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Sub-µVrms-Noise Sub-µW/Channel ADC-Direct

Neural Recording With 200-mV/ms Transient

Recovery Through Predictive

Digital Autoranging

Chul Kim , Member, IEEE, Siddharth Joshi , Member, IEEE, Hristos Courellis, Student Member, IEEE,

Jun Wang , Student Member, IEEE, Cory Miller, and Gert Cauwenberghs , Fellow, IEEE

Abstract— Integrated recording of neural electrical potentials
from the brain poses great challenges due to stringent dynamic
range requirements to resolve small-signal amplitudes buried in
noise amidst large artifact and stimulation transients, as well
as stringent power and volume constraints to enable minimally
invasive untethered operation. Here, we present a 16-channel
neural recording system-on-chip with greater than 90-dB input
dynamic range and less than 1-µVrms input-referred noise from

dc to 500 Hz, at 0.8-µW power consumption, and 0.024-mm2 area
per channel in a 65-nm CMOS process. Each recording chan-
nel features a hybrid analog–digital second-order oversampling
analog-to-digital converter (ADC), with the biopotential signal
coupling directly to the second integrator for high conversion
gain and dynamic offset subtraction in the digital domain. This
bypasses the need for high-pass filtering pre-amplification in
neural recording systems, which often leads to signal distortion.
The integrated ADC-direct neural recording offers record figure-
of-merit with a noise efficiency factor (NEF) of the combined
front end and ADC of 1.81, and a corresponding power effi-
ciency factor (PEF) of 2.6. Predictive digital autoranging of
the binary quantizer further supports rapid transient recovery
while maintaining fully dc-coupled operation. Hence, the neural
ADC is capable of recording ≤0.01-Hz slow potentials as well
as recovering from ≥200-mVpp transients within ≤1 ms that
are important prerequisites to effective electrocortical recording
for brain activity mapping. In vivo recordings from marmoset
primate frontal cortex demonstrate its unique capabilities in
resolving ultra-slow local field potentials indicative of subject
arousal state.

Index Terms— analog-to-digital converter (ADC)-direct front
end, artifact recovery, autoranging, digital prediction, high
dynamic range ADC, neural ADC, neural interfaces.
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I. INTRODUCTION

H
IGH-DENSITY multi-channel recording of neural

electrophysiological signals, such as local field

potentials (LFP) inside the brain and the electrocorticogram

(ECoG) on the cortical surface, is essential to driving advances

in neuroscience and neuroengineering, by increasing spatial

resolution and dynamic range of brain–machine interfaces

for high-throughput brain activity mapping and of neural

prostheses for monitoring and treatment of neurological

disorders. Great advances in spatial resolution and coverage

of neural recording can be obtained by silicon integration

of multi-channel brain–computer interfaces with high-density

electrode arrays for electrical recording and stimulation [1]

and their extreme miniaturization by encapsulating the

electrode array along with a coil antenna for wireless power

and data telemetry within a single mm-sized silicon chip [2].

Although the miniaturization of neural implants and their

modular distribution across the brain toward full-brain

coverage in high-resolution brain–machine interfaces offers

various system-level advantages, such as better conformity

to cortical curvature and a decrease in incidence of tissue

inflammation, astroglial scarring, and cell death [3], [4],

the extreme form factor and energy constraints raise severe

challenges in signal quality of neural recording.

The limited amount of power delivery with an on-chip

coil and multi-channel neural recording requires extreme

energy efficiency in the design of neural recording without

compromising its inherent design requirement, low input-

referred noise (IRN) [5], [6] while also retaining small form

factor in the design [7]–[9]. Full-duplex neural interfaces for

closed-loop neural modulation require simultaneous operation

of electrical recording and stimulation. Stimulation artifacts

produce rapid and large-amplitude transients in the recorded

signals that easily overwhelm the neural response signals,

necessitating a paradigm shift in the design of neural recording

toward very high input dynamic range and fast transient

response [10].

To resolve small-amplitude neural signals, such as LFP and

ECoG, ranging in the tens of microvolts, typical neural record-

ing circuits include a high-gain, low-noise pre-amplification

analog front-end (AFE) stage prior to digitization, as shown

in Fig. 1(a) [11]. For low-noise operation, the AFE stage
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Fig. 1. Impact of neural recording architecture on dynamic range and
transient response (a) separate AFE and ADC stages and (b) ADC-direct
neural recording.

typically consumes substantially more power and area than the

subsequent analog-to-digital converter (ADC) as the limiting

factor in the energy efficiency and integration density of

the overall system. Hence, most efforts in neural record-

ing design have focused on optimizing the AFE. However,

the separation between amplification and digitization stages

for neural recording is prone to the saturation of the amplified

signal under large transients caused by stimulation or motion

artifacts. To this end, the latest designs use low-gain (18 dB)

pre-amplification in the AFE to mitigate saturation effects [12].

Hybrid architectures utilizing oversampling ADCs with dig-

ital feedback to the AFE [8], [10] have seen recent adoption

due to their increased power and area efficiency. Recent

integrated designs combining AFE and ADC in one stage [9]

offer further improvements in integration density and expanded

input dynamic range. The challenge with previous ADC-direct

approaches, however, is the kT/C sampling noise directly

entering the signal path without attenuation, degrading noise-

energy efficiency.

To address the confluence of these extreme design

challenges for high-density integrated neural recording, a new

ADC-direct approach is presented that combines a hybrid

analog/digital second-order oversampling ADC with predictive

digital autoranging (PDA) for high input dynamic range and

rapid transient recovery at record noise-energy efficiency [13].

kT/C sampling noise is avoided altogether through boxcar

sampling [14], [15] in mixed-signal feedback [8], while

PDA avoids the need for substantial gain attenuation in the

feedback loop leading to enhanced signal resolution at higher

frequencies. PDA specifically addresses the problem of fast

recovery from artifact and stimulation transients, by tem-

porarily relaxing resolution through radix-2 expansion of the

quantization step size to track large transient slope and rapidly

returning to minimum quantization step noise-limited resolu-

tion upon transient completion. Applicable to a wide range of

electrophysiological recording applications, the biopotential

ADC (BioADC) chip resolves small signals while handling

large input transients without saturation, as shown in Fig. 1(b).

This paper is organized as follows. The ADC-direct archi-

tecture and system operation of neural recording with PDA

are described in Section II; circuits implementing the archi-

tecture are detailed in Section III; measurement results are

presented in Section IV; and concluding remarks are offered

in Section V.

II. ADC-DIRECT FRONT END

Each recording channel features a hybrid analog–digital

second-order delta–sigma modulator (2DSM) oversampling

ADC, with the biopotential signal coupling directly to the

second integrator for high conversion gain and dynamic offset

subtraction in the digital domain. More generally, as shown

in Fig. 2(a), with dual inputs u and x into the first and second

integrators, respectively, and with additive noise e modeling

quantizer error, the dynamics of the 2DSM is given by

v[n] = v[n − 1] + u[n] − y[n] (1)

w[n + 1] = w[n] + v[n] − y[n] + x[n] (2)

y[n] = w[n] + e[n] (3)

sampled at discrete time steps t = nT . The resulting output

y[n] = u[n − 1] + (x[n − 1] − x[n − 2])
+ (e[n] − 2e[n − 1] + e[n − 2]) (4)

produces the usual second-order noise shaping with unity gain

signal transfer function for an input u, but with the first-order

differentiation in its signal transfer function for an input x .

Presenting the signal input to the first integrator incurs

greater complexity in analog circuit implementation and,

more fundamentally, is prone to saturation in the 2DSM loop

dynamics, which, for 1-bit quantization, is only conditionally

stable for a narrow regime of inputs near zero, u ≈ 0.

In contrast, zeroing the input to the first integrator u = 0,

and directly coupling the BioADC input x to the second

integrator, ensures stable saturation-free 2DSM loop dynamics

with only 1-bit quantization in the output y.

Continuous-time analog implementation of the second inte-

grator, as shown in Fig. 2(b), obviates the need for sampling

the time-varying input x(t). Instead, the integrator continu-

ously integrates the residue between the input x(t) and the

piecewise constant digital prediction signal p[n]

w[n + 1] = w[n] +
1

T

∫ (n+1)T

nT

(x(t) − p[n]) dt (5)

where the digital prediction

p[n] = −v[n] + y[n] =
∞∑

i=0

y[n − i ] + y[n] (6)
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Fig. 2. ADC-direct neural recording with PDA. (a) Generalized 2DSM archi-
tecture. (b) Analog continuous-time implementation of the second integrator
directly coupled to the input x . (c) Digital accumulator implementation of the
first integrator with zero u generating digital prediction p. (d) PDA by radix-2
dynamic expansion and compression in the quantization y of the integrated
residue x − p.

is produced by the first integrator digitally accumulating the

quantizer feedback, as shown in Fig. 2(c), efficiently imple-

mented by up/down counting. In turn, the analog input is

reconstructed from (4) and (5) as

x[n] =
1

T

∫ (n+1)T

nT

x(t) dt

=
∞∑

i=0

y[n − i + 1] − (e[n + 1] − e[n]). (7)

Despite the appearance of the first-order (6 dB per octave)

noise shaping of the quantization error e[n] in (7), the extra

first-order integrating (−6 dB per octave) loop gain in (7)

contributed by the accumulation in the quantizer output y[n]
for digital prediction leads to the same 15-dB increase in the

dynamic range for every doubling in oversampling ratio (OSR)

as with the standard 2DSM [16]. The digital feedback along

Fig. 3. Illustration of the effect of autoranging in digital prediction on
dynamics of the signal output prior to decimation. Radix-2 PDA (blue line)
significantly improves transient response over fixed-amplitude quantization
(gray line) while maintaining the same noise-limited LSB-level resolution in
steady state.

with the continuous analog integration implements the second-

order predictive loop accommodating for potentially large

offset and drift at the input, such as electrode dc offset (EDO)

in the dc-coupled input, owing to the large loop gain at low

frequencies.

The input dynamic range and transient response of the

ADC loop are substantially improved by radix-2 autoranging

of the quantizer, in which the history of the quantizer bits

D[n] = sgn(w[n]) triggers either a factor two expan-

sion or contraction in the digital feedback from the quan-

tizer y[n], as shown in Fig. 2(d)

y[n] = 2E[n] D[n] (8)

where the 3b exponent E[n] = {0, 1, . . . 7} covers seven

octaves (1, 2, . . . 128) in digital gain. A run of five succes-

sive decisions with identical polarity increments the exponent

expanding the range by two, whereas a run of three alternating

polarity decisions decrements the exponent contracting the

range by two

E[n] ← E[n − 1] + 1 if D[n] = · · · = D[n − 4]
E[n] ← E[n − 1] − 1 if D[n] = −D[n − 1] = D[n − 2]
E[n] ← E[n − 1] otherwise. (9)

The rationale for this strategy is that a run of identical polarity

decisions D[n] = D[n−1] . . . indicates the presence of a large

transient, necessitating larger steps in digital prediction for

faster recovery, whereas a run of alternating polarity decisions

D[n] = −D[n−1] . . . indicates settling within the quantization

limit, permitting smaller steps for higher accuracy. The precise

choice of lengths of these runs prior to triggering radix-2

expansion/contraction in the range is not critical and is

determined through behavioral simulation for optimal overall

signal-to-noise-and-distortion ratio (SNDR) as a compromise

between agility in transient recovery, resilience to variability

in the signal, and stability in non-linear loop dynamics.

The combination of digital prediction and radix-2 autorang-

ing constitutes PDA. PDA substantially improves transient
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Fig. 4. 16-channel ADC-direct neural recording IC with PDA. (a) System diagram and circuit architecture with single-channel detail. (b) IC micrograph
with corresponding single-channel detail.

response to large artifacts, tracking full-swing signal excur-

sions without saturation while quickly reestablishing noise-

limited resolution upon settling of the signal, as shown

in Fig. 3. During the artifact transient, PDA temporarily

relaxes the resolution with larger quantization step size to

accommodate the fast response. This temporary relaxation

of ADC resolution during the transient is governed by the

following tradeoff between transient slope tracking response

and quantization step size:

2E[n] > maximum signal step size =
2π fsig Asig

fcomp
(10)

where (for a sinusoidal signal) Asig is the signal amplitude

referred to the digital-to-analog converter (DAC) LSB level

(in units of 63 µV referred to the input), fsig is the signal

frequency, and fcomp is the sampling rate (see Fig. 4).

III. CIRCUIT DESIGN IMPLEMENTATION

Fig. 4 presents the system diagram circuit architecture

and micrograph of the 16-channel neural-signal-acquisition

integrated circuit (IC), with a detailed view of one of the

16 identical channels. Each channel implements the PDA

hybrid analog–digital 2DSM of Fig. 2(d), digitally predicting

the analog input at 12-bit resolution from a single-bit quantiza-

tion of the continuously integrated residue at effective 32 OSR.

The continuous differential input x(t) is chopped, and its

digital prediction p[n] is reconstituted by a correspondingly

reference-chopped 12-bit 6b + 6b segmented DAC, prior

to constructing the difference through capacitive coupling

to the differential inputs INP and INN of a transconduc-

tance amplifier. For low-noise implementation, no specific

sampling process through switching of capacitors is utilized,

and the signal couples to the amplifier input entirely through

charge redistribution in capacitive coupling, avoiding kT/C

switching noise altogether. The common-mode dc bias at

the INP and INN input nodes is set to VCM by activating

two switches at power-ON reset, which are subsequently

deactivated and remain OFF throughout the entire operation.

Junction diode leakage to bulk connections of these switches

toward VCM maintains common-mode dc bias with T�-range

impedance, with no need for periodic reset.

The resulting residue x(t) − p[n] is transconductance

amplified and unchopped to baseband for continuous-time

integration onto CINT. A dynamic comparator produces the
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binary quantizer output D[n], which through barrel-shifting

logic is combined with radix-2 autoranging E[n] to produce

the quantizer output y[n] consistent with (8) and Fig. 2(d).

The digital prediction p[n], in turn, is obtained as the

instantaneous sum of the digital feedback y[n] and its

running accumulation, completing the second-order loop.

The 16 channels on-chip share common reference, bias, and

control signals, and their outputs D1...16 are daisy-chained at

the output to enable higher channel counts through cascaded

multi-chip configuration. The 16-channel neural recording IC

measures 1 mm × 1 mm, with 0.024 mm2 per channel, in a

65-nm low-power bulk CMOS. Realized capacitance values

for CIN and CINT are 1 and 1.35 pF, respectively, while the

effective capacitance CDAC of the 6b + 6b DAC referred to

the integrator input is 128 fF.

A two-stage fully differential amplifier with two

independent stages of common-mode feedback shown

in Fig. 5(a) feeds into an integration capacitor CINT. Current

biases for IB1 and IB2 are set to 375 and 25 nA, respectively.

Current-reusing nMOS and pMOS input pairs in the first stage

boost transconductance to 22 µS for improved noise efficiency

factor (NEF) [17], while 600-mVpp output swing at 0.8-V

supply in the second stage increases a spurious-free dynamic

range (SFDR). The simulated signal gain of the integrator

is greater than 46 dB near the 32-kHz chopping frequency.

Auxiliary amplifiers ACF with conventional nMOS input

differential pairs implement low-frequency common-mode

feedback in each of the two stages, whereas capacitances

CCM1 = 15 fF and CCM2 = 8 fF Miller-boosted for common-

mode signals stabilize common-mode feedback loops.

A two-stage comparator shown in Fig. 5(b) [18] performs

1-bit quantization. Decision time ranges from 1.5 to 2 µs

depending on input amplitude, dominated by capacitive

loading (CT = 20 fF) of the first-stage current-starved

(IC = 20 nA) pre-amplifier. Owing to the pre-amplification

stage, simulated INR of the comparator is less than 80 µVrms.

At 32-kHz operation, the comparator draws less than 3-nA

current from the 0.8-V supply. The ONB clock signal,

utilized in subsequent digital logic stages, is asserted when

the decision is made.

Each of two differential segmented 6b + 6b DACs is

implemented with two 64-element custom arrays of 2-fF unit

capacitors C0, bridged by 4% larger capacitor C ′
0, as shown

in Fig. 5(c). The DAC reference levels VH and VL are tied to

the supplies VDD = 0.8 V and VSS = 0 V, respectively. While

current consumption from VH is 50 nA, digital logic within

the DAC consumes 10 nA from the 0.8-V supply at 32 kHz.

The implementation and timing control of the PDA is shown

in Fig. 6. A 12-bit radix-2 variable-step up/down counter

implements the update (6) in p[n] in two phases: a double

increment/decrement step p[n] ← p[n]+2 y[n] activating the

counter at its binary input position E[n] + 1, followed by a

retracing step with opposite polarity p[n] ← p[n] − y[n] and

activating the counter at input position E[n] just before the

next cycle. Timing of the two-phase updates in the digital pre-

diction state variable p[n] is triggered by initiation and settling

of the comparator output through the ONB signal as shown in

the detailed logic diagram in Fig. 6(b). The thermometer-coded

Fig. 5. Schematics of core analog circuits. (a) Transconductance amplifier for
continuous-time integrator. (b) Dynamic comparator. (c) 6b + 6b segmented
capacitive DAC.

(GT 0, . . . GT 7) binary input position E[n] of the radix-2

variable-step up/down counter is dynamically adjusted one

point higher or lower, or stays put, based on the stored history

in the quantization bits D[n], . . . D[n − 4], according to (9).

The PDA logic consumes less than 12-nW power at 32 kHz.

IV. MEASUREMENTS

Benchtop characterization of several BioADC channels was

performed with synthetic data, and in vivo validation tests

were conducted in marmoset primate LFP recording. Unless

otherwise noted, IS = 1-µA channel supply current, an OSR

of 32, and fch = 32-kHz chopping frequency were utilized for
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Fig. 6. PDA implementation and timing. (a) Simplified diagram and
sequential activation of the digital prediction stage in Fig. 2(c) with up/down
counters. (b) Detailed logic implementation. (c) Simulated time-domain wave-
forms illustrating internal operation.

all measurements. The input impedance is a function of the

chopping frequency, and at fch = 32 kHz, the measured input

impedance is greater than 26 M�. The measured common-

mode rejection ratio (CMRR), for a 28-mVpp sinusoidal

common-mode with zero differential input, is greater than

81 dB from dc to 60 Hz.

Figs. 7 and 8 show the measured IRN of the BioADC,

with input shorted to the reference [IN = REF in Fig. 4(a)].

Without chopping technique (black line), 1/ f noise is clearly

visible. Chopping above 8 kHz reduces the noise density

below 50 nV/
√

Hz, resulting in a 0.99-µVrms integrated IRN

over 500-Hz bandwidth and 1.81 NEF at 32-kHz chopping

Fig. 7. Measured IRN spectral density for varying chopping frequencies
at 1-µA channel current from 0.8-V supply.

Fig. 8. Measured integrated IRN for varying chopping frequencies and supply
current from 0.8-V supply.

Fig. 9. Measured large-signal bandwidth with and without PDA offering a
30 times speed improvement. Inset: gain mismatch across channels.

frequency and 1-µA supply. The major source of this noise is

the first stage of the analog integrator. Measured IRN across

chips is 0.94 µVrms on average with 0.1-µVrms standard

deviation.

The measured effect of PDA on signal-dependent gain is

highlighted in Fig. 9. Without PDA, the response to a large-

step transient is slew-rate-limited due to unity increments/

decrements in the digital feedback. With PDA, measurements

show a 30 times speed improvement for 4-mVrms amplitude

signals, while for small input signals, no significant difference

in speed is observed. Indeed, consistent with (10), a 4-mVrms

signal in the absence of PDA (E[n] ≡ 0) starts cutting

off for frequencies above 57 Hz at 32-kHz sampling rate,

with proportionally higher cutoff frequencies at lower signal

amplitudes (e.g., 2.3 kHz at 100 µVrms), whereas an activation

of PDA achieves full bandwidth limited response independent
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Fig. 10. Dynamic range with and without PDA. (a) Measured SNDR versus
input amplitude. (b) Measured time-domain output and (c) corresponding
spectra showing SFDR at −39-dBV input amplitude. (d) Measured spectra
at −39- and −114-dBV input amplitudes.

of signal amplitude by adjusting E[n] > 0. The measured

5.95 gain is flat at low frequencies down to dc. Measured

relative mismatch (standard deviation over mean) in midband

Fig. 11. Transient response to large artifacts with and without PDA. (a) Test
setup for controlled experiments using synthesized and combined signal and
artifacts. (b) Measured time-domain waveforms. (c) Zoomed-in view of the
waveform showing amplitude details in settling.

voltage gain is 4.5% across chips (inter-chip) and 0.7% across

channels within the same chip (intra-chip).

The measured effect of PDA on increasing input dynamic

range is shown in Fig. 10. PDA extends the input signal range,

at greater than 50-dB SNDR, by 22 dB, approaching the full-

scale range of the DAC, covering 92-dB input dynamic range.

SNDR improvements by PDA at large input-signal amplitudes

result from both reduced spurs and reduced noise floor,

reaching 66 dB at −39 dBV, as shown in Fig. 10(b) and (c).

However, lower than peak SNDR is reached for the larger

amplitudes due to nonlinearities in PDA loop dynamics, which

cause quantization noise and spurs to rise more than propor-

tional to the signal as shown in Fig. 10(d), despite the same

radix-2 factor simultaneous scaling of both the range and the

quantization step by PDA. As such, the rapid transient recov-

ery capability of PDA tracking large-slope artifacts comes at a

temporary partial loss in signal resolution, which reestablishes

its noise-limited level upon completion of the transient. Since

typical neural signals are low amplitude and have a 1/ f 2

low-pass power spectrum profile [8], PDA according to (10)

maintains near-optimal resolution in the absence of artifact

transients.
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Fig. 12. Side-by-side comparison of the BioADC with a commercially
available neural data acquisition system (Intan RHD-2132 [19], using the
default fast-settling feature).

Transient response is significantly improved by PDA.

To characterize recovery time in a typical scenario of tran-

sients in electrophysiological recording due to movement

artifacts or pulsed stimulation, we evaluated PDA response

to a synthesized waveform as the combination of two signal

sources: one 100-µVrms sinusoidal signal and the other a

200-mVpp pulsed artifact transient, as shown in Fig. 11(a).

With PDA, fast tracking in the input was observed, recovering

to the 200-mVpp transients in less than 1 ms. In contrast,

in the absence of PDA, the output is markedly slew-limited.

The dc-coupled input is capable of capturing slow potentials

(≤0.1 Hz) while accommodating EDO up to ±130 mV. For

larger EDO, ac-coupled operation is obtained by connecting

the dc-coupled input through a pair of external series capaci-

tors (10 nF shown for ac-coupled reference in Fig. 9).

A side-by-side comparison between the BioADC and a

commercially available benchmark (Intan RHD-2132, [19])

was performed with a combination of synthetic harmonic and

Fig. 13. (a) Experimental setup for in vivo recording of frontal cortex LFPs
in a marmoset primate subject (Callithrix jacchus) under visual stimulation
and (b) in vivo LFP recordings. Raw data (blue curve) are low-pass filtered
(≤1 Hz) to show slow potentials (black line).

transient signals to elicit various metrics in the comparison, as

shown in Fig. 12. The BioADC consistently demonstrated the

superior performance in an IRN, an input dynamic range, and

a transient response over the RHD-2132 benchmark, which

shows marked non-linear transients for even modest (3 mVpp)

input transients. The remarkably high high-pass corner of

the benchmark in Fig. 12(c) is due to signal-dependent non-

linear conductance onto the input node of its ac-coupled

front-end amplifier. This default “fast-settling” feature offered

in the RHD-2132 for rapid recovery from large transients

paradoxically introduces slow response transients for a range

of amplitudes in signal transients.

In vivo LFP recordings using the 16-channel neural acquisi-

tion IC connecting to a NeuraLynx microwire electrode array

inserted in frontal cortex of a marmoset primate (Callithrix

jacchus) are shown in Fig. 13(a), resolving slow poten-

tials (≤0.1 Hz) of 200-µVpp amplitude comparable to the

ECoG signal range indicative of subject arousal state that is

often missed by ac-coupled commercial neural instrumentation

unless with severe degradation in SNR [20].
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TABLE I

METRIC COMPARISON WITH STATE OF THE ART

Comparison of key metrics with the state of the art in neural

recording ICs is given in Table I. In addition to NEF, the neural

ADC achieves a power efficiency factor (PEF) of 2.6, almost

a fourfold improvement among integrated front-end ADCs

reported in the literature.

V. CONCLUSION

We presented an ADC-direct alternative to conventional

approaches to integrated neural recording that alleviates com-

mon problems with amplifier saturation during large artifact

transients and substantial signal attenuation of low-frequency

biopotentials in ac-coupled operation, with further aggravated

effects compounding these two through amplitude dependence

of high-pass corner frequency. The unique 2DSM topology

with kT/C-noise-free input coupling into the chopped second

integrator delivers record energy-noise efficiency with

NEF = 1.81 and PEF = 2.6. PDA handles a ±130-mV

EDO and recovers from >200-mVpp transient artifacts within

<1 ms, offering >90-dB input dynamic range. Furthermore,

using digital circuits for integration ensures the architecture

benefits from process scaling, and the resulting compactness

makes it suitable for incorporation in high-density recording

arrays. In vivo LFP recordings from marmoset primate frontal

cortex demonstrate its unique capabilities.
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