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Liquid level measurement in Lab on a chip (LOC) devices 

is a challenging task due to the demand for a sensor with 

ultra-high resolution but miniature in nature. In this 

letter we report a simple, compact in size, yet highly 

sensitive liquid level sensor based on a hollow core fiber 

(HCF) structure. The sensor is fabricated by fusion 

splicing a short section of HCF between two singlemode 

fibers (SMFs). Sensor samples with different lengths of 

HCF have been studied; it is found that the sensor with a 

HCF length of ~4.73 mm shows the best sensitivity of 

~0.014 dB/μm, corresponding to a liquid level resolution 

of ~0.7 μm, which is over five times higher than that of 

the previous reported fiber optic sensors to date. In 

addition, experimental results have demonstrated that 

the proposed sensor shows good repeatability of 

measurement and a very low cross sensitivity to changes 

in the refractive index of the surrounding medium. © 

2019 Optical Society of America 
http://dx.doi.org/10.1364/OL.99.099999 Liquid level measurement has been attracting intensive interest in numerous applications, such as in warning of floods, monitoring of fuel storage and public water supplies. A number of sensing techniques based on mechanical, electrical, ultrasonic and optical methods have been proposed for monitoring changes in liquid level [1-3]. Among them, optical fiber based liquid level sensors stand out with their inherent advantages such as miniature size, non-metallic nature, immunity to electromagnetic interference, remote sensing capability, high resistance to corrosion and ability to work up to high temperatures (up to 1000 °C), making them more attractive over other sensor types in applications where explosive, corrosive, and conductive conditions and flammable hydrocarbons are present. 

During the past decade and more, tremendous effort has been put into liquid level monitoring and numerous optical fiber based liquid level sensors have been proposed. In general, those sensors can be classified into two types: type I sensor provides continuous liquid level (CLL) measurement while sensor of type II provides discrete (point) liquid level (DLL) measurement. Both direct and indirect approaches have been reported for CLL measurement based on either wavelength modulation or intensity modulation. Direct approaches are usually implemented utilizing a Mach-Zehnder interferometer (MZI) and Michelson interferometer (MI). Examples include sensor configurations based on long-period fiber gratings (LPGs), side polished (etched) fiber structures, polarization maintaining fiber and no core fiber structure [4-9]. For indirect approaches the sensor usually measures the variations in the optical properties of a fiber resulting from bending, strain or pressure when the liquid level changes [10-11]. DLL sensors are typically operated based on intensity modulation by monitoring the power change in optical reflection or transmission through the sensor head, where prism and polymer optical fiber based sensor configurations are most widely reported [12-14]. Compared with the sensor designed for DLL measurement, a sensor for CLL measurement suffers from a narrower measurement range, but compensates for this shortcoming with a better sensitivity and hence a better resolution. Nowadays, lab on a chip (LOC) devices are driving many innovations in various engineering fields involving life sciences, diagnostics, analytical sciences, and chemistry [15]. Liquid level measurement in such devices is important, for example to estimate and control the volume of the fluids flowing inside the micro-channels. However, in such devices fluids are manipulated with a typical scale length ranging from one hundred nanometers to several hundreds of micrometers, thus detection of a very small liquid level variation is required. Fiber optic sensor is a good 
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measurement range (~1 mm), but considering its proposed application in LOC devices, this measurement range is sufficient.  The dependence of sensitivity of S4 (Dip 1) on the SRI of the surrounding liquid was also investigated as shown in Fig. 4. It can be seen that the influence of the surrounding liquid’s RI within the range from 1.3355 to 1.3812 on the dependence of the dip strength versus the change in the liquid level is very small, which gives the proposed sensor a big advantage against the previously reported liquid level sensors which suffer from a high cross sensitivity to changes in the SRI [4-9]. 

 
Fig. 4. Measured dip strength changes of Dip 1 during liquid level measurement in a range of SRI liquids. Figure 5 compares the measured dip strength changes of Dip 1 during liquid level measurement for different water flow directions (water input from the left or right side of the tube respectively). The measured dip strength changes for both water flow directions are highly symmetrical with very little variations. Therefore, it is concluded that the proposed sensor is not capable of telling the direction of the liquid flow. However, this function could be achieved by replacing the input or the collecting SMF sections with a different type of fiber or using coating techniques, which will be further investigated in the future work. It is noted that more robust and integrated LOC devices for liquid level measurement could be realized by imprinting directly such an ARROW structure inside the devices [23]. In addition, due to the presence of periodic transmission dips in the transmission of the HCF structure, a high sensitivity liquid flow rate sensor could be potentially realized by simultaneous monitoring dips strength variations of two or more dips as the liquid flows along the HCF, as demonstrated by C. Shen et al. [24]. 

 
Fig. 5. Measured dip strength changes of Dip 1 during liquid level measurement for different water flow directions. In conclusion, a highly sensitive liquid level sensor is demonstrated based on an HCF structure by monitoring the transmission spectral dip strength changes. Sensor samples with different lengths of the HCF section were investigated. It is found 

that the sensor sample with a longer length of HCF shows a better sensitivity to the liquid level change. The sensor sample with a HCF length of ~4.73 mm demonstrates the highest sensitivity of ~0.014 dB/μm in a liquid levels range from 200 μm to 1000 μm. To the best of our knowledge, this is the highest liquid level measurement sensitivity reported to date. The corresponding liquid level resolution is as high as ~0.7 μm. In addition, experimental results have demonstrated that the proposed sensor has good measurement repeatability and the sensor’s sensitivity shows a very low dependence on the SRI. 
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