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Abstract

Realistic approaches to large scale object recognition, i.e. for detection
and localisation of hundreds or more objects, must support sub-linear time
indexing. In the paper, we propose a method capable of recognising one of
N objects in log(N) time.

The ”visual memory” is organised as a binary decision tree that is built
to minimise average time to decision. Leaves of the tree represent a few
local image areas, and each non-terminal node is associated with a ’weak
classifier’. In the recognition phase, a single invariant measurement decides
in which subtree a corresponding image area is sought.

The method preserves all the strengths of local affine region methods –
robustness to background clutter, occlusion, and large changes of viewpoints.
Experimentally we show that it supports near real-time recognition of hun-
dreds of objects with state-of-the-art recognition rates. After the test image
is processed (in a second on a current PCs), the recognition via indexing into
the visual memory requires milliseconds.

1 Introduction
In recent years, research in object recognition has progressed rapidly. Methods based on
correspondences of invariantly detected regions have achieved robustness to background
clutter, occlusion, and large changes of viewpoint. Impressive results, albeit for certain
classes of objects, have been reported [13, 2, 4].

Realistic approaches to recognition, detection and localisation of objects from large
collections must support sub-linear indexing, i.e. the ability to associate current visual in-
put with objects represented in the memory, at a speed that does not significantly depend
on the number of images and objects already seen. Any technique that compares the cur-
rent visual input one-by-one with stored models is linear in the number of known objects.
Such recognition techniques, solving effectively a sequence of two-image matching prob-
lems, will have, sooner or later, an unacceptable response time. Searching and indexing
are well-studied subjects, and two sub-linear methods dominate the field – hashing and
tree search. This paper presents an approach that achieves sub-linear, real-time recall by
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Figure 1: An example of features stored in the visual memory.

representing the visual memory as a binary decision tree organised to minimise average
time to decision.

The novel features of the proposed method, and the method itself, is easier explained
if the reader is familiar with the state-of-the-art approach of D. Lowe [4]. In Lowe’s
recognition method, processing of an image starts by extracting square patches invari-
ant to similarity transformations. Next, each patch is described by the SIFT feature – a
128-dimensional vector consisting of sixteen eight-bin weighted histograms of gradient
orientations. In the training stage, descriptors from all training images are organised in a
kD-tree. Correspondence between patches from the training images and a query image are
established as follows. First, descriptors are computed on the query image. For each de-
scriptor, the kD-tree returns one stored patch if its descriptor is significantly closer to the
queried descriptor than other stored descriptors, else no match is reported. The matched
pairs of query and kD-tree patches form tentative correspondences, which are confirmed
or rejected in subsequent verification and consistency checks (these are not relevant for
this paper). Lowe’s method can be summarised as: (i) detect local patches in an invariant
manner, (ii) represent them by a fix-sized feature vectors, (iii) search efficiently for near-
est neighbours of the vectors in the kD-tree and (iv) find geometrically consistent groups
of correspondences of local coordinate frames.

The first step of the proposed LAF-TREE method is in principle the same as in Lowe’s
approach. We chose a different type of transformation covariant regions – the maximally
stable extremal regions (MSERs [6]), but any affine (scale) invariant processes could be
used1. The LAF-TREE method establishes local coordinate systems (local affine frames
– LAFs) by constructions described in [10].

The novelty of the LAF-TREE approach is in the departure, in Step (ii), from the
”compute a fixed-size feature vector on a fixed patch (= measurement region [7])” pa-
radigm. In this paradigm, the local reference frame is described by a function of pixel
values from a patch whose size and shape, if expressed in the local frame coordinates,
is fixed. In Lowe’s approach, the shape is a square of a predefined size. It is clear that
a fixed measurement region will lead to difficulties when recognising certain classes of
objects, e.g. ”wire-like” objects as bicycles where any square neighbourhood includes
background. Perhaps more significantly, a measurement region of a certain size will be
too big for some frames, e.g. including parts of background or discontinuities, and yet it
will be too small for other frames whose descriptors will not be discriminative.

The problem of a better-than-fixed measurement region seems insurmountable. How

1Executables of a number of covariant region detectors (including MSERs) are available on the web at
http://www.robots.ox.ac.uk/~vgg/research/affine



can possibly be the measurement region adapted unless we know what we are looking
at? We finesse the problem by interleaving the processes of recognising the frame and
deciding where to measure next. The frame is recognised by descending a decision-
measurement tree where each decision not only reduces the number of potential corre-
sponding frames represented in the tree, but also defines which measurements are taken
next. More precisely, a binary tree is formed in the learning stage. For each non-terminal
node, a binary valued measurement-decision function, called a ’weak classifier’, is se-
lected from a large pool according to an optimisation criterion. The criterion is a lower
bound on the expected time to decision. The term ’weak classifier’ stresses the obvious
analogies with discrete AdaBoost - a classifier is selected by a greedy algorithm, it could
be any binary function of pixel values and, as will be shown later, it is not required to
make unequivocal decisions.

Establishing tentative correspondences with the decision-measurement tree has a num-
ber of favourable properties. The advantages of a data-specific measurement region have
already been mentioned. From a computational point of view, efficiency of recognition is
increased since only a small fraction of potential measurements is evaluated. In case that
a measurement is close to a decision boundary, or not available at all as in the case when it
is taken from the background, robustness of the search is easily achieved by inserting the
learned frame in both subtrees. With this modification, the search in the recognition stage
descend always into only a single branch, guaranteeing that a leaf of the tree is reached
in log(N) steps, where N is the number of frame instances stored in the tree. Last but not
least, the learning process explicitly takes into account geometric uncertainty and image
statistics to minimise the response time (see Section 2). The final recognition step (iv),
the verification of the presence of objects by finding geometrically consistent groups of
correspondences, is not time-critical, since the number of tentative matches per frame is
small. It can be implemented by RANSAC or a voting scheme.

Related work. Decision trees were successfully applied to various recognition prob-
lems, see e.g. [8] for a survey. Our problem differs from the bulk of published work in
not having the data labelled. Unsupervised learning techniques are exploited, the trees
provide an automatic clustering of image areas by their visual similarity. Our work was
inspired by Lepetit and Fua [2], whose approach, however, differs in several areas. First,
they set the tree size (and the number of trees, since they are using multiple randomised
trees) by hand, while in our approach the tree size is a function of image database con-
tent. Second, our measurements are invariant to affine deformations of the image (due to
the LAF constructions), thus a 3D model, or synthetically warped 2D images capturing
the appearance variations, are not needed. We also explicitly consider image noise and
background segmentation of the measurements, while Lepetit et al. synthetically generate
noisy patches and patches with random background. Finally we present experiments on
datasets containing hundreds of objects, while the method of Lepetit (and also of Lowe)
have been demonstrated on only a few objects.

Marée et al. [5] is using various forms of decision trees to recognise randomly gen-
erated image windows. The Video Google system by Šivic and Zisserman [13] is able of
indexing of a full-length movie. A clustering of descriptors of local features is employed
to reduce the recall time complexity by a constant factor. The work by Nene and Na-
yar [9] supports real-time recognition using a space slicing search, but it is restricted to
segmented objects. Neither object occlusion, cluttered background nor multiple objects
in a scene are handled.



2 Recognition with Decision-Measurement Trees
This section describes the decision-measurement tree which is used to represent the ”vi-
sual memory”. Generally, a decision tree is a tree structure where a simple test (a weak
classifier) is assigned to each non-terminal node. Each leaf corresponds to a volume of
observation space, that is defined by the sequence of decisions made on the path from the
tree root to that particular leaf. During the recall phase, the tree is traversed according to
the decisions at non-terminal nodes, until a leaf node is reached. The elements in the leaf
do not necessarily match the query – being in the same volume does not imply proximity
– and an additional evaluation of a similarity measure is necessary to distinguish match-
ing and non-matching elements. Recall can be viewed as a sequential reduction of the set
of candidate correspondences until a subset of a small predefined cardinality (called ’leaf
capacity’) is reached. The elements remaining in the subset are sequentially searched for
matches.

Although we currently employ only one simple type of weak classifiers, multiple types
can be freely combined within the tree. Our classifiers are binary functions dx,Θx : A →
{L,R}, which threshold a single pixel value. Vector x is specifying the measurement
location, Θx is a scalar threshold on the value at x, A is a local affine frame, and {L,R}
are the decisions to search left and right subtrees respectively.

Due to noise, the decisions are ambiguous for values close to the thresholds Θx. The
ambiguity can be solved in the recognition phase by descending both subtrees, as e.g. in
the classical kD-tree algorithm. In an alternative approach, the elements are in ambiguous
cases stored redundantly in both subtrees. There is then no need to backtrack or split
the tree search during recognition (recall), all uncertainties are addressed in the training
phase. This approach allows for faster retrieval at the expense of memory needed for
the redundant representation. Since our motivation is to achieve high recognition speeds,
we have adopted the second approach. The design leads to a straightforward retrieval
algorithm (see Algorithm 1). The retrieval is very fast since for each query frame A only
one evaluation of a weak classifier (thresholding of a single pixel value) is performed at
each tree level. The depth of the tree is typically 15 to 25, depending on the database size.

Learning the tree (Algorithm 2). A separate tree is constructed for every type of
LAF construction. Starting with a set SA of frames of a single type, the set is recursively
divided into subsets at non-terminal nodes. Non-terminal nodes are inserted until (a) the
cardinality of the particular subset is below a predefined threshold, the ’leaf capacity’, or
(b) the frames in the subset are indistinguishable. The condition (b) accommodates for
the situation where there are multiple images of the same object in the database, or when
the objects contain repetitive structures.

Let r(A) denote a random realisation of frame A in a query image. The random
function r encapsulates geometric and photometric misalignments between correspond-
ing frames, as well as image noise, blur and other image distortions. Algorithm 2 ensures
that A is represented in every leaf where the probability of a query realisation r(A) falling
to that leaf is above a threshold Θp; Θp is a parameter of the method. The probability
that a query realisation r(A) of frame A will descend the left

(
p(dx,Θx(r(A)) = L)

)
, and

right
(

p(dx,Θx(r(A)) = R)
)

subtree respectively, given a classifier dx,Θx and the frame A
is analysed below.

Estimation of geometric precision of the MSER-LAF method. Local affine frames
were constructed on several image pairs related by known homographies. Corresponding



Algorithm 1: MSER-LAF-TREE: Retrieving
stored frames

Input:
A: a query local affine frame

Output:
S: a set of candidate matches

function Tree.retrieveFrames (A) → S
S := root.retrieveFrames (A)

function Node.retrieveFrames (A) → S
if isLeaf then

S := {Ai : Ai ∈ leafFrames∧ similar(A,Ai)}
else

if dx,Θx(A) = L then
S := leftSubtree.retrieveFrames (A)

else /*dx,Θx(A) = R*/
S := rightSubtree.retrieveFrames (A)

Algorithm 2: MSER-LAF-TREE: Learning

Input: SA: Set of LAFs of one type

procedure Tree.build (SA)
S := /0
for all A ∈ SA do

S := S∪{{A,1}} /*assign unit probability*/
root.build (S)

procedure Node.build (S)
if |S| ≤ leaf capacity or indistinguishable (S)
then

isLeaf := true, leafFrames := S
else

dx,Θx := selectClassifier (S)
SL = /0,SR = /0
for all {A, pA} ∈ S do

pL := pA · p(dx,Θx(r(A)) = L)
pR := pA · p(dx,Θx(r(A)) = R)
if pL ≥ Θp then

SL := SL∪{{A, pL}}
if pR ≥ Θp then

SR := SR∪{{A, pR}}
if SL 6= /0 then

leftSubtree.build (SL)
if SR 6= /0 then

rightSubtree.build (SR)

frames do not align perfectly – a single spot in the scene occurs at slightly different pixel
positions. Figure 2 shows covariance matrices of distributions of pixel displacements,
estimated on thousands of frames. The distributions represent a localisation uncertainty
lx of pixels in query frames. As expected, the farther from the detected frame, the larger
is the uncertainty. It is clear that the distributions differ significantly for different types of
frame constructions. A separate set of distributions is therefore maintained for each frame
type.

Considering the estimated geometric uncertainty. Given a database frame A of a
certain type, what is the probability of observing value v at measurement position x in a
corresponding query frame r(A)? The situation is depicted in Figure 3. Fig. 3(a) illustrates
a part of the frame neighbourhood around measurement position x, and the corresponding
distribution of localisation uncertainty lx for that particular frame type. The probability
p(v) of observing a value v in a query frame at position x is given as

px,A(v) =
∫

Ωv,A

lx dΩ, (1)

where Ωv,A is the area in A covered by pixels of value v. Fig. 3(b) shows the resulting
distribution px,A(v) for the example from Fig. 3(a). Narrow distributions of px,A(v), which
are benign for unambiguous decisions about query frames, are intuitively obtained either
in areas of uniform intensity or where the localisation is precise.



(a) (b) (c)

Figure 2: Geometric misalignment of detected frames, experimentally obtained for different types
of frame constructions. The images show covariance matrices of distributions of displacements of
pixels in normalised neighbourhoods of detected LAFs. (a) LAF construction based on normali-
sation by region covariance matrix, (b) LAF construction based on a bi-tangent segment, (c) LAF
construction based on normalisation by covariance matrix of a concavity [10]

(a) (b) (c)

Figure 3: Probability of observing value v at position x in a query realisation of frame A. (a) local-
isation uncertainty lx for a pixel at position x, (b) probability px,A(v) of value v, (c) the probability
after considering photometric noise

The framework also consistently handles situations when some of the measurements
are undefined, e.g. because not being on the object. Imagine hand-segmented model im-
ages where the outline of the object is available (as in Figure 4(a)). Some of the frames
will partially cover an area not on the object. In this area, the model cannot predict what
value v will occur in a query frame. Without a background model (the probability distri-
bution of intensities in the scene background), all values v are considered equiprobable.
That is, if x is known to be outside of the object, px,A(v) has flat distribution over the
whole domain of v

(
px,A(v) = 1/256 for v ∈ {0, . . . ,255}

)
.

Modelling photometric noise. A very simple model of photometric noise is em-
ployed – the noise distribution is assumed to be flat in a range of (−ε,ε) intensity values.
As illustrated in Figure 3(c), the probability of observing value v becomes px,A(v)/ε over
the ε-range. In the experiments, ε is set to 10, independently of v.

Going back to Algorithm 2, the probabilities that a query realisation r(A) will descend
into the left and right subtree respectively are expressed as

p
(
dx,Θx(r(A)) = L

)
=

∫
Θx

0
px,A(v)dv, resp. p

(
dx,Θx(r(A)) = R

)
=

∫ 255

Θx
px,A(v)dv (2)

for v ∈ {0 . . .255}.



(a) (b)

Figure 4: The need for variable-sized measurement regions. (a) An example of a segmented
model image and some of its frames. Using a common fixed measurement region where values
are defined for all frames would lead to small nondescriminative descriptors. Large regions would
include background in test images. (b) Frames detected on multiple instances of the ’e’ letter on the
’Multiple view geometry’ book title. The instances cannot be distinguished close to the detected
frames and a distant measurement (e.g. on a neighbouring letter) is needed to separate them.

The remaining issue in the tree construction algorithm is the choice of weak classifiers
for non-terminal nodes. The objective is to minimise the expected recall time for query
frames. To select the classifier for a non-terminal node, let us have a set S of frames A,
each with assigned probability pA – the probability that r(A) will descend from root to
that node. The task is to select a measurement position x and a threshold Θx so that, on
average, the queries reach leaf nodes in minimal time, i.e. on minimal tree level. The
requirements translate to (a) that the tree is balanced for query frames and (b) the number
of ambiguous frames stored in both subtrees is minimised. It follows from (a) that for any
particular x, the threshold Θx is set to median value, so that

∑
A∈S

pA p
(
dx,Θx(r(A)) = L

)
= ∑

A∈S
pA p

(
dx,Θx(r(A)) = R

)
∑
A∈S

pA

∫
Θx

0
px,A(v)dv = ∑

A∈S
pA

∫ 255

Θx
px,A(v)dv (3)

The measurement position x that best separates (minimises overlap) of the frames in S is
selected as

x = argmin
x

∑
A∈S

min
(

pA p
(
dx,Θx(r(A)) = L

)
, pA p

(
dx,Θx(r(A)) = R

))
, (4)

with Θx given by Eq. 3. Ideally, when a position x (and a corresponding threshold Θx)
is found which perfectly separates the set S, the minimised term evaluates to zero. In
the worst case of identical distributions p

(
dx,Θx(r(A))

)
for all A ∈ S, the term evaluates

to 0.5 (after normalisation by 1
|S| ). Let us consider the example shown in Figure 4 (b).

No measurement positions x on the letter ’e’ nor the brown background will allow for
discrimination of the frames. Due to formula 4, a distant but discriminative measurement
is rather selected.

3 Experiments
The performance of the proposed method, both in the recognition rate and execution
speed, was evaluated on two datasets. The COIL-100 dataset has been widely used in
object recognition literature [14, 10, 3, 1, 15], and the experiment is included to compare



the recognition rate with other state-of-the-art methods. ZuBuD, the second dataset, rep-
resents a larger, real-world problem, with images taken outdoor, with occluded objects,
varying background, and illumination changes.

(a) (b)

Figure 5: COIL-100: (a) Objects from the database, (b) Query images for the occlusion experiment

(a) (b)

Figure 6: ZuBuD dataset [12]: Examples of (a) query and (b) the corresponding database images.

COIL-100. The Columbia Object Image Library (COIL-100)2 is a database of colour
images of 100 different objects; 72 images of each object placed on a turntable were
acquired at pose intervals of 5◦. Neither occlusion, background clutter, nor illumination
changes are present. Several images from the database are shown in Figure 5(a). Two
experiments were performed, differing in the number of images used for training. The
achieved recognition rate was 98.2% for 4 training views per object (90◦ apart, 68 test
views per object) and 99.7% for 8 training views (45◦ apart, 64 test views). Table 1
summarises the results and provides comparison to other published results.

In another experiment, occlusion of the objects was simulated by blanking one half of
the test images (see Figure 5 (b)). Four full (unoccluded) training views per object were
used in training. The recognition rate was 87%, which is comparable to published results
on unoccluded images.

Table 2 provides detailed information about the experiments. Two variants of the
recognition system were evaluated, one which recalls the stored frames via the proposed
decision tree (with sub-linear recall time), and a second one which sequentially scans
through all stored frames (linear recall time). The recall times in the Table 2 show that
using the decision tree, matching of approximately 500 query frames against hundreds
of thousands of stored frames takes about 2 milliseconds. The total response time of the
recognition system is the sum of the time needed to build the query image representation
(independent of the number of database objects – 7th row of Table 2) and the recall time
(8th or 9th row). Note that doubling the number of training images (columns 2 and 3) did
not double the recall time for the tree approach. The required time increased from 1.99
ms to 2.17 ms, i.e. by less than 10%. It confirms the claim that the recall time is sub-linear

2http://www.cs.columbia.edu/CAVE



in the number of stored frames. Training of the tree took approximately 30 hours and the
tree representation required approximately 1GB of memory.

Method 8 views 4 views Method 8 views 4 views
MSER+LAF+tree (proposed) 99.8% 98.2%
MSER+LAF 2002 [10] 99.4% 94.7% Spectral representation [3] 96.3% –
Kullback-Leibler SVM [14] 95.2% 84.3% SNoW / edges [15] 89.2% 88.3%
Spin-Glass MRF [1] 88.2% 69.4% SNoW / intensity [15] 85.1% 81.5%
Linear SVM [15] 84.8% 78.5% Nearest Neighbour [15] 79.5% 74.6%

Table 1: COIL-100 experiment: Comparison with published results

COIL-100 ZuBuD
1. Occluded queries no no yes n/a
2. Training view dist 90◦ 45◦ 90◦ n/a
3. Number of DB images 400 800 400 1005
4. Number of DB frames 186346 385197 186346 251633
5. Number of query images 6800 6400 6800 115
6. Avg number of query frames 494 494 269 1594
7. avg time to build representation 520 ms 522 ms 251 ms 1255 ms
8. avg recall time without the tree 493 ms 3471 ms 277 ms 27234 ms
9. avg recall time with the tree 1.99 ms 2.17 ms 1.07 ms 14.3 ms
10. recognition rate 98.24% 99.77% 87.01% 93 %

Table 2: Experimental results on COIL-100 and ZuBuD datasets

ZuBuD dataset. The experiment was conducted on a set of images of 201 buildings
in Zurich, Switzerland, which is publicly available [12]. The database consists of five
photographs of the 201 buildings. A separate set of 115 query images is provided. For
every query image, there are exactly five matching images of the same building in the
database. Query and database images differ in viewpoint, variations in the illumination
are present, but rare. Examples of corresponding query and database images are shown in
Figure 6. Experimental results are summarised in the last column of Table 2. The slower
recall times, compared with the COIL-100 dataset, are caused by a higher number of
query frames and by the increase of the leaf capacity from 4 to 10 – up to 10 frames were
searched exhaustively in the leaf nodes. The leaf capacity represents a trade-off between
recall speed and recognition rate. Setting the capacity to 1000, a recognition rate of 98.2%
was achieved, but the average recall time dropped to 510 ms. Linear exhaustive scan
through all the stored frames (avoiding the tree) achieved recognition rate of 100% [11],
but with recall times over 27 seconds per image.

4 Conclusions
An object recognition method capable of sub-linear recall has been proposed. Objects
are represented by local affine frames, i.e. as a set of local photometric measurements
expressed in object-centred coordinates. The local affine frames are stored in a binary
decision-measurement tree organised to minimise average time to decision. A frame is
recognised by descending the tree where each decision not only reduces the number of
potential corresponding frames, but also defines which measurements are taken next.



We show experimentally that the method supports near real-time recognition of hun-
dreds of real-world objects with state-of-the-art recognition rates. Establishing corre-
spondences between hundreds of query local frames and hundreds of thousands of stored
frames takes only a few milliseconds. The proposed LAF-TREE method possesses all the
strengths of local region methods – robustness to background clutter, occlusion, and large
changes of viewpoints.
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