9)

with the initial data w0 ≡ 0 in A (see Fig. 5). Then, for all n ≥ 1,

wn(x0) ≤ exp

(
−c

(
Rβ

n

) 1
β−1

+ 1

)
. (7.10)

wn 1

w0=0

n

wn+1-wn= w

(x0,n)
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Figure 5 The value of the function w at the point (x0, n) is affected by the initial value
w = 0 and by the boundary condition w ≤ 1.

Proof. Consider first two trivial cases. If Rβ ≤ Cn then (7.10) is true just by w ≤ 1
provided c is small enough. Since ∆w(x) depends only on the immediate neighbors of x, one
gets by induction that wk(x) = 0 for all x ∈ B(x0, R− k). Therefore, if R > n then wn(x0) = 0,
and (7.10) is true again.

Hence, we may assume in the sequel that, for a large enough C,

Cn1/β < R ≤ n. (7.11)

Fix some λ > 0 and find a function v(x) on A solving the boundary value problem{
∆v = λv in A,

v = 1 in A \ A.

The function un(x) := (1 + λ)nv(x) solves the heat equation (7.9) and satisfies the following
boundary conditions: un(x) ≥ 1 for x ∈ A \ A and u0(x) ≥ 0 for x ∈ A. By the parabolic
comparison principle, we have w ≤ u. Assume for a moment that λ satisfies the hypothesis (7.4)
of Lemma 7.3. Then we estimate v(x0) by (7.5) and obtain

wn(x0) ≤ (1 + λ)nv(x0) ≤ exp
(
λn − cλ1/βR

)
.

Now choose λ from the condition cλ1/βR = 2λn; that is,

λ =
(

cR

2n

) β
β−1

. (7.12)

As follows from (7.11), this particular λ satisfies (7.4). Therefore, the above application of
Lemma 7.3 is justified, and we obtain

wn(x0) ≤ exp(−λn) = exp

(
−c′

(
Rβ

n

) 1
β−1

)
,

finishing the proof.
Proof of Proposition 7.1. Denote A = B(x0, R). By (3.11), the function wn(x) := ΨA

n (x)
satisfies all the hypotheses of Lemma 7.4. Hence, (Ψ) follows from (7.10).

8 Off-diagonal upper bound of the heat kernel

Here we prove the following implication

(FK) + (E) =⇒ (UE) (8.1)

which will finish the proof of the heat kernel upper bound in Theorem 2.1. Indeed, together
with the implications

(V ) + (G)
Prop.5.5

=⇒ (FK)

and
(V ) + (G)

Prop.6.3
=⇒ (E)

(8.1) yields the part (V ) + (G) =⇒ (UE) of Theorem 2.1.
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Proposition 8.1 On any graph (Γ, µ), we have

(DUE) + (Ψ)=⇒(UE). (8.2)

In particular, if (p0) holds on (Γ, µ) then

(FK) + (E) =⇒ (UE) (8.3)

Proof. By Proposition 5.1, (p0) and (FK) imply the (DUE). By Proposition 7.1, (E)
implies (Ψ). Hence, the implication (8.3) is a consequence of (8.2).

To prove (8.2), let us fix some points x, y ∈ Γ and denote r = d(x, y)/2. Since the balls
B(x, r) and B(y, r) do not intersect, the semigroup identity (5.15) and the symmetry of the heat
kernel imply, for any triple of nonnegative integers k, m, n such that k + m = n,

pn(x, y) ≤
∑

z /∈B(x,r)

pm(x, z)pk(z, y)µ(z) +
∑

z /∈B(y,r)

pm(x, z)pk(z, y)µ(z)

≤ sup
z

pk(z, y)
∑

z /∈B(x,r)

Pm(x, z) + sup
z

pm(x, z)
∑

z /∈B(y,r)

Pk(y, z)

= sup
z

pk(y, z)Px (Xm /∈ B(x, r)) + sup
z

pm(x, z)Py (Xk /∈ B(x, r)) .

As follows from the definition (3.10) of Ψ,

Px (Xm /∈ B(x, r)) ≤ Ψm(x, r).

Hence, we obtain the following general inequality, which is true for all reversible random walks:

pn(x, y) ≤ sup
z

pk(y, z)Ψm(x, r) + sup
z

pm(x, z)Ψk(y, r). (8.4)

As follows from (5.17), the diagonal upper bound (DUE) implies, for all x, y ∈ Γ,

pn(x, y) ≤ Cn−α/β, (8.5)

provided n is even. Using inequality (5.18), we see that (8.5) holds also for odd n. Assuming
n ≥ 2, choosing k � m � n/2 and applying (8.5) and (Ψ) to estimate the right-hand side of (8.4),
we obtain (UE). If n = 1 then (UE) follows trivially from (8.5) and the fact that pn(x, y) = 0
whenever d(x, y) > n.

9 On-diagonal lower bound

In this section, we prove the part (Ψ) + (V ) =⇒ (DLE) of Theorem 2.1.

Proposition 9.1 Assume that the hypothesis (Ψ) holds on (Γ, µ). For arbitrary x ∈ Γ and
R > 0, denote A = B(x,R). Then the following on-diagonal lower bound is true

pA
2n(x, x) ≥ c

V (x,Cn
1
β )

, (9.1)

provided n ≤ εRβ, where ε is a sufficiently small positive constant depending only on the con-
stants from (Ψ).

If in addition (V ) holds then

pA
2n(x, x) ≥ cn−α/β, ∀n ≤ εRβ. (DLE)
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Remark 9.1 Since p2n ≥ pA
2n for any A = B(x,R), inequality (DLE) implies p2n(x, x) ≥

cn−α/β , for all positive integers n.

Proof. Let us fix some r ∈ (0, R) and denote B = B(x, r). Since pB ≤ pA, it will suffice to
prove (9.1) for pB instead of pA, for some r < R. The semigroup identity (5.15) for pB and the
Cauchy-Schwarz inequality imply

pB
2n(x, x) =

∑
z∈B

pB
n (x, z)2µ(z) ≥ 1

µ(B)

(∑
z∈B

pB
n (x, z)µ(z)

)2

. (9.2)

Let us observe that ∑
z∈B

pB
n (·, z)µ(z) + ΨB

n (·) = 1. (9.3)

Indeed, the first term in (9.3) is the probability that the random walk Xk stays in B up to the
time k = n whereas ΨB

n is the probability of the opposite event.
By the hypothesis (Ψ), we have

ΨB
n (x) = Ψn(x, r) ≤ C exp

(
−

(
rβ

Cn

) 1
β−1

)
. (9.4)

Choosing r = Cn1/β for large enough C and assuming n ≤ εRβ for sufficiently small ε > 0 (the
latter ensures r < R) we obtain from (9.4) Ψn(x, r) ≤ 1

2 whence, by (9.3),

∑
z∈B

pB
n (x, z)µ(z) ≥ 1

2
.

Therefore, (9.2) yields

pB
2n(x, x) ≥ 1/4

V (x, r)
=

1/4
V (x,Cn1/β)

,

finishing the proof.

10 The Harnack inequality and the Green kernel

Recall that the weighted graph (Γ, µ) satisfies the elliptic Harnack inequality if, for all x ∈
Γ, R > 0 and for any nonnegative function u in B(x, 2R) which is harmonic in B(x, 2R),

max
B(x,R)

u ≤ H min
B(x,R)

u , (H)

with some constant H > 1. In this section we establish that (H) is implied by the condition
(G). Recall that the latter refers to

g(x, y) � d(x, y)−γ , ∀x �= y. (G)

Consider the following annulus Harnack inequality for the Green kernel: for all x ∈ Γ and
R > 1,

max
y∈A(x,R)

g(x, y) ≤ C min
y∈A(x,R)

g(x, y) (HG)

where A(x,R) := B(x,R) \ B(x,R/2).
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Proposition 10.1 Assume that (p0) hold and the graph (Γ, µ) is transient. Then

(G) =⇒ (HG) =⇒ (H).

Since the implication (G) =⇒ (HG) is obvious, we need to prove only the second implication.
The main part of the proof is contained in the following lemma.

Lemma 10.2 Let U0 ⊂ U1 ⊂ U2 ⊂ U3 be a sequence of finite sets in Γ such that Ui ⊂ Ui+1,
i = 0, 1, 2. Denote A = U2 \ U1, B = U0 and U = U3. Then, for any function u which is
nonnegative in U2 and harmonic in U2, we have

max
B

u ≤ H min
B

u , (10.1)

where
H := max

x∈B
max
y∈B

max
z∈A

GU (y, z)
GU (x, z)

(10.2)

(see Fig. 6).

A

B

y

z

x

U

Figure 6 The sets B = U0, A = U2 \ U1 and U = U3

Remark 10.1 Note that no a priori assumption has been made about the graph (Γ, µ) (except
for connectedness and unboundedness). If the graph is transient then, by exhausting Γ by a
sequence of finite sets U , we can replace GU in (10.2) by G. Note also that, without loss of
generality, one can take U2 = U1.

Proof. The following potential-theoretic argument is borrowed from [12]. We use the
notation of Section 3. Given a nonnegative harmonic function u in U2, denote by Su the following
class of superharmonic functions:

Su =
{
v : v ≥ 0 in U, ∆v ≤ 0 in U , and v ≥ u in U1

}
.

Define the function w on U by

w(x) = min {v(x) : v ∈ Su} . (10.3)

Clearly, w ∈ Su. Since the function u itself is also in Su, we have w ≤ u in U . On the other hand,
by definition of Su, w ≥ u in U1, whence we see that u = w in U1 (see Fig. 7). In particular, it
suffices to prove (10.1) for w instead of u.
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U1 UU1

_

Figure 7 The function u, a function v ∈ Su and the function w = minSu v. The latter is
harmonic in U1 and in U \ U1.

Let us show that w ∈ c0(U). Indeed, let v(x) = EU (x). Then, by (3.9) and the strong
minimum principle, v is superharmonic and strictly positive in U . Hence, for a large enough
constant C, we have Cv ≥ u in U1 whence Cv ∈ Su and w ≤ Cv. Since v = 0 in U \ U , this
implies w = 0 in U \ U and w ∈ c0(U).

Denote f := −∆w and observe that f ≥ 0 in U . Since w ∈ c0(U), we have, for any x ∈ U ,

w(x) =
∑
z∈U

GU (x, z)f(z). (10.4)

Next we will prove that f = 0 outside A so that the summation in (10.4) can be restricted to
z ∈ A. Given that much, we obtain, for all x, y ∈ B,

w(y)
w(x)

=
∑

z∈A GU (y, z)f(z)∑
z∈A GU (x, z)f(z)

≤ H,

whence (10.1) follows.
We are left to verify that w is harmonic in U1 and outside U1. Indeed, if x ∈ U1 then

∆w(x) = ∆u(x) = 0,

because w = u in U1. Let ∆w(x) �= 0 for some x ∈ U \ U1. Since w is superharmonic, we have
∆w(x) < 0 and

w(x) > Pw(x) =
∑
y∼x

P (x, y)w(y).

Consider the function w′ which is equal to w everywhere in U except for the point x, and w′

at x is defined to satisfy
w′(x) =

∑
y∼x

P (x, y)w′(y).

Clearly, w′(x) < w(x), and w′ is superharmonic in U . Since w′ = w = u in U1, we have w′ ∈ Su.
Hence, by the definition (10.3) of w, w ≤ w′ in U which contradicts w(x) > w′(x).

Proof of Proposition 10.1. Now we assume (HG) and prove (H). Given any ball
B(x0, 2R) of radius R > 4 and a nonnegative harmonic function u in B(x0, 2R), define the
sequence of radii R0 = R, R1 = 3

2R and R2 = 2R and denote Ui = B(x0, Ri) for i = 0, 1, 2 and
U3 = Γ. By Lemma 10.2, we have the inequality (10.1) which will imply (H) provided we can
show that the Harnack constant H from (10.2) is bounded from above, uniformly in x0 and R.
Indeed, if x, y ∈ B(x0, R) and z ∈ A = B(x0, 2R) \ B(x0,

3
2R) then both distances d(z, x) and

d(z, y) are between R/2 and 7R/2. By iterating (HG) in the annuli centered at z, we obtain

G(y, z)
G(x, z)

=
g(z, y)
g(z, x)

≤ const,
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whence we see that H is indeed uniformly bounded from above.
The condition R > 4, which we have imposed above, ensures that Ui ⊂ Ui+1, which is

required for Lemma 10.2. If R ≤ 4 then (H) simply follows from (p0) and Proposition 3.2.

11 Oscillation inequalities

For any nonempty finite set U and a function u on U , denote

osc
U

u := max
U

u − min
U

u

The purpose of this section is to prove the estimate (11.7) below which will provide the step
(H) =⇒ [osc] of the prove of Theorem 2.1.

Proposition 11.1 Assume that the elliptic Harnack inequality (H) holds on (Γ, µ). Then, for
any ε > 0, there exists σ = σ(ε,H) < 1 such that, for any ball B(x,R) and for any function u
defined in B(x,R) and harmonic in B(x,R), we have

osc
B(x,σR)

u ≤ ε osc
B(x,R)

u . (11.5)

Proof. Fix a ball B(x,R) and denote for simplicity Br = B(x, r). Let us prove that, for
any r ∈ (0, R/3],

osc
Br

u ≤ (1 − δ) osc
B3r

u, (11.6)

where δ = δ(H) ∈ (0, 1). Then (11.5) follows from (11.6) by iterating.
If r ≤ 1 then the left hand side of (11.6) vanishes, and (11.6) is trivially satisfied. If r > 1

then B2r ⊂ B3r, and the function u − minB3r u is nonnegative in B2r and harmonic in B2r.
Applying the Harnack inequality (H) to this function, we obtain

max
Br

u − min
B3r

u ≤ H

(
min
Br

u − min
B3r

u

)
and

osc
Br

u ≤ (H − 1)
(

min
Br

u − min
B3r

u

)
.

Similarly, we have

osc
Br

u ≤ (H − 1)
(

max
B3r

u − max
Br

u

)
.

Summing up these two inequalities, we conclude

osc
Br

u ≤ C

(
osc
B3r

u− osc
Br

u

)
,

whence (11.6) follows.

Proposition 11.2 Assume that the elliptic Harnack inequality (H) holds on (Γ, µ). Let u ∈
c0(B(x,R)) satisfy in B(x,R) the equation ∆u = f . Then, for any positive r < R,

osc
B(x,σr)

u ≤ 2
(
E(x, r) + εE(x,R)

)
max |f | , (11.7)

where σ and ε are the same as in Proposition 11.1.
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Proof. Denote for simplicity Br = B(x, r). By definition of the Green function, we have

u(y) = −
∑

z∈BR

GBR
(y, z)f(z)

whence, using (3.8), we obtain

max |u| ≤ E(x,R)max |f | .

Let v ∈ c0(Br) solve the Dirichlet problem ∆v = f in Br (see Fig. 8). In the same way, we
have

max |v| ≤ E(x, r)max |f | .

Figure 8 The functions u and v in the case f ≤ 0.

The function w = u − v is harmonic in Br whence, by Proposition 11.1,

osc
Bσr

w ≤ ε osc
Br

w.

Since w = u on Br \ Br, the maximum principle implies that

osc
Br

w = osc
Br\Br

w = osc
Br\Br

u ≤ 2max |u|

Hence,

osc
Bσr

u ≤osc
Bσr

v+ osc
Bσr

w ≤ 2max |v| + 2ε max |u| ≤ 2
(
E(x, r) + εE(x,R)

)
max |f | ,

which was to be proved.

12 Time derivative of the heat kernel

Given a function un(x) on Γ × N, by “the time derivative” of u we mean the difference

∂nu := un+2 − un .

The main result of this section is Proposition 12.3 which provides the upper bound (12.5) for
∂np and thus constitutes the part (DUE) =⇒ [deriv] of the proof of Theorem 2.1. The crucial
point is that ∂np decays as n → ∞ faster than pn.

The analogue of the time derivative in the discrete case is ∂np = pn+2 − pn rather than
pn+1 − pn. Indeed, in Z

D (as well as in any other bipartite graph) pn(x, x) = 0 if n is odd.
Therefore, the difference pn+1(x, x) − pn(x, x) is equal either to pn+1(x, x) or to −pn(x, x), and
hence, decays as n → ∞ at the same rate as pn(x, x).
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Proposition 12.1 Let A be a nonempty finite subset of Γ and f be a function on A. Define

un(x) = PA
n f(x)

Then, for all integers 1 ≤ k ≤ n,

‖∂nu‖L2(A,µ) ≤
1
k
‖un−k‖L2(A,µ) .

Proof. The proof follows the argument from [17]. Let φ1,φ2, ..., φ|A| be the eigenfunctions of
the Laplace operator −∆A and λ1,λ2,...,λ|A| be the corresponding eigenvalues. Let us normalize
φi’s to form an orthonormal basis in L2(A,µ). The function f can be expanded in this basis

f =
∑

i

ciφi.

Since PA = I − (−∆A), we obtain
un =

∑
i

ρn
i φi , (12.1)

where ρi := 1 − λi are eigenvalues of the Markov operator PA.
From (12.1), we obtain

un − un+2 =
∑(

1 − ρ2
i

)
ρn

i φi

and
‖un − un+2‖2

L2(A,µ) =
∑

i

(
1 − ρ2

i

)2
ρ2n

i . (12.2)

Note that |ρi| ≤ 1 and, hence, ρ2
i ∈ [0, 1]. For any a ∈ [0, 1], we have

1 ≥ (1 + a + a2 + ... + ak)(1 − a) ≥ kak(1 − a) ,

whence
(1 − a) ak ≤ 1

k
.

Applying this inequality for a = ρ2
i , we obtain from (12.2)

‖un − un+2‖2
L2(A,µ) ≤

1
k2

∑
i

ρ
2(n−k)
i =

1
k2

‖un−k‖2
L2(A,µ) ,

which was to be proved.

Proposition 12.2 Let A be a nonempty finite subset of Γ. Then, for all x, y ∈ A,

∣∣∂npA(x, y)
∣∣ ≤ 1

k

√
pA
2m(x, x)pA

2(n−m−k)(y, y), (12.3)

for all positive integers n,m, k such m + k ≤ n.

Proof. From the semigroup identity (5.15) for pA, we obtain

∂npA(x, y) =
∑
z∈A

pA
m(x, z)∂n−mpA(z, y)µ(z),
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whence ∣∣∂npA(x, y)
∣∣ ≤ ∥∥pA

m(x, ·)∥∥
L2(A,µ)

∥∥∂n−mpA(y, ·)∥∥
L2(A,µ)

.

By Proposition 12.1,

∥∥∂n−mpA(y, ·)∥∥
L2(A,µ)

≤ 1
k

∥∥pA
n−m−k(y, ·)∥∥

L2(A,µ)

for any 1 ≤ k ≤ n − m. Since∥∥pA
m(x, ·)∥∥2

L2(A,µ)
=

∑
z∈A

pA
m(x, z)2µ(z) = pA

2m(x, x),

we obtain (12.3).

Proposition 12.3 Suppose that (DUE) holds; that is, for all x ∈ Γ and n ≥ 1,

pn(x, x) ≤ Cn−ν. (12.4)

Then, for all x, y ∈ Γ and n ≥ 1,

|∂np(x, y)| ≤ Cn−ν−1. (12.5)

Proof. Assume first n > 3. Then we can choose k and m in (12.3) so that k � m � n/3
and n − m − k � n/3 . As follows from (12.4), for any nonempty finite set A ⊂ Γ,

pA
2m(x, x) ≤ Cn−ν and pA

2(n−m−k)(y, y) ≤ Cn−ν,

whence, by Proposition 12.1, ∣∣∂npA(x, y)
∣∣ ≤ Cn−ν−1.

By letting A → Γ, we obtain (12.5).
If n ≤ 3 then (12.5) follows from the trivial inequality |∂np| ≤ pn + pn+2 and the fact that

(12.4) implies a similar bound for pn(x, y) (cf. (5.17) and (5.18)).

13 Off-diagonal lower bound

An important intermediate step in proving the lower estimate (LE) is a near-diagonal lower
estimate

pn(x, y) + pn+1(x, y) ≥ cn−α/β, (NLE)

for all x, y ∈ Γ and n ≥ 1 such that

d(x, y) ≤ δn1/β. (13.1)

In this section, we will finish the prove of the lower bound (LE) in Theorem 2.1 as on the
following diagram:

(V ) + (G) =⇒ (FK) + (V ) + (E) + (H) =⇒ (NLE) + (V ) =⇒ (LE).

The first implication here is given by Propositions 5.5, 6.3 and 10.1 whereas the other two will
be proved below.
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Let us recall that (DLE) refers to the lower bound

p
B(x,R)
2n (x, x) ≥ cn−α/β, ∀n ≤ εRβ, (DLE)

with some small enough ε > 0, and (DUE) refers to the upper bound

pn(x, x) ≤ Cn−α/β. (DUE)

Denote for simplicity by (E ≤) the upper bound in (E); that is

E(x,R) ≤ CRβ, ∀x ∈ Γ, R ≥ 1. (E ≤)

Proposition 13.1 For any graph (Γ, µ) we have

(DUE) + (DLE) + (E ≤) + (H) =⇒ (NLE). (13.2)

Consequently, if (p0) holds on (Γ, µ) then

(FK) + (V ) + (E) + (H) =⇒ (NLE). (13.3)

Proof. Let us first show how the second claim follows from the first one. Recall that, by
Proposition 5.1, (FK) =⇒ (DUE); by Proposition 7.1, (E) =⇒ (Ψ); and, by Proposition 9.1,
(Ψ) + (V ) =⇒ (DLE). Hence, the hypotheses of (13.3) imply the hypotheses of (13.2).

To prove (13.2), fix x ∈ Γ, n ≥ 1 and set

R =
(n

ε

)1/β
, (13.4)

for a small enough positive ε. So far we assume only that ε satisfies (DLE) but later, one more
upper bound on ε will be imposed. Denote A = B(x,R) and introduce the function

u(y) := pA
n (x, y) + pA

n+1(x, y).

By the hypothesis (DLE), we have u(x) ≥ cn−α/β . Let us show that

|u(x) − u(y)| ≤ c

2
n−α/β , (13.5)

for all y such that d(x, y) ≤ δn1/β, which would imply u(y) ≥ c
2n−α/β, hence proving (NLE).

The function u(y) is in the class c0(A) and solves the equation ∆u(y) = f(y) where

f(y) := pA
n+2(x, y) − pA

n (x, y).

The on-diagonal upper bound (DUE) implies, by Proposition 12.3,

max
y

|f(y)| ≤ C

nα/β+1
. (13.6)

By (H) and Proposition 11.2, we have, for any 0 < r < R and for some σ ∈ (0, 1),

osc
B(x,σr)

u ≤ 2
(
E(x, r) + ε2E(x,R)

)
max |f | . (13.7)

By Proposition 6.1, (E ≤) implies a similar upper bound for E. Estimating max |f | by (13.6),
we obtain from (13.7)

osc
B(x,σr)

u ≤ C
rβ + ε2Rβ

nα/β+1
.

35



Choosing r to satisfy rβ = ε2Rβ and substituting from (13.4) n = εRβ, we obtain

osc
B(x,σr)

u ≤ C
ε2Rβ

nα/β+1
= Cεn−α/β,

which implies
osc

B(x,σr)
u ≤ c

2
n−α/β, (13.8)

provided ε is small enough.
Note that

σr = σε2/βR = σε2/β
(n

ε

)1/β
= σε1/βn1/β = δn1/β

where δ := σε1/β. Hence, (13.8) implies (13.5) provided d(x, y) ≤ δn1/β, which was to be proved.

The final step in proving the part (V ) + (G) =⇒ (LE) of Theorem 2.1 is covered by the
following statement. Denote by (V ≥) the lower bound in (V ); that is

V (x,R) ≥ cRα, ∀x ∈ Γ, R ≥ 1. (13.9)

Proposition 13.2 Assume that (Γ, µ) satisfies (p0). Then

(NLE) + (V ≥) =⇒ (LE).

We precede the proof with the following lemmas. Denote for simplicity

P̃n = Pn + Pn+1 , (13.10)

where Pn is the n-convolution power of the Markov operator P . In particular, we have

PnPm = Pn+m. (13.11)

We need a replacement for this property for the operator P̃n, which is stated below in Lemma
13.5.

Lemma 13.3 Assume that (p0) holds on (Γ, µ), Then, for all integers n ≥ l ≥ 1 such that

n ≡ l(mod 2), (13.12)

we have
Pl(x, y) ≤ Cn−lPn(x, y) , (13.13)

for all x, y ∈ Γ, with a constant C = C(p0).

Proof. By the semigroup property (5.15), we have

Pk+2(x, y) =
∑
z∈Γ

Pk(x, z)P2(z, y) ≥ Pk(x, y)P2(y, y).

Using (p0), we obtain

P2(y, y) =
∑
z∼y

P (y, z)P (z, y) ≥ p0

∑
z∼y

P (y, z) = p0

whence Pk+2(x, y) ≥ p0Pk(x, y). Iterating this inequality, we obtain (13.13) with C = p
−1/2
0 .
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Lemma 13.4 Assume that (Γ, µ) satisfies (p0). Then, for all integers n ≥ l≥ 1 and all x, y ∈ Γ,

P̃l(x, y) ≤ Cn−lP̃n(x, y), (13.14)

where C = C(p0).

Remark 13.1 Note that no parity condition is required here in contrast to the condition (13.12)
of Lemma 13.3.

Proof. This is an immediate consequence of Lemma 13.3 because both Pl(x, y) and Pl+1(x, y)
can be estimated from above via either Pn(x, y) or Pn+1(x, y) depending on the parity of n and
l.

Lemma 13.5 Assume that (Γ, µ) satisfies (p0). Then, for all n,m ∈ N and x, y ∈ Γ, we have
the following inequality

P̃nP̃m(x, y) ≤ CP̃n+m+1(x, y), (13.15)

where C = C(p0).

Proof. Observe that, by (13.10) and (13.11),

P̃nP̃m = (Pn + Pn+1)(Pm + Pm+1) = Pn+m + 2Pn+m+1 + Pn+m+2.

By Lemma 13.3, Pn+m(x, y) ≤ CPn+m+2 whence

P̃nP̃m (x, y) ≤ C(Pn+m+1 + Pn+m+2) = CP̃n+m+1.

Lemma 13.6 Assume that (Γ, µ) satisfies (p0). Then, for all x, y ∈ Γ and k,m, n ∈ N such
that n ≥ km + k − 1, we have the following inequality(

P̃m

)k
(x, y) ≤ Cn−kmP̃n(x, y). (13.16)

Proof. By induction, (13.15) implies(
P̃m

)k
(x, y) ≤ Ck−1P̃km+k−1(x, y).

From inequality (13.14) with l = km + k − 1, we obtain

P̃km+k−1(x, y) ≤ Cn−km−(k−1)P̃n(x, y)

whence (13.16) follows.
Proof of Proposition 13.2. Since

P̃n(x, y) = (pn(x, y) + pn+1(x, y))µ(y),

(NLE) can be stated as follows:

P̃n(x, y) ≥ cn−α/βµ(y), if d(x, y) ≤ δn1/β. (13.17)

The required (LE) takes the form

P̃n(x, y) ≥ cn−α/βµ(y) exp

[
−

(
dβ(x, y)

cn

) 1
β−1

]
. (13.18)

To prove (13.18), fix x, y ∈ Γ, n ≥ d(x, y) and consider the following cases:
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Case 1. d(x, y) ≤ δn1/β;

Case 2. δn1/β < d(x, y) ≤ εn;

Case 3. εn < d(x, y) ≤ n.

Here δ is the constant from (13.17) and ε > 0 is a small constant to be chosen later. In the
first case, (13.18) coincides with (13.17). In the third case, (13.18) becomes

P̃n(x, y) ≥ cn−α/βµ(y) exp(−Cn), (13.19)

which can be deduced directly from (p0). Indeed, depending on the parity of n, there is a path
from x to y of length either n or n + 1. The Px-probability that the random walk will follow
this path is at least p

−(n+1)
0 , whence

P̃n(x, y) ≥ exp(−Cn).

This implies (13.19) using the fact that µ(y) ≤ C. The latter is proved as follows. Take in
(13.17) x ∼ y and n � δ−β. Then (13.17) implies

1 ≥ P̃n(x, y) ≥ cδαµ(y)

whence µ(y) ≤ C.
Consider the main second case. Denote d = d(x, y), take a positive integer k such that

k ≤ d , (13.20)

and define m by
m = �n

k
� − 1. (13.21)

Since k ≤ d ≤ εn, we see that n/k ≥ ε−1 and m is positive. Since n ≥ k(m + 1), Lemma 13.6
applies and yields

Cn−mkP̃n(x, y) ≥
(
P̃m

)k
(x, y). (13.22)

In order to estimate
(
P̃m

)k
(x, y), observe that there exists a sequence o1,o2,...,ok of points on

Γ such that x = o1, y = ok and, for all i = 1, 2, ..., k − 1,

d(oi, oi+1) ≤ �d(x, y)
k

� =: r (13.23)

(see Fig. 9).

x=o1

o2
o3 y=ok

ok-1

Figure 9 The chain of balls B(oi, r)
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Clearly, we have(
P̃m

)k
(x, y) ≥

∑
z1∈B(o1,r)

...
∑

zk−1∈B(ok−1,r)

P̃m(x, z1)P̃m(z1, z2)...P̃m(zk−1, y). (13.24)

Assume that we have in addition
3r ≤ δm1/β . (13.25)

Since d(zi−1, zi) ≤ 3r, each P̃m(zi−1, zi) can be estimated by (13.17) as follows:

P̃m(zi−1, zi) ≥ cm−α/βµ(zi).

The same applies to P̃m(x, z1) and P̃m(zk−1, y). Using the lower bound of the volume (13.9), we
obtain from (13.22) and 13.24)

Cn−mkP̃n(x, y) ≥ (cm−α/β)k−1V (o1, r)...V (ok−1, r)µ(y) ≥ ckm−(α/β)krα(k−1)µ(y).

Hence,

P̃n(x, y) ≥ cn−mk+km−(α/β)krα(k−1) ≥ ckm−α/β
( r

m1/β

)α(k−1)
, (13.26)

where we have used the fact that n − mk + k ≤ 3k which follows from (13.21).
Before we go further, let us specify the choice of k to ensure that both (13.20) and (13.25)

holds. Using definition (13.21) and (13.23) of m and r, we see that (13.25) is equivalent to

C
d

k
≤ δ

(n

k

)1/β

or

k ≥ Cδ−
β

β−1

(
dβ

n

) 1
β−1

. (13.27)

Let k be the minimal possible integer satisfying (13.27). By the hypothesis d ≥ δn1/β, we have

k �
(

dβ

n

) 1
β−1

. (13.28)

The condition (13.20) follows from the hypothesis n ≥ ε−1d provided ε is small enough.
From (13.28), (13.21) and (13.25), we obtain

m �
(n

d

) β
β−1 and r �

(n

d

) 1
β−1

.

Hence, by (13.26) and m ≤ n/k,

P̃n(x, y) ≥ ckm−α/β ≥ n−α/βkα/β exp(−Ck) ≥ n−α/β exp(−C ′k).

Substituting here k from (13.28), we obtain (13.18).
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14 Parity matters

Let us recall that (LE) contains the estimate for pn + pn+1 rather than for pn. In this section,
we discuss to what extent it is possible to estimate pn from below. In general, there is no lower
bound for pn(x, y) for the parity reason. Indeed, on any bipartite graph, the length of any path
from x to y has the same parity as d(x, y). Therefore, pn(x, y) = 0 if n �≡ d(x, y)(mod 2).

We immediately obtain the following result for bipartite graphs.

Proposition 14.1 If (Γ, µ) is bipartite and satisfies (LE) then

pn(x, y) ≥ cn−α/β exp

(
−

(
d(x, y)β

cn

) 1
β−1

)
, (14.1)

for all x, y ∈ Γ and n ≥ 1 such that

n ≥ d(x, y) and n ≡ d(x, y)(mod 2). (14.2)

Proof. Indeed, assuming (14.2), n+1 and d(x, y) have different parities whence pn+1(x, y) =
0, and (14.1) follows from (LE).

If there is enough “mixing of parity” in the graph then one does get the lower bound regardless
of the parity of n and d(x, y).

Proposition 14.2 Assume that graph (Γ, µ) satisfies (p0), (LE) and the following “mixing”
condition: there is an odd positive integer n0 such that

inf
x∈Γ

Pn0(x, x) > 0. (14.3)

Then the lower bound (14.1) holds for all n > n0 and x, y ∈ Γ provided n ≥ d(x, y).

For example if n0 = 1 then the hypothesis (14.3) means than each point x ∈ Γ has a loop
edge xx. If n0 = 3 and there are no loops then (14.3) means that, for each point x ∈ Γ, there
is an edge triangle xy, yz, zx. This property holds, in particular, for the graphical Sierpinski
gasket - see Fig. 1.

Proof. By (9.2), we obtain, for any positive integer m,

p2m(x, x) ≥ 1
V (x,m + 1)


 ∑

z∈B(x,m+1)

pm(x, z)µ(z)


2

=
1

V (x,m + 1)
.

The condition (p0) and Proposition 3.1 imply V (x,m + 1) ≤ Cm+1µ(x) whence

P2m(x, x) = p2m(x, x)µ(x) ≥ C−m−1.

Since we will use this lower estimate only for bounded range of m ≤ m0, we can rewrite it as

P2m(x, x) ≥ c, (14.4)

where c = c(m0) > 0.
Assuming n > n0, we have, by the semigroup property (5.15),

pn(x, y) =
∑
z∈Γ

pn−n0(x, z)Pn0(z, y) ≥ pn−n0(x, y)Pn0(y, y) (14.5)
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and in the same way
pn(x, y) ≥ pn−n0+1Pn0−1(y, y). (14.6)

By the hypothesis (14.3), we can estimate Pn0(y, y) from below by a positive constant. Also
Pn0−1(y, y) is bounded below by a constant as in (14.4). Hence, adding up (14.5) and (14.6), we
obtain

pn(x, y) ≥ c(pn−n0(x, y) + pn−n0+1(x, y)). (14.7)

The right-hand side of (14.7) can be estimated from below by (LE) whence (14.1) follows.

Finally, let us show an example which explains why in general one cannot replace in (LE)
pn + pn+1 by pn even assuming the parity condition n ≡ d(x, y)(mod 2).

Example 14.1 Let (Γ, µ) be Z
D with the standard weight µxy = 1 for x ∼ y, and let D > 4.

We modify Γ by adding one more edge ξ of weight 1, which connects the origin o = (0, 0, ..., 0)
to the point (1, 1, 0, 0, ..., 0), and denote the new graph by (Γ′, µ′).

o

ξ

y

x

m

m

-m

-m

Figure 10 Every path of odd length from x to y goes through o and ξ.

Clearly, the volume growth and the Green kernel on (Γ′, µ′) are of the same order as on
(Γ, µ); that is

V (x, r) � rD and g(x, y) � d(x, y)2−D.

Hence, for both graphs one has by Theorem 2.1

pn(x, y) ≤ Cn−D/2 exp
(
−d2(x, y)

Cn

)
(14.8)

and a similar lower bound (LE) for pn + pn+1. Since Z
D is bipartite, we have for (Γ, µ), by

Proposition 14.1,
pn(x, y) ≥ cn−D/2 exp

(
−d2(x,y)

cn

)
if n ≥ d(x, y) and n ≡ d(x, y)(mod 2)

(14.9)

Let us show that (Γ′, µ′) does not satisfy (14.9). Fix some (large) odd integer m and consider
points x = (m,m, 0, 0, ..., 0) and y = −x (see Fig. 10).
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The distance d(x, y) on Γ is equal to 4m, whereas the distance d′(x, y) on Γ′ is 4m − 1, due
to the shortcut ξ. Denote n = m2. Then n ≡ d′(x, y)(mod 2) and n > d′(x, y). Let us estimate
from above pn(x, y) on (Γ′, µ′) and show that it does not satisfy the lower bound (14.9). Since n
is odd and all odd paths from x to y have to go through the edge ξ, the strong Markov property
yields

pn(x, y) =
n∑

k=0

Px(τ = k)pn−k(o, y) , (14.10)

where τ is the first time the random walk hits the point o. If n− k < m then pn−k(o, y) = 0. If
n − k ≥ m then we estimate pn−k(o, y) by (14.8) as follows

pn−k(o, y) ≤ C

(n − k)D/2
≤ C

mD/2
.

Therefore, (14.10) implies
pn(x, y) ≤ Cm−D/2

Px {τ < ∞} .

The Px-probability to hit o is of the order g(x, o) � m2−D. Hence, we obtain

pn(x, y) ≤ Cm−(3D/2−2) = Cn−(3D/4−1) = o(n−D/2)

so that the lower bound (14.9) cannot hold.
A more careful argument shows that, in fact, pn(x, y) � n−(D−1).

15 Consequences of the heat kernel estimates

Here we prove the remaining part of Theorem 2.1 as stated in the next proposition.

Proposition 15.1 Assuming (p0), we have

(LE) + (UE) =⇒ (V ) + (G).

Proof. The Green kernel is related to the heat kernel by

g(x, y) =
∞∑

n=0

pn(x, y). (15.1)

Let x �= y. Then p0(x, y) = 0, and the upper bound (UE) for pn implies the upper bound for g
as follows:

g(x, y) ≤ C

∞∑
n=1

n−α/β exp

(
−c

(
dβ

n

) 1
β−1

)
,

where d = d(x, y). By estimating the sum via an integral, we obtain g(x, y) ≤ Cd−γ with
γ = α − β. Similarly, one proves g(x, y) ≤ Cd−γ using (LE) and the obvious consequence of
(15.1)

g(x, y) ≥ 1
2

∞∑
n=1

(pn(x, y) + pn+1(x, y)).

Let us prove the upper bound for the volume

V (x,R) ≤ CRα, (V ≤)
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for any x ∈ Γ and R ≥ 1. Indeed, for any n ∈ N, we have∑
y∈Γ

pn(x, y)µ(y) ≡ 1 (15.2)

whence ∑
yeB(x,R)

(pn(x, y) + pn+1(x, y)) µ(y) ≤ 2

and

V (x,R) ≤ 2
(

inf
y∈B(x,R)

(pn(x, y) + pn+1(x, y))
)−1

.

Taking n � Rβ and applying (LE), we see that the inf is bounded below by cn−α/β � R−α

whence (V ≤) follows.
Let us prove the lower bound for the volume

V (x,R) ≥ cRα. (V ≥)

We first show that (UE) and (V ≤) imply the following inequality

∑
y/∈B(x,R)

pn(x, y)µ(y) ≤ 1
2
, ∀n ≤ εRβ, (15.3)

provided ε > 0 is sufficiently small. Denoting Rk = 2kR, we have

∑
y/∈B(x,R)

pn(x, y)µ(y) ≤ C
∑

y/∈B(x,R)

n−α/β exp

[
−c

(
d(x, y)β

n

) 1
β−1

]

≤ C
∞∑

k=0

∑
y∈B(x,Rk+1)\B(x,Rk)

n−α/β exp


−c

(
Rβ

k

n

) 1
β−1




≤ C
∞∑

k=0

Rα
k n−α/β exp


−c

(
Rβ

k

n

) 1
β−1




= C

∞∑
k=0

(
2kR

n1/β

)α

exp


−c

(
2kR

n1/β

) β
β−1


 . (15.4)

If R/n1/β is large enough then the right hand side of (15.4) is majorized by a geometric series,
and the sum can be made arbitrarily small, in particular, smaller than 1/2.

From (15.2) and (15.3), we conclude

∑
y∈B(x,R)

pn(x, y)µ(y) ≥ 1
2

, (15.5)

whence

V (x,R) ≥ 1
2

(
sup

y∈B(x,R)
pn(x, y)

)−1

.

Finally, choosing n = [εRβ] and using the upper bound pn(x, y) ≤ Cn−α/β , we obtain (V ≥).
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This argument works only if εRβ ≥ 1. Let us now prove (V ≥) for the opposite case when
εRβ < 1. To that end, define R0 by εRβ

0 = 1. Then we have R < Ro. By the hypothesis (p0)
and Proposition 3.1, we have V (x,R0) ≤ Cµ(x). Combining with the lower bound (V ≥) for
V (x,R0), we obtain µ(x) ≥ c > 0. In particular, for any R > 0, we have V (x,R) ≥ c, which
implies (V ≥) for the bounded range of R.

Remark 15.1 Using similar argument, one can show also the following implication

(V ) + (UE) + (H) =⇒ (LE). (15.6)

Indeed, as we have seen in the proof of Proposition 15.1, (UE) implies (G ≤) which, together
with (V ), is enough to obtain (E ≤) (see Proposition 6.3). From (UE) and (V ), one obtains
the diagonal lower bound p2n(x, x) ≥ cn−α/β . Indeed, from (9.2) and (15.5) with R = Cn1/β,
we deduce

p2n(x, x) ≥ 1
V (x,R)


 ∑

y∈B(x,R)

pn(x, y)dµ(y)


2

≥ 1
4V (x,R)

� n−α/β .

From this estimate, one gets (DLE) (see [56]; the argument is similar to the proof of (6.6)).
Also, (DUE) follows trivially from (UE). Hence, having (DUE), (DLE), (E ≤) and (H), we
obtain (NLE) by Proposition 13.1 and then deduce (LE) from (NLE) + (V ) by Proposition
13.2.

Implication (15.6) yields that (V )+(UE)+(H) is equivalent to either of our main conditions
(V ) + (G) and (UE) + (LE). Indeed, we have

(V ) + (G) =⇒ (V ) + (UE) + (H) =⇒ (UE) + (LE) ,

where the first implication follows by Theorem 2.1 and Proposition 10.1, and the second is the
same as (15.6). We are left to close the circle by Theorem 2.1 or Proposition 15.1.

16 Appendix: the list of the lettered conditions

Here we provide a list the lettered conditions frequently used in the paper. The relations between
the exponents α, β, γ, ν are as follows:

α > β ≥ 2, γ = α − β and ν = α/β.

In all conditions, n is an arbitrary positive integer, R is an arbitrary positive real number, x, y
are arbitrary points on Γ, subject to additional restrictions if any. The constants C, c, δ, ε, p0

are positive.

V (x,R) � Rα, ∀R ≥ 1 (V )

E(x,R) � Rβ, ∀R ≥ 1 (E)

g(x, y) � d(x, y)−γ , x �= y (G)

V (x, 2R) ≤ CV (x,R) (D)

E(x,R) ≤ CE(x,R) (E)

λ1(A) ≥ cµ(A)−1/ν , for all nonempty finite sets A ⊂ Γ (FK)
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pn(x, x) ≤ Cn−1/ν (DUE)

pn(x, y) ≤ Cn−α/β exp

[
−

(
d(x, y)β

Cn

) 1
β−1

]
(UE)

(pn + pn+1)(x, y) ≥ cn−α/β exp

[
−

(
d(x, y)β

cn

) 1
β−1

]
, if n ≥ d(x, y). (LE)

p
B(x,R)
2n (x, x) ≥ cn−α/β, if n ≤ εRβ (DLE)

pn(x, y) + pn+1(x, y) ≥ cn−α/β , if d(x, y) ≤ δn1/β (NLE)

Ψn(x,R) := Px

(
TB(x,R) ≤ n

) ≤ C exp

[
−

(
Rβ

Cn

) 1
β−1

]
(Ψ)

P (x, y) ≥ p0, if x ∼ y (p0)

maxB(x,R) u ≤ H minB(x,R) u ,

for any function u nonnegative in B(x, 2R) and harmonic in B(x, 2R).
(H)
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