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Abstract: We propose a deep learning computational ghost imaging (CGI) scheme to achieve

sub-Nyquist and high-quality image reconstruction. Unlike the second-order-correlation CGI

and compressive-sensing CGI, which use lots of illumination patterns and a one-dimensional

(1-D) light intensity sequence (LIS) for image reconstruction, a deep neural network (DAttNet) is

proposed to restore the target image only using the 1-D LIS. The DAttNet is trained with simulation

data and retrieves the target image from experimental data. The experimental results indicate that

the proposed scheme can provide high-quality images with a sub-Nyquist sampling ratio and

performs better than the conventional and compressive-sensing CGI methods in sub-Nyquist

sampling ratio conditions (e.g., 5.45%). The proposed scheme has potential practical applications

in underwater, real-time and dynamic CGI.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Ghost imaging (GI), as an alternative to traditional imaging techniques, such as CCD and CMOS

cameras, restores an object image nonlocally by a second-order correlation algorithm [1–6]. In

1995, the first GI experiment was achieved by Pittman et al. with entangled photon pairs [7].

Since then many improved GI schemes have been developed, for instance, iterative denoising

GI [8], scalar-matrix-structured GI [9], compressive sensing (CS) GI [10,11], differential GI

[12], and Hadamard GI [13,14]. Conventional GI systems include two light paths, the object and

reference paths. However, in 2008, Shapiro proposed a single-path GI which only has an object

path, and he named it computational GI (CGI) [15]. Over the past few years, although GI has

been applied in various fields, such as THz imaging [16], X-ray imaging [17], turbulence imaging

[18], remote sensing [19] and multispectral imaging [20], the enormous signal acquisitions

(measurements) prevent GI developing into a more actual technique.

Recently, various methods have been proposed to reduce the signal acquisitions and improve

the imaging performance [21–27]. One of the widely used methods is to use orthonormal

patterns (basis) to reduce the sampling ratio (SR) and illumination patterns. Here, the SR is

defined as η = A/F, where A and F represent the measurement number and total pixel of an

image, respectively. For instance, Sun et al. presented an alternative CS method by optimizing

the measurement order of the Hadamard basis with a “Russian Dolls” ordering method [21].

The method performed as well as CS techniques in low SR condition. Luo et al. introduced a

post-processing method which used Gram-Schmidt process to orthonormalize the patterns [22].
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Although the illumination patterns were reduced, the method is sensitive to noise. Not long before,

Yu proposed a new CGI approach based on CS [23]. By using a “Cake-Cutting” Hadamard basis

optimization technique, a super sub-Nyquist sampling is realized and the acquisition time is

significantly decreased. Another lately reported method is to use deep learning (DL) to decrease

the SR [24–27]. In [24–26], three deep-learning-based methods are developed to lower the

SR of CGI, where the input image is obtained by conventional GI. Most recently, Wang et

al. demonstrated a neural network for CGI which reconstructs target images directly from the

one-dimensional (1-D) bucket signals without the need of the illumination patterns [27]. The

neural network includes 4 independent paths and lots of residual blocks, which can perfectly

reconstruct an image with a SR of 6.25%. DL GI possesses many advantages over the conventional

and CS GI, such as, without using illumination patterns, realizing high-quality imaging with a

lower SR, imaging through scattering medium [28], etc. However, retrieving high-quality ghost

images from the 1-D bucket signals with a sub-Nyquist SR (or fewer measurements) remains a

challenge for the existing DL GI schemes.

In this paper, we propose a deep learning CGI scheme which can retrieve high-quality target

images with a sub-Nyquist SR. We develop a deep neural network (DAttNet) to recover the

target image directly from the 1-D light intensity sequence (LIS) in sub-Nyquist SR conditions.

Compared with [27], DAttNet has a simpler architecture of the neural network because only

one path is used. Besides, [27] used residual blocks in the network, but DAttNet utilizes dense

blocks and skip connections which has a better generalization capability [28]. Moreover, the

proposed scheme can recover a clear image with a lower SR (5.45%) than [27] (6.25%). The

effectiveness of the proposed scheme is experimentally verified by using two types of targets

(binary and grayscale). The image quality of the proposed scheme is evaluated by comparing the

results with four state-of-the-art CGI methods.

2. Method

The experimental setup of the proposed scheme is shown in Fig. 1. The imaging system is

composed of a digital light projector (DLP), test target, zoom lens (ZL), charge coupled device

(CCD) and personal computer (PC). The ZL (focal length f ∈ [0.2 cm, ∞)) is mounted before

the CCD (Blackfly S USB3 CCD). The pattern projection of the DLP (Texas Instruments,

DLP3010EVM-LC, 1280×720 pixels) and the light intensity collection of the CCD are controlled

by a PC (Intel Core i7-8700K, 32 GB Memory). The distance between the test target and the DLP

is 34.50 cm, and the distance between the CCD plane and the test target is 38.20 cm. The DLP

projects the Hadamard pattern Pk = Pk(x, y) onto the target. The reflective light is converged by

a ZL and the light intensity Ik is recorded by a CCD, which is given by

Ik =

∫∫
T(x, y)Pk(x, y)dxdy, (1)

where T(x, y) is the object function, k = 1, 2, · · · , K, and K is the total number of measurement.

Fig. 1. Experimental setup. The target is printed on a white paper.
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Based on the GI theory, the object image O(x, y) can be recovered by [2–5,7],

O(x, y) =
1

K

K∑
k=1

(Ik − 〈I〉)Pk(x, y), (2)

where I = [I1, I2, · · · , IK] is the LIS, and 〈·〉 denotes the assemble average. Here, P =

[P1, P2, · · · , PK] is the pattern sequence.

With the pattern sequence P and LIS I, the target image T(x, y) can also be restored by the CS

methods [10,11,23].

Unlike the second-order correlation algorithm [2–5,7] and CS methods [10,11,23], the proposed

scheme can recover target images directly from the 1-D LIS I. The mathematical model of the

proposed scheme can be expressed as an implicit function,

T̂ = T̂(x, y) = ℜ(I;Ψ), (3)

where Ψ represents the model parameters, and ℜ() denotes an implicit function that establishes a

mapping relation between the input LIS I and the output image T̂ . Since it is difficult to figure

out the explicit form of ℜ() and find the inverse solution of Eq. (3), we propose a DAttNet to

solve the inverse mapping of Eq. (3) with a set of training data {(Bn; Gn)}
N
n=1

. Here, N is the

number of dataset, Gn is the nth ground truth (GT), Bn = [In
1
, In

2
, · · · ,In

M
] is the corresponding

LIS, and M is the measurement number.

The architecture of DAttNet is illustrated in Fig. 2, which is inspired by the [27], IDiffNet [28],

U-Net [29], Attention U-Net [30] and DenseNet [31]. The first layer is an input layer which

inputs a normalized LIS I recorded by the CCD. Since we focus on the sub-Nyquist CGI whose

SR is smaller than 10%, thus the maximum size of the input layer is M = 16384 × 10% ≈ 1638.

The second and third layers are fully connected layers whose sizes are 4096 × 1 and 16384 × 1,

respectively. The fourth layer is a vector-to-matrix layer which reshapes the vector 16384 × 1 to a

matrix (temporary image, size 128×128 pixels). Followed the fourth layer is a deep convolutional

neural network (CNN) which is designed to recover the target image. In the CNN, we use six

Fig. 2. The architecture of the proposed DAttNet. BN, batch normalization; DiConv, dilated

convolution; Conv 3 × 3, convolution with filter size 3 × 3; Conv 1 × 1, convolution with

filter size 1 × 1; Dropout, dropout rate is 0.05; ReLU, rectified linear unit; NLT, normalization

and linear transformation; Average pooling and pooling, stride (2, 2); Upscale, factor 2.
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Fig. 3. Test results of the trained model with the SRs of 2%, 5.45% and 6.75%.

attention gates (AG) to enhance the salient features which pass through the skip connections, and

eliminate the irrelevant and noisy responses in skip connections [30,31]. Besides, the dilated

convolutions (DiConv, dilation rate 2, filter size 5 × 5) are used for convolution calculation.

Additionally, dropout layers are used to prevent overfitting [32] and batch-normalization (BN)

layers are added to speed up the convergence of loss function [33]. The last layer is a normalization

and linear transformation layer which is used to normalize the output matrix and linearly transform

it into an image. After the temporary image passes through the CNN, a ghost image is restored.

3. Experimental results and analysis

We train the DAttNet in the High-Performance Computing of the University of Arizona with

Pytorch (Python version 3.6). The training dataset includes 200 011 GT-LIS pairs. Here, GT

(128 × 128 pixels) is collected from DIV2K [34] and COCO (2017 Train) [35] databases. LIS

I is generated by calculating the light intensity Ik, where the Hadamard basis is sorted by the

“Cake-Cutting” method [23]. The measurement number is M = 1638. Note that 1638 independent

Hadamard patterns are used in the experiment and the length of LIS is equal to the measurement

number. In the training phase, the ADAM algorithm [36] is utilized to optimize the following

loss function,

L(Ψ) =
1

2N

N∑
n=1

| |ℜ(Bn;Ψ) − Gn | |
2
, (4)

where the mini-batch size and training epochs (TE) are set as 90 and 200, respectively. The

learning rate (LR) is set as follows. If TE ≤ 50, LR = 10−3, else if 50 < TE ≤ 60, LR = 10−4,

else LR = 10−6.

The trained model is first tested by the simulated LIS which is obtained by the GT shown in

the first row of Fig. 3. It is important to note that the LIS generation method is the same as that in

preparing the training dataset. Different sampling ratios (SRs) are adopted to generate the LIS.

Here the SR is defined as η = M/16384. The reconstructed images are shown in the 2-4 rows
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of Fig. 3. We find that the quality of recovered images gets better as the increasing of SR, and

high-quality images are obtained when SR is equal to 5.45%.

The trained model is then used to restored images from the LIS which is obtained by the

experimental setup in Fig. 1. Here, the LIS generation method is also the same as that in preparing

the training dataset. We verify the proposed scheme (DL) using different SRs. The experimental

results of the proposed scheme (DL) are compared with those of four state-of-the-art methods,

fast Walsh-Hadamard transform CGI (FWHT) [14], “Russian dolls” CGI (RD) [22], compressive

sensing RD (CSRD), and “Cake-Cutting” CGI (CC) [23].

Fig. 4. Comparison of experimental results obtained by FWHT, RD, CSRD, CC and DL

with the SR at 2%, 5.45%, 6.75% and 8%, respectively.

Figure 4 shows the comparing experimental results, where the SRs are equal to 2%, 5.45%,

6.75% and 8%, respectively. The original target image (128 × 128 pixels), which is captured

by a CCD camera and processed by MATLAB, is shown in Fig. 1. Note that the original target

image is used as a reference image for calculating the peak signal-to-noise ratio (PSNR) [37]

and Structural SIMilarity (SSIM) index [38] values in Fig. 5. As shown in Fig. 4, when η is 2%,

all the five methods fail to reconstruct a ghost image. When η is 5.45%, only CC and DL can

restore a clear ghost image, and the image quality of DL is better. As the SR increases, the image

quality of DL is always superior to the other four methods. Here, the restored image quality

is quantitatively evaluated by PSNR and SSIM. Figure 5 shows the PSNR and SSIM curves

which is corresponding to the images in Fig. 4. Both the PSNR and SSIM of DL are higher than

those of the other four methods, indicating that the image quality of DL is better than the other

four. Note that the LIS generation method should be the same as that in preparing the training

dataset. The reason is that DL is not suitable for arbitrary LIS generation methods in this paper.
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Consequently, if the LIS generation method is not the same as that used to prepare the training

set, the PNSR and SSIM of reconstructed results may decrease. From Figs. 4 and 5, it can be

seen that DL possesses the best imaging performance among the five methods in sub-Nyquist

SR condition (e.g., 5.45%). Compared with [27], DL can restore a clear image with a lower SR

(5.45%) than [27] (6.25%), and has a smaller error. In DL, when SR is 5.45%, the root of mean

square error (RMSE) [27] is 6.07. However, in [27], when SR is 5.45%, the RMSE is over 40.

Here, the SR shape is independent.

Fig. 5. Comparison of PSNR and SSIM acquired by FWHT, RD, CSRD, CC and DL using

different SRs. The horizontal axis is not plotted in ratio.

To further check the imaging performance of DL, a grayscale image (light tower) is adopted as

the target. The SR η is set as 5.45%. Experimental results of the five methods are displayed in

Fig. 6. Both FWHT and RD cannot provide a recognizable image. CSRD and CC can restore

ghost images, but some details are vague, such as the window, and the top of the tower. DL can

reconstruct the details, and presents a better performance than CSRD and CC.

Fig. 6. Experimental results of a grayscale target reconstructed by FWHT, RD, CSRD, CC

and DL with a SR of 5.45%.

4. Conclusion

We have experimentally presented a deep-learning-based CGI scheme, which obtains high-quality

GI images in the sub-Nyquist SR condition. We develop a DAttNet that can recover the target

image directly from the 1-D LIS without using the illumination pattern sequence. The DAttNet

is trained with simulation data and tested using experimental data. We compare the imaging

performance of the proposed scheme with four state-of-the-art CGI methods, FWHT, RD, CSRD

and CC. The experimental results show that the image quality of the proposed scheme is better
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than that of FWHT, RD, CSRD and CC in sub-Nyquist SR conditions. The proposed scheme can

be applied in many areas, such as real-time CGI, scattering media GI and moving target CGI. The

future work will focus on the optimizations and practical applications of the proposed scheme.
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