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Abstract. We expand here the description of the Antarc-

tic temperature variability during the long interglacial period

occurring ∼400 thousand years before the present (Marine

Isotopic Stage, MIS 11). Our study is based on new detailed

deuterium measurements conducted on the EPICA Dome C

ice core, Antarctica, with a ∼50 year temporal resolution.

Despite an ice diffusion of a length reaching ∼8 cm at MIS

11 depth, the data allow us to highlight a variability at multi-

centennial scale for MIS 11, as it has already been observed

for the Holocene period (MIS 1). The differences between

MIS 1 and MIS 11 are analysed regarding the links between

multi-millennial trends and sub-millennial variability. The

EPICA Dome C deuterium record shows an increased vari-

ability and the onset of millennial to sub-millennial period-

icities at the beginning of the final cooling phase of MIS 11.

Our findings are robust with respect to sensitivity tests on the

somewhat uncertain MIS 11 duration.

Correspondence to: K. Pol

(katy.pol@lsce.ipsl.fr)

1 Introduction

Past interglacials, free from human impact on climate, are

nowadays well documented by climatic records long avail-

able, such as marine sediment (Lisiecki and Raymo, 2005)

or ice cores (Jouzel et al., 2007; Loulergue et al., 2008;

Spahni et al., 2005; Lüthi et al., 2008; Siegenthaler et al.,

2005) and offer the possibility to study natural climate vari-

ability during warm periods (Tzedakis et al., 2009). Increas-

ing our knowledge of their dynamics is expected to provide

a better understanding of the past and future evolution of our

present warm climatic period: the Holocene, whose natural

course is disturbed by anthropogenic forcings (IPCC, 2007).

In this context, the challenge lies in finding the most appro-

priate past interglacial for a comparison with the Holocene

period. Occurring in an orbital configuration close to the re-

cent one (low eccentricity) around 400 thousand years be-

fore the present day (kyr BP, hereafter noted ka), Marine

Isotopic Stage (MIS) 11 was proposed to be a good candi-

date, according to a high correlation between the mean 65◦ N

June insolations of MIS 1 (or Holocene) and 11 (Loutre and

Berger, 2000, 2003). Although the Antarctic temperature de-

rived from the EPICA Dome C (EDC) isotopic data (Jouzel

et al., 2007) exhibits values up to +2 ◦C higher than the mean

value for present day at MIS 11 maximum (dated around
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406 ka using the EDC3 chronology, Parrenin et al., 2007),

CO2 (Siegenthaler et al., 2005) and CH4 (Spahni et al.,

2005) concentrations reach similar levels, around 280 ppm

and 710 ppb respectively, during MIS 11 and the preindus-

trial period. Moreover, recent sea-level records (Bowen,

2010; Rohling et al., 2010) converge towards an estimation

of sea-level at ∼400 ka, comparable with the present one

as it was previously suggested by McManus et al. (2003)

and Waelbroeck et al. (2002) and modelled by Bintanja et

al. (2005).

The climatic contexts of MIS 1 and 11 thus present in-

teresting similarities. Controversies have however emerged

regarding the orbital alignment of the two interglacials with

implications for the prediction of the MIS 1 duration. The de-

bate summarized in Tzedakis (2010) arises from the choice

of aligning either precession (Loutre and Berger, 2000, 2003;

Ruddimann, 2005, 2007) or obliquity (EPICA-community-

members, 2004; Masson-Delmotte et al., 2006) for the syn-

chronisation of the two interglacials. A recent marine study

(Dickson et al., 2008) tends to support the alignment of

obliquity. Nevertheless, the double-peak precession config-

uration of MIS 11 still contrasts with the orbital context of

MIS 1, which is marked by a single precession maximum.

A careful comparison with earlier past interglacials now ap-

points MIS 19 as the warm climatic period with the closest

orbital configuration to the Holocene one (Pol et al., 2010;

Rohling et al., 2010; Tzedakis, 2010). The study of MIS 19,

remains, however, difficult due to age-scale uncertainties as

well as the lack of high-resolution records (Pol et al., 2010).

Instead, MIS 11 offers the ability to document natural cli-

mate variability along the longest interglacial recorded since

one million years ago and the establishment of the 100 kyr

glacial-interglacial cycles (Bintanja et al., 2005; Jouzel et al.,

2007; Lisiecki and Raymo, 2005) at high resolution.

While earlier comparisons of MIS 11 and Holocene fo-

cused on the analysis of their trends or amplitudes (EPICA-

community-members, 2004; Masson-Delmotte et al., 2006),

we propose here to analyse the Antarctic high frequency cli-

mate variability within these two periods. Our study relies

on new high-resolution measurements of water stable isotope

ratios (deuterium/hydrogen ratio expressed as δD) conducted

on the EDC ice core, which have improved the temporal res-

olution for MIS 11 (Sect. 2). This new resolution, close to the

Holocene one (∼20 years), allows us to better document and

compare MIS 1 and 11 Antarctic temperature fluctuations

at sub-millennial scale in two different ways: (i) by study-

ing the δD record variance changes in relationship with long

term trends, which was not possible with the previous MIS

11 δD bag data because of the lack of a sufficient number of

points; (ii) by performing spectral analyses of our δD signals.

Section 3 is dedicated to the description of the methods be-

fore the results are presented in Section 4 and the variability

analyses (Sect. 5) in detail. Spectral analyses are highly de-

pendent on the age-scale and on the estimation of MIS 11 du-

ration. As differences have been reported between the EDC3

chronology (Parrenin et al., 2007) used in Jouzel et al. (2007)

and other age-scales (Kawamura et al., 2010; Lisiecki and

Raymo, 2005), we performed sensitivity tests for different

MIS 11 durations, compatible with orbital constrains derived

from available and new EDC air data records, and discuss the

robustness of our variability analyses. And finally, we inves-

tigated the possible mechanisms at the origin of the observed

δD variability during MIS 1 and 11 periods (Sect. 6).

2 Material

The EDC site in East Antarctica (75◦06′ S, 123◦2′ E) has pro-

vided ∼3260 m of ice core. Derived from the measurements

of 5800 samples coming from the continuous cut every 55 cm

of the core (“bag samples”), a first long δD record unveiling

∼800 ka of local temperature variations was provided (Jouzel

et al., 2007). In central Antarctica, the climatic information

imprinted in surface snow stable isotope composition is af-

fected by post deposition processes such as firn diffusion and

wind scouring. Detailed signal-to-noise studies conducted

at Vostok have shown an effective preservation of the cli-

mate signal at a temporal resolution of ∼20 years (Ekaykin

et al., 2002). In EDC, the 55 cm sampling allows us to doc-

ument Holocene climate variability at this temporal step of

∼20 years (Masson-Delmotte et al., 2004). But, due to ice

thinning, it describes past interglacials at a lower temporal

resolution. A second cut of the EDC core providing 11 cm

long samples, called “fine samples” (Pol et al., 2010), in-

creased the depth resolution by a factor of 5, thus improving

the temporal resolution for stable isotope records over past

interglacials.

Referring to the threshold of −403‰ as an arbitrary

definition of Antarctic warm periods (related to the low-

est 300 year average δD value observed over the past

∼12 ka, EPICA-community-members, 2004), the MIS 11

warm Antarctic phase is found in the depth interval from

∼2699 to 2779 m. This interval is dated between ∼395 and

426.7 ka, according to the official time-scale for the EDC

core (EDC3 by Parrenin et al., 2007), with an uncertainty

of ∼6 kyr on absolute ages and of ± 20% on MIS11 duration

(estimated at ∼32 kyr). Here, we have extended the study

up to ∼2694 m, thus covering a time interval from ∼392.5

to 426.7 ka, in order to also depict the glacial inception. The

MIS 11 temporal resolution available derived from the δD

bag data (Jouzel et al., 2007) has been contained between

170 and 300 years within the studied interval (the evolution

of bag resolution with respect to depth is displayed in Pol et

al., 2010). With the new high-resolution δD measurements

conducted on 770 fine samples, the stable isotope variability

is now documented at a resolution ranged between ∼35 and

60 years.
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3 Methods

3.1 Deuterium measurements

The method for deuterium analysis is the same as for the

original bag samples measurements. Water is reduced on

uranium to form H2 gas as described in Vaughn et al. (1998)

for measuring fine samples, including ∼30% replicate mea-

surements. Data are given with an analytical accuracy of

± 0.5‰ at 1σ . The coherency between bag and fine sam-

ples during the MIS 11 period can be checked with the cal-

culation of an average signal on 5 fine cut data. The signal

derived from the individual bag samples is statically less ac-

curate (0.5‰ at 1σ ) than the average signal (± 0.23‰ at 1σ ),

as it benefits from an experimental noise reduced by a factor

of
√

5; this can be explained by the use of 5 measurements

for its establishment instead of one for the bag samples pro-

file, over the same 55 cm depth interval.

3.2 Correction for isotopic diffusion

Water-stable isotopes undergo firn and ice isotopic diffusion.

After snow deposition, such processes gradually smooth iso-

tope profiles by removing the highest frequency climatic in-

formation first during firnification (Johnsen, 1977; or more

recently Neumann and Waddington, 2004) and then in the

solid ice (Ramseier, 1967). In the upper part of the firn, di-

rect exchanges between snow water molecules and vapour

involving sublimation-condensation processes erase high fre-

quency isotopic variations. In solid ice, smoothing re-

sults from the temperature-dependent molecular diffusiv-

ity of water-stable isotopes causing self-diffusion inside ice

crystals.

Diffusion models can be applied to a given ice core to

evaluate the smoothing of isotope profiles using the diffusion

length σl (characteristic length in cm of an ice layer affected

by the smoothing at a given depth), and to reconstruct the

original amplitude of climatic variations (back diffused sig-

nals). Here we used the Johnsen et al. (2000) method, with

the implementation of the parameters suitable for the EDC

core (see Pol et al., 2010), on our new δD data. A spectral

analysis with respect to depth (cycles/m) of the high- resolu-

tion signal was performed and the associated red noise of the

power spectrum was translated into a diffusion length. This

relies on the following equation A = A0 · exp
(

− 1
2
σ

2
l

·k2
)

,

which links the amplitude of a given harmonic cycle A

recorded in the data and altered by the diffusion within the

ice, to the initial amplitude A0 (with σ the diffusion length

and k the wave number associated to the harmonic cycle).

The empirical diffusion length at the MIS 11 depth, estimated

here to be ∼8 cm according to our high-resolution data, al-

lowed us to reconstruct the original amplitude of climatic

variations recorded in the isotopic signal.

We cannot expect to preserve climatic information be-

low ∼20 years in central Antarctica, considering post-

depositional processes (Ekaykin et al., 2002), even though

the bag samples are supposed to describe the Holocene pe-

riod at a better temporal resolution (from 8 years at the top of

the core to 18 years at ∼12 ka depth). The isotopic diffusion

occurring in the upper part of the core only affects the part

of the signal that is supposed to highlight periodicities lower

than 20 years. Therefore, the isotopic diffusion is considered

insignificant for the Holocene record studied here.

3.3 Variance analysis

To characterize the new information about MIS 11 climatic

variability revealed by the high-resolution EDC δD data, we

first resample our signals (original and back-diffused ones)

on a regular time-step. In the MIS 11 time interval dedi-

cated to the variability study (see Sect. 5), the lowest avail-

able temporal resolution is of ∼50 years. The 50 year resam-

pling is thus imposed to avoid extrapolation. For Holocene

δD, we have chosen to keep the 20 year time-step in order

to highlight all information than can be accessed at this op-

timal resolution. The long-term trends, calculated using a

Singular Spectrum Analysis (SSA method) and representing

multi-millennial scale climatic variations, are then subtracted

from the signals to focus on the millennial to sub-millennial

scale variability (<5000 years). The variance of the signals

is then described using a running standard deviation calcu-

lated on the detrended signals, over 3 kyr from the past to the

next 1.5 kyr at a given time point. This time period is an arbi-

trary choice for describing the high frequency variability on

a millennial scale; it is constrained by the duration of MIS 1

and the temporal resolution available for MIS 11. Given the

normal distribution of deuterium variability, the significance

of variance changes can be assessed using a Fischer F-test.

Significance thresholds differ for the MIS 1 (149 degrees of

freedom over 3 kyr intervals) and MIS 11 (59 degrees of free-

dom). At the 95% confidence level, ratios of standard devia-

tions are significant when they are larger than 15% (MIS 1)

and 22% (MIS 11). The main changes in variance described

in Sect. 5.1 can therefore be considered as significant. Other

tests have been performed using shorter or longer reference

lengths without changing the principal features. In order to

compare the variability with the trends, we have calculated

coherently with the running standard deviation a running av-

erage of the trends over each 3 kyr interval.

3.4 Spectral analysis

To examine the frequency distribution of the isotopic record,

we also performed spectral analyses of our resampled and

detrended original δD signals. The same analysis on MIS

11 back-diffused signal will not be discussed as it does not

provide any supplementary information on the power spec-

tra. Here we used the wavelet analysis method, which is

particularly well adapted to describing non-stationarities or

changes in frequency and magnitude (Torrence and Compo,

www.clim-past.net/7/437/2011/ Clim. Past, 7, 437–450, 2011
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Fig. 1. Summary of the available EDC δD (‰) data for MIS 11 first plotted for the function of depth (panels a and b, in m) and then for

the function of time (panels c to e, in ka). (a) δD from MIS 11 bag samples (black) and the new high-resolution δD signal from the fine

samples (grey). (b) MIS 11 δD bag samples (black) in comparison with the mean signal (grey) obtained from the average of 5 fine cuts.

(c) High-resolution δD data (black) plotted with respect to the official EDC chronology (EDC3, Parrenin et al., 2007) and corrected from the

isotopic diffusion (grey). Panels (d) and (e) display the same signals using two other age-scales (Sect. 5.3) (Test 1 and Test 2 respectively)

for sensitivity tests on MIS 11 duration.

1998), common characteristics of climatic records. This

method (mathematical formalization described in Mudelsee,

2010) is used to decompose, for different exploratory scales,

a signal in a sum of small wave functions of finite length

that are highly localized in time, unlike the classical Fourier

transform which explores the complete length of the signal

and separates it into infinite-length sine-wave functions. Re-

sulting in a loss of time information, the Fourier analysis

thus fails to detect the time-variable statistical properties of

stochastic processes.

To avoid edge effects and spectral leakage produced by

the finite length of the time series, these last ones were zero-

padded to twice the data length. Unfortunately, this leads to

the underestimation of the lowest frequencies near the edges

of the spectrum. It is thus necessary to assess the areas

(known as cones of influence) which delineate the parts of

the spectrum where estimated energy bands are likely to be

less powerful than they actually are. For all local wavelet

spectra, Monte Carlo simulations were then used to assess

the statistical significance of peaks. The background noise

for each signal was first separated and estimated using sin-

gular spectrum analysis. Secondly, an autoregressive simu-

lation was performed for each noise time series to determine

the AR(1) stochastic process, against which the initial time

series had to be tested. The estimated power spectra were

tested here against a background red noise (AR(1) = 0.7); the

confidence levels were taken above 99%, consistently with

the recommended level of 1-1/(1-n) (Thomson, 1990), where

n is the number of points in the time interval of interest (580

and 570 for MIS 1 and 11 respectively considering the re-

sampled signals).

4 Results

Figure 1 (panel a) displays the results from our new high-

resolution δD measurements (grey) for MIS 11 depths

(from 2694 to 2799 m), confronted to the initial low reso-

lution δD signal (black), published in EPICA-community-

members (2004) and in Jouzel et al. (2007). It is important to

notice here that the new high-resolution data confirm the pat-

terns originally exhibited by the black curve. An abrupt event

– also exhibited by the CO2 (Spahni et al., 2005) and CH4

(Loulergue et al., 2008) records – is observable at ∼2775 m.

It is followed by a slow warming and then a small decrease

between depths of ∼2770 and 2750 m, the maximum of δD

being reached at ∼2735 m, before the beginning of the cool-

ing phase. The comparison over the same 55 cm depth inter-

val between the “calculated” signal (Fig. 1b, grey) obtained

from the average of 5 high-resolution data (see Sect. 3.1) and

the previous low resolution profile (Fig. 1b, black) shows

a close agreement over the full period, within their respec-

tive accuracy (refer to the Sect. 3.1), and confirms the ro-

bustness of the measurements. Differences of 1‰ on aver-

age and up to 2‰ can be nevertheless observed during the

warming phase over depth intervals ranging between 2740

and 2746 m or 2760 and 2766 m. In parallel, the new data

Clim. Past, 7, 437–450, 2011 www.clim-past.net/7/437/2011/



K. Pol et al.: Links between MIS 11 millennial to sub-millennial climate 441

have been used for the calculation of the EDC δD-excess

during MIS 11. The quality of the new high-resolution δD

measurements is confirmed by stronger correlation with δ
18O

bag data (B. Stenni, personal communication, 2010) over the

MIS 11 period (R2 = 0.98 using the average of the detailed

δD data versus 0.97 using the initial bag δD data), as well as

by the smaller dispersion with respect to this linear regres-

sion (∼0.8 versus 1.1‰). This comforts us as to the reliabil-

ity of our new deuterium measurements.

Thereafter, we focussed on the added information brought

in by the high-resolution δD data, the signal being exam-

ined with respect to time. The reference time-scale for the

EDC core is the EDC3 chronology established by Parrenin et

al. (2007). Figure 1c displays the high-resolution δD signal

on the corresponding time interval from ∼392 to ∼427 ka.

The signal corrected for isotopic diffusion is shown in grey

and exhibits increased variability up to 2‰.

5 Variability analysis: MIS 1 and 11 comparison

Our new δD data for MIS 11 now enable a detailed com-

parison of climate variability below millennial scale during

MIS 1 and 11, referring to comparable temporal resolutions

of ∼50 years and ∼20 years respectively. Holocene is scru-

tinized from the present day to 11.7 ka. (beginning of the

plateau just after the Antarctic Cold Reversal, Jouzel et al.,

1995, 2001), MIS 11 from 397 to 421 ka (Fig. 1c, grey area),

to avoid the difficulty of correctly capturing both the first

abrupt event around ∼425 ka and the abrupt cooling after

397 ka using the SSA method. Panels a of Fig. 2 display

the resampled δD signals (initial ones in black and MIS 11

back diffused one in grey) and the calculated trends (red)

over the two interglacials. The signals are centred on their re-

spective mean value, ∼−396‰ for Holocene and ∼ −391‰

for MIS 11, with a δD difference of 5‰ corresponding to a

∼0.8 ◦C temperature gradient according to the modern spa-

tial slope of 6‰ per ◦C (Masson-Delmotte et al., 2008) in

East Antarctica. While this modern spatial slope is of current

use for interpreting glacial-interglacial changes (Jouzel et al.,

2003, 2007), the magnitude of the variability for present-day

or warmer conditions may be underestimated (by typically

30%), as suggested by isotope modelling studies for present

day interannual variability (Schmidt et al., 2007) or for pro-

jections towards a warmer CO2 world (Sime et al., 2008).

The comparison of the long term trends first allows the

characterization of the corresponding multi-millennial cli-

mate variability (>5000 years) over the two focused periods

and to depict two different evolutions. The Holocene sig-

nal exhibits two successive plateaus, one between 10 and

11.7 ka, characterized by a δD anomaly of ∼+4‰ and the

second one from the present day to 5.5 ka, at Holocene mean

level. In contrast, MIS 11 presents a slow δD increase be-

tween 413 and 421 ka, followed by a rapid warming that

reaches a δD optimum at ∼407 ka of ∼7‰ above MIS 11

mean value level, before finally entering its cooling phase.

The relationship between these long-term trends and the

high- frequency climate variability of our two interglacials is

then documented by a variance and a spectral analysis, fol-

lowing the methods described in Sects. 3.3 and 3.4.

5.1 Variance analysis

By substracting the red signal from the black one (Fig. 2 pan-

els a), one gains access to the millennial to sub-millennial

scale variability as represented on panels b of Fig. 2. The

remaining signal gives information on the amplitude of vari-

ations characteristic of both periods. Even after the correc-

tion for isotopic diffusion (see Sect. 3.2), the MIS 11 δD

signal characterized by a maximal amplitude of variations of

∼7‰ does not reach the level of variability exhibited during

Holocene (up to ∼10‰). This difference partly arises from

the Holocene temporal resolution more than twice better than

the MIS 11 one. When resampling the Holocene signal every

50 years as done for MIS 11, the amplitude of MIS 1 varia-

tion is reduced to 8‰ (not shown).

In order to go beyond the problem of variability levels, we

compared the evolution of sub-millennial climate variability

(Fig. 2 panels c) by calculating a running standard deviation

over 3 ka of the panels b signals (see Sect. 3.3). The lower

variability for MIS 11 was again clearly depicted with values

oscillating around 2‰ (up to 2.5‰ after back diffusion cor-

rection in grey) against 3.5‰ for MIS 1. For the description

of the variability evolution, the noticeable points of standard

deviation slope changes were labelled by letters ordered from

the past to the present. Holocene variability first showed a

progressive increase of ∼0.6‰ from point 1.A to 1.B. Then,

the variability decreased (until the point 1.C) before reach-

ing a quite stable level (albeit with a weak increase during

the last 5 ka). The MIS 11 pattern of variability is charac-

terized by a non-stable region followed by a quickly increas-

ing variability (by 1‰ from 11.A to 11.B) with a maximal

running standard deviation value of ∼2.5‰ hold until the

point 1.C. The variability then decreased by 0.5 (from 11.C

to 11.D) before progressively increasing again at the end of

MIS 11. Except for the overall level of variability, the pat-

tern remained unchanged when taking into account isotopic

diffusion (grey curve). Therefore, only the original signal (in

black) is discussed in the rest of this study.

These changes of millennial to sub-millennial-scale vari-

ability can be linked to the long-term trend by plotting (pan-

els d Fig. 2) the running standard deviation with respect to

a running average over 3 kyr of each interglacial δD signal

trend. This approach highlights the progressive increase of

Holocene variability (from 1.A to 1.B) occurring during the

cooling phase between the two plateaus. In contrast, its de-

crease until 1.C is linked to the slow Mid-Holocene warm-

ing. For MIS 11, the noticeable increase of variability be-

tween 11.A and 11.B begins just before the maximum of the

δD signal. The highest value of the standard deviation is

maintained stable during the beginning of the cooling phase.
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Fig. 2. Variability analysis (in ‰) of MIS 1 (top), MIS 11 using EDC3 chronology (middle top), Test 1 age-scale (middle bottom) and Test 2

age-scale (bottom). (a) Signals (black) centred on the δD mean value of the period focussed on: 0–12 ka for MIS 1; 397–421 ka for MIS 11

– EDC3; 399–421.3 ka for MIS 11 – Test 1; 403.7–420 ka for MIS 11 – Test 2. The general trends are plotted in red; signals corrected from

isotopic diffusion in grey for MIS 11. (b) Signals minus their respective trends (red, panels a). (c) Calculated running standard deviation

of panel b signals over 3 kyr, from the past 1.5 kyr to the next 1.5 kyr at a given time point (black: original signals; grey: correction for

isotopic diffusion). Remarkable changes of slope are labelled from A to C or D from past to present (the 1 or 11 numbers refer to the studied

interglacial). (d) Running standard deviation (panels c, ‰) plotted in the function of the respective general trends (panels a, red, ‰). Signals

are smoothed using a binomial algorithm for an easier readability. The labelled points (panels c) are reported and arrows indicate the way of

reading from past to present.

After an abrupt decrease (from 11.C to 11.D), the variabil-

ity keeps increasing during the final cooling phase at the end

of MIS 11. Despite a symmetrical aspect of the δD trend

on each side of the MIS 11 optimum (comparable increasing

and decreasing trends), the sub-millennial variability exhibits

a clear shift between the warming and the cooling phases.

MIS 11 thus presents a higher level of variability during all

the cooling phases, even after its abrupt decrease (from 11.C

to 11.D). This feature is comparable to the Holocene increas-

ing variability observed during the short cooling between its

two plateaus. This highlights a difference in terms of climate

dynamics between cooling and warming phases.

5.2 Spectral analysis

We performed a spectral analysis of the detrended signals

(displayed on Fig. 2 panels b, black) for each interglacial fo-

cus period using a wavelet analysis (see Sect. 3.4). The dif-

ference of temporal resolution between MIS 1 and 11 implies

a different available range of frequencies for our two inter-

glacial periods (25 to 10 kyr−1 for MIS 1 and 11 respectively

corresponding to 40 and 100 year cycles). For the present

comparison, we focussed on multi-centennial variability ac-

cessible with the 50 year resolution of MIS 11 data. Due

to the diffusion (characterized by a ∼8 cm diffusion length

at MIS 11 depth, see Sect. 3.2) all the periodicities under

∼130 years were lost in the spectral signal. Figure 3 displays

the time-continuous spectra of the two interglacials.

We can first observe a millennial to multi-centennial scale

variability for both interglacials. Holocene is marked by

significant periodicities from 90 to ∼ 300 years punctu-

ally present over the full period. In contrast, the multi-

centennial scale variability is not present persistently over

the full MIS 11 spectrum but appears from ∼406 ka (based

on EDC3 chronology), as revealed by the highlighted signifi-

cant periodicities ranged between ∼180 to ∼500 years (high-

lighted I Fig. 3 with a dashed contour). The establishment

of this multi-centennial variability is then followed by the
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Fig. 3. Spectral analysis of the detrended signals (displayed on Fig. 2, panels b) for MIS 1 (left) and MIS 11 (right), using EDC3 chronology

(top), Test 1 age-scale (middle) and Test 2 (bottom). The spectral power is displayed in function of time (ka) in term of frequency (1/kyr, left

axis) or period (kyr, right axis). Black lines correspond to the cone of influence; dotted lines indicate the significant periodicities (application

of the statistical test of Torrence and Compo: http://paos.colorado.edu/research/wavelets/).

occurrence of a ∼1400 year significant periodicity. MIS 11

thus presents a transition in its variability pattern coinciding

with the beginning of the long-term cooling phase (Fig. 2a).

The previous observation of high amplitudes of variations be-

tween 11.B and C points (see Sect. 5.1) can thus be attributed

to the onset of multi-centennial variability from ∼406 ka.

Then, the variability increasing again after the 11.D point

seems to be more strongly expressed at millennial scale. Al-

together, these results highlight the establishment of a new

mode of climatic variability during the final cooling phase of

MIS 11, as first noted in the variance analysis. By compari-

son, a small transition in the MIS 1 millennial scale variabil-

ity can be detected at ∼5.5 ka with a ∼950 year periodicity

changing into a ∼800 year cycle. This corresponds to the be-

ginning of the second plateau of Holocene (see Fig. 2 panel

a), which is also marked by amplitudes of variations progres-

sively decreasing (segment 1.B to 1.C) before reaching a sta-

ble level of variability (Sect. 5.1).

5.3 Sensitivity to uncertainties on MIS 11 duration

The previous comparison between MIS 1 and 11 climate

variability features is constrained by their durations, here

based on the EDC3 chronology (Parrenin et al., 2007). Re-

ferring to the −403‰ level for the definition of an inter-

glacial in the EDC core (see Sect. 2, EPICA-community-

members, 2004), the EDC3 age-scale estimates that MIS

1 has lasted ∼12 kyr so far, consistent with the new EDC

chronology established back to 50 ka (Lemieux-Dudon et al.,

2010) and derived from a new inverse method for ice core

dating (Lemieux-Dudon et al., 2009). The estimate for MIS

11 duration is of ∼32 kyr with a given uncertainty of ±20%

(±6.4 kyr). With the added difficulty of comparing differ-

ent types of records that use different references for delineat-

ing the interglacial periods, the Lisiecki and Raymo (2005)

chronology for marine sediment cores established the begin-

ning of MIS 1 at ∼11 ka and evaluated the benthic MIS 11

duration of 20 kyr between 398 and 418 ka (with an uncer-

tainty of 4 kyr on absolute ages), suggesting a shorter MIS 11

than depicted in EDC3 for Antarctic temperature. In paral-

lel, Kawamura et al. (2010) have recently extended an orbital
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δO2/N2 chronology for the Antarctic Dome Fuji core, first

established for the past 360 kyr (Kawamura et al., 2007),

back to 470 ka. They obtained a MIS 11 duration shorter by

∼9 kyr in comparison with the EDC3 chronology. Such dif-

ferences between MIS 11 length estimates lead us to perform

sensitivity tests on MIS 11 duration and to evaluate the im-

pacts on MIS 11 climate variability using the same variance

and spectral analyses as before (see Sect. 5).

Considering O2/N2 ratios measured in the trapped air of

ice cores as direct tools (free from the usual 1age between

gas and ice) for the establishment of orbital tuning chronol-

ogy (Bender, 2002), we have used EDC O2/N2 data (Landais

et al., 2011) to produce two other age scales for MIS 11

(Fig. 1d and e) in a different way than a simple linear com-

pression of MIS 11 duration. By synchronising the mean

75◦ S insolation curve to the EDC O2/N2record arbitrarily

(as done in Landais et al., 2011), the first age-scale obtained

shortens our MIS 11 signal by ∼4 kyr, now dated between

395.2 and 425.7 ka (Fig. 1d, hereafter Test1). Such a reduced

duration was also tested in Rohling et al. (2010) and remains

within the uncertainty range of the EDC3 time-scale. A sec-

ond age-scale test can be then produced by fitting the EDC3

with the orbital Dome Fuji chronology, reducing in larger

proportions the MIS11 duration by ∼8.5 kyr, between 400.5

and 426 ka (Fig. 1e, hereafter Test 2).

Focussing on the same part of the MIS 11 signal as in

Sect. 5 (Fig. 1d and e, grey areas), the variability is then

analysed on the corresponding reduced time-intervals rang-

ing from 399 to 421.3 ka and from 403.7 to 420 ka for Test 1

and 2 (Fig. 2). The impacts of Test 1 on MIS 11 variability

analysis are globally negligible compared to the previous re-

sults obtained with the EDC3 age-scale. The amplitude of

variations (panel b) is hardly affected; the running standard

deviation (panel c) and its evolution with respect to trend

(panel d) exhibit an overall similar pattern as the one pro-

duced using the EDC3 age-sale. In contrast, the significant

shortening of the MIS 11 duration by Test 2 drops the level

of variability by 1.5‰ (panel b). The running standard devi-

ation is then affected and presents values of 0.3‰ lower on

average than using the original signal (panel c). Its evolution

with respect to the trend is impacted with less pronounced

changes of variability levels (between 11.A and 11.B, 11.C

and 11.D, panel d). But, both for Test 1 and Test 2, the pan-

els d illustrate that the main features described in Sect. 5.1

remain unchanged, showing that the age-scale uncertainties

do not affect our main conclusions regarding changes in vari-

ance.

In parallel, spectral analysis is obviously affected by dat-

ing uncertainties, and again with a greater impact when ap-

plying Test 2 compared to the use of Test 1 (Fig. 3). Hence,

the MIS 11 spectrum obtained by the application of Test

1 first shows a loss of the ∼200-year periodicity previ-

ously highlighted with the EDC3 chronology at ∼406 ka;

the ∼1400-year one presents a value slightly shifted to

∼1330 years and becomes also more pronounced at the end

of the studied period. Second, Test 2 implies fewer signifi-

cant periodicities at the multi-centennial scale and turns the

∼1400-year periodicity value into ∼950 years. Altogether,

our sensitivity tests still exhibit the same pattern of variability

and confirm the robustness of a changing climate dynamics

at the onset of the final MIS 11 cooling phase.

6 Discussion

We now discuss the links between the variability features

highlighted in the δD signals of MIS 1 and 11, natural cli-

mate forcings and internal climate variability. While long-

term changes have classically been attributed to the climate

system response to orbital forcing (as firstly hypothesised

by Milankovitch, 1941), the drivers of millennial to sub-

millennial variability involve external forcings such as solar

and volcanic activities, as well as internal climate dynamics

including the oceanic and atmospheric components (as fur-

ther discussed in the following sub-sections). In particular,

one can question the influence of local processes such as pre-

cipitation intermittency, moisture origin, evaporation condi-

tions in relationship with atmospheric circulation and austral

ocean surface conditions on the Antarctic δD records.

As the Holocene benefits from a substantial documenta-

tion, we first discuss the results of MIS 1 spectral analysis in

the context of the literature available. Assuming that the pat-

terns of forcings and internal modes of variability described

over the last 12 kyrs were also at play during MIS 11, we

can then suggest that the same mechanisms were involved

during MIS 11. Due to the uncertainties on MIS 11 duration

which impact the significant periodicities highlighted in our

high-resolution δD data, analogy between MIS 1 and 11 cli-

mate forcings remains, however, difficult to establish. The

discussion is thus limited to the comparison of the general

evolutions of MIS 11 δD signal and other climate records

from different proxies available for the MIS 11 period. .

6.1 Spectral Holocene EDC characteristics

By examining the solar activity during the Holocene (as

detailed in Steinhilber et al., 2009), we first note that our

EDC δD Holocene variance (Fig. 2, panel c) cannot sim-

ply be explained by changes in solar foricng and deserves

further exploration. Spectral analyses of the EDC δD sig-

nal during the Holocene have already been performed (Yiou

et al., 1997; Masson et al., 2000), but without clearly ex-

amining the possible relationships with climate actors. Here

the wavelet method presents the advantage of being able to

mark the onset of the significant periodicities of the Holocene

EDC δD signal. Then they can be compared to the results

of many previous studies that have discussed millennial-to-

multi-centennial Holocene variability and its signature in dif-

ferent climate and solar activity records.

The implication of solar forcing in the millennial scale

variability of Holocene was first supported by Bond et
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al. (1997, 2001). Refering to cosmogenic nucleides (14C

and 10Be) measurements, they claimed that the Holocene

1500-year (±500) periodicity found in North Atlantic drift

ice records can be attributed to solar forcing. The same pe-

riodicity has also been detected in other proxies of the North

Atlantic region (Bianchi and McCave, 1999; Campbell et al.,

1998; Mayewski et al., 1997 as a non-exhaustive list), as

in the Southern Hemisphere (Lamy et al., 2001), but with-

out underlining a persistent link to solar activity. Using the

wavelet analysis method on several records from the North-

ern Hemisphere, Debret et al. (2007) actually highlight a de-

coupling of the apparent Holocene 1500-year climatic cy-

cle into three superimposed significant periodicities of 1000,

1500 and 2500 years. Whereas the comparison of different

marine sediment cores (Bianchi and McCave, 1999; Chap-

man and Shackleton, 2000; Giraudeau et al., 2000) prefer-

entially attributes the ∼1500-year periodicity to oceanic dy-

namics, the link between 1000 and 2500-year climatic cycles

and solar activity is confirmed when confronting the spectral

analyses of Bond et al. (2001) records and of the Vonmoos et

al. (2006) 10Be data,.

Exhibiting cyclicities close to ∼1000 years, our EDC

Holocene δD record (Fig. 3) could also corroborate the so-

lar forcing at millennial scale in the Antarctic region. But,

the spectral analysis actually highlights a decoupling of the

∼1000-year cycle into a ∼950-year periodicity during early

Holocene (similar to the Northern records of Bond et al.,

2001 and Vonmoos et al., 2006 according to the Debret et

al., 2007 analysis and close to the 900-year cycle of Lamy

et al., 2001 in the South), to a ∼800-year one in the late

Holocene (also recorded in Chapman and Shackleton, 2000).

This transition phase in the frequency domain, recorded at

∼5.5 ka in our EDC δD signal and phasing with the estab-

lishment of a progressive stable level of variability (see Sect.

5.2), was documented in Debret et al. (2009) and Wirtz et

al. (2010), in a synthesis of records covering the two Hemi-

spheres. Known as Mid-Holocene transition, it is first sug-

gested by Debret et al. (2009) to underline a change in the

dominant mechanisms of variability, from an external ori-

gin (essentially from solar activity) in the early Holocene, to

internal processes in the late Holocene. This hypothesis is

in line with other studies (Wanner et al., 2008; Wirtz et al.

2010), which noticed a lower magnitude of solar variability

in the early Holocene compared to the mid to late Holocene.

At the same time, Wirtz et al. (2010) observe the emergence

of a more pronounced variability at centennial scale (between

200 and 850 years), after this Mid-Holocene transition. Our

signal does exhibit a 290-year periodicity (Fig. 3) in the early

Holocene. Thus, the establishment of a new mode of vari-

ability during the mid Holocene also has to be explored at

multi-centennial scale. This leads us to now discuss the pos-

sible mechanisms (internal and/or external) at play in the sec-

ond part of Holocene that could explain the identified multi-

centennial variability.

The multi-centennial variability recorded in the Holocene

EDC δD signal is a common feature of both North and South

Hemisphere records. In particular our periodicity of ∼290

years is close to the ∼250-year one found in a East Antarctica

marine core (Crosta et al., 2007) at ∼2.5 ka and to the ∼240-

year cycle of the Rousse et al. (2006) data from a North Ice-

landic marine sediment core, identified at ∼3 ka. Climate

models (Park and Latif, 2008; Schulz et al., 2007) show that

the multi-centennial variability is a persistent feature of At-

lantic Ocean circulation. Park and Latif (2008) have demon-

strated the implication of both hemispheres in high frequency

variability through large changes in the Atlantic sea ice ex-

tent, with a rapid response of the Northern Hemisphere at

decadal scale and a slower one of the Southern Hemisphere

at multi-centennial scale.

Invoking a sun-ocean-climate linkage, Hu et al. (2003) un-

derlined the possible forcing of the multi-centennial changes

in the sea ice extent by the centennial solar forcing (Karlén

and Kuylenstierna, 1996). The same forcing was further pro-

posed by Varma et al. (2010) to drive the southern annu-

lar mode. Altogether, these studies suggest that the multi-

centennial scale variability found in the EDC δD record

could be closely associated with changes in austral sea ice

extent and atmospheric circulation, in response to multi-

centennial variations in solar activity. Changes in volcanic

forcing may also be at play (Castellano et al., 2005), as re-

cent modelling studies suggest a possible centennial response

time (Stenchikov et al., 2009; Schneider et al., 2009), but

have not yet been explored due to the lack of quantitative re-

constructions beyond the last millennium (Gao et al., 2008).

Nevertheless, centennial variability may not necessarily be

driven by external forcings and may also result from modes

of internal climate variability. Modelling experiments fo-

cussing on the North Atlantic Deep Water (NADW) forma-

tion (Jongma et al., 2007; Renssen et al., 2007) have indeed

highlighted the possibility that internal periodic processes

such as freshwater releases could provide a sensible mech-

anism to explain Holocene multi-centennial scale variabil-

ity. Focussing on the thermohaline structure of the Southern

Ocean, Pierce et al. (1995) also linked modelled centennial-

scale oscillations with changes both in the local precipita-

tion affecting the Antarctic Circumpolar Current and in the

NADW.

Thus, while bipolar see-saw patterns are well known to

link Antarctica and Greenland, stable isotope records dur-

ing abrupt glacial (Blunier et al., 1998) or early inter-

glacial events (Masson-Delmotte et al., 2010), even at sub-

millennial scale (Capron et al., 2010), these modelling exper-

iments reinforce the hypothesis of a similar interhemispheric

linkage at play in multi-centennial variability during inter-

glacial periods. Such internal mechanisms could be involved

in the observed variability changes at the Mid-Holocene tran-

sition, as previously suggested by Debret et al. (2009).
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6.2 MIS 11 EDC variability

Here the spectral analysis of MIS 11 cannot be discussed in

the same way as for MIS 1, due to large uncertainties on MIS

11 duration and the absence of information about external

forcings (solar and volcanic activities) for this period. The

MIS 11 still benefits from sufficient documentation to allow

comparisons between our new EDC δD profile and “other”

proxy signals.

In addition to various climatic information provided by the

EDC core (e.g. Jouzel et al., 2007; Siegenthaler et al., 2005;

Spahni et al., 2005), MIS 11 has been documented in other

long marine or continental records through different proxies

(Lisiecki and Raymo, 2005; McManus et al., 2003; Tzedakis

et al., 2006). They consistently underline the general compa-

rable background climate conditions between MIS 1 and 11

(e.g. sea level, greenhouse gas concentrations, local temper-

atures, vegetation history) and the exceptional length of MIS

11. One study (de Vernal and Hillaire-Marcel, 2008) empha-

sizes an exceptional development of boreal ecosystems on

the Greenland coasts, suggesting particularly reduced Green-

land ice sheet extent during this interglacial. Due to the

lack of a sufficient temporal resolution for performing re-

liable spectral analysis, comparisons with these records re-

main, however, restricted to the analyses of trends or intensi-

ties.

Still, similarities between the EDC CO2 (Siegenthaler et

al., 2005) and the 500-year resolution δ
13C record of a ma-

rine core from the Cape Basin (Dickson et al., 2008) at the

end of MIS 11 have revealed an interesting oceanic circula-

tion - atmospheric CO2 concentration linkage. The parallel

between the observed δ
13C gradient and CO2 drawdown at

the end of MIS 11 supports the hypothesis of a close link

between deep austral ocean ventilation and changes in atmo-

spheric greenhouse gas concentrations (Toggweiler, 1999;

Hodell et al., 2003). The onset of an increasing variability

in our δD record (at ∼406 ka) does not coincide with any

marked change in the CO2concentration. Its phasing with

a methane concentration starting to decrease (Loulergue et

al., 2008) and the increase of the EDC sea salt sodium flux

(Wolff et al., 2010) is, however, robust within age-scale un-

certainties. It suggests that the observed increase in EDC δD

variability at the end of MIS 11 occurred in parallel to: first,

an East Antarctic cooling trend; second, an extent of austral

sea ice cover associated with a reduced methane production

in tropical and boreal wetlands.

Further discussions about the links between the EDC

climate variability (derived from our δD data) and ocean

circulation variability requires both higher resolution ma-

rine records and improved chronologies and synchronization

methods. But, as a first step in the MIS 11 variability analy-

sis, our data enables us to suggest that the increased Antarctic

variance and the onset of millennial to sub-millennial vari-

ability are intimately linked with the global transition be-

tween interglacial and glacial states.

7 Conclusions

Our δD measurements conducted on high-resolution EDC

samples have first confirmed the patterns of East Antarc-

tic temperatures over the full MIS 11 period, as previously

described by the original δD bag record. Then, our study

has aimed to demonstrate the added value of analysing EDC

high-resolution δD data at first, improving the documen-

tation of past interglacial climate variability, going beyond

trend and intensity considerations, and second, permitting a

comparison with Holocene.

Our results highlight a specific variability pattern during

MIS 11 with two distinguishable evolutions on each side of

the late MIS 11 maximum (∼406 ka according to the EDC3

chronology). Indeed, the MIS 11 signal is characterized

by a variability enhanced from the beginning of the cooling

phase, which contrasts with the lower variability exhibited

during the preceding warming phase. Moreover, a spectral

analysis allows us to relate these MIS 11 variability features

with the onset at ∼406 ka of new climatic dynamic modes

marked by the emergence of periodicities at millennial to

multi-centennial scales.

The Holocene signal exhibits a similar pattern with in-

creasing variability occurring just after the early Holocene

plateau and persistent during the following decrease in tem-

peratures. Unlike that for MIS11, this change in variance is

not evidenced in the spectral analysis. The Mid-Holocene

transition, dated at 5.5 ka and documented in many previous

studies, is still imprinted in the obtained spectrum and char-

acterized by a shift in the significant periodicities.

The links between Holocene variability changes on each

side of this transition and external forcings or internal climate

system responses can be explored, thanks to the limited un-

certainties (∼100–200 years) on Holocene EDC dating and

the substantial available documentation. Such discussion is,

however, impossible for the MIS 11 signal, because of the

lack of records with sufficient resolution, the lack of docu-

mentation of natural forcing variability, and because of the

large age-scale uncertainties attached to the MIS 11 dura-

tion. While our results about MIS 11 variability patterns are

robust with respect to these uncertainties, the length of MIS

11 impacts in a larger proportion the values of periodicities

revealed by the spectral analysis. It thus prevents the clear at-

tribution of the increasing variability at the glacial inception

to one or other climatic component.

Consequently, we stress the need to: first scrutinize the

MIS 11 variability with other records, e.g. from tropical, tem-

perate and polar regions at sufficient temporal resolution for

improving the global documentation of changes in variabil-

ity along the full period; second, reduce uncertainties on the

length of this interglacial by building an accurate reference

time-scale for the EDC core. It will help in the future to

precisely specify the MIS 11 variability spectrum, but also

that of other past interglacials. New detailed isotopic mea-

surements from the EDC core are indeed now available for a
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variety of interglacials and will allow the further exploration

ofthe relationships between mean state and Antarctic climate

variability under contrasted orbital contexts.

Supplementary material related to this

article is available online at:

http://www.clim-past.net/7/437/2011/

cp-7-437-2011-supplement.zip.
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Küttel, M., Müller, S. A., Prentice, I. C., Solomina, O., Stocker,

T. F., Tarasov, P., Wagner, M., and Widmann, M.: Mid- to Late

Holocene climate change: an overview, Quat. Sci. Rev., 27,

1791–1828, 2008.

Wirtz, K. W., Lohmann, G., Bernhardt, K., and Lemmen, C.: Mid-

Holocene regional reorganization of climate variability: Analy-

ses of proxy data in the frequency domain, Palaeo 3, 298/3-4,

189–200, http://dx.doi.org/10.1016/j.palaeo.2010.09.019, 2010.

Wolff, E. W., Barbante, C., Becagli, S., Bigler, M., Boutron, C. F.,

Castellano, E., de Angelis, M., Federer, U., Fischer, H., Fundel,

F., Hansson, M., Hutterli, M., Jonsell, U., Karlin, T., Kaufmann,

P., Lambert, F., Littot, G. C., Mulvaney, R., Röthlisberger, R.,
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