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Sub-Nyquist Radar via Doppler Focusing
Omer Bar-Ilan and Yonina C. Eldar, Fellow, IEEE

Abstract—We investigate the problem of a monostatic

pulse-Doppler radar transceiver trying to detect targets sparsely

populated in the radar’s unambiguous time-frequency region.

Several past works employ compressed sensing (CS) algorithms

to this type of problem but either do not address sample rate

reduction, impose constraints on the radar transmitter, propose

CS recovery methods with prohibitive dictionary size, or per-

form poorly in noisy conditions. Here, we describe a sub-Nyquist

sampling and recovery approach called Doppler focusing, which

addresses all of these problems: it performs low rate sampling

and digital processing, imposes no restrictions on the transmitter,

and uses a CS dictionary with size, which does not increase with

increasing number of pulses . Furthermore, in the presence

of noise, Doppler focusing enjoys a signal-to-noise ratio (SNR)

improvement, which scales linearly with , obtaining good detec-

tion performance even at SNR as low as 25 dB. The recovery

is based on the Xampling framework, which allows reduction

of the number of samples needed to accurately represent the

signal, directly in the analog-to-digital conversion process. After

sampling, the entire digital recovery process is performed on the

low rate samples without having to return to the Nyquist rate.

Finally, our approach can be implemented in hardware using a

previously suggested Xampling radar prototype.

Index Terms—Compressed sensing, rate of innovation, radar,

sparse recovery, sub-Nyquist sampling, delay-Doppler estimation.

I. INTRODUCTION

W E consider target detection and parameter estimation

in a pulse-Doppler radar system, using sub-Nyquist

sampling rates. The radar is a single transceiver, monostatic,

narrow-band system. Targets are non-fluctuating point targets,

sparsely populated in the radar’s unambiguous time-frequency

region: delays up to the Pulse Repetition Interval (PRI), and

Doppler frequencies up to its reciprocal, the Pulse Repetition

Frequency (PRF). We propose a recovery method which can

detect and estimate targets’ time delay and Doppler frequency,

using a linear, non-adaptive sampling technique at a rate

significantly lower than the radar signal’s Nyquist frequency,

assuming the number of targets is small.

Current state-of-the-art radar systems sample at the signal’s

Nyquist rate, which can be hundreds of MHz and even up to

several GHz. Systems exploiting sub-Nyquist sampling rates

benefit from a lower rate analog-to-digital conversion (ADC),

which requires less computational power. Moreover, sampling
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at the Nyquist rate may not always be feasible due to high power

consumption, heat dissipation, cost, or other practical consider-

ations. Finally, offline radar systems which record samples for

subsequent processing can gain substantial storage capacity re-

duction if they were to sample at sub-Nyquist rates.

The goal of this work is to present some steps towards

breaking the link between radar signal bandwidth and sam-

pling rate. We mainly focus on the setting of Swerling-0 point

targets with additive white Gaussian noise (AWGN), in order

to bring forth what we believe are useful ideas and algo-

rithms for sample rate reduction. We also briefly treat target

dynamic range and clutter. However, a full analysis of these

important issues is left to future work. The sub-Nyquist Xam-

pling (“compressed sampling”) [1] method we use is an ADC

which performs analog prefiltering of the signal before taking

point-wise samples. These compressed samples (“Xamples”)

contain the information needed to recover the desired signal

parameters using compressed sensing (CS) algorithms. This

work expands on the results of [2], adding Doppler to the target

model and proposing a new method to estimate it. The same

sampling technique and hardware that were used in [2], [3] are

also applicable here, while the digital processing we suggest is

adapted to moving targets, and low signal-to-noise ratio (SNR).

Several past works employ CS algorithms to this type of

problem, but do not address sample rate reduction and continue

sampling at the Nyquist rate [4], [5]. Other ideas combine radar

and CS in order to reduce the receiver’s sampling rate, but in

doing so impose constraints on the radar transmitter and do not

treat noise [6], or do not handle noise well [7]. The work in [7]

first estimates target delays and then uses these recovered delays

to estimate Doppler frequencies and amplitudes. We refer to this

technique as “two-stage recovery” in subsequent sections. An-

other approach proposes single stage CS recovery methods with

dictionary size proportional to the product of delay and Doppler

grid sizes, making them infeasible for many realistic scenarios

[4], [8].

Our approach is based on the observation that the received

radar signal can be modeled with degrees of freedom (DOF):

a delay, Doppler frequency and amplitude for each of the

targets. Signals which can be described with a fixed number

of DOF per unit of time are known as Finite Rate of Inno-

vation (FRI) [9] signals. The proposed recovery process esti-

mates these DOF from low rate samples. The concept of FRI

together with the Xampling methodology enables sub-Nyquist

rates using practical hardware [1], [10].

At the crux of our proposed recovery method is a coherent su-

perposition of time shifted and modulated pulses, the Doppler

focusing function . For any Doppler frequency , this

function combines the received signals from different pulses

so that targets with appropriate Doppler frequencies come to-

gether in phase. For each sought after is processed
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as a simple one-dimensional CS problem and the appropriate

time delays are recovered. The gain from this method is both

in terms of SNR and Doppler resolution. For pulses adding

coherently, we obtain a factor SNR improvement over white

noise (which adds incoherently, i.e., in power), as will be proved

in Section VI. Such an SNR improvement is optimal as it is

the improvement obtained by a matched filter (MF). This re-

sult is established in Section III. We also analyze the minimal

number of samples required for perfect recovery without noise,

and show that Doppler focusing attains this lower bound in

terms of number of samples per pulse. In addition, denoting the

PRI as , we demonstrate in Section IV that the width of the

Doppler focus for each is , meaning that delays

of targets separated in Doppler by more than create al-

most no interference with each other.

The idea of Doppler focusing comes from a similar function

used in the context of ultrasound beamforming in [11], [12].

There, in a method named “Dynamic focusing”, the signal re-

turned to a set of linearly aligned transceivers is focused in a

manner similar to how we focus pulses, where the Doppler fre-

quency is replaced by a spatial direction . In both cases,

the advantages of focusing are retained with sub-Nyquist pro-

cessing since it can be performed on the low rate Xamples.

Simulations provided in Section VIII show that when sam-

pling at one tenth the Nyquist rate, our Doppler focusing

recovery method outperforms both classic MF recovery, de-

scribed in Section III, and two-stage CS recovery, described

in Section VII. When the SNR reaches dB, our method

achieves the performance of classic recovery operating at the

full Nyquist rate.

The main merits of our proposed method are as follows:

1) Low rate ADC and DSP—using Xampling and the pro-

posed recovery method, we are able to acquire the sub-

Nyquist samples containing information needed for target

recovery, and then digitally recover the unknown target pa-

rameters using low rate processing, without returning to the

higher Nyquist rate.

2) Transmitter compatibility—our recovery method does

not impose any restrictions on the transmitted signal, pro-

vided it meets the assumptions stated in Section II.

3) Scaling with problem size—many CS delay-Doppler es-

timation methods depend upon constructing a CS dictio-

nary with a column for each delay-Doppler hypothesis.

For even moderate size problems, this requires a huge dic-

tionary, making them infeasible for many systems, espe-

cially real-time ones. Our Doppler focusing based method

avoids this problem by separating the Doppler from delay

recovery, making each CS delay recovery indifferent to the

underlying Doppler.

4) Robustness to noise and clutter—The SNR achieved

using Doppler focusing scales linearly with the number

of received pulses , as does an optimal MF, providing

good performance in AWGN. Regarding clutter, Doppler

focusing includes inherent isolation between signals with

different Doppler frequencies. Therefore, unless target

and clutter have very similar Doppler frequency, clutter

interference can be significantly reduced.

The remainder of this paper is organized as follows. In

Section II we describe the radar model and the assumptions

we use for its simplification. Section III reviews classic MF

processing. We explain the Doppler focusing concept in

Section IV and sub-Nyquist delay recovery in Section V. The

delay-Doppler recovery method using Doppler focusing is

described in Section VI, along with an analysis of noiseless

recovery and some practical considerations. We provide a

comparison with other CS recovery methods in Section VII.

Numerical results are presented in Section VIII.

We denote vectors by boldface lower case letters, e.g., , and

matrices by boldface capital letters, e.g., . We say a vector is

-sparse if , i.e., at most of its elements are nonzero.

The th component of a vector is written as , and the th

element of a matrix is denoted by . Non-boldface variables

represent scalars or functions, where continuous functions are

denoted with round brackets, e.g., and discrete functions

with square brackets, e.g., . The cardinality of a set is

denoted by .

II. RADAR MODEL

We consider a radar transceiver that transmits a pulse train

(1)

consisting of equally spaced pulses . The pulse-to-pulse

delay is referred to as the PRI, and its reciprocal is the

PRF. The entire span of the signal in (1) is called the coherent

processing interval (CPI). The pulse is a known time-lim-

ited baseband function with continuous-time Fourier transform

(CTFT) . We assume that has

negligible energy at frequencies beyond and we refer to

as the bandwidth of .

The target scene is composed of non-fluctuating point tar-

gets (Swerling-0 model, see [13]), where we assume that is

known, although this assumption can easily be relaxed. The

pulses reflect off the targets and propagate back to the trans-

ceiver. Each target is defined by three parameters: a time delay

, proportional to the target’s distance from the radar; a Doppler

radial frequency , proportional to the target-radar closing ve-

locity; and a complex amplitude , proportional to the target’s

radar cross section (RCS), dispersion attenuation and all other

propagation factors. We limit ourselves to defining targets in the

radar’s radial coordinate system.

Throughout, we make the following assumptions on the tar-

gets’ location and motion, which leads to a simplified expres-

sion for the received signal. To this end we introduce a few

auxiliary parameters. Denote the radar’s carrier frequency as

and the speed of light as . We use the time-distance equiva-

lence and the non-relativistic Doppler radial fre-

quency-velocity equivalence .

A1. “Far targets”—assuming , target-

radar distance is large compared to the distance change

during the CPI which allows for constant .

A2. “Slow targets”—assuming , target

velocity is small enough to allow for constant during the

CPI.
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A3. “Small acceleration”—assuming ,

target velocity remains approximately constant during the

CPI allowing for constant .

Although these assumptions may seem hard to comply with,

they all rely on slow enough relative motion between the radar

and its targets. Radar systems tracking people, ground vehicles

and sea vessels usually comply quite easily. For example, con-

sider a pulse radar system with PRI sec,

bandwidth MHz and carrier frequency GHz,

tracking cars traveling up to 120 km/hour. The maximal dis-

tance change over the CPI is approximately 0.33 m, so if the

targets’ minimal distance from the radar is more than a few me-

ters, then A1. is satisfied. As for A2., the maximal Doppler fre-

quency is approximately 667 Hz, which is much smaller than

KHz. An extreme acceleration of 10 m/sec

would cause a velocity change of 0.1 m/sec over the CPI, easily

satisfyingA3.. As for airborne targets, care must be taken to en-

sure compliance.

Based on these three assumptions, we can write the received

signal as

(2)

It will be convenient to express as a sum of single frames

(3)

where

(4)

In reality will be contaminated by AWGN. Themain source

of this noise is receiver thermal noise, but it also represents

other wideband analog distortions and imperfections common

to radio-frequency (RF) hardware. Another important source of

distortion is clutter, originating from large objects in the tar-

gets’ vicinity reflecting the transmitted signal. We take both

into account in our analysis in Section VI and simulations in

Section VIII.

Since the transmitted signal (1) is a finite periodic pulse train,

it is invariant to the transformation

where , except on its boundaries. There-

fore the radar’s unambiguous time-frequency region, where it

can resolve targets with no ambiguity, is re-

spectively. Targets outside this region will be measured in delay

and Doppler frequency modulo and accordingly, as with

any fixed-PRI pulse radar. To resolve delay or Doppler ambi-

guity, information between several CPIs must be shared, for ex-

ample by employing the Chinese remainder theorem [14]. We

make the following further assumptions on targets’ delay and

Doppler:

A4. No time ambiguity: where is

a continuous time interval in , so that

.

A5. No Doppler ambiguity: .

A6. The pairs in the set are unique.

Our goal in this work is to accurately detect the targets, i.e.,

to estimate the DOF in (2), using the least

possible number of digital samples.

III. CLASSIC PULSE-DOPPLER PROCESSING

Classic radar processing samples and processes the received

signal at its Nyquist rate using aMF [13]. In modern systems

the MF operation is performed digitally, and therefore requires

an ADC capable of sampling at , which can be hundreds of

MHz and even up to several GHz. In order to evaluate our sam-

pling and reconstruction method, we compare it to classic radar

processing, which in general consists of the following stages:

1) ADC—sample each incoming frame at its Nyquist

rate , equal to ’s bandwidth, creating

, where .

2) Matched filter—for each , create

, where is a sampled version of

the transmitted pulse . The time resolution attained

in this step is , corresponding to the width of the

autocorrelation of the pulse .

3) Doppler processing—for each discrete time index , per-

form a -point DFT along the pulse dimension:

for .

The frequency resolution attained in this step is ,

proportional to the inverse of the CPI.

4) Delay-Doppler map—stacking the vectors , and

taking absolute value, we obtain a delay-Doppler map

.

5) Peak detection—a heuristic detection process, where

knowledge of number of targets, target power, clutter loca-

tion, etc. may help discover target positions. For example,

if we know there are targets, then we can choose the

strongest points in the map.

The Doppler processing stage can be viewed as MF in the

pulse dimension to a constant radial velocity target. As such, it

increases the SNR by compared to the SNR of a single pulse

[15], [16]. Since a MF is the linear time-invariant (LTI) system

which maximizes SNR, it follows that a factor increase is op-

timal for pulses. In Section VIwe show that the SNR achieved

with Doppler focusing also scales linearly with , while other

CS methods either achieve sub-linear SNR increase, or require

prohibitive computational cost, as shown in Section VII.

Classic processing requires sampling the received signal at its

Nyquist rate , which is inversely proportional to the system’s

time resolution. The required computational power is convo-

lutions of a signal of length and FFTs of length

—both also proportional to . The growing demands for im-

proved estimation accuracy and target separation dictate an ever

growing increase in signal’s bandwidth. The goal of this work

is to present some concrete steps towards breaking the link be-

tween radar signal bandwidth and sampling rate, and to allow

low rate sampling and processing of radar signals, regardless of

their bandwidth, retaining the same SNR scaling.

We achieve this goal by utilizing the combination of ideas

of FRI and Xampling. Previous papers have already used these

complementary concepts together. The work in [3], [9] cre-

ates a mathematical framework for sub-Nyquist sampling of

pulse streams and defines lower bounds on the sampling rate
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needed for perfect reconstruction. Practical sampling methods

achieving these bounds are explained in [2], [11], [17] in the

context of ultrasound and radar, both without Doppler. Another

work [7] investigates the delay-Doppler estimation problem,

but recovers the delays and Doppler frequencies in a two-stage

process which achieves an SNR increase which is sub-linear

in . In Section VI we prove that in noisy scenarios, Doppler

focusing recovery is superior to the two-stage method, as it

achieves an SNR increase equal to a pulse dimension MF. We

verify these results via simulations in Section VIII. Combining

Xampling and Doppler focusing, our DOF input signal (2)

enjoys the benefits of sub-Nyquist rate Xampling and accurate

digital recovery of the target scene, effectively breaking the link

between signal bandwidth and sampling rate.

IV. DOPPLER FOCUSING

We now introduce and explain the main idea in this paper,

called Doppler Focusing. This processing technique uses target

echoes from different pulses to create a single superimposed

pulse. This improves the SNR for robustness against noise and

implicitly estimates targets’ Doppler frequency in the process.

We point out that stages 2) and 3) in classic processing can be

viewed as delay and Doppler processing accordingly. Since they

are both LTI, they can be interchanged, performing the DFT

before MF. In classic processing, applying a MF before DFT

decreases computation latency, so most practical systems carry

them out in the noted order.

When interchanging steps 2) and 3), the DFT is simply a dis-

crete equivalent of the following time shift and modulation op-

eration on the received signal:

(5)

where we used (4) and denoted .

We now analyze the sum of exponents in (5). For any given

, targets with Doppler frequency in a band of width

around , i.e., in “focus zone”, will achieve coherent

integration and an SNR boost of approximately

(6)

compared with a single pulse. On the other hand, since the sum

of equally spaced points covering the unit circle is generally

close to zero, targets with not “in focus” will approximately

cancel out. Thus for , where

A5. implies that . One can also use windowing

in order to improve out of focus attenuation, as described in

Fig. 1. Example of for pulses and . Arrows mark

the focus zone, i.e., . Frequencies outside the focus zone are se-

verely attenuated.

Fig. 2. Schematic delay-Doppler map. Dark area indicates out-of-focus region.

Only one target is in focus for current choice of .

Section VI. An example of is depicted in Fig. 1. There-

fore, we can approximate (5) by

(7)

where .

Instead of trying to estimate delay and Doppler jointly, we

reduced our problem to delay only estimation for a small range

of Doppler frequencies, with increased amplitude for improved

performance against noise. To emphasize this, consider the case

of trying to detect and estimate parameters of two targets with

very closely spaced delays but with different Doppler frequen-

cies (see for example the two helicopters in Fig. 2). Algorithms

whose time resolution is coarser than the targets’ delay sepa-

ration are likely to encounter various problems recovering this

target scene, the most likely of which is identification of a single

target instead of two.WithDoppler focusingwe achieve an extra

dimension of potential separation, regardless of the underlying

delay recovery algorithm, enabling improved recovery perfor-

mance. Fig. 2 illustrates this concept by showing various tar-

gets spanning a delay-Doppler region. When focusing at some

, only targets in ’s focus zone (white region) come into view,

while all other targets (dark region) disappear. In Section VIII

we demonstrate this point via simulation.

To enable sub-Nyquist recovery, in the next sections we

sample our signal in the time domain but extract frequency

domain information. We now show how Doppler focusing can
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also be performed in the frequency domain, paving the way

towards sub-Nyquist Doppler focusing.

Using (4), and denoting as the CTFT of ,

(8)

Taking the CTFT of as a function of we obtain:

(9)

All of the problem’s parameters appear in (9). Its structure

is that of a delay estimation problem, as shown in Section V,

combined with the familiar sum of exponents term from (5).

We have seen that Doppler focusing reduces a delay-Doppler

estimation problem to a delay-only estimation problem for a

specific Doppler frequency. In the next section we describe

delay recovery from sub-Nyquist sampling rates using Xam-

pling. In Section VI we revisit the Doppler focusing concept,

combining it with these low rate Xamples to address the

delay-Doppler radar problem at sub-Nyquist rates.

V. SUB-NYQUIST DELAY RECOVERY

The problem of recovering the amplitudes and delays in

(10)

from sub-Nyquist samples has been previously studied in [2],

[3], [9], [17]. Since Doppler focusing yields such a problem,

we now review how Xampling can be used to solve (10) at a

sub-Nyquist sampling rate.

A. Xampling

The concept of Xampling, introduced in [1], [18], [19],

describes analog-to-digital conversion which acquires samples

at sub-Nyquist rates while preserving the ability to perfectly

reconstruct the signal. Xampling can be interpreted as “com-

pressed sampling”, in the sense that we are performing data

compression inherently in the sampling stage. To do this, we

do not simply reduce sampling rate, since this is bound to cause

loss of information. Instead, we perform an analog prefiltering

operation on our signal and only then sample it, in order to

extract the required information for recovery. We now show

how the signal’s Fourier series coefficients are related to the

problem’s unknown parameters [3], [7], [9], [17]. We then

describe how to acquire these coefficients via Xampling.

Since is confined to the interval , it can be

expressed by its Fourier series

(11)

Fig. 3. Multichannel direct sampling of the Fourier series coefficients, from

[3].

where

(12)

From (12) we see that the unknown parameters are

embodied in the Fourier coefficients in the form of a com-

plex sinusoid problem. For these problems, without noise,

samples are enough to recover the unknown ’s and ’s [9],

i.e., . These parameters can be found using spectral

analysis methods which require sampling a consecutive subset

of coefficients, such as the annihilating filter [20], matrix pencil

[21], or ESPRIT [22]. An alternative approach is to use MUSIC

[23], which does not require consecutive coefficients. The lower

bound on can be achieved only when the noise is negligible

and computational complexity is not of concern. When there is

substantial noise in the problem, having more than coeffi-

cients improves recovery.

Our signals exist in the time domain, and therefore we do not

have direct access to . To this end, we can use the direct mul-

tichannel sampling scheme described in [3] in order to obtain

any arbitrary set of Fourier series coefficients, as illustrated in

Fig. 3. The analog input is split into channels, where in

each channel it is mixed with the harmonic signal ,

integrated over the PRI duration, and then sampled.

In [2] an actual radar system was built using a similar yet

more practical technique, where a set of mixers, band-pass

filters and low rate ADCs sampled different spectral bands of

the signal. The matching Fourier coefficients were then created

digitally. The radar model there included delay only without

Doppler. An alternative Xampling method uses the Sum of

Sincs filter described in [17]. All of these methods can be used

to obtain arbitrary Fourier series coefficients. The number of

Fourier coefficients extracted per pulse is a design parameter

which controls the tradeoff between sampling rate and re-

covery performance. In our numerical experiments, presented

in Section VIII, we demonstrate a Xampling rate of one tenth

of the Nyquist rate.
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B. Compressed Sensing Recovery

In the previous subsection we showed that samples are

enough to solve (10), when there is no noise. We now describe

a CS-based delay recovery method, operating on the Xamples

, which is often more robust to noise.

Assume the time delays are aligned to a grid

(13)

where we choose so that is an integer. Since

in real scenarios target delays are not necessarily aligned to a

grid, local interpolation around detected grid points can be used

to reduce quantization errors. In our simulations in Section VIII

we perform a parabolic fit around detected indices. The anal-

ysis in [24] can be used to quantify these off-the-grid errors.

Choosing a set of indices , we define the

corresponding vector of Fourier coefficients

(14)

We can then write (12) in vector form as

(15)

where is a diagonal matrix with diagonal elements

and is a Vandermonde matrix with ele-

ments , i.e., it is composed of rows of

the DFT matrix. The target delay vector is

-sparse, where each index contains the amplitude of a target

with delay if it exists, or zero otherwise. Defining the CS

dictionary we obtain the CS equation

(16)

Estimating targets’ delays can be carried out by solving (16) and

finding ’s support - any nonzero index denotes a target with

delay .

Given a set of sampled Fourier coefficients, a variety of CS

techniques can be employed for recovery [11], for instance or-

thogonal matching pursuit (OMP) [25], iterative hard thresh-

olding (IHT) [26], or minimization (see [27] and references

within). Choosing the coefficients at random produces favor-

able conditions for CS, aiding recovery in the presence of noise.

When the indices in are selected uniformly at random, it can

be shown that if , for some positive constant

, then obeys the desired Restricted Isometry Property (RIP)

with large probability [28]. By satisfying the condition for RIP

we are able to recover , using a CS recovery algorithm.

VI. DELAY-DOPPLER RECOVERY USING DOPPLER FOCUSING

In Section IV we introduced the concept of Doppler focusing,

and in Section V we reviewed how to Xample and recover the

unknowns of the delay estimation problem (10). We now

return to our original delay-Doppler problem (2).

We begin by showing how Xampling can be performed on

the multi pulse signal (2). We then describe Doppler focusing,

and analyze two aspects of the algorithm: the effect of multiple

pulses on SNR when noise exists, and the minimal number of

samples required for perfect recovery without noise. Finally we

discuss some practical considerations.

A. Xampling

We can apply the Xampling technique of Section V to each

of the pulses of the multi-pulse signal (2) to obtain .

Since is confined to the interval , we

replace and in (12) resulting in

(17)

where we used the fact that since both we have

. If we assume the time delays are aligned to a grid

(13), similarly to (15), then for each pulse we obtain

(18)

From (17) we see that all unknown parameters

are embodied in the Fourier coefficients

in the form of a complex sinusoid problem. The number

of Fourier coefficients sampled in each pulse, , controls the

trade-off between sample rate and robustness to noise.

B. Applying Doppler Focusing and CS Recovery

Having acquired using Xampling, we now perform the

Doppler focusing operation for a specific frequency :

(19)

From (9) we see that .

Following the same arguments as in (6), for any target sat-

isfying we have

(20)

Therefore, Doppler focusing can be performed on the low rate

sub-Nyquist samples:

(21)

Equation (21) is identical in form to (12) except it is scaled

by , increasing SNR for improved performance with noise.

Furthermore, we reduced the number of active delays.

For each we now have a delay estimation problem, which

can be solved using MUSIC, annihilating filter, or any other

spectral analysis method. Furthermore, (21) can be written in

vector form using the same notations of Section V as

(22)

where is -sparse and

(23)

This is exactly the delay estimation problem we have already

shown how to solve in Section V, with one important difference.
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In Section V all targets appear in the same delay estimation

problem. Here, since targets are spread out over the entire set

of Doppler frequencies, we do not immediately treat each

in (22) as having valid entries. Instead, we perform matching

pursuit over all Doppler frequencies, i.e., we jointly process (22)

for all values of , recovering a single delay in each iteration,

and removing its influence from the Xamples. Algorithm 1 de-

scribes this process in detail.

Algorithm 1: Doppler Focusing

Input: Xamples , number of targets

Output: Estimated target parameters

for to do

% For any can be focused on using (19) to

% create , from which can be recovered.

using (22)

delay associated with

for and do

end for

end for

The Doppler focusing operation (19) is a continuous opera-

tion on the variable , and can be performed for any Doppler

frequency up to the PRF. With Doppler focusing there are no

inherent “blind speeds”, i.e., target velocities which are unde-

tectable, as occurs with classic Moving Target Indication (MTI)

[15]. Define the set of Fourier coefficients ,

and as the vector of focused coefficients (23) obtained from

using (19). It follows that , can be recovered from for

any . Since strong amplitudes are indicative of true target exis-

tence as opposed to noise, Doppler focusing recovery searches

for large (in magnitude) entries of and marks them as de-

tections. After detecting each target, its influence is removed

from the set of Fourier coefficients in order to reduce masking

of weaker targets and to remove spurious targets created by pro-

cessing sidelobes. A similar subtraction is performed in many

iterative algorithms such as OMP or the Clean Process of [29].

Detection is performed iteratively until all targets have been de-

tected, if is known, or until an amplitude threshold is met, if

the model order is unknown. The latter case has been studied

extensively [30]–[32] as a problem of estimating the number

of sinusoids in a noisy sequence. In our simulations, since we

wish to eliminate model order errors which influence recovery

performance, we assume is known.

It is important to note that our dictionary is indifferent to

the Doppler estimation. CS methods which estimate delay and

Doppler simultaneously [4], [8], require a dictionary which

grows with the number of pulses. Here by separating delay and

Doppler estimation, the CS dictionary is not a function of .

Since is a partial Fourier matrix, the problem defined in

(22), after normalizing by , becomes a problem of recov-

ering frequencies from a sum of complex exponentials. Many

methods exist for solving such a spectral analysis problem (see

[20] for a review), and they can be used instead of CS. These

methods offer different combinations of robustness to noise,

minimal sample rate, and sensitivity to grid errors. CS is our

method of choice when we are interested in low-SNR scenarios.

However, since Doppler focusing is independent of the under-

lying delay estimation, in different scenarios CS can be ex-

changed for alternative delay recovery methods. For example,

in the upcoming noiseless recovery subsection, when noise is

not a concern, we use the annihilating filter approach.

C. SNR Analysis

To analyze the effect of Doppler focusing on SNR, we add

noise to (2):

(24)

where is a zero mean wide-sense stationary random signal

with autocorrelation . The Fourier coefficients

in (17) then become

(25)

where

(26)

is a zero mean complex random variable with variance

(27)

We can write as the disjoint effect of targets and noise

(28)

where . The SNR of

target in is then the power ratio

(29)
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Analyzing the SNR in the focused Fourier coefficients using

(19) we obtain

(30)

where . Using (21) we have

(31)

where . We then define the

focused SNR for target as

(32)

Due to the independence of in different time intervals,

is a discrete time white random sequence with respect to

, so that is a sum of independent random variables.

Therefore, using (27), we have

(33)

Substituting (33) into (32) we obtain

(34)

It is evident that the focused SNR (34) is times greater than

before Doppler focusing (29). We have thus obtained a linear

SNR improvement with increasing number of pulses, as does

an optimal MF.

D. Noiseless Recovery

The following theorems analyze the minimal number of sam-

ples required for perfect recovery when there is no noise.

Theorem 1: Theminimal number of samples required for per-

fect recovery of targets when there is no noise, is at least ,

with and at least each.

Proof: Recall (17) and denote normalized delay

and normalized Doppler frequency , to

obtain a more symmetric form

(35)

Since there are no constraints on either delay or Doppler fre-

quency, let us examine the case where all targets have identical

Doppler :

(36)

If it were possible to solve (36) with less than samples,

for example by utilizing information from different values of

, then we could use this to bring (12) to the form of (36) by

multiplying by arbitrary values of . Thus we could

solve (10) with less than samples, in contradiction with [9].

Therefore .

Inspecting the case where all targets have the same delay

, we obtain:

(37)

Applying the same logic which deduced from (36),

we infer from (37).

Theorem 2: Suppose target Doppler frequencies are aligned

to a grid , with no restriction on

target delays. Then the minimal number of samples required

for perfect recovery of targets when there is no noise, is

.

Proof: For any we use (17) to write

where . We

obtain a standard CS problem by writing ,

where is as defined in (15), has elements

, and is an -sparse vector.

If then there is no gain compared with the contin-

uous setting of Theorem 1, and the minimal number of samples

remains .

On the other hand, if , then for the CS

system is overdetermined and can be solved with the pseudoin-

verse , where . For dif-

ferent values of , each element of describes a spectral

analysis problem for Doppler frequency , containing

no more than harmonies. Thus, we require to com-

plete the recovery.

Theorem 3: Under the conditions of Theorem 2, the minimal

number of samples required for perfect recovery of targets

using Doppler focusing is , with and .

Proof: In this setting target Doppler frequencies are

aligned to a grid . If we per-

form Doppler focusing on the same grid, then the analysis of

Section IV, and specifically (6), (7) are exact:

(38)

where satisfies .
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Each target appears in exactly one delay estimation

problem, for satisfying , and completely cancels

out for the other problems. The resulting set of focused

Fourier coefficients can be concatenated and written as

...
. . .

... (39)

where we used (22). Since is -sparse,

the dictionary must have greater

than for perfect recovery [33]. The spark of a block-diag-

onal matrix equals the maximal spark of any single block, so

. Since has rows, its spark is

upper bounded by , and thus , the minimal number of

Fourier coefficients required per pulse, must be at least .

Having shown , we now show how to recover the

unknown target positions using Doppler focusing. We choose a

consecutive set so that for all . Next

we perform Algorithm 1, and solve the resulting delay estima-

tion problems in each iteration using an annihilating filter. Each

delay estimation problem (22), after normalizing by , be-

comes a spectral analysis problem with samples. When there

is no noise, the annihilating filter with samples can perfectly

recover up to frequencies [9]. This guarantees successful re-

covery of all targets, regardless of their distribution in dif-

ferent Doppler frequencies. Thus, the total number of samples

required for perfect recovery using Doppler focusing comes to

.

Theminimal rate requirement exists separately on the number

of sampled Fourier coefficients and the number of sampled

pulses , and not for their product. This shows that in terms of

minimal sampling rate, samples in the coefficient dimension

cannot be replaced by samples in the pulse dimension , and

vice versa.

These theorems show that the requirement of Doppler fo-

cusing for matches the general lower bound on the

number of samples required in each pulse. Furthermore, when

, the number of pulses required for Doppler focusing

is within order of magnitude of the lower bound. Finally, the re-

sult in Theorem 1 coincides with the minimal sampling rate for

two dimensional spectral analysis [34].

E. Practical Considerations

We now describe a few practical issues, starting with compu-

tational efficiency.

If one wishes to perform Doppler focusing on a uniform grid

of Doppler frequencies, i.e., ,

then can be computed efficiently using a length DFT

or FFT of a series of length :

(40)

Furthermore, if we assume there is only one target in each

Doppler frequency, then the delay estimation problem in the

step of Algorithm 1 can be simplified to a correlator,

as described in Algorithm 2.

Algorithm 2: Doppler Focusing with Grid

Input: Xamples , number of targets ,
Doppler grid size

Output: Estimated target parameters

Create from using FFT (40).

for to do

for do

end for

end for

Another practical concern is target dynamic range. Since

target amplitudes can differ by several orders of magnitude,

care must be taken so that strong targets do not mask weaker

ones. When focusing on some Doppler frequency , targets

with Doppler frequencies satisfying are

considered undesirable and we seek to minimize their effect.

These targets can be viewed as “out-of-focus”, since they are

not matched to and their responses from different pulses

do not combine coherently; they will combine in phase for

different ’s satisfying . We can add to (19) a

user defined window function (e.g.,

Hann, Blackman, etc.) which is designed to mitigate the impact

of these out-of-focus targets:

(41)

The drawback of windowing is that it increases the fre-

quency’s focus zone, potentially including more targets in each

delay estimation problem. In Fig. 4 we see an example of

how windowing can reduce the effect of out-of-focus targets

compared with no windowing (constant ). For a compre-

hensive review of windowing function design considerations

see [35]. When attempting to support a set of targets amplitudes

comprising a large dynamic range, a situation fairly common

in real scenarios, the focusing operation must be performed

with aggressive windowing in order for the strong targets to be

sufficiently attenuated. In Section VIII we show a simulation

demonstrating the improved dynamic range attained using

Doppler focusing.

So far we assumed only Swerling-0 point targets. We briefly

comment on targets having nonzero Doppler spread—i.e., the
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Fig. 4. DFT of windowing functions compared with no windowing (con-

stant ) for pulses. Attenuation of targets with Doppler frequen-

cies far enough from the nominal frequency ( here) increases significantly

with proper windowing. Also, focus zone changes for different ’s.

micro-Doppler phenomenon [36]. This effect is the modulation

of the target’s main Doppler frequency caused by motion of the

structure of the target around its main trajectory. For example,

missile wingtips will exhibit different Doppler frequencies com-

pared with the missile body when the missile is rotating around

it central axis. Also, the missile body itself, when undergoing

strong vibrations, can generate a spectrum of Doppler frequen-

cies around its central velocity.

Our concern when considering this effect is whether the spar-

sity assumption remains valid. At the heart of our model is

the assumption that the target scene is composed of a small

number of targets with discrete Doppler frequencies. Recent

works [36], [37] show that for cases of micro-Doppler, there

are a small number of dominant frequencies in the continuous

Doppler spectrum, caused by distinct vibration modes, rotation

rates or resonant frequencies. Therefore, in most cases, targets

exhibiting micro-Doppler can be treated as a superposition of

several closely spaced targets, and the sparse target scene as-

sumption remains valid.

F. Clutter

To complete this section, we add an analysis of the effects

of clutter, considered the next major source of interference after

thermal noise. Doppler focusing appears to have inherent clutter

rejection capabilities, suggesting that special prefiltering opera-

tions such as MTI may not be required.

Clutter refers to unwanted echoes reaching the radar receiver

from objects which are not the sought after targets: land, sea,

buildings, etc. Due to the relative sizes of the objects, clutter

echoes are usually several orders of magnitude stronger than

target echoes, so if not treated properly, they can mask the

target signals and prevent detection. Furthermore, as opposed

to random noise which can be mitigated using coherent integra-

tion as in (34), clutter echoes are (deterministic) scaled, shifted

and modulated replicas of the transmitted signal. They exhibit

the benefits of coherent integration in exactly the same way

as the target signal does. Therefore, the signal-to-clutter ratio

(SCR) cannot be increased by increasing the CPI.

Themost commonmethod to allow detection in clutter ridden

scenarios, is to utilize the fact that clutter, as opposed to most

targets, is mostly static. If we assume the radar transceiver itself

is also stationary, then clutter echoes will be received with zero

Doppler frequency. This is the reason that classic anti-clutter

methods (e.g., MTI) are basically a notch filter blocking the

Doppler frequency generated by the radar’s own motion. We

now show that Doppler focusing includes inherent target-clutter

Doppler separation, so that it does not require any prefiltering

or modifications in order to allow target detection when facing

clutter.

The Doppler focusing operation (19) can be viewed as

passing the Xamples through a bandpass filter bank,

where each filter has a pass-band of width . The filters’

attenuation can be controlled using windowing (41), at the

cost of increasing the pass-band width. This creates adjustable

isolation between delay estimation problems (22) for targets

with Doppler frequencies separated by more than the pass-band

width. Therefore, if clutter were to be primarily concentrated

around some specific frequency, targets with Doppler frequen-

cies shifted away by more than approximately could be

detected without interference. This emphasizes that increasing

the number of pulses may be used to improve isolation

between targets and clutter. In Section VIII we demonstrate via

simulation successful target detection using Doppler focusing

in a clutter ridden scenario.

VII. COMPARISON TO PREVIOUS APPROACHES

We now compare Doppler focusing to two other methods for

delay-Doppler estimation.

A. Simultaneous Delay-Doppler Recovery

Previous methods for delay-Doppler estimation [4], [8] dis-

cretize the delay-Doppler plane, and construct a CS dictionary

with a column for each two dimensional grid point. This ap-

proach can be seen as a discrete MF, where as opposed to classic

processing, matching is performed to the entire pulse train rather

than to a single pulse. Like a MF, these techniques perform well

in noisy conditions, since they achieve an SNRwhich scales lin-

early with .

The critical drawback of this approach is that for any realistic

problem size, the dictionary size grows rapidly and becomes

too large to store or process. For even moderate size problems,

the number of delay or Doppler grid points can easily be on

the order of , with a number of measurements of similar

order. This requires the dictionary to posses elements, and

occupy many gigabytes of memory, which requires high-end

processing capabilities. Doppler focusing enjoys the same SNR

improvement as simultaneous delay-Doppler recovery, with a

dictionary whose size depends on delay estimation parameters

only and remains fixed for any number of received pulses. We

could not compare our method to this type of recovery since the

Intel Core i5 PC with 12 GB of RAM used in Section VIII could

not store the dictionary.

This drawback is not only a problem of memory, but also of

computations. We now analyze the computational complexity
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of Algorithm 1 on a uniform grid with Doppler frequen-

cies, and compare it to [4]. In terms of number of samples,

Doppler focusing requires samples while [4] samples at

the Nyquist rate and therefore requires samples. The

Doppler focusing operation performs FFTs of length ,

solves CS delay recovery problems with dictionary size

, and performs sample update operations. If we

assume the complexity of a CS problem is proportional to its

dictionary size, then the total complexity of Doppler focusing

is . In [4] a single

CS delay-Doppler recovery problem is solved, but with dictio-

nary size , so that recovery complexity is

proportional to . Thus, even if the dictionary can be stored,

processing scales poorly with increasing bandwidth, which is a

critical parameter for high-resolution radar.

B. Two-Stage Recovery

To overcome the problematic scaling of the simultaneous

recovery dictionary, two-stage recovery techniques [7], [38]

separate delay and Doppler estimation, performing them

sequentially rather than in parallel. A common approach to

performing two-stage recovery uses the multiple measure-

ment vector (MMV) framework, as performed in [39] in

the context of undersampling of sparse wideband signals.

MMV recovery jointly processes (18) for by

stacking the sampled Fourier coefficient vectors and sparse

target delay vectors as and

accordingly, obtaining

(42)

where the dictionary is as in (16). MMV recovery

algorithms (e.g., Simultaneous OMP [33]) exploit the joint spar-

sity of , i.e., the fact that the support of remains constant

for all , so that has at most nonzero rows. This joint spar-

sity is used by taking the norm of the rows of , which can

be seen as a form of non-coherent integration, since the phase

information is destroyed by the norm operator. The norm is

a non-linear operation which mixes together signal and noise

components. Therefore, defining a simple SNR measure as we

did in (29) and (32) is difficult. Non-coherent integration is a

common practice in radar and has been analyzed extensively.

Several sources develop approximations of the SNR increase

for multiple pulses using non-coherent integration: [40] esti-

mates it at for , while [15], [16] estimates where

, with decreasing towards 0.5 as increases.

Regardless of the exact value of , Doppler focusing, which

compensates for the exact phase differences, generates an SNR

increase linear with , better than two-stage recovery. We com-

pare our method to this type of recovery in Section VIII, and

show that the difference in SNR is substantial as predicted by

the theory.

VIII. SIMULATION RESULTS

We now discuss how the user defined performance metric

influences grid size and Fourier coefficient selection, and then

show numerical examples comparing our method to other re-

covery techniques.

A. Performance Metric

Our problem lies in a continuous, analog world. When we

choose to solve it using CS, which is an approach developed for

discrete problems, we must discretize the delay grid, denoting

grid step as . As real world targets delays do not lie on any

predefined grid, but our CS recovery assumes they do, it seems

we should take in order to minimize quantization er-

rors. Computational requirements aside, such a decrease in grid

step renders the columns in the CS dictionary increasingly

coherent, where the coherence is defined as

(43)

A basic premise of CS ties low coherence to successful recovery

[18], which contradicts taking a small step size.

Here, we relinquish this basic assumption, and argue that

depending on the chosen performance metric, high coherence

can actually aid recovery. For example, assume we are inter-

ested in delay recovery but are tolerant of some small error

. In radar applications, a common performance metric is

the hit-or-miss criterion on the estimated delays :

(44)

Translating to a condition on support recovery, (44) tol-

erates an error of no more than places

in the recovered indices from (16). Instead of designing so

that each column is as non-correlative with the other columns as

possible, we should design the dictionary so that each column is

correlative with its nearest neighbors. This will improve re-

covery performance in noisy scenarios since in cases where the

correct column is not recovered, any one of its similar neigh-

boring columns still has a chance to overcome the noise and

produce a “hit”. Graphs in the next subsection show that such a

coherent actually improves recovery performance compared

with a less coherent dictionary in very noisy scenarios.

We can control the level of ’s coherence by choosing dif-

ferent sets of Fourier coefficient in (14). Fig. 5 shows an ex-

ample of the column correlation pattern for two sets of Fourier

coefficients: a consecutive set and a random set, where all coef-

ficients were chosen in . We define the column

correlation function for some column as

(45)

The consecutive set is better suited for criteria which allow some

error in support recovery, while the random set achieves better

performance when exact recovery is required.

B. Numerical Results

We now present some numerical experiments illustrating the

recovery performance of a sparse target scene. We corrupt the

received signal with an additive white Gaussian noise

with power spectral density , bandlimited to
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Fig. 5. Column correlation pattern of the CS dictionary from (16) for two

sets . The consecutive set achieves coherence of 0.9 due to themany correlative

columns in the center, while the random set has coherence of 0.3.

’s bandwidth . We define the signal to noise power ratio

for target as

(46)

where is the pulse time. The scenario parameters

used were number of targets , number of pulses

sec, and MHz. Target

delays and Doppler frequencies are spread uniformly at random

in the appropriate unambiguous regions, and target amplitudes

were chosen with constant absolute value and random phase.

The classic time and frequency resolutions (Nyquist bins),

defined as and , are 5 nsec and 1 KHz accordingly.

In order to demonstrate a 1:10 sampling rate reduction, our

sub-Nyquist Xampling scheme generated 200 Fourier coeffi-

cients per pulse, as opposed to the 2000 Nyquist rate samples.

We tested Doppler focusing with two types of Fourier coeffi-

cient sets , a consecutive set and a random set. We compared

Doppler focusing with classic processing and the two-stage

recovery method of [7] (where we use a CS algorithm instead

of ESPRIT) using the following criteria:

1) Hit-Rate—we define a “hit” as a delay-Doppler estimate

which is circumscribed by an ellipse around the true target

position in the time-frequency plane. We used an ellipse

with axes equivalent to times the time and frequency

Nyquist bins.

2) Recovery RMS error—for estimates classified as hits,

we measure the root mean square error in both time and

frequency.

As noted in the previous section, a single stage CS recovery

method using Nyquist bins spacing consumes a prohibitive

amount of memory and was not able to run on any computer at

hand, since the CS dictionary required storing elements

(occupying 32 GB of memory using standard IEEE double

precision): columns and

measurements per column.

For CS-based techniques, the delay grid step was chosen

as half a Nyquist bin. For Doppler focusing, the Doppler

frequency region was discretized with uniform steps of half a

Fig. 6. Hit Rate for classic processing, two-stage CS recovery and Doppler

focusing. Sub-Nyquist sampling rate was one tenth the Nyquist rate.

Fig. 7. RMS error of time and frequency estimates for classic processing, two-

stage CS recovery and Doppler focusing. Sub-Nyquist sampling rate was one

tenth the Nyquist rate.

Nyquist bin. To provide a fair comparison, classic processing

was performed using identical bin sizes.

Figs. 6 and 7 demonstrate the hit-rate and RMS error per-

formance of the different recovery methods for various SNR

values. It is evident that Doppler focusing is superior to the other

sub-Nyquist recovery techniques. Between the two Doppler

focusing approaches, consecutive coefficients are better suited

for lower SNR, while choosing coefficients randomly improves

performance as SNR increases. Since both sets produce CS

dictionaries with column correlation functions which are not

matched to the “hit-or-miss” performance criteria used, we

have no reason to assume one should be better than the other.

Also, random coefficients, when producing a hit, have very

small delay errors (even compared with Nyquist rate classic

processing) due to low CS dictionary coherence. As opposed

to Doppler focusing recovery performance which decreases

gracefully with sample rate reduction, classic processing suffers

significantly when sample rate is reduced below Nyquist.

Fig. 8 shows the same hit rate graph for classic processing, but

this time the waveform used for Doppler focusing had its CTFT

adjusted so that energy was transferred from frequencies which

were not sampled, to those that were. This was performed by
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Fig. 8. Hit Rate for classic processing and Doppler focusing at one tenth the

Nyquist rate, where the waveform used for Doppler focusing had its entire en-

ergy contents concentrated in the sampled frequencies.

Fig. 9. Probability to distinguish two separate closely spaced identical targets,

where classic processing uses a tenfold wideband signal compared with Doppler

focusing.

passing the signal through a low pass filter and rescaling its am-

plitude so that target SNR (46) remains constant. Since Doppler

focusing imposes no restrictions on the transmitter, we can use

a signal with the same total energy, but have it spread out in a

manner which is more favorable to the frequency domain sam-

pling used in Xampling. As performance for Doppler focusing

improves significantly, we are able to obtain excellent recovery

results at much lower SNR values, surpassing classic processing

which uses ten times as many samples. This shows that the per-

formance degradation caused by sub-Nyquist sampling can be

compensated for using a suitable transmitter. The drawback of

using such a narrowband signal can be seen in Fig. 9, where

we examine resolution in terms of the ability to separate two

closely spaced identical targets with equal Doppler frequencies.

We see that for very close targets, classic processing using a

wideband signal is able to distinguish the two targets far better

than Doppler focusing recovery using a narrowband signal.

Fig. 10 shows the sparse target scene on a time-frequency

map for a dB SNR scenario, where each target is displayed

along with its hit rate ellipse, together with the various sub-

Nyquist recovery methods’ estimates and hit rates. As noted in

Section IV, only Doppler focusing is able to distinguish between

Fig. 10. Real target positions along with various estimates. Doppler focusing

achieves highest hit rate among sub-Nyquist methods. Only Doppler focusing

detects two targets around 4.2 sec. (Hit rate ellipses were enlarged for clarity).

Fig. 11. Target scene composed of two closely spaced targets, the target on the

left 20 dB more powerful than the target on the right. MF processing at both

Nyquist and one tenth the Nyquist rate recovers only one of the two targets,

while Doppler focusing recovers both. No windowing was used .

the two targets having almost identical delays (around 4.2 sec)

but different Doppler frequencies.

Regarding target dynamic range, Fig. 11 demonstrates the ad-

vantage of using Doppler focusing to resolve closely spaced tar-

gets with different powers. In this scenario, two targets satis-

fying are placed adjacently, so

that their hit rate ellipses intersect. Doppler focusing based re-

covery at one tenth the Nyquist rate generates two hits, while

MF processing at Nyquist rate recovers only one of the targets.

C. Clutter

We demonstrate the robustness of Doppler focusing to clutter

with the following scenario. We simulate nine targets with

Doppler frequencies spread uniformly in . Clutter

is modeled as 4000 Swerling-0 scatterers, with Doppler fre-

quencies distributed uniformly in a single Nyquist bin around
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Fig. 12. Histogram of target vs. clutter Xamples . Average SCR for a

single Xample is dB.

Fig. 13. Recovered target scene with nine targets and almost static clutter.

Without windowing clutter sidelobes permeate the nonzero Doppler frequency

area and cause misdetections. With 40 dB windowing five out of nine targets

are “hits”. With 50 dB windowing the entire scene is detected correctly.

DC, to allow for small relative velocity, e.g., waves in the

sea. Clutter scatterers are distributed uniformly at random at

all delays in . The SCR is dB, as can be seen in

Fig. 12, and the targets’ SNR (46) is dB. All other system

parameters are as described in the previous subsection.

We perform detection using Algorithm 1 using CS for delay

recovery, ignoring the clutter ridden DC Doppler bin, and due

to leakage effects, also its two nearest neighbours on each side.

Since for this very low SCR, clutter sidelobes still cover the tar-

gets, we use a Taylor window with dB attenuation to im-

prove Doppler frequency isolation. The recovered target scene

with and without windowing is shown in Fig. 13. This simula-

tion shows that any interference which is localized in Doppler,

can be manipulated using (41), so it has a negligible effect on

targets in other Doppler frequencies.

Fig. 14. The 4-channel radar receiver board.

IX. RADAR EXPERIMENT

In this section we present a real experiment of our radar

receiver hardware prototype. Our setup includes a custom

made sub-Nyquist radar receiver board (see Fig. 14) which

implements sub-Nyquist Xampling and digital recovery using

Doppler focusing, while the analog input signal (2) was syn-

thesized using National Instruments (NI) hardware.

To evaluate the board we make use of NI PXI equipment

for both system synchronization and signal sources. The entire

component ensemble is wrapped in an NI chassis. The RF front

end and board we use are identical to the ones used in [2], but the

digital recovery method accounting for target Doppler frequen-

cies is different. Additional information regarding the system’s

configuration and synchronization issues can be found in [2].

The experimental process consists of the following steps. We

begin by using the AWR software, which enables us to examine

a large variety of scenarios, comprised of different target pa-

rameters, i.e., delays, Doppler frequencies and amplitudes.With

the AWR software we simulate the complete radar scenario, in-

cluding the pulse transmission and accurate power loss due to

wave propagation in a realistic medium. The AWR also con-

tains a model of a realistic RF receiver, which simulates the

demodulation of the RF signal to IF frequencies, and saves the

output to a file. Next, the simulation result is loaded to the AWG

module, which produces an analog signal. This signal is ampli-

fied using the NI 5690 low noise amplifier and then routed to our

radar receiver board, which has 4 parallel input channels. Each

channel samples a different frequency band, in the following

manner: each channel is fed by a local oscillator (LO), which

modulates the desired frequency band of the channel to the cen-

tral frequency of a narrow 80 KHz bandwidth band pass filter

(BPF). A fifth LO, common to all 4 channels, modulates the BPF

output to a low frequency band, and it is sampled with a stan-

dard low rate ADC. The LOs are created using three NI 5781

baseband transceivers, acting as trigger based signal generators

with a constant and known phase, controlled by NI Flex Rio

FPGAs. The AWG also triggers the ADC to sample 250 samples

in each sampling cycle, per channel. These samples are fed into

the chassis controller and a MATLAB function is launched that

runs the Doppler focusing reconstruction algorithm. Our system

contains a fully detailed interface implemented in the LabView

environment, which allows simple activation of the process.
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Fig. 15. The LabView experimental interface. From left to right: ,

the frequency response of each channel, the 4 signals detected in each channel,

at the top- the reconstructed target scene, at the bottom- the original target scene.

Fig. 16. Two additional target scenes. On the left, all four targets have closely

spaced delays, and two of the targets also have close Doppler frequencies. On the

right, all four targets have very similar delays and Doppler frequencies. Doppler

focusing based recovery is successful in both cases.

Various target scenes, with different target delays, Doppler fre-

quencies and amplitudes, are recovered successfully using this

setup. Screenshots of the interface are depicted in Fig. 15 and in

Fig. 16.

This experimental prototype proves that the sub-Nyquist

methodology described in this paper is actually feasible in prac-

tice. The recovery method proposed here not only describes

digital recovery, but also addresses the problem of sampling

the analog signal at a low rate, in a way which is feasible with

standard RF hardware.

X. CONCLUSION

We demonstrated a radar sampling and recovery method

called Doppler focusing, which employs the techniques of

Xampling and CS, and is independent of the radar signal’s

bandwidth. Doppler focusing allows for low rate sampling and

digital processing, and imposes no constraints on the trans-

mitted signal. It also leads to CS recovery with dictionary size

scaling with delay grid size only, and provides SNR scaling

which is linear in the number of received pulses, identical to

an optimal MF. We compared our method to other sub-Nyquist

recovery techniques and have seen its clear advantage in sim-

ulations. When sampling at one tenth the Nyquist rate, and for

SNR above dB, Doppler focusing achieves results almost

equal to classic recovery working at the Nyquist rate.

We are currently working on enhancing Doppler focusing to

handle the case of an unknown number of targets, and increasing

the algorithm’s dynamic range by improving treatment of strong

targets and the sidelobes they introduce.
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