
(Sub-)Optimality of Treating Interference as Noise
in the Cellular Uplink With Weak Interference

Item Type Article

Authors Gherekhloo, Soheil; Chaaban, Anas; Di, Chen; Sezgin, Aydin

Citation (Sub-)Optimality of Treating Interference as Noise in the Cellular
Uplink With Weak Interference 2016, 62 (1):322 IEEE Transactions
on Information Theory

Eprint version Post-print

DOI 10.1109/TIT.2015.2499189

Publisher Institute of Electrical and Electronics Engineers (IEEE)

Journal IEEE Transactions on Information Theory

Rights (c) 2015 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other users,
including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale
or redistribution to servers or lists, or reuse of any copyrighted
components of this work in other works.

Download date 04/08/2022 19:07:09

Link to Item http://hdl.handle.net/10754/602308

http://dx.doi.org/10.1109/TIT.2015.2499189
http://hdl.handle.net/10754/602308


1

(Sub-)optimality of Treating Interference as Noise
in the Cellular Uplink with Weak Interference

Soheil Gherekhloo, Student Member, IEEE, Anas Chaaban, Member, IEEE, Chen Di, Student Member, IEEE, and
Aydin Sezgin, Senior Member, IEEE

Abstract—Despite the simplicity of the scheme of treating
interference as noise (TIN), it was shown to be sum-capacity
optimal in the Gaussian interference channel (IC) with very-weak
(noisy) interference. In this paper, the 2-user IC is altered by
introducing an additional transmitter that wants to communicate
with one of the receivers of the IC. The resulting network thus
consists of a point-to-point channel interfering with a multiple
access channel (MAC) and is denoted PIMAC. The sum-capacity
of the PIMAC is studied with main focus on the optimality
of TIN. It turns out that TIN in its naive variant, where all
transmitters are active and both receivers use TIN for decoding,
is not the best choice for the PIMAC. In fact, a scheme that
combines both time division multiple access and TIN (TDMA-
TIN) strictly outperforms the naive-TIN scheme. Furthermore,
it is shown that in some regimes, TDMA-TIN achieves the sum-
capacity for the deterministic PIMAC and the sum-capacity
within a constant gap for the Gaussian PIMAC. Additionally,
it is shown that, even for very-weak interference, there are some
regimes where a combination of interference alignment with
power control and treating interference as noise at the receiver
side outperforms TDMA-TIN. As a consequence, on the one hand
treating interference as noise in a cellular uplink is approximately
optimal in certain regimes. On the other hand those regimes
cannot be simply described by the strength of interference.

I. INTRODUCTION

Communicating nodes in most communication systems ex-
isting nowadays have several practical constraints. One such
constraint is the limited computational capability of the com-
municating nodes. This limitation demands communication
schemes which do not have a high complexity, and conse-
quently, power consumption. However, communication over
networks where concurrent transmissions take place (interfer-
ence networks) challenges the transmitters and the receivers
with additional complexity, namely, the complexity of interfer-
ence management. Most near-optimal schemes in interference
networks require some involved computation (e.g. the Han-
Kobayashi scheme [3]), and thus, increase the computational
complexity of encoding and decoding.
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One common way to avoid this problem is the simple
scheme of treating interference as noise (TIN). In this scheme,
the receivers’ strategy is the same as if there were no inter-
ference at all, i.e., interference is ignored. TIN over the inter-
ference channel (IC) has been studied by several researchers
(see [4]–[7] and references therein). Although seemingly a
very trivial scheme, TIN is optimal in the IC with very-
weak interference. The very-weak interference condition was
identified in [8] as INR <

√
SNR. By introducing a new

concept of generalized degrees of freedom (GDoF) as the
pre-log of the sum-capacity in high SNR, the authors of [8]
have shown that TIN achieves GDoF of the 2-user IC. This
fact was refined in [9]–[11] where it was shown that TIN
achieves the exact sum-capacity of the 2-user IC with noisy
interference, a smaller regime than the very-weak interference
regime introduced in [8]. In a similar spirit, the very-weak
interference regime for the K-user (K > 2) IC was identified
in [12] as the regime where INR <

√
SNR. In [13], it was

shown that TIN achieves the capacity region of the fully
asymmetric K-user IC within a constant gap as long as the
sum of the powers of the strongest interference caused by
a user plus the strongest interference it receives is less than
or equal to the power of its desired signal, on a logarithmic
scale. Furthermore, the sum-capacity of the K-user IC with
noisy interference was characterized in [14].

In this paper, we study the impact of introducing one more
transmitter (without introducing a new receiver) to the 2-user
IC on TIN. We consider a network consisting of a point-to-
point (P2P) channel interfering with a multiple access channel
(MAC). We call this network a PIMAC. Such a setup arises
where a P2P communication system uses the same commu-
nication medium as a cellular uplink for instance. This setup
was studied in [15]–[20]. In [17] where its capacity region in
strong and very strong interference cases was obtained and a
sum-capacity upper bound was derived, and in [18] where an
achievable rate region for the discrete memoryless Z-PIMAC
(partially connected PIMAC) was provided, which achieves
the capacity of the Z-PIMAC with strong interference.

The PIMAC was also considered in [19] where the sum-
capacity of the deterministic [21] PIMAC (under some condi-
tions on the channel parameters) was given. In more details,
the work of Bühler and Wunder in [19] established the sum-
capacity of the deterministic PIMAC under the following
symmetry consideration: The power of the interference caused
by the MAC transmitters at the P2P receiver is equal. For this
case, the authors of [19] have derived the sum-capacity of the
deterministic PIMAC and have shown that it is larger than that
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of the deterministic IC.
In this paper, we consider both the deterministic model

and the Gaussian model of the PIMAC without the above
constraint of equal power of interference from the MAC
transmitters to the P2P receiver. The main focus of the paper
is to study the performance of the simple scheme of TIN in the
PIMAC in terms of achievable rates. The question we would
like to answer here is: Does TIN achieve the sum-capacity
of the PIMAC in the noisy interference regime as in the IC?
The difference between the PIMAC and the 2-user IC is in the
existence of one more transmitter. By introducing one further
transmitter to an IC with noisy interference, one receiver (the
P2P receiver of the PIMAC) experiences one more interferer.
We focus on the impact of this interferer, i.e., the additional
MAC user. Therefore, we put no restriction on the interference
caused by the additional transmitter. The performance of TIN
is examined in the resulting PIMAC.

We distinguish between two variants of TIN: Naive-TIN
and TDMA-TIN. Naive-TIN corresponds to the case where
each system (the MAC and the P2P) uses its interference free
capacity achieving scheme. Notice that the capacity achieving
scheme in the interference free MAC is known (successive
decoding), and so is that in the interference free P2P chan-
nel [22]. In the presence of interference, the receivers proceed
with decoding using their interference-free optimal decoders
while treating interference as noise. TDMA-TIN, on the other
hand, corresponds to the case where the time resource is shared
between the users. Based on the proposed time sharing scheme
in this paper, the PIMAC is reduced to three possible types
of modes. These three modes are operated over orthogonal
time slots. They are illustrated in Fig. 1. In the first mode,
one transmitter (Tx3) sends with full power while two other
transmitters are inactive. In this case, the PIMAC is reduced
to a P2P channel (cf. Fig. 1(a)). In the two other modes which
are shown in Fig. 1(b) and 1(c), the MAC transmitters (Tx1
and Tx3) share the time resources while Tx2 is always active,
while the receivers treat interference as noise. Note that in
these cases, the PIMAC is reduced to two 2-user IC’s.

We compare the two variants of TIN in the linear-
deterministic [21] PIMAC first. By deriving new sum-capacity
upper bounds, we show that TDMA-TIN is sum-capacity
achieving for a wide range of parameters, while naive-TIN
is optimal for a smaller range of channel parameters. Interest-
ingly, we show that there exists a regime where one interfer-
ence from one MAC user is noisy and from the other MAC
user is strong, where TIN is the optimal scheme. Intuitively,
this corresponds to the case where one MAC transmitter has a
strong channel to the undesired receiver, and a weaker channel
to the desired receiver. In this case, it is better to silence this
transmitter for the sake of achieving higher sum-rates. The
TDMA-TIN scheme achieves the sum-capacity in this case. It
also turns out that there exists a sub-regime where TDMA-TIN
is not optimal and is outperformed by a scheme which exploits
interference alignment. Interestingly, this sub-regime includes
cases where all interference links are very-weak but still TIN
is not optimal. Notice that the PIMAC can be interpreted as
a special case of a 3 × 2 X channel by considering some
restrictions on the message exchange. The optimality of TIN

for the M × N X channel has been studied recently in a
parallel and independent work in [23]. Here, we would like
to point out that part of the result of the paper at hand have
already appeared in [1]. Nevertheless, from [23], some noisy
interference regimes for the PIMAC can be extracted. It turns
out that the noisy interference regimes identified in our work
not only subsume those regimes extracted from [23], but also
extend them to further regimes where TIN is optimal. This is
mainly due to a novel upper bound established in this paper.

Then, we consider the Gaussian PIMAC where we introduce
new sum-capacity upper bounds. We identify regimes where
naive-TIN achieves the sum-capacity of the channel within a
constant gap. Additionally, we show that although naive-TIN
achieves the sum-capacity of the channel within a constant gap
for a range of channel parameters, it is strictly outperformed by
TDMA-TIN, and hence, is never sum-capacity optimal. This
is in contrast to the K-user IC where naive-TIN is optimal
in the noisy interference regime. This clearly indicates that
TDMA-TIN achieves the sum-capacity within a constant gap
in the same regimes where naive-TIN does. We also show
that TDMA-TIN achieves the sum-capacity of the channel
within a constant gap in further regimes where naive-TIN
does not. Interestingly, while in the interference free MAC,
successive decoding performs the same as TDMA in terms
of sum-capacity, the same is not true in the presence of
interference with TIN. Next, we show there exist regimes
of the PIMAC with very-weak interference, where TDMA-
TIN can not achieve the sum-capacity of the PIMAC within
a constant gap. We do this by extending the aforementioned
schemes for the deterministic PIMAC to the Gaussian PIMAC,
deriving their achievable rates, and showing that the achievable
rates are higher than those of TDMA-TIN at high SNR.

The rest of the paper is organized as follows. In Section
II, the PIMAC is introduced. Then the deterministic PIMAC
is studied in Section III where the sum-capacity is charac-
terized under some conditions. Next, the Gaussian PIMAC is
discussed in Section IV with a comparison between different
schemes and upper bounds. Finally, we conclude with Section
V. Our approach towards the analysis of TIN optimality for
the PIMAC is illustrated graphically in Fig. 2

Deterministic

PIMAC

Determining regimes

TIN optimality

TIN sub-optimality

Gaussian

PIMAC

Constant gap analysis

Naive-TIN sub-optimality

TIN sub-optimality

Fig. 2: Summary of our approach towards studying the optimality of TIN.

Notation: Throughout the paper, we use F2 to denote the
binary field and ⊕ to denote the modulo 2 addition. Moreover,
N0 represents the set of all natural numbers including 0. We
use normal lower-case, normal upper-case, boldface lower-
case, and boldface upper-case letters to denote scalars, scalar
random variables, vectors, and matrices, respectively. X [a:b]
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Tx3

Tx1
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Rx2

(a)
Tx3

Tx1

Tx2

Rx1

Rx2

(b)
Tx3

Tx1

Tx2

Rx1

Rx2

(c)

Fig. 1: Using the proposed time sharing scheme between the users, in each time slot, the channel can operate as in a P2P channel (in (a)) or 2-user IC’s (in (b) and (c)). In all
figures, the solid and the dashed lines represent the desired and interference channels, respectively. In (a), all transmitters except Tx3 are inactive. In this case, PIMAC is reduced
to a P2P channel. In (b) and (c), while Tx2 is always active, Tx1 and Tx3 which are MAC transmitters, share the transmission time between themselves. Hence, in these cases,
PIMAC is reduced to two 2-user IC’s.

denotes the matrix formed by the a-th to b-th rows of a matrix
X, and x[a:b] is defined similarly. We write X ∼ CN (0, P ) to
indicate that the random variable X is distributed according to
a circularly symmetric complex normal distribution with zero
mean and variance P . Moreover, the notation x∗ represents
the complex conjugate of x. Furthermore, we define x+ as
max{0, x}, and xn as the length-n sequence (x[1], · · · , x[n]).
The vector 0q denotes the zero-vector of length q, the matrix
Iq is the q× q identity matrix, the matrix 0l,m represents the
l×m zero matrix, and xT denotes transposition of vector x.

II. SYSTEM MODEL

The system we consider consists of a P2P channel in-
terfering with a MAC (PIMAC). As shown in Fig. 3, each
transmitter has a message to be sent to one receiver. Namely,
transmitters 1 (Tx1) and transmitter 3 (Tx3) want to send the
messages W1 and W3, respectively, to receiver 1 (Rx1), and
transmitter 2 (Tx2) wants to send the message W2 to receiver
2 (Rx2). The message Wi is a random variable, uniformly
distributed over the message setWi = {1, · · · , b2nRic} where
Ri denotes the rate of the message.

Tx3

Tx1

Tx2

W3

W1

W2

Ŵ1, Ŵ3

Ŵ2

Rx1

Rx2

Fig. 3: The message flow in the PIMAC where the solid arrows indicate desired message
flow and dashed arrows indicate interference.

To send its message, each transmitter uses an encoding
function fi to map the message Wi into a codeword of length n
symbols Xn

i ∈ Cn. After the transmission of all n symbols of
the codewords, Rx1 has Y n1 and decodes W1 and W3 by using
a decoding function g1. Rx1 thus obtains (Ŵ1, Ŵ3) = g1(Y n1 ).
Similarly Rx2 receives Y n2 and decodes W2 by using a
decoding function g2, i.e., Ŵ2 = g2(Y n2 ). The messages sets,
encoding functions, and decoding functions constitute a code
for the channel which is denoted an (n, 2nR1 , 2nR2 , 2nR3)
code.

An error Ei occurs if Ŵi 6= Wi for some i ∈ {1, 2, 3}. A
code for the PIMAC induces an average error probability P(n)

defined as

P(n) =
1

2nRΣ

∑
W∈W1×W2×W3

Prob

(
3⋃
i=1

Ei

)
, (1)

where RΣ =
∑3
i=1Ri and W = (W1,W2,W3). Reliable

communication takes place if this error probability can be
made arbitrarily small by increasing n. This can occur if the
rate triple (R1, R2, R3) satisfies some achievability constraints
which need to be found. The achievability of a rate triple
(R1, R2, R3) is defined as the existence of a reliable coding
scheme which achieves these rates. In other words, a rate triple
(R1, R2, R3) is said to be achievable if there exists a sequence
of (n, 2nR1 , 2nR2 , 2nR3) codes such that P(n) → 0 as n→∞.
The set of all achievable rate triples is the capacity region of
the PIMAC denoted by C. In this paper, we focus on the sum-
capacity defined as the maximum achievable sum-rate, i.e.,

CΣ = max
(R1,R2,R3)∈C

RΣ. (2)

We consider a Gaussian PIMAC in this paper and study its
sum-capacity. Next, we introduce the specifics of the Gaussian
model of PIMAC.

A. Gaussian Model

Consider a 2-user asymmetric IC consisting of two trans-
mitters Tx1 and Tx2 which want to communicate with their
desired receivers Rx1 and Rx2, respectively. Now, by adding
an additional transmitter (Tx3) which wants to communicate
only with Rx1, we generate a PIMAC. The system model
of the Gaussian PIMAC is shown in Fig.4. In the Gaussian
PIMAC, the received signals of the two receivers at time index
t ∈ {1, · · · , n} (denoted y1[t] and y2[t]) can be written as1

y1[t] = hd1x1[t] + hc2x2[t] + hd3x3[t] + z1[t], (3)
y2[t] = hc1x1[t] + hd2x2[t] + hc3x3[t] + z2[t], (4)

where xi[t], i ∈ {1, 2, 3}, is a realization of the random
variable Xi which represents the transmit symbol of Txi,
and zj [t], j ∈ {1, 2}, is a realization of the random variable

1The time index t will be suppressed henceforth for clarity unless necessary.
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Zj ∼ CN (0, 1) which represents the additive white Gaussian
noise (AWGN), and the constants

hk, where k ∈ {d1, d2, c1, c2, d3, c3}

represent the complex (static) channel coefficients. We assume
that global channel state information (CSI) is available to all
nodes. Note that the noises Z1 and Z2 are independent from
each other and are both independent and identically distributed
(i.i.d.) over time. The transmitters of the Gaussian PIMAC
have power constraints P which must be satisfied by their
transmitted signals. Namely, the condition

1

n

n∑
t=1

E[|Xi[t]|2] = Pi ≤ P,

must be satisfied for all i ∈ {1, 2, 3}. We consider the

hd3

hc3

hd1

hd2

hc1

hc2

W3 → Xn
3 (W3)

W1 → Xn
1 (W1)

W2 → Xn
2 (W2)

⊕

⊕

Zn
1

Zn
2

Y n
1 → Ŵ1, Ŵ3

Y n
2 → Ŵ2

Fig. 4: System model of the Gaussian PIMAC.

interference limited scenario, and hence, we assume that all
signal-to-noise and interference-to-noise ratios are larger than
1, i.e.,

min{|hd1|2, |hc1|2, |hd2|2, |hc2|2, |hd3|2, |hc3|2}P > 1. (5)

For convenience, we define

αk =
log2(P |hk|2)

log2(ρ)
, (6)

and ρ > 1 is the received SNR for the reference P2P
channel. We denote the sum-capacity of the Gaussian PIMAC
CG,Σ(ρ,α), where α = (αd1, αc1, αd2, αc2, αd3, αc3). Now,
we define the generalized degrees of freedom GDoF of the
PIMAC as follows

dΣ(α) = lim
ρ→∞

CG,Σ(ρ,α)

log2(ρ)
. (7)

This definition is equivalent to

CG,Σ(ρ,α) = dΣ(α) log2(ρ) + o(log2(ρ)),

where o(log2(ρ))
log2(ρ) → 0 as ρ → ∞. The focus of this work

is on analyzing the (sub-)optimality of simple (in terms of
computation and decoding complexity) transmission schemes.
To do this, we consider two types of TIN, namely
• naive-TIN
• TDMA-TIN

which are defined as follows.

Definition 1 (Naive-TIN:). This is the simplest variant of
TIN in which all transmitters send simultaneously with their

maximum power during the whole transmission. Note that in
this type of TIN, no coordination between the Tx’s is required.
At the receiver side, each receiver decodes its desired message
as in the interference free channel by treating the interference
as noise. Interestingly, despite of the simplicity of this scheme,
it is optimal in some regimes of many networks such as the 2-
user IC [8]–[11], the K-user IC [14], and the X channel [24].

Definition 2 (TDMA-TIN:). In this type of TIN, we allow
some coordination between the transmitters in order to have
a smarter variant of TIN. This might lead to a more capable
scheme than the naive-TIN. To do this, we have a time
division between three types of channels (one P2P channel
and two 2-user IC’s) operating over orthogonal time slots.
In the assigned time slots to the P2P channel, Tx3 sends
with full power while other Tx’s are inactive (See Fig. 1(a)).
In the remaining time slots, Tx1 and Tx3 which are both
communicating with Rx1, coordinate their transmission by
sharing the transmission time between themselves. These two
users send with their maximum allowed power only in their
assigned time slots. Moreover, Tx2 sends always with the
maximum power (See Fig. 1(b) and 1(c)). Note that no power
control is addressed in this scheme and the only coordination
between Tx’s is for time scheduling. Similar to naive-TIN, in
this scheme, the receivers decode their desired message by
treating the interference as noise.

Remark 1. Let the received signal-to-interference-plus-noise
power ratio at a receiver be denoted as SINR= Pdes

1+Pint
, where

Pdes and Pint represent the received power from desired and
interference signals, respectively. The achievable rate using
treating interference as noise at the receiver is given by

RTIN = log2(1 + SINR).

Our approach towards the performance analysis of different
types of TIN in the Gaussian PIMAC starts with the linear-
deterministic (LD) approximation of the wireless network
introduced by Avestimehr et al. in [21]. Next, we introduce
the linear deterministic PIMAC (LD-PIMAC).

B. Deterministic Model

The Gaussian PIMAC shown in Fig. 4 can be approx-
imated by the LD model as follows. An input symbol at
Txi is given by a binary vector xi ∈ Fq2 where q =
max{nd1, nc1, nd2, nc2, nd3, nc3} and the integer nk, repre-
sents the Gaussian channel coefficients as follows

nk =
⌊
log2

(
P |hk|2

)⌋
. (8)

The output symbol yj at Rxj is given by a deterministic
function of the inputs given by

y1 = Sq−nd1x1 ⊕ Sq−nc2x2 ⊕ Sq−nd3x3,

y2 = Sq−nc1x1 ⊕ Sq−nd2x2 ⊕ Sq−nc3x3,
(9)

where S ∈ Fq×q2 is a down-shift matrix defined as

S =

(
0Tq−1 0
Iq−1 0q−1

)
. (10)
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0
Sq−nd1x1 Sq−nc2x2 Sq−nd3x3

Rx1

nd3

Tx3

nc2

Tx2

nd1

Tx1

Sq−nc1x1 Sq−nd2x2 Sq−nc3x3

Rx2

nc1

Tx1

nd2

Tx2

nc3
Tx3

Fig. 5: Block representation of received signals of Rx1 (left) and Rx2 (right).

These input-output equations approximate the input-output
equations of the Gaussian PIMAC given in (3) and (4) in the
high SNR regime. A graphical representation of the received
vectors y1 and y2 is shown in Fig. 5, showing the three
(shifted) transmitted vectors (shown as rectangular blocks)
whose sum constitutes the received vector. This block rep-
resentation will be used in the sequel for graphical illustration
of various schemes.

We denote the sum-capacity of the LD-PIMAC by Cdet,Σ.
Next, we study the sum-capacity of the LD-PIMAC in the
regime of channel parameters where the interference parame-
ters nc1 and nc2 are small whereas the interference parameter
nc3 is arbitrary.

III. TIN IN THE DETERMINISTIC PIMAC

In this section, we focus on regimes of the PIMAC where
the interference parameters caused by Tx1 and Tx2 are small.
Notice that if we remove Tx3 from our PIMAC, the remaining
network resembles an asymmetric IC. For this IC, the noisy
interference regime is defined as the regime where

nc1 + nc2 ≤ min{nd1, nd2}. (11)

In this regime, treating interference as noise (TIN) is optimal
in the IC [13] . Adding Tx3 leads to some changes in the
channel where naive-TIN might not be the optimal scheme
any more, even if the interference caused by Tx3 is very weak.
However, as we shall see next, naive-TIN remains the optimal
scheme in some cases.

To this end, we start first by introducing the naive-TIN
scheme for the LD-PIMAC. In this variant of TIN, the
transmitters send over the interference free components of the
received signal at their corresponding receivers. Namely, trans-
mitters 1 and 3 share the top-most (max{nd1, nd3} − nc2)+

bits of y1 and transmitter 2 sends over the top-most (nd2 −
max{nc1, nc3})+ bits of y2. We call this variant naive-TIN.
An example of this scheme for the case in which nd3 < nd1

and nc3 < nc1 is illustrated in Fig. 6. We observe that, the top-
most nd1−nc2 levels received at Rx1 are free of interference.
These bits are shared between Tx1 and Tx3. In this example,
Tx1 sends nd1−nd3 bits and Tx3 sends nd3−nc2 bits. Notice
that the whole number of information bits sent by Tx1 and Tx3
(x1 and x3) cannot exceed nd1 − nc2. Moreover, at Rx2, the

top-most nd2−nc1 levels of Tx2 are observed interference free.
Therefore, the number of information bits in x2 is nd2−nc1.

The achievable sum-rate is given in the following proposi-
tion.

Proposition 1 (Naive-TIN). As long as (11) is satisfied in
an LD-PIMAC, the naive-TIN achieves any sum-rate RΣ ≤
RΣ,Naive−TIN, where

RΣ,Naive−TIN = max{nd1, nd3} − nc2
+ (nd2 −max{nc1, nc3})+. (12)

By careful examination of this scheme, it can be seen that
one can do better by using a smarter variant of TIN. Namely,
consider the case when nd3 > nd1 and nc3 < nc1. In this case,
it would be better to keep Tx1 silent and operate the PIMAC
as an IC with transmitters 2 and 3 active, thus achieving RΣ =
nd3 − nc2 + nd2 − nc3 which is clearly greater than (12) for
this case. To take this fact into account, we combine the TIN
scheme with TDMA to obtain the TDMA-TIN scheme. In
this scheme, we switch off Tx1 and Tx2 in a τ1 fraction of
time while Tx3 is active. In the remaining (1 − τ1) fraction
of time, Tx1 and Tx3 share the time in such a way that Tx1
transmits for a fraction of τ2 of the time, and Tx3 transmits
for a fraction of τ3 of the time, while Tx2 is kept active. Note
that τ2 + τ3 = 1− τ1. The receivers treat interference as noise
while decoding their desired signals. This scheme transforms
the PIMAC into a P2P channel and two 2-user IC’s operating
over orthogonal time slots. This achieves (13), given at the top
of the next page. This optimization problem is linear in τ1,
τ2, and τ3 and is solved by setting the optimization variable
equal to one of the extremes of the interval [0, 1]. Namely,
the maximization above is achieved by activating the channel
which yields the highest sum-rate. The achievable sum-rate of
this scheme is given in the following proposition.

Proposition 2 (TDMA-TIN). As long as (11) is satisfied in
an LD-PIMAC, the TDMA-TIN achieves any sum-rate RΣ ≤
RΣ,TDMA−TIN, where

RΣ,TDMA−TIN = max

 nd3

(nd1 − nc2) + (nd2 − nc1)
(nd3 − nc2)+ + (nd2 − nc3)+

 .

(14)
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0
Sq−nd1x1 Sq−nc2x2 Sq−nd3x3
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nd3

0

nc2

nd1

0

Sq−nc1x1 Sq−nd2x2 Sq−nc3x3

Rx2

nc1

nd2

0 nc3

Fig. 6: An example for Naive-TIN where nd3 < nd1 and nc3 < nc1.

RΣ,TDMA−TIN = max
τ1,τ2,τ3∈[0,1]
τ1+τ2+τ3=1

τ1nd3 + τ2[(nd1 − nc2)+ + (nd2 − nc1)+] + τ3[(nd3 − nc2)+ + (nd2 − nc3)+]. (13)

Remark 2. The proposed TDMA-TIN scheme is a special case
of the TIN with power control where a user is either off or
sends with full power. This is very similar to a so-called binary
power control. However, some cases of binary power control
are excluded from our proposed TDMA-TIN. These cases are
discussed in what follows. Consider the cases when the PIMAC
is reduced to the P2P channels where either Tx1 or Tx2 are
active while other Tx’s are inactive. Doing this, we cannot
achieve more than max{nd1, nd2}. Due to the condition in
(11), these P2P channels are outperformed by using TIN in the
2-user IC when Tx1 and Tx2 are active. Therefore, we exclude
these schemes from the TDMA-TIN. Moreover, by switching
Tx2 off, and letting Tx1 and Tx3 be active, the channel is
reduced into an LD-MAC achieving max{nd1, nd3} which
cannot outperform the achievable sum-rate in (14). Therefore,
this case is also excluded from the proposed TDMA-TIN.

In this work, we restrict our study on the cases of TDMA-
TIN where the active users send with full power. A more
general strategy would be to allow that each Tx sends with
some power less than or equal to P (power control) and the
receivers use TIN [5], [13], [23]. In the following lemma, we
summarize the analysis on the performance of the TIN scheme
alongside power control at the transmitter side with respect to
the achievable sum-rate.

Lemma 1. The achievable sum-rate by using TIN at the
receiver side alongside power control at the transmitter side
is upper bounded by the sum-rate in (14).

Proof: See Appendix A.

For some special cases of the LD-PIMAC (specific ranges of
the channel parameters), the TIN schemes above can achieve
the sum-capacity as we shall show next. Before, we proceed,
we divide the parameter space of the LD-PIMAC into several
regimes in the next subsection.

nd1 − 2nc1 nd1 − nc1 nd1

nc1

n
d
2
−

n
c2

n d
3
−
n c

3
=
n d

1
−
2n
c1

n d
3
−
n c

3
=
n d

1
−
n c

1

n d
3
−
n c

3
=
n d

1

nd3
− 2nc3

= nd1
− nc1

(1)
(2)

(3) (3)

nd3

n
c3

Fig. 7: The (nd3, nc3)-plane of the parameter space of the LD-PIMAC with nc1 +
nc2 ≤ min{nd1, nd2} divided into 3 regimes as defined in Definition 3.

A. Regimes under consideration in LD-PIMAC

In this section, we introduce three regimes of the LD-
PIMAC which satisfies (11). These regimes are determined
based on the operational meaning.

Definition 3. For an LD-PIMAC with

nc1 + nc2 ≤ min{nd1, nd2},

we define regimes 1 to 3 (shown in Fig.7) as follows:
• Regime 1 (Tx3-off):

nd3 ≤ nd1 − nc1 or nd3 − (nd1 − 2nc1) ≤ nc3 ≤ nd2 − nc2
• Regime 2 (Tx1-off):

min{nc3, nc1}+ nd1 − nc1 ≤ nd3 − nc3
• Regime 3 (All Tx’s active): All remaining cases exclud-

ing the special case nd3 − nc3 = nd1 − nc1.

Remark 3. Since studying the optimality of TIN when
nd3 − nc3 = nd1 − nc1 is not similar to the other cases, we
will first exclude this special case from our analysis. Later,
this case will be studied in details.
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Before, we proceed, it is worth to describe these regimes
briefly. In regime 1, the desired channel of Tx3 to Rx1 is weak
while the interference caused by this transmitter to Rx2 might
be very strong. Hence, in regime 1, it is optimal to switch the
Tx3 off. This regime is divided into following sub-regimes as
shown in Fig. 8
• Sub-regime 1A: nd3 ≤ nd1 − nc1 and nc3 ≤ nc1,
• Sub-regime 1B: nd3 ≤ nd1 − nc1 and nc3 > nc1,
• Sub-regime 1C: nd3 > nd1 − nc1, nc3 ≤ nd2 − nc2 and
nd3 − nc3 ≤ nd1 − 2nc1.

In Regime 2, the difference of the desired and interference
channel of Tx3 is so larger than that of the Tx1 that it is
optimal to switch Tx1 off. This regime consists of following
sub-regimes which are illustrated in Fig. 8
• Sub-regime 2A: nd3 − nc3 ≥ nd1 and
nc1 ≤ nc3 ≤ nd2 − nc2,

• Sub-regime 2B: nd3 − nc3 ≥ nd1 and nc3 < nc1,
• Sub-regime 2C: nd3 − 2nc3 ≥ nd1 − nc1 and
nd3 − nc3 < nd1,

• Sub-regime 2D: nd3 − nc3 ≥ nd1 and nc3 > nd2 − nc2.
In remaining case (regime 3), it is sub-optimal to switch a
transmitter off. This regime is divided into several sub-regimes
(shown in Fig. 8) given as follows
• Sub-regime 3A: nd1−nc1 < nd3 < nc3 +nd1−nc1 and
nd2 − nc2 < nc3,

• Sub-regime 3B: nc3 +nd1−nc1 < nd3 < nd1 +nc3 and
nd2 − nc2 < nc3,

• Sub-regime 3C: max{nd1 − nc1, nd1 − 2nc1 + nc3} <
nd3 and nd3 < min{nd1 − nc1 + 2nc3, nc3 + nd1}, and
nc3 ≤ nd2 − nc2 and nd3 − nc3 6= nd1 − nc1.

In the following sub-section, we study the optimality of
different variants of TIN over these sub-regimes in details.

B. TIN Optimality

Here, we study the optimality of TDMA-TIN and naive-
TIN. First, we show that TDMA-TIN is sum-capacity optimal
in regimes 1 and 2, but strictly suboptimal in regime 3. The
following theorem characterizes the sum-capacity of the LD-
PIMAC in regimes where TDMA-TIN is optimal.

Theorem 1. TDMA-TIN is capacity optimal for the LD-
PIMAC in regimes 1 and 2 defined in Definition 3 (shown
in Fig. 7). In these regimes the sum-capacity is given by

Cdet,Σ =


nd1 − nc1 + nd2 − nc2, regime 1
nd3 − nc3 + nd2 − nc2, sub-regimes 2A, 2B, 2C
nd3, sub-regime 2D.

(15)

Proof: The achievability is proved in Subsection III-B1
and the converse is given in Subsection III-B2. Since, the
achievable sum-rate using TDMA-TIN coincides with the
upper bound for the capacity of the LD-PIMAC in regimes
1 and 2, TDMA-TIN is optimal in these regimes.

Interestingly, we can notice that TDMA-TIN is optimal in
the case that one MAC transmitter causes noisy interference
nc1 ≤ min{nd1, nd2} − nc2, and the other causes strong

interference nc3 > max{nd1, nd3}. This can be seen in regime
1. The intuition here is that Tx3 in this case causes strong
interference to Rx2, but has a weak channel to its desired
receiver Rx1. In this case, Tx3 harms Rx2 while not increasing
the achievable sum-rate of the MAC, and hence, it is better
to switch it off. The remaining channel is an IC with noisy
interference where TIN is optimal.

Corollary 1. Naive-TIN is capacity optimal for the LD-
PIMAC is sub-regimes 1A and 2A.

Proof: Since the performance of TDMA-TIN and naive-
TIN is the same in sub-regimes 1A and 2A, naive-TIN is sum-
capacity optimal in these two sub-regimes.

1) Achievability of Theorem 1: The sum-capacity expres-
sion given in Theorem 1 can be achieved by using the TDMA-
TIN scheme as follows. We start with regime 1. By calculating
(14) while taking the conditions of regime 1 (given in Defini-
tion 3) into account, it can be easily verified that the TDMA-
TIN scheme can achieve RΣ = (nd1 − nc2) + (nd2 − nc1) in
this regime. This achievable sum-rate coincides with (15) in
regime 1.

For sub-regimes 2A, 2B, and 2C, by calculating (14) while
taking the conditions of these sub-regimes given in Definition
3 into account, TDMA-TIN achieves

RΣ = (nd3 − nc2)+ + (nd2 − nc3)+

which is equal to nd3 − nc2 + nd2 − nc3 in these sub-regime.
This achievable sum-rate also coincides with (15) in sub-
regimes 2A, 2B, and 2C.

Finally, by calculating (14) while taking the conditions of
sub-regime 2D (given in Definition 3) into account, we obtain
the achievable sum-rate RΣ = nd3 by using TDMA-TIN. This
coincides with (15) for sub-regime 2D.

In conclusion, TDMA-TIN achieves the sum-capacity ex-
pression given in Theorem 1 in regimes 1 and 2. This
concludes the proof of the achievability of Theorem 1.

At this point, it is worth to remark that naive-TIN can only
achieve (15) in sub-regimes 1A and 2A. This can be verified
by evaluating (12) in regimes 1 and 2 using the conditions
given in Definition 3. By doing so, it can be verified that

• RΣ,Naive−TIN < nd1 − nc1 + nd2 − nc2 in sub-regimes
1B and 1C,

• RΣ,Naive−TIN < nd3 − nc3 + nd2 − nc2 in sub-regimes
2B and 2C,

• RΣ,Naive−TIN < nd3 in sub-regime 2D,
• RΣ,Naive−TIN = nd1 − nc1 + nd2 − nc2 in sub-regime

1A, and
• RΣ,Naive−TIN = nd3 − nc3 + nd2 − nc2 in sub-regime

2A.

This shows the inferiority of this naive-TIN scheme in
comparison to the smarter TDMA-TIN which is sum-capacity
optimal for a wider range of channel parameters.

2) Converse of Theorem 1: The converse of Theorem 1 is
based on the four lemmas that we provide next. The main idea
is reducing the PIMAC by removing one interferer at Rx2 into
a channel that can be treated similar to the IC.
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Fig. 8: The (nd3, nc3)-plane of the parameter space of the LD-PIMAC with nc1 + nc2 ≤ min{nd1, nd2} divided into 10 sub-regimes.

Lemma 2. The sum-capacity of the LD-PIMAC is upper
bounded as follow

Cdet,Σ ≤ max{nd1 − nc1, nc2, nd3}+ max{nd2 − nc2, nc1}.
(16)

Proof: The idea of the proof is to create a genie-aided
channel where each receiver experiences one and only one
interference just as in the IC. By doing this, the resulting
channel can be treated in a similar way as the IC [25], and
the given bound can be obtained. To this end, we give W3

to Rx2 as side information. This enhances the PIMAC to
a channel where Rx1 experiences interference from x2 and
Rx2 experiences interference from x1 only. Next, we treat the
resulting enhanced channel as an IC and derive a bound similar
to that of the IC with noisy interference. Namely, we give the
interference caused by Tx1 given by Sq−nc1xn1 to Rx1 as
side information, and we give the interference caused by Tx2
given by Sq−nc2xn2 to Rx2 as side information. The resulting
PIMAC which has been enhanced with side information is
more capable than the original PIMAC, and hence the capacity
of the former serves as an upper bound for the capacity of the
latter. Next, by using Fano’s inequality we can bound RΣ as
follows2

n(RΣ − εn) ≤I(W1,W3;yn1 ,S
q−nc1xn1 )

+ I(W2;yn2 ,S
q−nc2xn2 ,W3),

where εn → 0 as n → ∞. By using the chain rule, and the
independence of the different messages, we can rewrite this
bound as

n(RΣ − εn) ≤
I(W1,W3;Sq−nc1xn1 ) + I(W1,W3;yn1 |S

q−nc1xn1 )

+ I(W2;Sq−nc2xn2 |W3) + I(W2;yn2 |S
q−nc2xn2 ,W3). (17)

Now, we treat each of the mutual information terms in (17)
separately. The first mutual information term can be written

2With a slight notational abuse, we use x and y to denote random vectors.

as

I(W1,W3;Sq−nc1xn1 ) =H(Sq−nc1xn1 )

−H(Sq−nc1xn1 |W1,W3)

=H(Sq−nc1xn1 ), (18)

since H(Sq−nc1xn1 |W1,W3) = 0. The second mutual
information term in (17) satisfies

I(W1,W3;yn1 |S
q−nc1xn1 )

= H(yn1 |S
q−nc1xn1 )−H(yn1 |S

q−nc1xn1 ,W1,W3)

= H(yn1 |S
q−nc1xn1 )−H(Sq−nc2xn2 ), (19)

since given W1 and W3, the only randomness remaining in
y1 is that originating from x2. The third mutual information
term in (17) satisfies

I(W2;Sq−nc2xn2 |W3)

= H(Sq−nc2xn2 |W3)−H(Sq−nc2xn2 |W2,W3)

= H(Sq−nc2xn2 ), (20)

which follows since H(Sq−nc2xn2 |W2,W3) = 0 and since x2

is independent of W3. Finally, the last mutual information term
in (17) satisfies

I(W2;yn2 |S
q−nc2xn2 ,W3)

= H(yn2 |S
q−nc2xn2 ,W3)−H(yn2 |S

q−nc2xn2 ,W2,W3)

= H(yn2 |S
q−nc2xn2 ,W3)−H(Sq−nc1xn1 ), (21)

since given W2 and W3, the only randomness in y2 is that of
x1. Now by substituting (18)-(21) in (17), we obtain

n(RΣ − εn) ≤H(Sq−nc1xn1 ) +H(yn1 |S
q−nc1xn1 )

−H(Sq−nc2xn2 ) +H(Sq−nc2xn2 )

+H(yn2 |S
q−nc2xn2 ,W3)−H(Sq−nc1xn1 )

= H(yn1 |S
q−nc1xn1 ) +H(yn2 |S

q−nc2xn2 ,W3).

Now, notice that given Sq−nc1xn1 , the top-most nc1 com-
ponents of xn1 are known and can be subtracted from yn1
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leaving max{nd1 − nc1, nc2, nd3} random components in y1.
The entropy of a binary vector is maximized if its components
are i.i.d. with a Bernoulli distribution with probability 1/2, and
the maximum entropy is equal to the length of the vector. This
leads to

H(yn1 |S
q−nc1xn1 ) =

n∑
t=1

H(y1[t]|Sq−nc1xn1 ,yt−1
1 )

(a)

≤
n∑
t=1

H(y1[t]|Sq−nc1x1[t])

≤
n∑
t=1

max{nd1 − nc1, nc2, nd3}

= nmax{nd1 − nc1, nc2, nd3},

where step (a) follows since conditioning does not increase
the entropy. Similarly,

H(yn2 |S
q−nc2xn2 ,W3) ≤ nmax{nd2 − nc2, nc1}.

Therefore, we can write

n(RΣ − εn) ≤ n( max{nd1 − nc1, nc2, nd3}
+ max{nd2 − nc2, nc1}).

By dividing the expression by n and letting n→∞, we get
(16) which concludes the proof.

It can be easily checked that the upper bound of Lemma
2 reduces to (nd1 − nc1) + (nd2 − nc2) in sub-regimes 1A
and 1B. Therefore, this lemma proves Theorem 1 for these
sub-regimes.

The following is another upper bound on the sum-rate of
the LD-PIMAC obtained by removing the interference from
Tx1 to Rx2, i.e., giving W1 to Rx2 as side information.

Lemma 3. The sum-capacity of the LD-PIMAC is upper
bounded as follows

Cdet,Σ ≤ max{nd1, nc2, nd3 − nc3}+ max{nd2 − nc2, nc3}.
(22)

Proof: The proof of this lemma is similar to that of
Lemma 2 where instead of W3, we give W1 to Rx2 as side
information. Then, the resulting IC is treated similarly, and
the desired upper bound is obtained. The details are given in
Appendix B.

By examining this upper bound for the sub-regimes 2A,
2B, and 2D, it can be easily verified that the upper bound
of Lemma 3 reduces to nd3 − nc3 + max{nd2 − nc2, nc3}.
Therefore, Lemma 3 proves Theorem 1 for the sub-regimes
2A, 2B, and 2D.

It remains to prove Theorem 1 for the sub-regimes 1C and
2C. For this purpose, we need two new upper bounds derived
specifically for these two sub-regimes. For establishing these
two upper bounds the following Lemma is required.

Lemma 4. The difference between the entropies of Y A =
S`−`1A⊕S`−`2B and Y B = S`−`1A⊕S`−`3B, where A
and B are two independent ` × n random binary matrices
with `1, `2, `3 ∈ N0, and `2 ≤ `3 − `1, satisfies

H(Y A)−H(Y B) ≤ 0. (23)

Proof: The proof of this lemma is given in Appendix C.

Now, we present the required upper bounds for completing
the proof of Theorem 1 in the following lemma.

Lemma 5. The sum-capacity of the LD-PIMAC with
nc1 + nc2 ≤ min{nd1, nd2} is upper bounded by

Cdet,Σ ≤ nd3 − nc3 +M if nd3 − 2nc3 ≥ nd1 − nc1 (24)
Cdet,Σ ≤ nd1 − nc1 +M if nd3 − nc3 ≤ nd1 − 2nc1, (25)

where M = max{nc3, nd2 − nc2}.

Proof: First, we establish the upper bound given in (24).

0

nd3 − nc3

nd1 − nc1

s1,I

Sq−nd1x1 Sq−nc2x2 Sq−nd3x3

nd3

nc2

nd1

Fig. 9: The block representation of y1 and the elements q−(nd1−nd3)+−nc3+1 : q

of s1 = Sq−(nd1−nd3+nc3)+x1 ⊕ Sq−nc3x3, which are represented by vector
s1,I .

To do this, we give

sn1 = Sq−(nd1−nd3+nc3)+

xn1 ⊕ S
q−nc3xn3

as side information to Rx1 and sn2 = Sq−nc2xn2 to Rx2. Note
that the side information provided to Rx1 is the top-most bits
of yn1 upto the first nc3 most significant bits of xn3 (see Fig.
9). Obviously, by giving these side information, the resulting
PIMAC channel is more capable than the original PIMAC.
Then, we use Fano’s inequality to write

n(RΣ − εn) ≤ I(xn1 ,x
n
3 ;yn1 , s

n
1 ) + I(xn2 ;yn2 , s

n
2 ), (26)

where εn → 0 as n→∞. Using the chain rule, we obtain

n(RΣ − εn) ≤I(xn1 ,x
n
3 ; sn1 ) + I(xn1 ,x

n
3 ;yn1 |sn1 )

+ I(xn2 ; sn2 ) + I(xn2 ;yn2 |sn2 ). (27)

Next, we consider each of the mutual information terms in
(27) separately. Using the definition of sn1 , the first term can
be rewritten as

I(xn1 ,x
n
3 ; sn1 ) = H(Sq−(nd1−nd3+nc3)+

xn1 ⊕ S
q−nc3xn3 )

−H(Sq−(nd1−nd3+nc3)+

xn1 ⊕ S
q−nc3xn3 |xn1 ,xn3 )

= H(Sq−(nd1−nd3+nc3)+

xn1 ⊕ S
q−nc3xn3 ). (28)
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Now consider the second mutual information term in (27)

I(xn1 ,x
n
3 ;yn1 |sn1 )

= H(yn1 |sn1 )−H(yn1 |sn1 ,xn1 ,xn3 )

= H(yn1 |S
q−(nd1−nd3+nc3)+

xn1 ⊕ S
q−nc3xn3 )

−H(Sq−nc2xn2 ), (29)

since given xn1 and xn3 , the remaining randomness in yn1 is
that of xn2 with xn2 being independent of xn1 and xn3 . Note
also that sn1 is independent of xn2 . By using the definition of
sn2 , the third mutual information term in (27) satisfies

I(xn2 ; sn2 ) = H(Sq−nc2xn2 )−H(Sq−nc2xn2 |xn2 )

= H(Sq−nc2xn2 ), (30)

since H(Sq−nc2xn2 |xn2 ) = 0. Finally, the last term in (27) is
rewritten as

I(xn2 ;yn2 |sn2 ) =H(yn2 |S
q−nc2xn2 )−H(yn2 |S

q−nc2xn2 ,x
n
2 )

=H(yn2 |S
q−nc2xn2 )

−H(Sq−nc3xn3 ⊕ S
q−nc1xn1 ), (31)

since given xn2 , the only randomness remaining in yn2 is that
of xn1 and xn3 . Moreover, xn1 and xn3 are independent of xn2 .
Now, substituting (28), (29), (30), and (31) into (27), we obtain

n(RΣ − εn) ≤H(Sq−(nd1−nd3+nc3)+

xn1 ⊕ S
q−nc3xn3 )

+H(yn1 |S
q−(nd1−nd3+nc3)+

xn1 ⊕ S
q−nc3xn3 )

−H(Sq−nc2xn2 ) +H(Sq−nc2xn2 )

+H(yn2 |S
q−nc2xn2 )

−H(Sq−nc3xn3 ⊕ S
q−nc1xn1 ). (32)

Now, we write the sum of the first and the last terms in (32) as
in (33) given at the top of the next page. The step (a) in (33)
follows from Lemma 4 and the condition of (24). Moreover,
the step (b) in (33) holds since

H(Sq−nc3xn3 )−H(Sq−nc3xn3 ⊕ S
q−nc1xn1 ) ≤

H(Sq−nc3xn3 )−H(Sq−nc3xn3 ⊕ S
q−nc1xn1 |xn1 ) = 0,

where we used the facts that conditioning does not increase
the entropy and xn1 and xn3 are independent. Therefore, the
expression in (32) is upper bound as follows

n(RΣ − εn)

≤ H(yn1 |S
q−(nd1−nd3+nc3)+

xn1 ⊕ S
q−nc3xn3 )

+H(yn2 |S
q−nc2xn2 )

(a)

≤ H(yn1,[q−(nd3−nc3)+1:q]) +H(yn2,[q−(nd2−nc2)+1:q])

(b)

≤ n(nd3 − nc3 + max{nc3, nd2 − nc2},

where in (a), we use the fact that conditioning does not
increase the entropy. Moreover, in (b) we use the fact that the
i.i.d. Bernoulli distribution 1/2 maximizes the entropy terms.
So, by dividing by n and letting n→∞, ε→ 0, the sum rate
in this regime can be bounded as

RΣ ≤ nd3 − nc3 + max{nc3, nd2 − nc2}, (34)

which proves (24).
The proof for upper bound in (25) is similar to (24)

where instead of Sq−(nd1−nd3+nc3)+

xn1 ⊕S
q−nc3xn3 , we give

Sq−nc1xn1⊕S
q−(nd3−nd1+nc1)+

xn3 to Rx1 as side information.
Then, the resulting PIMAC is treated similarly and we obtain
the upper bound RΣ ≤ nd1−nc1 +max{nc3, nd2−nc2}. The
details are given in Appendix D.

It can be easily checked that the upper bound of Lemma 5
reduces to (nd1−nc1)+(nd2−nc2), (nd3−nc3)+(nd2−nc2)
in sub-regimes 1C and 2C. Therefore, this lemma proves
Theorem 1 for these sub-regimes. This concludes the proof of
the converse of Theorem 1 for regimes 1 and 2. Consequently,
with this, the optimality of TDMA-TIN in regimes 1 and
2 of the LD-PIMAC is shown. For the remaining regimes
(3), TDMA-TIN is not optimal. In fact, in this regime, a
combination of common signalling and interference alignment
with TIN achieves higher rates. This is discussed in the next
subsection.

C. Sub-optimality of TIN

Both naive-TIN and TDMA-TIN are sub-optimal in regime
3. In order to show this, we propose an alternative scheme
which outperforms the presented TIN schemes. The proposed
scheme which is called IA-CP, is based on private and
common signalling with interference alignment [26]. The fol-
lowing proposition summarizes the achievable sum-rate using
the proposed scheme in this subsection.

Proposition 3. The following sum-rate is achievable by using
IA-CP in a PIMAC with nc1 + nc2 ≤ min{nd1, nd2}.
Regime 3A:

RΣ = min{nd3 + (nd2 − nc2), nc3 + (nd1 − nc1)} (35)

Regime 3B:

RΣ = min{nd1 + nc3, (2nd3 − nc3)− (nd1 − nc1)} (36)

Regime 3C:

RΣ = (nd2 − nc2) + min
{

2µ− ν, nd1 − (nc1 − nc3)+,

nd3 − (nc3 − nc1)+
}

(37)

where µ = max{nd3 − nc3, nd1 − nc1} and
ν = min{nd3 − nc3, nd1 − nc1}.

Now we describe the scheme that achieves the sum-rate
given in this proposition.

Remark 4. A more sophisticated interference alignment
scheme which achieves higher rates for the PIMAC was given
in [19]. Since our aim here is to show the sub-optimality of
TIN, the following simple alignment scheme suffices.

1) Interference alignment with common and private sig-
nalling (IA-CP scheme): We construct x1, x2, and x3 as
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H(Sq−(nd1−nd3+nc3)+

xn1 ⊕ S
q−nc3xn3 )−H(Sq−nc3xn3 ⊕ S

q−nc1xn1 ) (33)

=

H(Sq−nc3xn3 ⊕ S
q−(nd1−nd3+nc3)xn1 )−H(Sq−nc3xn3 ⊕ S

q−nc1xn1 )
(a)

≤ 0 if 0 ≤ nd1 − nd3 + nc3

H(Sq−nc3xn3 )−H(Sq−nc3xn3 ⊕ S
q−nc1xn1 )

(b)

≤ 0 otherwise

follows

x1 =


0`1
u1,a

0nc1−`1−Ra
u1,p

0q−nc−R1,p

x2 =


0nc2
u2,p1

0Ra
u2,p2

0q−nc2−R2,p1−R2,p2−Ra

 (38)

x3 =


u3,c

0`3
u3,a

0nc3−R3,c−`3−Ra
u3,p

0q−nc3−R3,p

 , (39)

where Ra is the length of vectors u1,a and u3,a and the sub-
script a refers to alignment signals, and R1,p, R2,p1, R2,p2,
and R3,p are the lengths of the vectors u1,p, u2,p1, u2,p2,
and u3,p and the sub-script p refers to private signals. The
common signal vector u3,c has a length of

R3,c = min{[nd3 − (nd1 − nc1)]+, [nc3 − (nd2 − nc2)]+}.
(40)

For sake of simplicity, the value of R3,c is given in Table I.
The `1 and `3 zeros introduced in x1 and x3 are used to shift
u1,a and u3,a down appropriately (power allocation). We fix
these parameters as follows

`1 = (nc1 − nc3)+, `3 = (nc3 − nc1 −R3,c)
+. (41)

A graphical illustration of the received signals at both receivers
is shown in Fig. 10 for the case when nd2 − nc2 < nc3. As it
is shown in this figure, the private signals are not received at
undesired receivers. This can be guaranteed by allocating the
private signals of Tx1 and Tx3 to the lowest nd1−nc1 bits of
x1 and the lowest nd3−nc3 bits of x3, respectively. Therefore,
the private signals of the MAC transmitters are received at the
lower-most max{nd3 − nc3, nd1 − nc1} bits of y1. Since the
private signals from Tx1 and Tx3 are treated as in a multiple
access channel at Rx1, their sum-rate is fixed by

R1,p +R3,p = max{nd3 − nc3, nd1 − nc1}. (42)

Moreover, the private signal of Tx2 must not be received at
Rx1, thus it must be sent at the lowest nd2 − nc2 bits of x2.

The main idea of the scheme is to align the vectors u1,a

and u3,a at Rx2 while they are received without any overlap
at Rx1. To align these vectors at Rx2, the condition

nc1 − `1 = nc3 −R3,c − `3 (43)

must be satisfied. This condition is indeed satisfied by our
choice of R3,c in (40) and `1, `3 in (41). Moreover, the aligned
signal u1,a and u3,a must not have an overlap with private

signal of Tx2 at Rx2. Due to this, the private signal of Tx2 is
split into two parts, u2,p1, and u2,p2 with sum-rate

R2,p1 +R2,p2 = nd2 − nc2 −Ra. (44)

Now, we are ready to discuss the reliability of decoding at
the receivers. First, consider Rx2. Since R3,c in (40) is chosen
such that u3,c does not overlap the private and alignment
signals at Rx2, Rx2 is able to decode u3,c. Due to the
condition in (44), Rx2 is able to decode u2,p1, u1,a ⊕ u3,a,
and u2,p2 as long as

Ra ≤ nc1 − `1. (45)

Notice that since Ra ≤ nc1 ≤ nd2−nc2, the sum R2,p1+R2,p2

in (44) is non-negative.
Now, consider Rx1. In order to guarantee that the common

signal vector u3,c is decodable at Rx1, an overlap between
u3,c and the alignment signal vectors (u1,a, u3,a) and private
signal vectors (u1,p, u3,p) at Rx1 needs to be avoided. An
overlap between u3,c and private signal vectors is avoided by
the choice of R3,c in (40). While an overlap between u3,c

and u3,a is avoided by the alignment condition in (43), the
following condition has to be satisfied

R3,c ≤ (nd3 − (nd1 − `1))+ if 0 < Ra, (46)

to guarantee that u3,c does not overlap u1,a at Rx1. Now, we
need to guarantee that Rx1 decodes u3,a and u1,a reliably. For
decoding these signal vectors, we address a decoding order.
The order of decoding these signal vectors depends on the
sign of S = (nd3 − nc3) − (nd1 − nc1). If S is positive (see
Fig. 10), u3,a is received on the top of u1,a at Rx1 and hence,
Rx1 decodes u1,a first after decoding u3,a and vice verse.3 An
example for the case when S is negative is illustrated in Fig.
11. Regardless of the order of decoding, an overlap between
vectors u1,a and u3,a at Rx1 has to be avoided. To this end,
we have following conditions

Ra ≤

{
nd3 − (`3 +R3,c)− (nd1 − `1) if S > 0

(nd1 − `1)− (nd3 − (`3 +R3,c)) if S < 0
. (47)

By substituting `1, `3 in (41) and R3,c in (40) into (47), and
setting µ = max{nd3 − nc3, nd1 − nc1} and ν = min{nd3 −
nc3, nd1 − nc1}, we can rewrite the conditions in (47) as

Ra ≤ µ− ν. (48)

3The decoding order in the deterministic case is not important. However,
it is important in the Gaussian setup. In order to have the same decoding
procedure for both models, we use the decoding order also in the deterministic
case.
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R3,c Nd31 < nd3 ≤ Nd32 Nd32 < nd3 < Nd33 Nd33 < nd3 < Nd34

nd2 − nc2 < nc3 min{nd3 − (nd1 − nc1), nc3 − (nd2 − nc2)} nc3 − (nd2 − nc2) nc3 − (nd2 − nc2)
nc3 ≤ nd2 − nc2 Out of regime 3 0 0

TABLE I: Nd31 = min{nd1 − nc1, nc3 + nd1 − 2nc1}, Nd32 = max{nd1 − nc1, nc3 + nd1 − 2nc1}, Nd33 = nc3 + nd1 − nc1, and Nd34 = min{nc3 +
nd1, nd1 − nc1 + 2nc3}.

0
Sq−nd1x1 Sq−nc2x2 Sq−nd3x3 Sq−nc1x1 Sq−nd2x2 Sq−nc3x3

Rx1 Rx2

nd3
u3,c

0 `3

u3,a

0

u3,p

0nc2
0

nd1
u1,a

0

u1,p

nc1
u1,a

0

nd2

0

u2,p1

0

u2,p2

nc3
u3,c

0

u3,a

0

Fig. 10: A graphical illustration showing the received signals at receivers 1 and 2 for the case that nd1 − nc1 < nd3 − nc3 and nd2 − nc2 < nc3 when the transmit signals
are constructed as in (38), (39).

0
Sq−nd1x1 Sq−nc2x2 Sq−nd3x3 Sq−nc1x1 Sq−nd2x2 Sq−nc3x3

Rx1 Rx2

nd3

0 `3

u3,a

0
nc2

0

nd1
u1,a

0

u1,p

nc1
u1,a

0

nd2
0

u2,p1

0

u2,p2

nc3

0

u3,a

0

Fig. 11: A graphical illustration showing the received signals at receivers 1 and 2 for the case that nd1 − nc1 > nd3 − nc3 and nd2 − nc2 > nc3 when the transmit signals
are constructed as in (38) and (39).

In addition to this, vectors u1,a and u3,a must not have any
overlap with private vectors u1,p and u3,p. Due to this, the
following condition has to be satisfied

Ra ≤(min{nd1 − `1, nd3 − (`3 +R3,c)}
−max{nd3 − nc3, nd1 − nc1}︸ ︷︷ ︸

R1,p+R3,p

)+. (49)

By using (40), (41), and definition of µ and ν, we rewrite (49)
as

Ra ≤ (min{nd1 − (nc1 − nc3)+, nd3 − (nc3 − nc1)+} − µ)+.
(50)

Combining the condition in (45), (48) and (50), we obtain

Ra ≤ (min{nc1 − `1 + µ, 2µ− ν, nd1 − (nc1 − nc3)+,

nd3 − (nc3 − nc1)+} − µ)+. (51)

The rate of the aligned signals Ra is given in Table II. Note
that both conditions (46) and (51) are satisfied by chosen Ra

and R3,c in Table I and II.

Remark 5. One can improve the proposed scheme by choosing
a non-zero Ra for the case that nd2 − nc2 < nc3 and nd1 −
2nc1 < nd3−nc3 < nd1−nc1. Since our goal is to outperform
TDMA-TIN, we avoided using an alignment signal in this case
to decrease the complexity of the scheme.

Using this scheme, we achieve

RΣ = R1,p +R3,p +R2,p1 +R2,p2 + 2Ra +R3,c. (52)

By substituting (42) and (44) into (52), we obtain

RΣ = max{nd3 − nc3, nd1 − nc1}+ (nd2 − nc2)

+Ra +R3,c. (53)

Now, by using the chosen Ra and R3,c in Table I and II,
we obtain the achievable sum-rate. This is given in Table III,
which completes the proof of Proposition 3.
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Ra Nd31 < nd3 ≤ Nd32 Nd32 < nd3 < Nd33 Nd33 < nd3 < Nd34

nd2 − nc2 < nc3 0 0 min{nd1 + nc3 − nd3, µ− ν}
nc1 < nc3 ≤ nd2 − nc2 Out of regime 3 min{(nd3 − nc3)− (nd1 − 2nc1), µ− ν} min{nd1 + nc3 − nd3, µ− ν}

nc3 ≤ nc1 Out of regime 3 min{nd3 − (nd1 − nc1), µ− ν} min{(nd1 − nc1)− (nd3 − 2nc3), µ− ν}

TABLE II: Nd31 = min{nd1 − nc1, nc3 + nd1 − 2nc1}, Nd32 = max{nd1 − nc1, nc3 + nd1 − 2nc1}, Nd33 = nc3 + nd1 − nc1, and Nd34 = min{nc3 +
nd1, nd1 − nc1 + 2nc3}

RΣ Nd31 < nd3 ≤ Nd32 Nd32 < nd3 < Nd33 Nd33 < nd3 < Nd34

nd2 − nc2 < nc3 min{nd3 + (nd2 − nc2), nc3 + (nd1 − nc1)} min{nd1 + nc3, (2nd3 − nc3)− (nd1 − nc1)}
nc3 ≤ nd2 − nc2 Out of regime 3 (nd2 − nc2) + min

{
2µ− ν, nd1 − (nc1 − nc3)+, nd3 − (nc3 − nc1)+

}
TABLE III: Nd31 = min{nd1 − nc1, nc3 + nd1 − 2nc1}, Nd32 = max{nd1 − nc1, nc3 + nd1 − 2nc1}, Nd33 = nc3 + nd1 − nc1, and Nd34 = min{nc3 +
nd1, nd1 − nc1 + 2nc3}

2) Comparison with TDMA-TIN: Now, we need to show
that the sum-rate in Proposition 3 is higher than the achievable
sum-rate using the TDMA-TIN given in (14) for regime 3. We
show this for sub-regimes 3A, 3B, and 3C separately.

First, consider sub-regime 3A. In this sub-regime, TDMA-
TIN achieves

RΣ,TDMA-TIN = max{nd3, (nd1 − nc1) + (nd2 − nc2),

(nd3 − nc2)+ + (nd2 − nc3)+} (54)
= max{nd3, (nd1 − nc1) + (nd2 − nc2),

nd3 − nc2 + (nd2 − nc3)+} (55)
(a)
= max{nd3, nd1 − nc1 + nd2 − nc2}, (56)

where step (a) follows since

nd3 − nc2 + (nd2 − nc3)+

= nd3 − nc2 + max{nd2, nc3} − nc3
= nd3 + max{nd2 − nc2 − nc3,−nc2}
≤ nd3,

since nc3 > nd2−nc2. Using the definition of sub-regime 3A
and the condition in (11), we upper bound the expression in
(56) by

RΣ,TDMA-TIN < min{nd3 + (nd2 − nc2), nc3 + (nd1 − nc1)}.
(57)

Note that (57) is the achievable sum-rate given in Proposition 3
for sub-regime 3A. Therefore, the scheme IA-CP outperforms
TDMA-TIN and consequently naive-TIN in this sub-regime.
Now, consider sub-regime 3B. Doing similar steps as in (54)-
(56), we can write the achievable sum-rate using the TDMA-
TIN scheme for sub-regime 3B as

RΣ,TDMA-TIN = max{nd3, nd1 − nc1 + nd2 − nc2}. (58)

Due to the conditions of sub-regime 3B, we have

(nd2 − nc2) + (nd1 − nc1) < nc3 + (nd1 − nc1) < nd3.

Hence, we rewrite (58) as

RΣ,TDMA-TIN = nd3. (59)

Since in sub-regime 3B, nc3 +(nd1−nc1) < nd3 < nd1 +nc3,
the achievable sum-rate in (59) is bounded by

RΣ,TDMA-TIN < min{nd1 + nc3, (2nd3 − nc3)− (nd1 − nc1)}.
(60)

The expression in (60) coincides with the achievable sum-rate
in Proposition 3 for sub-regime 3B. Hence, we conclude that
the scheme IA-CP outperforms TDMA-TIN and naive-TIN in
sub-regime 3B. Finally, we consider sub-regime 3C. In this
sub-regime TDMA-TIN achieves

RΣ,TDMA-TIN = (nd2 − nc2) + max{nd3 − nc3, nd1 − nc1}.

In sub-regimes 3C, the achievable sum-rate of IA-CP is

RΣ = (nd2 − nc2)

+ min
{

2µ− ν, nd1 − (nc1 − nc3)+, nd3 − (nc3 − nc1)+
}
,

where µ = max{nd3 − nc3, nd1 − nc1} and
ν = min{nd3 − nc3, nd1 − nc1}. This can be rewritten
as

RΣ = (nd2 − nc2) + µ+M

= RΣ,TDMA−TIN +M, (61)

where

M = min
{
µ− ν, nd1 − (nc1 − nc3)+ − µ,
nd3 − (nc3 − nc1)+ − µ

}
.

It is worth mentioning that the parameter M is the rate of
the aligned signal vector which is given in Table II. Notice
that in sub-regime 3C, M is positive. Hence, the sum-rate in
(61) is higher than the achievable sum-rate using TDMA-TIN
in sub-regime 3C. Thus, both TDMA-TIN and naive-TIN are
sub-optimal in regime 3.

Remark 6. The expression µ−ν is equal to zero, when nd3−
nc3 = nd1 − nc1. Note that this is the case which is excluded
from our analysis (cf. Remark 3). In this case, IA-CP achieves
the same sum-rate as TDMA-TIN. This is due to the fact that
in this special case, the LD-PIMAC can be modelled as an IC
with inputs x̃1 = Sq−nd1x1 ⊕Sq−nd3x3 and x2 and outputs
y1 = x̃1 ⊕ Sq−nc2x2 and y2 = Snd1−nc1 x̃1 ⊕ Sq−nd2x2.
Obviously, aligning the interference signals at the undesired
receiver while they are separable at the desired receiver is not
doable in 2-user IC. Hence, IA-CP cannot outperform TDMA-
TIN.

Remark 7. Interestingly, on the whole line nd3−nc3 = nd1−
nc1, TDMA-TIN achieves the sum-capacity of the LD-PIMAC.
Moreover, naive-TIN is optimal only when nc3 ≤ nd2 − nc2.
This is shown in Appendix E.
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D. Discussion

The analysis of this section shows two interesting results
about the optimality of TIN. Firstly, there are some regimes
where TIN is sub-optimal, although we have very-weak inter-
ference, in the sense that the strongest interference caused by
a user plus the strongest interference it receives is less than or
equal to the strongest desired channel parameter, i.e.,

max{nc3, nc1}+ nc2 ≤ nd2 (62)
max{nc3, nc1}+ nc2 ≤ max{nd1, nd3}. (63)

Secondly, there are some regimes where interference is not
very-weak (according to (62) and (63)), but still TIN is
optimal.

Regarding the first point, IA-CP (in regime 3) leads to
a better performance than using plain TIN. This conclusion
is particularly interesting in regimes where both receivers
experience very-weak interference according to conditions
(62) and (63). Note that the 2-user IC which consists of Tx1,
Tx2, Rx1, and Rx2, operates in the noisy interference regime
(nc1 + nc2 ≤ min{nd1, nd2}). By adding to this setup a
transmitter which has a strong channel to its desired receiver
(nd1 < nd3) and which causes very weak interference to
the undesired Rx (nc3 < nc1), we obtain a PIMAC which
satisfies (62) and (63). One would expect that TIN is optimal
in this case. However, even in this case interference alignment
might outperform TIN although the channel parameters satisfy
(62) and (63). For instance, if (nd1, nc1, nd2, nc2, nd3, nc3) =
(8, 4, 7, 2, 9, 3), then while conditions (62) and (63) are satis-
fied, the channel is in sub-regime 3C where IA-CP outperforms
TDMA-TIN. Interestingly, the given example is also noisy
according to [13] where the noisy interference regime of the
IC is defined as the case where the desired signal of each
user is stronger than the sum of the strongest interference it
receives and the strongest interference it causes4. If we apply
this condition to the PIMAC in this example, we can see that
the sum of the strongest produced and received interference is
nc2 +max{nc1, nc3} = 6 which is smaller than direct channel
parameters nd1, nd2 and nd3, but still TIN is sub-optimal.

Regarding the second point, it can be seen that the in-
terference in the parts of regimes 1, 2 (for instance when
nc3 > nd2 − nc2) cannot be characterized as very-weak
(according to (62) and (63)). However, TIN is still optimal
in these regimes.

Remark 8. In a recent parallel and independent work [23],
the optimality of the TIN for M × N X channel has been
studied, where M denotes the number of transmitters and N
denotes the number of receivers. Note that the PIMAC is a
special case of the X channel with M = 3, N = 2, and with
the rates of some messages set to zero. By specializing the
conditions of [23, Theorem 3] to the PIMAC, we conclude
that TIN is optimal in sub-regime 1A, part of sub-regime
1B (nc3 ≤ nd2 − nc2, nd3 ≤ nd1 − nc1), sub-regime 2A, and
sub-regime 2B. In this work, we show that TIN is optimal
in regimes 1 and 2. Note that this subsumes and extends

4It does not follow from [13] that the same TIN optimality condition has
to hold for the PIMAC.

the regimes identified as noisy by [23] for the PIMAC. This
extension is partly due to the structure of the channel (for
regime 1, no message from Tx3 to Rx2 contrary to the X
channel) and partly due to our new lemma (Lemma 4) and
upper bounds (24) and (25) developed in Lemma 5.

Remark 9. By applying Lemma 4 to the 3 × 2 X channel,
and proceeding similar to the proof of (24), (25), we extend
in [27] the noisy interference regimes identified in [23] to new
regimes. These new regimes are equivalent to the sub-regimes
1C and 2C in PIMAC.

IV. TIN IN THE GAUSSIAN PIMAC

For the linear deterministic PIMAC, we have shown that
the naive-TIN scheme is optimal only in sub-regimes 1A and
2A, while TDMA-TIN is optimal in regimes 1 and 2. In this
section, we assess the optimality of naive-TIN and TDMA-
TIN in the Gaussian case by finding the gap between the upper
bound and the achievable sum-rates in the regimes where this
gap can be upper bounded by a constant.

A. Regimes under consideration in Gaussian PIMAC

Similar to the LD-PIMAC, we divide the parameter space
of the Gaussian PIMAC into several regimes defined similar
to the deterministic case (Definition 3), with ni replaced by
αk for k ∈ {d1, c1, d2, c2, d3, c3}. The channel parameters in
the Gaussian PIMAC are summarized in Table IV.

LD-PIMAC Gaussian PIMAC
nd1 αd1

nc1 αc1

nd2 αd2

nc2 αc2

nd3 αd3

nc3 αc3

TABLE IV: Related channel parameters in the Gaussian and linear deterministic PIMAC.

Using the insights from linear deterministic PIMAC, we
establish the upper bounds for the Gaussian case, as follows.

Theorem 2. The sum-capacity of the Gaussian PIMAC is
upper bounded by (64)-(67).

Proof: The proof for these upper bounds is essentially
similar to the proofs of Lemmas 2, 3, and 5, but with some
steps in the proof adapted to the Gaussian PIMAC. Details
can be found in Appendix F.

The naive-TIN scheme achieves these bounds within a
constant gap in sub-regimes 1A and 2A. This is shown in
the next subsection.

B. Naive-TIN is constant-gap-optimal (CGO)

In naive-TIN, all transmitters send with full power. This
causes interference at undesired receivers. At the receiver side,
the strategy is the same as if there is no interference. Therefore,
the receivers decode their desired signals while the interference
is treated as noise. Hence, Rx1 decodes W1 and W3 as in
a multiple access channel (successive decoding) with noise
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CG,Σ ≤ log2

(
1 + ραc2 + ραd3 +

ραd1

1 + ραc1

)
+ log2

(
1 + ραc1 +

ραd2

1 + ραc2

)
, (64)

CG,Σ ≤ log2

(
1 + ραc2 + ραd1 +

ραd3

1 + ραc3

)
+ log2

(
1 + ραc3 +

ραd2

1 + ραc2

)
, (65)

CG,Σ ≤ log2

(
1 + ραc2 +

ραd1 + ραd3

1 + ραc1−αd1(ραd1 + ραd3)

)
+ log2

(
1 + ραc3 + ραc1 +

ραd2

1 + ραc2

)
+ 1,

if αd3 − αd1 ≤ αc3 − 2αc1, (66)

CG,Σ ≤ log2

(
1 + ραc2 +

ραd1 + ραd3

1 + ραc3−αd3(ραd1 + ραd3)

)
+ log2

(
1 + ραc3 + ραc1 +

ραd2

1 + ραc2

)
+ 1,

if αd1 − αd3 ≤ αc1 − 2αc3. (67)

variance 1 + |hc2|2P , and Rx2 decodes W2 as in a point-
to-point channel with noise variance 1 + |hc1|2P + |hc3|2P .
Hence, we obtain the following achievable rate.

Proposition 4. In the Gaussian PIMAC, naive-TIN achieves
any sum-rate RΣ ≤ RΣ,Naive−TIN, where

RΣ,Naive−TIN = log2

(
1 +

ραd1 + ραd3

1 + ραc2

)
+ log2

(
1 +

ραd2

1 + ραc1 + ραc3

)
. (68)

By comparing the achievable sum rate in (68) with the upper
bounds in (64) and (65), we can show that naive-TIN can
achieve the sum-capacity within a constant gap in sub-regimes
1A and 2A (where naive-TIN is optimal for the LD-PIMAC).
The following corollary summarizes this result.

Corollary 2. The achievable sum-rate of naive-TIN is within
a gap of 3 + 2 log2 3 bits of the sum-capacity of the Gaussian
PIMAC in sub-regimes 1A and 2A.

Proof: The gap calculation is given in Appendix G.
TDMA-TIN is also optimal within a constant gap in these

two regimes. This will show in the next sub-section.

C. TDMA-TIN is constant-gap-optimal

In contrast to naive-TIN, in TDMA-TIN not all transmitters
are active at the same time. The transmitting scheme for
TDMA-TIN is as follows.

In this scheme, we divide the transmission time into three
fractions, i,e, τ1, τ2, and τ3, where τ1 + τ2 + τ3 = 1. While
in τ1 fraction of time only Tx3 is active and hence, we have
a point-to-point channel, in the remaining (1− τ1) fraction of
time, we have two types of 2-user IC’s. The active transmitters
in the first type are Tx1 and Tx2. In total, τ2 fraction of
time is assigned to this IC. In the other type of IC, Tx3
and Tx2 are active. We allocate τ3 fraction of time to this
type. In this scheme, all transmitters send such that they
consume their maximum power P in the whole transmission.
In other words, Tx1, Tx2, and Tx3 send X1 ∼ CN (0, Pτ2 ),
X2 ∼ CN (0, P

(1−τ1) ), and X3 ∼ CN (0, P
τ1+τ3

) in τ2, (1−τ1),
and (τ1 + τ3) fraction of time, respectively. The achievable
sum-rate using TDMA-TIN is presented in the following
proposition.

Proposition 5. In the Gaussian PIMAC, TDMA-TIN achieves
any sum-rate RΣ ≤ RΣ,TDMA−TIN, where RΣ,TDMA−TIN is
given in (69).

Since for constant gap optimality, the GDoF optimality is
required, it is worth to convert the achievable sum-rate of
TDMA-TIN into the GDoF expression. To do this, we identify
the achievable sum-rate of TDMA-TIN at high SNR as in
(70)-(72), where τ1 + τ2 + τ3 = 1. Note that the step (a) in
(71) is due to the high SNR approximation. Now, by dividing
the sum-rate by log2 ρ and letting ρ → ∞ and keeping the
condition αc1 +αc2 ≤ min{αd1, αd2} in mind, we obtain the
following achievable GDoF using TDMA-TIN

dΣ,TDMA-TIN(α) =

max
τ1,τ2,τ3∈[0,1]
τ1+τ2+τ3=1

τ1αd3 + τ2(αd1 − αc2 + αd2 − αc1)

+ τ3[(αd3 − αc2)+ + (αd2 − αc3)+].

Since this maximization is linear in τ1, τ2, and τ3, we obtain
the optimal solution by assigning the whole transmission time
to the type which achieves the highest GDoF. Hence, the
achievable GDoF of TDMA-TIN can be presented as in the
following corollary.

Corollary 3. TDMA-TIN achieves any dΣ ≤ dΣ,TDMA−TIN,
where

dΣ,TDMA−TIN(α) = max{αd3, αd1 − αc2 + αd2 − αc1,
(αd3 − αc2)+ + (αd2 − αc3)+}. (73)

As we have shown for the LD-PIMAC, as long as receivers
treat interference as noise, the best power allocation at the
transmitter side cannot achieve higher sum-rate than TDMA-
TIN. In the following lemma, we extend this result to the
Gaussian PIMAC.

Lemma 6. The achievable GDoF by using TIN at the receiver
side alongside power control at the transmitter side is upper
bounded by the GDoF achieved by TDMA-TIN given in (73).

Proof: See Appendix H.
Now, we are ready to show that TDMA-TIN achieves the

sum-capacity of the Gaussian PIMAC within a constant gap
in regimes 1 and 2. The gap between the achievable sum-rate
of TDMA-TIN and the sum-capacity upper bound is given in
the following corollary.



16

RΣ,TDMA−TIN = max
τ1,τ2,τ3∈[0,1]
τ1+τ2+τ3=1

τ1 log2

(
1 +

ραd3

τ1 + τ3

)
+ τ2

log2

1 +

ραd1

τ2

1 +
ραc2

(1− τ1)

+ log2

1 +

ραd2

(1− τ1)

1 +
ραc1

τ2




+ τ3

log2

1 +

ραd3

τ1 + τ3

1 +
ραc2

(1− τ1)

+ log2

1 +

ραd2

(1− τ1)

1 +
ραc3

τ1 + τ3


 . (69)

RΣ,TDMA−TIN ≈ max
τ1,τ2,τ3∈[0,1]

τ1 log2

(
1 +

ραd3

τ1 + τ3

)
+ τ2

log2

1 +

ραd1

τ2
ραc2

(1− τ1)

+ log2

1 +

ραd2

(1− τ1)
ραc1

τ2




+ τ3

log2

1 +

ραd3

τ1 + τ3
ραc2

(1− τ1)

+ log2

1 +

ραd2

(1− τ1)
ραc3

τ1 + τ3


 (70)

(a)
≈ max

τ1,τ2,τ3∈[0,1]
τ1 log2

(
ραd3

τ1 + τ3

)
+ τ2

log2


ραd1

τ2
ραc2

(1− τ1)

+ log2


ραd2

(1− τ1)
ραc1

τ2




+ τ3

log2


ραd3

τ1 + τ3
ραc2

(1− τ1)

+ log2


ραd2

(1− τ1)
ραc3

τ1 + τ3


 (71)

= max
τ1,τ2,τ3∈[0,1]

log2 ρ[τ1αd3 + τ2(αd1 − αc2 + αd2 − αc1) + τ3[(αd3 − αc2)+ + (αd2 − αc3)+]]

+ τ1 log2

(
1

τ1 + τ3

)
, (72)

Corollary 4. The gap between the achievable sum-rate of
TDMA-TIN and the sum-capacity of the Gaussian PIMAC is
bounded by 4 + log2 3 bits in sub-regimes 1A, 1B, 2A and 2B,
and by 7 bits in sub-regimes 1C and 2C and 2 + log2 3 bits
in sub-regime 2D.

Proof: The proof is given in Appendix I.

D. TDMA-TIN strictly outperforms naive-TIN

As we have seen in the LD-PIMAC, TDMA-TIN also
outperforms naive-TIN in the Gaussian case. This interesting
statement is given in the following corollary.

Corollary 5. TDMA-TIN strictly outperforms naive-TIN, i.e.,

RΣ,TDMA−TIN > RΣ,TIN

for all values of channel parameters except for the case where
|hd1|
|hd3| = |hc1|

|hc3| .

Proof: The proof is given in Appendix J. Note that the
excluded case corresponds to the special case discussed in
Remark 3. We study this case later in details.

Remark 10. The difference between TDMA-TIN and naive-
TIN is that while all transmitters are simultaneously active in

the latter, the same is not true in the former which orthogo-
nalizes the users in time. Switching one or two transmitters
off in TDMA-TIN, leads to a larger sum-rate than naive-TIN.
A similar behaviour was observed in the K-user IC in [13,
Example 2] where higher rates can be achieved by switching
one transmitter off and using TIN at the receivers.

This means that although naive-TIN achieves the sum-
capacity of the PIMAC within a constant gap in sub-regimes
1A and 2A, it can not be sum-capacity optimal since it is
strictly outperformed by TDMA-TIN. Clearly, since naive-TIN
achieves the sum-capacity of the Gaussian PIMAC within a
constant gap in sub-regimes 1A and 2A, so does TDMA-TIN
as shown in previous sub-section.

E. Sub-optimality of TIN

Although TDMA-TIN always outperforms naive-TIN, it is
sub-optimal in regime 3. As discussed in Section III-C, a com-
bination of common and private signalling with interference
alignment outperforms TDMA-TIN in regime 3 and hence,
TDMA-TIN cannot achieve the capacity of the LD-PIMAC.
In this section, we show that TDMA-TIN cannot achieve the
capacity of the Gaussian PIMAC within a constant gap in
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regime 3. To do this, first, we show that TDMA-TIN is sub-
optimal in terms of GDoF. This is shown by proposing the
so-called IA-CP (interference alignment with common and
private signalling) scheme which achieves a higher GDoF
than TDMA-TIN in regime 3. Next, we show that the gap
between achievable sum-rate of TDMA-TIN and capacity
increases with SNR. In the following proposition, we present
the achievable GDoF of IA-CP.

Proposition 6. The following GDoF is achievable in regime 3
of the the Gaussian PIMAC using IA-CP

dΣ,IA−CP = d3,c + 2da + d1,p + d2,p1 + d2,p2 + d3,p, (74)

as long as the conditions in (75)-(81) are satisfied. The param-
eters A1 and A2 are defined in (82) and (83). Moreover, for
i ∈ {1, 3}, ri,a, ri,p, r2,p1, r2,p2, r3,c ≤ 0, ρr1,a + ρr1,p ≤ 1,
ρr2,p1 + ρr2,p2 ≤ 1, ρr3,c + ρr3,a + ρr3,p ≤ 1, and
αc1 + r1,a = αc3 + r3,a.

The details of the scheme are given in Appendix K. By vary-
ing the power allocation parameters (r’s) of these schemes,
different GDoF can be achieved. In order to obtain the highest
achievable GDoF of the scheme, one has to optimize over
the various power allocations. Next, we show that there exists
power allocations that lead to higher achievable GDoF than
that of TDMA-TIN in regime 3.

Corollary 6. TDMA-TIN cannot achieve the GDoF of the
Gaussian PIMAC in regime 3.

Proof: The proof is given in Appendix L.

Remark 11. Similar to the LD-PIMAC, in Gaussian case the
scheme IA-CP (proposed in Appendix K) cannot outperform
TDMA-TIN in terms of GDoF when αd3 − αc3 = αd1 − αc1.
Surprisingly, while TDMA-TIN achieves the sum-capacity of
the LD-PIMAC when nd3−nc3 = nd1−nc1, it cannot achieve
the GDoF of the Gaussian PIMAC in the equivalent case,
i.e., αd3 − αc3 = αd1 − αc1, except over a subset of channel
coefficient values of measure 0. Moreover, naive-TIN is also
GDoF sub-optimal in this case. We show this by introducing a
scheme which outperforms TDMA-TIN and naive-TIN in terms
of GDoF. Interestingly, in this scheme phase alignment [28] is
required. The scheme and its achievable GDoF are presented
in Appendix N in details.

As we have shown, TDMA-TIN is not GDoF optimal in
regime 3 and for the special case αd3−αc3 = αd1−αc1. Now,
we are ready to extend this result and show sub-optimality of
TDMA-TIN in these ceases. This result is presented in the
following Corollary.

Corollary 7. TIN cannot achieve the sum-capacity of Gaus-
sian PIMAC within a constant gap in regime 3 and for the
case αd3 − αc3 = αd1 − αc1.

Proof: As we have shown in Lemma 6, the achieved
GDoF using TIN at the receiver side alongside power control
at the transmitter side is upper bounded by the GDoF of
TDMA-TIN. Moreover, we have shown that TDMA-TIN is
outperformed in terms of GDoF by better schemes in regime
3 and for the case when αd3 − αc3 = αd1 − αc1. Hence,

in these cases, TDMA-TIN and subsequently TIN with power
control cannot achieve the GDoF of the Gaussian PIMAC, i.e.,
dΣ(α). Therefore, the gap between the achievable GDoF of
TIN and the GDoF of the Gaussian PIMAC is lower bounded
by a positive value a. This can be written as

dΣ(α)− dΣ,TIN(α) ≥ a > 0.

Now, by using the definition of GDoF, we can write the
capacity of Gaussian PIMAC and achievable sum-rate of TIN
as follows

CG,Σ(ρ,α) = dΣ(α) log2(ρ)− o(log2(ρ))

RΣ,TIN(ρ,α) = dΣ,TIN(α) log2(ρ)− oTIN(log2(ρ)).

Now, by obtaining the difference between the sum-capacity
and the achievable sum-rate, we can write

CG,Σ(ρ,α)−RΣ,TIN(ρ,α)

≥ a log2(ρ)−oIACP(log2(ρ))− oTDMA-TIN(log2(ρ))︸ ︷︷ ︸
−os(log2(ρ))

.

While the term −os(log2(ρ)) does not scale with ρ as ρ →
∞, the first term a log2(ρ) increases by ρ. This shows that
the gap between the sum-capacity of the Gaussian PIMAC
and the achievable sum-rate of TIN grows as a function of
ρ. Hence, TIN cannot achieve the sum-capacity of Gaussian
PIMAC within a constant gap.

V. CONCLUSIONS

We examined the optimality of the simple scheme of
treating interference as noise (TIN) in a network consisting
of a P2P channel interfering with a MAC (PIMAC). We
derived some upper bounds on the sum-rate for both the
deterministic PIMAC and the Gaussian PIMAC. Then, we
characterized regimes of channel parameters where TIN is
sum-capacity optimal for the deterministic PIMAC, and sum-
capacity optimal within a constant gap for the Gaussian one.
It turns out that one has to combine TIN with TDMA in order
to improve the performance of TIN, and make it optimal for a
wider range of parameters. This combination, denoted TDMA-
TIN, strictly outperforms naive-TIN in the Gaussian PIMAC.
This leads to the following conclusion: The naive-TIN scheme
where all transmitters transmit simultaneously and all receivers
treat interference as noise is always a sub-optimal scheme in
the PIMAC (except for a special case). This conclusion is in
contrast to the 2-user interference channel where naive-TIN
is sum-capacity optimal in the so-called noisy interference
regime. We have also shown that TDMA-TIN is outperformed
by a combination of TIN and interference alignment in some
cases. Interestingly, this includes cases where both receivers
experience very-weak interference.

Surprisingly, although TIN is optimal (within a constant
gap) in some regimes of the Gaussian PIMAC with very-weak
interference, there exists regimes also with very-weak interfer-
ence where TIN is not optimal. In these regimes, interference
alignment leads to rate improvement. Furthermore, there exist
regimes where not all interference is very-weak, but still TIN
is optimal.
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d3,c ≤ min{[αd3 + r3,c −max{0, αd1 + r1,a, αd1 + r1,p, αd3 + r3,a, αd3 + r3,p, αc2 + r2,p1, αc2 + r2,p2}]+,
[αc3 + r3,c −max{0, αc1 + r1,a, αc1 + r1,p, αc3 + r3,a, αc3 + r3,p, αd2 + r2,p1, αd2 + r2,p2}]+}, (75)

d1,p ≤ [αd1 + r1,p −max{0, αc2 + r2,p1, αc2 + r2,p2}]+, (76)
d3,p ≤ [αd3 + r3,p −max{0, αc2 + r2,p1, αc2 + r2,p2}]+, (77)

d3,p + d1,p ≤ [max{αd3 + r3,p, αd1 + r1,p} −max{0, αc2 + r2,p1, αc2 + r2,p2}]+, (78)
d2,p1 ≤ [αd2 + r2,p1 −max{0, αc1 + r1,p, αc1 + r1,a, αc3 + r3,p, αc3 + r3,a, αd2 + r2,p2}]+, (79)
d2,p2 ≤ [αd2 + r2,p2 −max{0, αc1 + r1,p, αc3 + r3,p}]+, (80)

da ≤

{
A1 if |hd3|

|hc3| <
|hd1|
|hc1|

A2 otherwise
, (81)

A1 = min{[αc1 + r1,a −max{0, αc1 + r1,p, αc3 + r3,p, αd2 + r2,p2}]+,
[αd1 + r1,a −max{0, αd1 + r1,p, αd3 + r3,p, αd3 + r3,a, αc2 + r2,p1, αc2 + r2,p2}]+,
[αd3 + r3,a −max{0, αd1 + r1,p, αd3 + r3,p, αc2 + r2,p1, αc2 + r2,p2}]+}, (82)

A2 = min{[αc1 + r1,a −max{0, αc1 + r1,p, αc3 + r3,p, αd2 + r2,p2}]+,
[αd3 + r3,a −max{0, αd1 + r1,p, αd1 + r1,a, αd3 + r3,p, αc2 + r2,p1, αc2 + r2,p2}]+,
[αd1 + r1,a −max{0, αd1 + r1,p, αd3 + r3,p, αc2 + r2,p1, αc2 + r2,p2}]+} (83)
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APPENDIX A
PROOF OF LEMMA 1

Here, we want to show that the achievable sum-rate using
TIN at the receiver side alongside power control at transmit-
ters is upper bounded by the achievable sum-rate using the
proposed TDMA-TIN given in (14). To do this, first we need
to write the achievable sum-rate using TIN with power control
for the LD-PIMAC. Now, suppose that Tx’s do not send with
full power. It means that in the LD-PIMAC, Tx’s do not use
some most significant bits. In more details, Txi sends such
that only its nji bits are received at Rxj, where nji satisfies

n21 = (n11 − (nd1 − nc1))+, (84)
n12 = (n22 − (nd2 − nc2))+, (85)
n23 = (n13 − (nd3 − nc3))+ if nc3 ≤ nd3, (86)

n13 = (n23 − (nc3 − nd3))+ if nd3 < nc3, (87)

and n11 ∈ [0, nd1], n22 ∈ [0, nd2], n13 ∈ [0, nd3], and
n23 ∈ [0, nc3]. Let Sn represent the set of all possible
(n11, n21, n12, n22, n13, n23). Now, by using TIN at the re-
ceiver side, the maximum achievable sum-rate is

RΣ,TIN = (max{n11, n13} − n12)
+

+ (n22 −max{n21, n23})+
. (88)

The goal is to show that there exists no
(n11, n21, n12, n22, n13, n23) ∈ Sn which provides
a higher sum-rate than that of the TDMA-TIN in

(14). To do this, we will show that for any arbitrary
(n11, n21, n12, n22, n13, n23) ∈ Sn, the achievable sum-
rate using TDMA-TIN is larger than or equal to (88).
Before doing this, we present following properties of
(n11, n21, n12, n22, n13, n23) ∈ Sn

n11 − n21 = min{n11, nd1 − nc1} ≤ nd1 − nc1 (89)
n22 − n12 = min{n22, nd2 − nc2} ≤ nd2 − nc2 (90)

n13 − n23 ≤ min{n13, (nd3 − nc3)+} ≤ (nd3 − nc3)+.
(91)

These properties can be directly obtained from (84)-(87).
Now, we compare (14) with (88) by distinguishing between
following cases:
• n13 ≤ n11 and n23 ≤ n21: In this case the sum-rate in

(88) is upper bounded as follows

RΣ,TIN = (n11 − n12)
+

+ (n22 − n21)
+

≤max{n11 − n12 + n22 − n21, n11, n22}
(a)

≤ max{nd1 − nc2 + nd2 − nc1, nd1, nd2},

where in (a), we used the properties (89) and (90) and
the fact that n11 ≤ nd1, n22 ≤ nd2, and all n-parameters
are non-negative. Now, by using the condition in (11),
we can upper bound the sum-rate as follows

RΣ ≤ nd1 − nc2 + nd2 − nc1 ≤ RΣ,TDMA−TIN.

• n13 ≤ n11 and n21 < n23: In this case, we upper bound
the sum-rate in (88) as follows

RΣ,TIN = (n11 − n12)
+

+ (n22 − n23)
+

(b)

≤ (n11 − n12)
+

+ (n22 − n21)
+
,
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where in (b), we used the condition of this case
n21 < n23. As it is shown above this expression is upper
bounded by RΣ,TDMA−TIN.

• n11 < n13 and n21 ≤ n23: In this case, the sum-rate in
(88) is upper bounded by

RΣ = (n13 − n12)+ + (n22 − n23)+

≤ max{n13 − n12 + n22 − n23, n13, n22}
(c)

≤ max{nd3 − nc2 + nd2 − nc3, nd3, nd2},

where in (c), we used the properties (90) and (91) and the
fact that n13 ≤ nd3, n22 ≤ nd2, and all n-parameters are
non-negative. By using the condition in (11), this sum-
rate is upper bounded by

RΣ ≤ max{nd3 − nc2 + nd2 − nc3, nd3,

(nd1 − nc2) + (nd2 − nc1)}
≤ RΣ,TDMA-TIN.

• n11 < n13 and n23 < n21: In this case, the sum-rate in
(88) is upper bounded as follows

RΣ = (n13 − n12)+ + (n22 − n21)+

(d)

≤ (n13 − n12)+ + (n22 − n23)+,

where in (d), we used the condition of this case, i.e.,
n23 < n21. As we have shown in the previous case, this
expression is upper bounded by RΣ,TDMA-TIN.

We have shown for any arbitrary
(n11, n21, n12, n22, n13, n23) ∈ Sn that the achievable
sum-rate in (88) is upper bounded by RΣ,TDMA-TIN.

APPENDIX B
PROOF OF LEMMA 3

For establishing the upper bound in Lemma 3, we give
Sq−nc3xn3 and (Sq−nc2xn2 ,W1) as side information to Rx1
and Rx2, respectively. Then, by using Fano’s inequality we
may write

n(RΣ − εn)

≤ I(W1,W3;yn1 ,S
q−nc3xn3 ) + I(W2;yn2 ,S

q−nc2xn2 ,W1)

(a)
= I(W1,W3;Sq−nc3xn3 ) + I(W1,W3;yn1 |S

q−nc3xn3 )

+ I(W2;Sq−nc2xn2 |W1) + I(W2;yn2 |S
q−nc2xn2 ,W1)

(b)
= H(Sq−nc3xn3 ) +H(yn1 |S

q−nc3xn3 )

−H(yn1 |S
q−nc3xn3 ,W1,W3) +H(Sq−nc2xn2 )

+H(yn2 |S
q−nc2xn2 ,W1)−H(yn2 |S

q−nc2xn2 ,W2,W1)

= H(Sq−nc3xn3 ) +H(yn1 |S
q−nc3xn3 )−H(Sq−nc2xn2 )

+H(Sq−nc2xn2 ) +H(yn2 |S
q−nc2xn2 ,W1)−H(Sq−nc3xn3 )

= H(yn1 |S
q−nc3xn3 ) +H(yn2 |S

q−nc2xn2 ,W1),

where step (a) follows by using the chain rule and the
independence of the messages, and step (b) follows from the
fact that x3 and x2 can be reconstructed knowing W3 and
W2, respectively, and since x2 is independent of W1. Next,

by proceeding similar to the proof of Lemma 2, we can show
that

n(RΣ − εn) ≤ n( max{nd1, nc2, nd3 − nc3}
+ max{nd2 − nc2, nc3}). (92)

By dividing this inequality by n and letting n→∞, we get
the upper bound in (22) which concludes the proof of Lemma
3.

APPENDIX C
PROOF OF LEMMA 4

Let A and B be two independent ` × n random binary
matrices representing the transmit signals of two transmitters,
say A and B, over n channel uses. Let Y A and Y B be received
signals at receiver A and B, respectively. They are given by

Y A = S`−`1A⊕ S`−`2B, (93)

Y B = S`−`1A⊕ S`−`3B. (94)

where `1, `2, `3 ∈ N0 and `2 ≤ `3 − `1. The gaol is to bound
the difference between the entropies of5 Y A and Y B . To do
this, we define the following matrices

B1 = B[1:(`2−`1)+], B2 = B[(`2−`1)++1:`2]

B3 = B[`2+1:`3−`1], B4 = B[`3−`1+1:`3], B5 = B[`3+1:`].

Notice that if `2 = `3 − `1, `2 + 1 > `3 − `1. Hence, the
matrix B3 does not have any component. Moreover, due to
the condition `2 ≤ `3 − `1, the matrices B2 and B4 do not
have any common row. Therefore, the matrix B can be split
into five matrices since BT =

[
BT

1 BT
2 BT

3 BT
4 BT

5

]
.

Moreover, we split the matrix A into

A1 = A[1:`1], A2 = A[`1+1:`].

Therefore, we have AT =
[
AT

1 AT
2

]
. Now, we can write

S`−`1A =

[
0(`−`1),n

A1

]
and S`−`3B =


0(`−`3),n

B1

B2

B3

B4

 .

5A similar lemma with a slightly different structure than (93) and (94) was
given in [19].
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Now, we lower bound H(Y B) as follows

H(Y B) = H(S`−`1A⊕ S`−`3B)

= H



0(`−`3),n

B1

B2

B3

A1 ⊕B4




= H (B1,B2,B3,A1 ⊕B4)

(a)
= H(B1) +H(B2|B1) +H(B3|B2,B1)

+H(A1 ⊕B4|B1,B2,B3)

(b)

≥ H(B1) +H(B2|B1) +H(A1 ⊕B4|B1,B2,B3,B4)

= H(B1) +H(B2|B1) +H(A1|B1,B2,B3,B4)

(c)
= H(B1) +H(B2|B1) +H(A1|B1,B2)

(a)
= H(B1,B2,A1)

(d)

≥ H(f(B1,B2,A1))

(e)
= H(Y A),

where (a) follows by using the chain rule, (b) follows from
the facts that entropy is non-negative and conditioning does
not increase the entropy, (c) follows due to the independence
of the matrix B of A1, (d) follows using the data processing
inequality, and (e) follows by setting

f(B1,B2,A1) =

[
0(`−`1),n

A1

]
⊕

0(`−`2),n

B1

B2


= S`−`1A⊕ S`−`2B
= Y A.

Therefore, H(Y B) ≥ H(Y A) which leads to
H(Y A)−H(Y B) ≤ 0.

APPENDIX D
PROOF OF (25) IN LEMMA 5

In this appendix, we establish the upper bound given in (25).
To do this, we give sn1 = Sq−nc1xn1 ⊕S

q−(nd3−nd1+nc1)+

xn3
as side information to Rx1 and sn2 = Sq−nc2xn2 to Rx2. The
sum-capacity of the original PIMAC is upper bounded by the
genie-aided PIMAC. By using Fano’s inequality, we can write

n(RΣ − εn) ≤I(xn1 ,x
n
3 ;yn1 , s

n
1 ) + I(xn2 ;yn2 , s

n
2 )

(a)
= I(xn1 ,x

n
3 ; sn1 ) + I(xn1 ,x

n
3 ;yn1 |sn1 ) + I(xn2 ; sn2 )

+ I(xn2 ;yn2 |sn2 )

=H(sn1 )−H(sn1 |xn1 ,xn3 ) +H(yn1 |sn1 )

−H(yn1 |sn1 ,xn1 ,xn3 ) +H(sn2 )−H(sn2 |xn2 )

+H(yn2 |sn2 )−H(yn2 |sn2 ,xn2 ),

where in (a), we use the chain rule. Using the definition of
sn1 and sn2 , we obtain

n(RΣ − εn)

≤H(Sq−nc1xn1 ⊕ S
q−(nd3−nd1+nc1)+

xn3 )

+H(yn1 |S
q−nc1xn1 ⊕ S

q−(nd3−nd1+nc1)+

xn3 )

−H(Sq−nc2xn2 ) +H(Sq−nc2xn2 )

+H(yn2 |S
q−nc2xn2 )−H(Sq−nc1xn1 ⊕ S

q−nc3xn3 ), (95)

since knowing xn1 and xn3 , sn1 is not random and
H(sn1 |xn1 ,xn3 ) = 0. Moreover, H(sn2 |xn2 ) = 0, since knowing
xn2 , sn2 can be completely reconstructed. In addition to them,
knowing xn1 and xn3 , the remaining randomness of yn1 is that
of xn2 and knowing xn2 , the remaining randomness of yn2 is
that of xn1 and xn3 . We used also the fact that xn1 , xn2 and xn3
are independent. By using Lemma 4 similar to the proof of
(24), we can write

H(Sq−nc1xn1 ⊕ S
q−(nd3−nd1+nc1)+

xn3 )

−H(Sq−nc1xn1 ⊕ S
q−nc3xn3 ) ≤ 0, (96)

as long as the condition of (25) is satisfied. Therefore, we
upper bound the expression in (95) as follows

n(RΣ − εn) ≤H(yn1 |S
q−nc1xn1 ⊕ S

q−(nd3−nd1+nc1)+

xn3 )

+H(yn2 |S
q−nc2xn2 ). (97)

Next, by proceeding similar to the proof of (24), we can upper
bound the expression in (97) as follows

n(RΣ − εn) ≤ n(nd1 − nc1 + max{nd2 − nc2, nc3}). (98)

By dividing this inequality by n and letting n→∞, we get
the upper bound in (25) which concludes the proof of Lemma
5.

APPENDIX E
OPTIMALITY OF TIN WHEN nd3 − nc3 = nd1 − nc1

In this appendix, we want to show that TDMA-TIN is
optimal on the whole line nd3−nc3 = nd1−nc1 while naive-
TIN is optimal when nc3 ≤ nd2−nc2. To show the optimality
of TDMA-TIN, we need to find a tight upper bound for the
capacity of the LD-PIMAC. This is presented in the following
lemma.

Lemma 7. The sum-capacity of the LD-PIMAC with nd3 −
nc3 = nd1 − nc1 is upper bounded by

Cdet,Σ ≤ max{nd1 − nc1, nc2}+ max{nc1, nc3, nd2 − nc2}.
(99)

Proof: To establish this upper bound, we give
sn1 = Sq−nc1xn1 ⊕ S

q−nc3xn3 and sn2 = Sq−nc2xn2 to Rx1
and Rx2, respectively. Obviously, The sum-capacity of the
generated PIMAC (after providing the side information) pro-
vides an upper bound for the sum-rate of the original PIMAC.
Now, we use the Fano’s inequality to write

n(RΣ − εn) ≤I(xn1 ,x
n
3 ;yn1 , s

n
1 ) + I(xn2 ;yn2 , s

n
2 )

(a)
= I(xn1 ,x

n
3 ; sn1 ) + I(xn1 ,x

n
3 ;yn1 |sn1 ) + I(xn2 ; sn2 )

+ I(xn2 ;yn2 |sn2 )

(b)
=H(yn1 |sn1 ) +H(yn2 |sn2 ),
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where in (a), we used the chain rule and in (b), we used the
fact that H(sn1 |xn1 ,xn3 ) = 0, H(yn1 |sn1 ,xn1 ,xn3 ) = H(sn2 ),
H(sn2 |xn2 ) = 0, and H(yn2 |sn2 ,xn2 ) = H(sn1 ). Now, notice that
sn1 appears in the signal vector yn1 since nd1−nc1 = nd3−nc3.
Hence, knowing sn1 , the randomness of the top-most nc1 bits
of xn1 and the top-most nc3 bits of xn3 can be removed from
yn1 . Hence, we can write

n(RΣ − εn) ≤ n( max{nd1 − nc1, nc2}
+ max{nc1, nc3, nd2 − nc2}).

By dividing the expression by n and letting n→∞, we obtain
(99).

Now, by using the condition nd3−nc3 = nd1−nc1 and the
assumption of this work nc1 + nc2 ≤ min{nd1, nd2}, we can
write the upper bound in (99) as follows

Cdet,Σ ≤ max{nd3, nd1 − nc1 + nd2 − nc2}. (100)

This coincides with the achievable sum-rate of TDMA-TIN
given in (14). Hence, we conclude that TDMA-TIN is optimal
when nd3 − nc3 = nd1 − nc1 holds. Moreover, by comparing
the upper bound in (99) with the achievable sum-rate using
naive-TIN in (12), we conclude that naive-TIN achieves the
upper bound in (99) when the channel parameters of the LD-
PIMAC satisfy the conditions nd3 − nc3 = nd1 − nc1 and
nc3 ≤ nd2 − nc2.

APPENDIX F
PROOF OF THEOREM 2

In this appendix, we prove that the sum-capacity of the
PIMAC is upper bounded as given in Theorem 2. We start by
restating the sum-capacity upper bounds in (101)-(104). These
bounds are proved in the next subsections.

A. Proof of (101)

In order to derive the first upper bound in Theorem 2,
Sn1 = hc1X

n
1 + Zn2 is given to Rx1 as side information,

and Sn2 = hc2X
n
2 + Zn1 and Xn

3 are given to Rx2 as side
information. Then, by Fano’s inequality, we have

n(RΣ − εn) ≤ I(Xn
1 , X

n
3 ;Y n1 , S

n
1 ) + I(Xn

2 ;Y n2 , S
n
2 , X

n
3 ),

where εn → 0 as n → ∞. Then, we proceed by using the
chain rule to write

n(RΣ − εn)

≤ I(Xn
1 , X

n
3 ;Sn1 ) + I(Xn

1 , X
n
3 ;Y n1 |Sn1 ) + I(Xn

2 ;Xn
3 )

+ I(Xn
2 ;Sn2 |Xn

3 ) + I(Xn
2 ;Y n2 |Sn2 , Xn

3 ).

Since, X2 and X3 are independent, then I(Xn
2 ;Xn

3 ) = 0 and
we get

n(RΣ − εn)

≤I(Xn
1 , X

n
3 ;Sn1 ) + I(Xn

1 , X
n
3 ;Y n1 |Sn1 ) + I(Xn

2 ;Sn2 |Xn
3 )

+ I(Xn
2 ;Y n2 |Sn2 , Xn

3 )

=h(Sn1 )− h(Sn1 |Xn
1 , X

n
3 ) + h(Y n1 |Sn1 )− h(Y n1 |Xn

1 , X
n
3 , S

n
1 )

+ h(Sn2 |Xn
3 )− h(Sn2 |Xn

3 , X
n
2 ) + h(Y n2 |Sn2 , Xn

3 )

− h(Y n2 |Sn2 , Xn
2 , X

n
3 )

=h(Sn1 )− h(Zn2 ) + h(Y n1 |Sn1 )− h(Sn2 ) + h(Sn2 )− h(Zn1 )

+ h(Y n2 |Sn2 , Xn
3 )− h(Sn1 )

=h(Y n1 |Sn1 ) + h(Y n2 |Sn2 , Xn
3 )− h(Zn1 )− h(Zn2 ).

Now, by using the chain rule, keeping in mind that the noise
is i.i.d., we can continue with

n(RΣ − εn) ≤
n∑
t=1

h(Y1[t]|Sn1 , Y t−1
1 )−

n∑
t=1

h(Z1[t])

+

n∑
t=1

h(Y2[t]|Sn2 , Xn
3 , Y

t−1
2 )−

n∑
t=1

h(Z2[t]).

Since the noise is circularly symmetric complex Gaussian with
unit variance, we have h(Z1[t]) = h(Z2[t]) = log2(πe). On
the other hand,

1

n

n∑
t=1

[
h(Y1[t]|Sn1 , Y t−1

1 )− h(Z1[t])
]

(a)

≤ 1

n

n∑
t=1

[h(Y1[t]|S1[t])− h(Z1[t])]

(b)

≤ 1

n

n∑
t=1

log2

(
1 + |hc2|2P2[t] + |hd3|2P3[t]

+
|hd1|2P1[t]

1 + |hc1|2P1[t]

)
(c)

≤ log2

(
1 + |hc2|2

(
1

n

n∑
t=1

P2[t]

)
+ |hd3|2

(
1

n

n∑
t=1

P3[t]

)

+

|hd1|2
(

1

n

∑n
t=1 P1[t]

)
1 + |hc1|2

(
1

n

∑n
t=1 P1[t]

)


(d)
= log2

(
1 + |hc2|2P2 + |hd3|2P3 +

|hd1|2P1

1 + |hc1|2P1

)
(e)

≤ log2

(
1 + |hc2|2P + |hd3|2P +

|hd1|2P
1 + |hc1|2P

)
= log2

(
1 + ραc2 + ραd3 +

ραd1

1 + ραc1

)
,

where
(a) follows from the fact that conditioning does not increase

the differential entropy and
(b) follows from the fact that Gaussian distribution max-

imizes the conditional differential entropy for a given
covariance constraint with Pi[t] being the transmit power
of Txi at time instant t,

(c) follows from Jensen’s inequality,
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CG,Σ ≤ log2

(
1 + ραc2 + ραd3 +

ραd1

1 + ραc1

)
+ log2

(
1 + ραc1 +

ραd2

1 + ραc2

)
, (101)

CG,Σ ≤ log2

(
1 + ραc2 + ραd1 +

ραd3

1 + ραc3

)
+ log

(
1 + ραc3 +

ραd2

1 + ραc2

)
, (102)

CG,Σ ≤ log2

(
1 + ραc2 +

ραd1 + ραd3

1 + ραc1−αd1(ραd1 + ραd3)

)
+ log2

(
1 + ραc3 + ραc1 +

ραd2

1 + ραc2

)
+ 1,

if αd3 − αd1 ≤ αc3 − 2αc1, (103)

CG,Σ ≤ log2

(
1 + ραc2 +

ραd1 + ραd3

1 + ραc3−αd3(ραd1 + ραd3)

)
+ log2

(
1 + ραc3 + ραc1 +

ραd2

1 + ραc2

)
+ 1,

if αd1 − αd3 ≤ αc1 − 2αc3. (104)

(d) follows by denoting the average transmit power of Txi
by Pi, and

(e) follows from the power constraint Pi ≤ P .
Similarly

1

n

n∑
t=1

[
h(Y2[t]|Sn2 , Xn

3 , Y
t−1
2 )− h(Z2[t])

]
≤ 1

n

n∑
t=1

[h(hd2X2[t] + hc1X1[t] + Z2[t]|S2[t])− h(Z2[t])]

≤ log2

(
1 + ραc1 +

ραd2

1 + ραc2

)
.

Therefore, we obtain

RΣ − εn ≤ log2

(
1 + ραc2 + ραd3 +

ραd1

1 + ραc1

)
+ log2

(
1 + ραc1 +

ραd2

1 + ραc2

)
,

which concludes the proof of (101).

B. Proof of (102)

For establishing the upper bound given in (102), we provide
Sn1 = hc3X

n
3 + Zn2 to Rx1 and Sn2 = hc2X

n
2 + Zn1 and Xn

1

to Rx2. Then, by proceeding with similar steps as above, we
obtain the second bound in Theorem 2.

C. Proof of (103)

Before we prove the bound (103), we introduce the follow-
ing lemma which bounds the difference between the entropies
of two (noisy) linearly independent linear combinations of two
random variables under some conditions on this sum.

Let A and B be independent random variables satisfying

1

n

n∑
t=1

E[|A[t]|2] ≤ P, 1

n

n∑
t=1

E[|B[t]|2] ≤ P,

and let Zi, i ∈ {A,B}, be distributed as CN (0, 1). Define
YA and YB as the outputs of the following noisy channels,

YA = h1A+ h2B + ZA

YB = h1A+ h3B + ZB ,

where the constants h1, h2, and h3 are complex-valued and
satisfy

P |h2|2 ≤
(
|h3|
|h1|

)2

(105)

1 < P |h1|2. (106)

Let Y nA and Y nB be the outputs corresponding to inputs An and
Bn of length n. Then, The difference between the entropies
of An and Bn is bounded by the following lemma.

Lemma 8. If conditions (105) and (106) are satisfied, then
the difference between the entropies of Y nA and Y nB satisfies

h(Y nA )− h(Y nB ) ≤ n. (107)

Proof: We start by upper bounding the expression
h(Y nA )− h(Y nB ) as follows

h(Y nA )− h(Y nB )

= h(Y nA )− h(Y nB )− h(ZnA) + h(ZnB)

= I(An, Bn;Y nA )− I(An, Bn;Y nB )

(a)
= I(An;Y nA ) + I(Bn;Y nA |An)− I(Bn;Y nB )− I(An;Y nB |Bn)

(b)

≤ I(An;Y nA ) + I(An;Bn|Y nA ) + I(Bn;Y nA |An)

− I(Bn;Y nB )− I(An;Y nB |Bn)

(c)
= I(An;Y nA , B

n) + I(Bn;Y nA |An)

− I(Bn;Y nB )− I(An;Y nB |Bn),

where in (a) and (c), we used the chain rule and in (b), we
used the non-negativity of mutual information. We proceed by
using the chain rule to get

h(Y nA )− h(Y nB )

≤ I(An;Bn) + I(An;Y nA |Bn) + I(Bn;Y nA |An)

− I(Bn;Y nB )− I(An;Y nB |Bn)

(a)
= I(An;h1A

n + ZnA) + I(Bn;h2B
n + ZnA|An)

− I(Bn;Y nB )− I(An;h1A
n + ZnB)

(b)
= I(Bn;h2B

n + ZnA)− I(Bn;h1A
n + h3B

n + ZnB),

where (a) follows from the independence of A and B, and
(b) follows since I(An;h1A

n + ZnA) = I(An;h1A
n + ZnB)
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since ZA and ZB have the same distribution. We proceed as
follows

h(Y nA )− h(Y nB )

≤I(Bn;h2B
n + ZnA)− I(Bn;h1A

n + h3B
n + ZnB)

(a)
= I(Bn;h2B

n + ZnA)

− I(Bn; Ãn +
h3√
Ph1

Bn +
1√
Ph1

ZnB)

(b)

≤I(Bn;h2B
n + ZnA)− I(Bn; Ãn +

h3√
Ph1

Bn + ZnB)

=I(Bn;h2B
n + ZnA)− h(Ãn +

h3√
Ph1

Bn + ZnB)

+ h(Ãn + ZnB)

(c)

≤I(Bn;h2B
n + ZnA)− h(Ãn +

h3√
Ph1

Bn + ZnB |Ãn)

+ h(Ãn + ZnB)

=I(Bn;h2B
n + ZnA)− h(

h3√
Ph1

Bn + ZnB)

+ h(Ãn + ZnB)− h(ZnA) + h(ZnB)

=I(Bn;h2B
n + ZnA)− I(Bn;

h3√
Ph1

Bn + ZnB)

+ h(Ãn + ZnB)− h(ZnA)

=I(Bn;Bn +
1

h2
ZnA)

− I(Bn;Bn +

√
Ph1

h3
ZnB) + h(Ãn + ZnB)− h(ZnA)

(d)

≤I(Bn;Bn +
1

h2
ZnA)− I(Bn;Bn +

1

h2
ZnB)

+ h(Ãn + ZnB)− h(ZnA)

=h(Ãn + ZnB)− h(ZnA)

=I(Ãn; Ãn + ZnB) + h(ZnB)− h(ZnA)

(e)

≤n,

where

(a) follows by defining the random variable Ã = A√
P

which
satisfies 1

n

∑n
t=1 E[|Ã[t]|2] ≤ 1,

(b) follows from the fact that increasing the noise variance
(by 1− 1

P |h1|2 > 0, cf. (106)) leads to a degraded channel,
and hence, decreases the mutual information,

(c) follows since conditioning does not increase the differen-
tial entropy,

(d) follows from the fact that increasing the noise variance
(by 1

|h2|2 −
P |h1|2
|h3|2 ≥ 0, cf. (105)) leads to a degraded

channel, and hence, decreases the mutual information,
and

(e) follows since the capacity of the Gaussian channel with
input Ã and output Ã+ZB is upper bounded by 1 (since
Ã has power 1).

Now we are ready to prove the bound (103) given by

CG,Σ ≤ log2

(
1 + ραc2 +

ραd1 + ραd3

1 + ραc1−αd1(ραd1 + ραd3)

)
+ log2

(
1 + ραc3 + ραc1 +

ραd2

1 + ραc2

)
+ 1,

if αd3−αd1 ≤ αc3−2αc1 or equivalently P
(
|hc1|
|hd1|

)2

|hd3|2 ≤(
|hc3|
|hc1|

)2

. In order to derive this bound, the side information

Sn1 = hc1
hd1

(hd1X
n
1 + hd3X

n
3 ) + Zn is given to Rx1 and the

side information Sn2 = hc2X
n
2 + Zn1 is given to Rx2, where

Zn ∼ CN (0, 1) denotes an AWGN which is independent from
Zn1 and Zn2 and i.i.d. over time. Using Fano’s inequality, we
obtain

n(RΣ − εn) ≤ I(Xn
1 , X

n
3 ;Y n1 , S

n
1 ) + I(Xn

2 ;Y n2 , S
n
2 ),

where εn → ∞ as n → ∞. Then, using the chain rule, we
have

n(RΣ − εn)

≤I(Xn
1 , X

n
3 ;Sn1 ) + I(Xn

1 , X
n
3 ;Y n1 |Sn1 ) + I(Xn

2 ;Sn2 )

+ I(Xn
2 ;Y n2 |Sn2 )

=h(Sn1 )− h(Sn1 |Xn
1 , X

n
3 ) + h(Y n1 |Sn1 )− h(Y n1 |Sn1 , Xn

1 , X
n
3 )

+ h(Sn2 )− h(Sn2 |Xn
2 ) + h(Y n2 |Sn2 )− h(Y n2 |Sn2 , Xn

2 )

(a)
=h(Sn1 )− h(Zn) + h(Y n1 |Sn1 )− h(Sn2 ) + h(Sn2 )− h(Zn1 )

+ h(Y n2 |Sn2 )− h(Y n2 |Sn2 , Xn
2 )

(b)
=h(hc1X

n
1 +

hc1
hd1

hd3X
n
3 + Zn)− h(Zn) + h(Y n1 |Sn1 )

− h(Zn1 ) + h(Y n2 |Sn2 )− h(hc1X
n
1 + hc3X

n
3 + Zn2 )

(c)

≤h(Y n1 |Sn1 )− h(Zn) + h(Y n2 |Sn2 )− h(Zn1 ) + n, (108)

where (a) and (b) follow from the fact that the transmitted
signals from different Tx’s and the additive noise signals are all
independent from each other, and (c) follows from Lemma 8.
Note that the first condition of Lemma 8 is satisfied if the con-
dition of bound (103) given by P

(
|hc1|
|hd1|

)2

|hd3|2 ≤
(
|hc3|
|hc1|

)2

holds. This condition corresponds to nd3 − nc3 < nd1 − 2nc1
in the linear deterministic model which also defines a border
of regime 3. The second condition of Lemma 8 (1 < P |hc1|2)
holds since we consider the interference limited scenario (5).
By using Lemma 1 in [11] which shows that a circularly
symmetric complex Gaussian distribution maximizes the con-
ditional differential entropy for a given covariance constraint
and defining a new variable V = hd1X1 + hd3X3, we upper
bound the expression in (108) as follows

n(RΣ − εn)

≤n[h(Y1G|S1G)− h(Z) + h(Y2G|S2G)− h(Z1) + 1]

=n[h(VG + hc2X2G + Z1|
hc1
hd1

VG + Z)− h(Z)− h(Z1) + 1

+ h(hd2X2G + hc1X1G + hc3X3G + Z2|hc2X2G + Z1)],

where the subscript G indicates that the inputs are i.i.d. and
Gaussian distributed, i.e., XiG ∼ CN (0, Pi) and YiG and SiG
are the corresponding signals. Let Pv = |hd1|2P1 + |hd3|2P3
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n(RΣ − εn) ≤n

log2

 (1 + Pv + |hc2|2P2)(1 + |hc1|2
|hd1|2Pv)−

|hc1|2
|hd1|2P

2
v

1 + |hc1|2
|hd1|2Pv


+ log2

(
(1 + |hd2|2P2 + |hc1|2P1 + |hc3|2P3)(1 + |hc2|2P2)− |hc2|2|hd2|2P 2

2

1 + |hc2|2P2

)
+ 1

]
(109)

=n

log2

1 + |hc2|2P2 +
Pv

1 + |hc1|2
|hd1|2Pv

+ log2

(
1 + |h2

c1|P1 + |hc3|2P3 +
|hd2|2P2

1 + |hc2|2P2

)
+ 1

 (110)

≤n
[
log2

(
1 + ραc2 +

ραd1 + ραd3

1 + ραc1−αd1(ραd1 + ραd3)

)
+ log2

(
1 + ραc3 + ραc1 +

ραd2

1 + ραc2

)
+ 1

]
. (111)

represent the variance of VG. Thus we upper bound n(RΣ−εn)
as in (109)-(111) Since εn → 0 as n→∞, we obtain the third
bound (103).

D. Proof of (104)
For the bound (104), the side information Sn1 =

hc3
hd3

(hd1X
n
1 + hd3X

n
3 ) + Zn is given to Rx1, and the side

information Sn2 = hc2X
n
2 + Zn1 is given to Rx2, where

Z ∼ CN (0, 1) denotes an AWGN which is independent
from all other random variables and i.i.d. over time. Then by
proceeding with similar steps as above, we obtain the bound
given in (104). This concludes the proof of Theorem 2.

APPENDIX G
GAP ANALYSIS FOR NAIVE-TIN: PROOF OF COROLLARY 2

We focus on sub-regimes 1A and 2B. In sub-regime 1A
where αd3 ≤ αd1 − αc1 and αc3 ≤ αc1, the upper bound
given in (64) can be further upper bounded as follows

CG,Σ ≤ log2

(
1 + ραc2 + ραd3 +

ραd1

1 + ραc1

)
+ log2

(
1 + ραc1 +

ραd2

1 + ραc2

)
< log2

(
1 + ραc2 + ραd3 +

ραd1

ραc1

)
+ log2

(
1 + ραc1 +

ραd2

ραc2

)
< log2

(
4ραd1−αc1

)
+ log2

(
3ραd2−αc2

)
=[αd1 − αc1 + αd2 − αc2] log2 ρ+ 2 + log2 3, (112)

where we used the fact that in sub-regime 1A,
max{0, αc2, αd3, αd1 − αc1} = αd1 − αc1,
max{0, αc1, αd2 − αc2} = αd2 − αc2, and
ραd1−αc1 , ραd2−αc2 > 1 due to (5).

On the other hand, for the achievable rate of naive-TIN, we
have

RΣ,Naive−TIN

= log2

(
1 +

ραd1 + ραd3

1 + ραc2

)
+ log2

(
1 +

ραd2

1 + ραc1 + ραc3

)
> log2

(
ραd1

2ραc2

)
+ log2

(
ραd2

3ραc1

)
= [αd1 − αc1 + αd2 − αc2] log2 ρ− 1− log2 3, (113)

where we used ραc1 , ραc2 > 1 (cf. (5)).
Comparing (112) with (113) in this regime, we see that

naive-TIN is within a gap of GNaive−TIN,1A = 3 + 2 log2 3
bits to the sum-capacity.

Similarly, for sub-regime 2A where αd3 − αc3 ≥ αd1 and
αc1 ≤ αc3 ≤ αd2 − αc2, the upper bound (65) can be upper
bounded as

CG,Σ ≤ log2

(
1 + ραc2 + ραd1 +

ραd3

1 + ραc3

)
+ log2

(
1 + ραc3 +

ραd2

1 + ραc2

)
<[αd3 − αc3 + αd2 − αc2] log2 ρ+ 2 + log2 3, (114)

which follows since αd3−αc3 ≥ αd1 and αc3 ≤ αd2−αc2 in
this regime, whereas for the achievable rate of the naive-TIN
scheme in this regime, we have

RΣ,Naive−TIN

= log2

(
1 +

ραd1 + ραd3

1 + ραc2

)
+ log2

(
1 +

ραd2

1 + ραc1 + ραc3

)
> [αd3 − αc3 + αd2 − αc2] log2 ρ− 1− log2 3,

which follows since αc1 < αc3 in this regime. Therefore,
naive-TIN is within a constant gap GNaive−TIN,2A = 3 +
2 log2 3 bits to the sum-capacity.

APPENDIX H
PROOF OF LEMMA 6

In this appendix, we want to show that as long as the
receivers of Gaussian PIMAC treat the interference as noise,
the best power control at the transmitter side achieves the same
GDoF as that of TDMA-TIN given in (73). To show this,
we need to first write the achievable GDoF using TIN at the
receivers side with power control at the transmitter side. First
suppose that Txi transmits xi with power Pi ≤ P . Doing this
the maximum achievable sum-rate using TIN is given by

RΣ,TIN = log2

(
1 +

P1|hd1|2 + P3|hd3|2

1 + P2|hc2|2

)
+ log2

(
1 +

P2|hd2|2

1 + P1|hc1|2 + P3|hc3|2

)
(115)
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Now, we define

α11 =

(
log2(P1|hd1|2)

log2 ρ

)+

, α21 =

(
log2(P1|hc1|2)

log2 ρ

)+

,

α22 =

(
log2(P2|hd2|2)

log2 ρ

)+

, α12 =

(
log2(P2|hc2|2)

log2 ρ

)+

,

α13 =

(
log2(P3|hd3|2)

log2 ρ

)+

, α23 =

(
log2(P3|hc3|2)

log2 ρ

)+

,

where they satisfy

α21 = (α11 − (αd1 − αc1))+

α12 = (α22 − (αd2 − αc2))+

α23 = (α13 − (αd3 − αc3))+ if αc3 ≤ αd3

α13 = (α23 − (αc3 − αd3))+ if αd3 < αc3.

Notice that α11 ∈ [0, αd1], α21 ∈ [0, αc1], α22 ∈ [0, αd2],
α12 ∈ [0, αc2], α13 ∈ [0, αd3], and α23 ∈ [0, αc3]. Moreover,
for any arbitrary P1, P2, and P3, the following conditions are
satisfied

α11 − α21 ≤ αd1 − αc1
α22 − α12 ≤ αd2 − αc2
α13 − α23 ≤ (αd3 − αc3)+.

Now, we can convert the achievable sum-rate in (115) to the
GDoF expression and write

dΣ,TIN =(max{α11, α13} − α12)+

+ (α22 −max{α21, α23})+. (116)

Now, we can show similar to proof of Lemma 1 in Appendix
A that the GDoF in (116) is outperformed by (73).

APPENDIX I
GAP ANALYSIS FOR TDMA-TIN: PROOF OF COROLLARY 4

Here, we consider TDMA-TIN and show that it achieves the
sum-capacity of the Gaussian PIMAC within a constant gap
for regimes 1 and 2. In sub-regimes 1A, 1B, and 1C, by setting
τ2 = 1 and τ1 = τ3 = 0, the achievable rate of TDMA-TIN
satisfies

RΣ,TDMA−TIN

≥ log2

(
1 +

ραd1

1 + ραc2

)
+ log2

(
1 +

ραd2

1 + ραc1

)
> log2

(
ραd1

2ραc2

)
+ log2

(
ραd2

2ραc1

)
= [(αd1 − αc2) + (αd2 − αc1)] log2(ρ)− 2. (117)

Similar to sub-regime 1A (see (112)), it can be shown that
the upper bound for the capacity in sub-regime 1B is upper
bounded by the expression in (112). By comparing (112) with
(117), we see that TDMA-TIN is within a constant gap of
GTDMA−TIN,1A,1B = 4 + log2 3 bits to the sum-capacity in
sub-regimes 1A and 1B.

In sub-regime 1C, we relax the upper bound in (66) as
follows

CG,Σ ≤ log2

(
1 + ραc2 +

ραd1 + ραd3

1 + ραc1−αd1(ραd1 + ραd3)

)
+ log2

(
1 + ραc3 + ραc1 +

ραd2

1 + ραc2

)
+ 1

< log2

(
2ραc2 +

2ρmax{αd1,αd3}

ρmax{αc1,αc1−αd1+αd3}

)
+ log2

(
3ραc3 +

ραd2

ραc2

)
+ 1

< log2

(
4ραd1−αc1

)
+ log2

(
4ραd2−αc2

)
+ 1

=(αd1 − αc1 + αd2 − αc2) log2 ρ+ 5, (118)

where we used the fact that in sub-regime 1C, αc3 > αc1 and
max{0, αc1, αc3, αd2 − αc2} = αd2 − αc2. Comparing (118)
and (117), we conclude that TDMA-TIN is within a constant
gap of GTDMA−TIN,1C = 7 bits to the sum-capacity in sub-
regime 1C.

For sub-regimes 2A, 2B, and 2C, by setting τ3 = 1 and
τ1 = τ2 = 0, we have

RΣ,TDMA−TIN

> log2

(
1 +

ραd3

1 + ραc2

)
+ log2

(
1 +

ραd2

1 + ραc3

)
> (αd3 − αc2 + αd2 − αc3) log2 ρ− 2. (119)

Similar to sub-regime 2A (see (114)), the upper bound for the
capacity can be relaxed in sub-regime 2B. Doing this, we can
show that the capacity in sub-regime 2B is upper bounded by
the expression in (114). Comparing (114) and (119), we see
that TDMA-TIN achieves a sum-rate within a constant gap of
GTDMA−TIN,2A,2B = 4 + log2 3 bits to the sum-capacity in
sub-regimes 2A and 2B.

For sub-regime 2C, we relax the upper bound given in (67)
as follows

CG,Σ

≤ log2

(
1 + ραc2 +

ραd1 + ραd3

1 + ραc3−αd3(ραd1 + ραd3)

)
+ log2

(
1 + ραc3 + ραc1 +

ραd2

1 + ραc2

)
+ 1

< log2

(
2ραc2 +

2ρmax{αd1,αd3}

ρmax{αc3−αd3+αd1,αc3}

)
+ log2

(
3ραc1 +

ραd2

ραc2

)
+ 1

= log2

(
2ραc2 + 2ραd3−αc3

)
+ log2

(
3ραc1 + ραd2−αc2

)
+ 1

< log2

(
4ραd3−αc3

)
+ log2

(
4ραd2−αc2

)
+ 1

=(αd3 − αc3 + αd2 − αc2) log2 ρ+ 5, (120)

where we used the facts that in sub-regime 2C, αc1 > αc3
and max{αd1 − αc1, αc2, 0} = αd1 − αc1 ≤ αd3 − αc3. By
comparing (119) and (120), we see that the rate obtained with
TDMA-TIN is within a constant gap of GTDMA−TIN,2C = 7
bits to the sum capacity in sub-regime 2C.
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Finally, we consider the sub-regime 2D. In this sub-regime,
we set τ1 = 1 and τ2 = τ3 = 0 to obtain

RΣ,TDMA-TIN ≥ log2 (1 + ραd3) > αd3 log2 ρ. (121)

Now, we relax the sum-capacity in (65) as follows

CG,Σ ≤ log2

(
1 + ραc2 + ραd1 +

ραd3

1 + ραc3

)
+ log2

(
1 + ραc3 +

ραd2

1 + ραc2

)
< log2

(
3ραd1 +

ραd3

ραc3

)
+ log2

(
2ραc3 +

ραd2

ραc2

)
< log2

(
3ραd1 + ραd3−αc3

)
+ log2

(
2ραc3 + ραd2−αc2

)
< log2

(
4ραd3−αc3

)
+ log2 (3ραc3)

=αd3 log2 ρ+ 2 + log2 3 (122)

where we used the facts that in regime 2D, αd1 ≤ αd3 − αc3
and αd2 − αc2 < αc3. By comparing (121) and (122), we see
that the rate obtained by TDMA-TIN is within a constant gap
of GTDMA−TIN,2D = 2 + log2 3 bits to the sum-capacity in
sub-regime 2D.

APPENDIX J
TDMA-TIN OUTPERFORMS NAIVE-TIN: PROOF OF

COROLLARY 5

In this appendix, we show that naive-TIN can never be an
optimal scheme for the Gaussian PIMAC. It is worth to rewrite
the achievable sum-rate of TDMA-TIN as follows

RΣ,TDMA−TIN = (123)
max

τ1,τ2,τ3∈[0,1]
τ1+τ2+τ3=1

A(τ1, τ2, τ3) +B(τ1, τ2, τ3) + C(τ1, τ2, τ3),

where

A(τ1, τ2, τ3) = τ1 log2

(
1 +

ραd3

τ1 + τ3

)
,

B(τ1, τ2, τ3) =

τ2 log2

1 +

ραd1

τ2

1 +
ραc2

(1− τ1)

+ τ3 log2

1 +

ραd3

τ1 + τ3

1 +
ραc2

(1− τ1)

 ,

C(τ1, τ2, τ3) =

τ2 log2

1 +

ραd2

(1− τ1)

1 +
ραc1

τ2

+ τ3 log2

1 +

ραd2

(1− τ1)

1 +
ραc3

τ1 + τ3

 .

If we fix any optimization parameter τ1, τ2, or τ3 in (123), the
obtained sum-rate by using TDMA-TIN is less than or equal
to the sum-rate given in (123). Hence, by setting τ1 = 0, we
write

RΣ,TDMA−TIN ≥ max
τ2,τ3∈[0,1]
τ2+τ3=1

B(0, τ2, τ3) + C(0, τ2, τ3).

Now, consider B(0, τ2, τ3). This is the achievable sum-rate
using TDMA with a time sharing parameters τ2 and τ3 in a

multiple access channel with a noise variance of 1+ραc2 . This
sum-rate is maximized by setting

τ2 =
ραd1

ραd1 + ραd3
, τ?.

Substituting τ? = τ2 and 1 − τ? = τ3 into B(0, τ2, τ3), we
obtain

max
τ2,τ3∈[0,1]

B(0, τ2, τ3) = B(0, τ?, 1− τ?)

= log2

(
1 +

ραd1 + ραd3

1 + ραc2

)
.

On the other hand, it can be shown that function C(0, τ2, τ3) =
C(0, τ2, 1− τ2) satisfies

dC(0, τ2, 1− τ2)

dτ2

∣∣∣∣
τ2=τ ′

= 0 and

d2C(0, τ2, 1− τ2)

dτ2
2

≥ 0, ∀τ2 ∈ [0, 1],

where

τ ′ =
ραc1

ραc1 + ραc3
.

Thus, C(0, τ2, 1− τ2) is convex and achieves its minimum
at τ2 = τ ′, with minimum value

min
τ2∈[0,1]

C(0, τ2, 1− τ2) = C(0, τ ′, 1− τ ′)

= log2

(
1 +

ραd2

1 + ραc1 + ραc3

)
.

Now, if τ? 6= τ ′, we have

RΣ,TDMA−TIN

≥ B(0, τ?, 1− τ?) + C(0, τ?, 1− τ?)
(a)
> B(0, τ?, 1− τ?) + C(0, τ ′, 1− τ ′)

= log2

(
1 +

ραd1 + ραd3

1 + ραc2

)
+ log2

(
1 +

ραd2

1 + ραc1 + ραc3

)
= RΣ,TIN,

where (a) follows since τ? 6= τ ′ and since B(τ) is minimum
at τ ′.

Therefore, TDMA-TIN always outperforms naive-TIN if
τ? 6= τ ′. This corresponds to the condition

αd3 − αc3 6= αd1 − αc1.

APPENDIX K
TRANSMISSION SCHEME OF PROPOSITION 6: IA-CP

The transmission scheme is based on common and private
signalling with interference alignment. First, the transmitters
split their messages as follows:
• Tx1 splits its message W1 into W1,p and W1,a with rates
R1,p and Ra, respectively.

• Tx2 splits its message W2 into W2,p1 and W2,p2 with
rates R2,p1 and R2,p2, respectively.

• Tx3 splits its message W3 into W3,c, W3,a, and W3,p

with rates R3,c, Ra, and R3,p respectively.
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The alignment message W1,a is further split into WR
1,a and

W I
1,a with rates RRa and RIa, with RRa +RIa = Ra. Similarly,

W3,a is split into WC
3,a, C = {R, I}, with rate RCa . The

superscript C = {R, I} determines as whether the message is
intended for the real part or the imaginary part of the channel.

A. Encoding:

The alignment messages WC
1,a and WC

3,a are encoded into
xC,n1,a and xC,n3,a using nested-lattice codes. Note that Tx1 and
Tx3 use the same nested-lattice codebook (Λf ,Λc) with rate
Ra and power 1, where Λc and Λf denote the coarse and
fine lattices, respectively. For more details about nested-lattice
codes, the reader is referred to [29]–[31]. Txi, i ∈ {1, 3},
encodes its message WC

i,a into a length-n codeword λC,ni,a from
the nested-lattice codebook (Λf ,Λc). Then, it constructs the
following signal

xC,ni,a =

√
Pi,a

2
[(λC,ni,a − d

C,n
i,a ) mod Λc], C = {R, I},

where Pi,a/2 is the power of the alignment signal xC,ni,a and
dC,ni,a is n-dimensional random dither vector [29] known also at
the receivers. Since the length of all sequences in this section
is n, we drop the superscript n in the rest of the section.

The messages Wi,p, W2,p1, W2,p2, and W3,c are encoded
into xi,p, x2,p1, x2,p2, and x3,c with powers Pi,p, P2,p1, P2,p2,
and P3,c, respectively, using Gaussian random codebooks.
Then the transmitters send the signals

x3 = x3,c + e−jϕc3(xR3,a + jxI3,a︸ ︷︷ ︸
x3,a

) + x3,p,

x1 = e−jϕc1(xR1,a + jxI1,a︸ ︷︷ ︸
x1,a

) + x1,p,

x2 = x2,p1 + x2,p2,

where j =
√
−1 and ϕk represents the phase of the channel

hk, where k ∈ {d1, c1, d2, c2, d3, c3}. Note that the assigned
powers must fulfill the given power constraints, hence,

P3,c + P3,a + P3,p = P3 ≤ P,
P1,a + P1,p = P1 ≤ P,

P2,p1 + P2,p2 = P2 ≤ P.

Using (3) and (4), we can write the received signals of the
receivers as follows

y1 =hd1(e−jϕc1x1,a + x1,p) + hd3(x3,c + e−jϕc3x3,a + x3,p)

+ hc2(x2,p1 + x2,p2) + z1,

y2 =hd2(x2,p1 + x2,p2) + hc1(e−jϕc1x1,a + x1,p)

+ hc3(x3,c + e−jϕc3x3,a + x3,p) + z2.

Recall from our discussion in Section III-C that the signals
x1,a and x3,a must be aligned at Rx2. Therefore, the powers
of these two signals must be adjusted such that

|hc1|2P1,a = |hc3|2P3,a, (124)

which guarantees that the two alignment signals are received
at Rx2 at the same power. Namely, the alignment signals are
received at Rx2 as

hc1e−jϕc1x1,a + hc3e−jϕc3x3,a

= |hc1|
√
P1,a

2

[
(λR1,a − dR1,a) mod Λc + j(λI1,a − dI1,a) mod Λc

]
+ |hc3|

√
P3,a

2

[
(λR3,a − dR3,a) mod Λc + j(λI3,a − dI3,a) mod Λc

]
= |hc1|

√
P1,a

2

[
(λR1,a − dR1,a) mod Λc + (λR3,a − dR3,a) mod Λc

+ j
[
(λI1,a − dI1,a) mod Λc + (λI3,a − dI3,a) mod Λc

]]
.

B. Decoding

Since the PIMAC is not symmetric, the decoding process
is not the same for both receives. Therefore, we discuss the
decoding at the two receivers separately.

1) Decoding at Rx1: First, Rx1 decodes x3,c while all other
signals are treated as noise. To do this reliably, the following
constraint needs to be satisfied

R3,c ≤ (125)

log2

(
1 +

|hd3|2P3,c

1 + |hd1|2P1 + |hd3|2(P3,a + P3,p) + |hc2|2P2

)
.

As long as (125) is satisfied, Rx1 is able to decode W3,c

and hence, it is able to reconstruct x3,c. Rx1 removes the
interference caused by x3,c from the received signal y1.
Further decoding at Rx1 depends on the channel strength.
Therefore, we distinguish between two different cases.

•
|hd1|
|hc1| <

|hd3|
|hc3| : In this case, Rx1 proceeds the decoding in

the following order W3,a →W1,a → {W1,p,W3,p}. The
receiver decodes each of these signals while treating the
remaining signals as noise, then it subtracts the contribu-
tion of the decoded signal, and proceeds with decoding
the next one. Note that Rx1 multiplies the received signal
with ej(ϕci−ϕdi) before decoding the alignment messages
WC
i,a. Then after removing the contribution of WC

i,a from
the received signal, Rx1 multiplies the resulting signal
with e−j(ϕci−ϕdi). It is shown in [31] that nested-lattice
codes achieve the capacity of the point-to-point AWGN
channel. Therefore, the rate constraints for successive
decoding of messages W3,a and W1,a at Rx1 are given
by

2RRa = 2RIa ≤ (126)

log2

(
1 +

|hd3|2 P3,a

2
1
2 (1 + |hd1|2P1 + |hd3|2P3,p + |hc2|2P2)

)
,

2RRa = 2RIa ≤ (127)

log2

(
1 +

|hd1|2 P1,a

2
1
2 (1 + |hd1|2P1,p + |hd3|2P3,p + |hc2|2P2)

)
.

Note the term 1
2 in the denominator is needed to obtain

the fraction of the noise and interference power in the
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real or the imaginary part. Thus, we obtain

Ra ≤ log2

(
1 +

|hd3|2P3,a

1 + |hd1|2P1 + |hd3|2P3,p + |hc2|2P2

)
(128)

Ra ≤ log2

(
1 +

|hd1|2P1,a

1 + |hd1|2P1,p + |hd3|2P3,p + |hc2|2P2

)
(129)

•
|hd3|
|hc3| <

|hd1|
|hc1| : In this case, the decoding order at Rx1 is

W1,a → W3,a → {W1,p,W3,p}. Similar to the previous
case, we obtain the following rate constraints.

Ra ≤ log2

(
1 +

|hd1|2P1,a

1 + |hd1|2P1,p + |hd3|2(P3,a + P3,p) + |hc2|2P2

)
,

(130)

Ra ≤ log2

(
1 +

|hd3|2P3,a

1 + |hd1|2P1,p + |hd3|2P3,p + |hc2|2P2

)
(131)

The remaining signals x1,p and x3,p are treated in the same
way for both cases. Rx1 decodes W1,p and W3,p as in a
multiple access channel while treating W2,p1 and W2,p2 as
noise. Rx1 can decode W1,p and W3,p successfully if the
following conditions are satisfied

R1,p ≤ log2

(
1 +

|hd1|2P1,p

1 + |hc2|2P2

)
, (132)

R3,p ≤ log2

(
1 +

|hd3|2P3,p

1 + |hc2|2P2

)
, (133)

R3,p +R1,p ≤ log2

(
1 +
|hd3|2P3,p + |hd1|2P1,p

1 + |hc2|2P2

)
. (134)

2) Decoding at Rx2: The decoding order at Rx2 is W3,c →
W2,p1 → f(W1,a,W3,a)→ W2,p2, where f(W1,a,W3,a) is a
function of W1,a and W3,a. Namely, Rx2 decodes the sum
of the lattice codewords corresponding to WR

1,a and WR
3,a and

also the sum of the lattice codewords corresponding to W I
1,a

and W I
3,a. First, Rx2 decodes W3,c while the other signals are

treated as noise. For reliable decoding of W3,c the following
constraint needs to be satisfied

R3,c ≤ (135)

log2

(
1 +

|hc3|2P3,c

1 + |hc1|2P1 + |hc3|2(P3,a + P3,p) + |hd2|2P2

)
.

Next, Rx2 reconstructs x3,c from W3,c and it removes the
interference caused by x3,c. Then, it decodes W2,p1 while
treating the other signals as noise. Therefore, the rate of W2,p1

needs to satisfy the following constraint.

R2,p1 ≤ (136)

log2

(
1 +

|hd2|2P2,p1

1 + |hc1|2P1 + |hc3|2(P3,a + P3,p) + |hd2|2P2,p2

)
Next the receiver decodes the sums (λR1,a+λR3,a) mod Λc and
(λI1,a+λI3,a) mod Λc. Decoding these sums is possible as long

as [29]

2RRa = 2RIa ≤ (137)[
log2

(
1

2
+

|hc1|2P1,a

1 + |hc1|2P1,p + |hc3|2P3,p + |hd2|2P2,p2

)]+

Since Ra = RRa +RIa, we obtain

Ra ≤ (138)[
log2

(
1

2
+

|hc1|2P1,a

1 + |hc1|2P1,p + |hc3|2P3,p + |hd2|2P2,p2

)]+

.

The receiver can then construct the received sum of align-
ment signals |hc1|x1,a + |hc3|x3,a from the decoded sums of
codewords (λR1,a + λR3,a) mod Λc and (λC1,a + λC3,a) mod Λc
(cf. [32]). After reconstructing the sum of alignment signals,
its contribution is removed from the received signal and then
W2,p2 is decoded. Decoding W2,p2 is possible reliably as long
as

R2,p2 ≤ log2

(
1 +

|hd2|2P2,p2

1 + |hc1|2P1,p + |hc3|2P3,p

)
. (139)

C. Achievable rate

As a result of this decoding process, the following sum-rate
is achievable

RΣ,IA-CP = R3,c + 2Ra +R1,p +R2,p1 +R2,p2 +R3,p,

where the terms above satisfy (125)-(139). Since, we are
interested in an approximation of the sum-rate at high SNR,
we translate the achievable sum-rate into the achievable GDoF
as follows

dΣ,IA-CP(α) ≤ d3,c + 2da + d1,p + d2,p1 + d2,p2 + d3,p,
(140)

where

d3,c =
R3,c

log2 ρ
, da =

Ra
log2 ρ

, di,p =
R1,p

log2 ρ
,

d2,p1 =
R2,p2

log2 ρ
, d2,p2 =

R2,p2

log2 ρ
,

and ρ→∞. We start by defining

ri,a =
log2

(
Pi,a
P

)
log2 ρ

, ri,p =
log2

(
Pi,p
P

)
log2 ρ

, r2,p1 =
log2

(
P2,p1

P

)
log2 ρ

,

r2,p2 =
log2

(
P2,p2

P

)
log2 ρ

, r3,c =
log2

(
P3,c

P

)
log2 ρ

.

Note that since Pi,a, Pi,p, P2,p1, P2,p2, P3,c ≤ P and 1 < ρ,
then we have ri,a, ri,p, r2,p1, r2,p2, r3,c ≤ 0. Furthermore, we
impose the constraints ρr1,a + ρr1,p ≤ 1, ρr2,p1 + ρr2,p2 ≤ 1,
and ρr3,c +ρr3,a +ρr3,p ≤ 1 in order to satisfy the power con-
straints, and αc1 + r1,a = αc3 + r3,a in order to satisfy (124).
Now, we substitute these parameters in the rate constraints
(125)-(139) and approximate the expression in the high SNR
regime. Consider the constraint (125). This can be written as in
(141)-(146). Notice that the approximations in (145) and (146)
follow by considering SNR high enough so that the additive



29

R3,c ≤ log2

(
1 +

|hd3|2P3,c

1 + |hd1|2P1 + |hd3|2(P3,a + P3,p) + |hc2|2P2

)
(141)

= log2

(
1 +

|hd3|2P P3,c

P

1 + |hd1|2P P1

P + |hd3|2P (P3,a+P3,p)
P + |hc2|2P P2

P

)
(142)

= log2

(
1 +

|hd3|2P P3,c

P

1 + |hd1|2P P1,a+P1,p

P + |hd3|2P (P3,a+P3,p)
P + |hc2|2P P2,p1+P2,p2

P

)
(143)

= log2

(
1 +

ραd3+r3,c

1 + ραd1(ρr1,a + ρr1,p) + ραd3(ρr3,a + ρr3,p) + ραc2(ρr2,p1 + ρr2,p2)

)
(144)

≈ log2

(
ραd3+r3,c

1 + ραd1(ρr1,a + ρr1,p) + ραd3(ρr3,a + ρr3,p) + ραc2(ρr2,p1 + ρr2,p2)

)
(145)

≈ [αd3 + r3,c −max{0, αd1 + r1,a, αd1 + r1,p, αd3 + r3,a, αd3 + r3,p, αc2 + r2,p1, αc2 + r2,p2}]+ log2(ρ) (146)

constants can be neglected. By following a similar procedure,
we can show that the rate constraints (125)-(139) translate to

d1,p ≤ [αd1 + r1,p −max{0, αc2 + r2,p1, αc2 + r2,p2}]+,
d3,p ≤ [αd3 + r3,p −max{0, αc2 + r2,p1, αc2 + r2,p2}]+,

d3,p + d1,p ≤ [max{αd3 + r3,p, αd1 + r1,p}
−max{0, αc2 + r2,p1, αc2 + r2,p2}]+,

d2,p1 ≤ [αd2 + r2,p1 −max{0, αc1 + r1,p, αc1 + r1,a,

αc3 + r3,p, αc3 + r3,a, αd2 + r2,p2}]+,
d2,p2 ≤ [αd2 + r2,p2 −max{0, αc1 + r1,p, αc3 + r3,p}]+,

and (147), (148) and (149). This proves the achievability of
the rate given in Proposition 6.

APPENDIX L
SUB-OPTIMALITY OF TDMA-TIN IN REGIME 3: PROOF

OF COROLLARY 6

In this appendix, we want to prove Corollary 6 which states
that TDMA-TIN is not GDoF optimal in regime 3. To prove
this, we need to find power allocations for the IA-CP scheme
(presented in Proposition 6) which lead to higher GDoF than
(73) in regime 3. First, we fix the power allocation parameters
of IA-CP for sub-regime 3A as follows

r1,p = −αc1, r2,p2 = −αc2, r3,c = 0,

r1,a = r2,p1 = r3,a = r3,p = −∞.

This is equivalent to setting the powers of the private, common,
and alignment signals in Appendix K to P1,p = 1

|hc1|2 P2,p2 =
1

|hc2|2 (note that 1
|hc1|2 ,

1
|hc2|2 < P according to (5)), P3,c = P ,

and P1,a = P2,p1 = P3,a = P3,p = 0. This satisfies the power
constraint. Next, we substitute these parameters in Proposition
6 to obtain

d3c ≤ min{αd3 − (αd1 − αc1), αc3 − (αd2 − αc2)},
d1,p ≤ αd1 − αc1, d2,p2 ≤ αd2 − αc2, d3,p, da, d2,p1 ≤ 0,

for an achievable GDoF of

dΣ,IA−CP,3A(α) = (150)
min{αd3 + (αd2 − αc2), αc3 + (αd1 − αc1)}.

Now, similar to the analysis for the LD-PIMAC, by comparing
(150) with (73), we can show that the achievable GDoF using
IA-CP is higher than that of the TDMA-TIN in sub-regime
3A.

Now, we prove Corollary 6 for sub-regime 3B. In this sub-
regime, we choose the power allocation parameters of IA-CP
as follows6

r1,a =
−2

log2 ρ
, r3,a = αc1 − αc3 −

2

log2 ρ
, r3,c =

−2

log2 ρ
,

r3,p =
−2

log2 ρ
− αc3, r2,p1 = −αc2 −

2

log2 ρ
,

r1,p =
−2

log2 ρ
− αc1

r2,p2 = max{(αd3 − αc3)− (αd1 − αc1), αd1 − (αd3 − αc3)}

− αd2 −
2

log2 ρ
.

which corresponds to setting

P1,a =
P

4
, P3,a =

|hc1|2

|hc3|2
P

4
, P3,c =

P

4
,

P3,p =
1

4|hc3|2
, P2,p1 =

1

4|hc2|2
, P1,p =

1

4|hc1|2
,

P2,p2 = max

{
|hd3|2|hc1|2

4|hc3|2|hd1|2|hd2|2
,
P |hd1|2|hc3|2

4|hd3|2|hd2|2

}
.

This power allocation can satisfy the power constraint and
the alignment constraint. By applying this power allocation to
Proposition 6 and letting ρ→∞, we obtain

da = min{αd1 − αd3 + αc3,

(αd3 − αc3)− (αd1 − αc1)},

d3,c = αc3 − (αd2 − αc2), d3,p ≤ αd3 − αc3,
d2,p1 = αd2 − αc2 − αc1, d1,p ≤ αd1 − αc1,
d1,p + d3,p = αd3 − αc3,

and

d2,p2 = max{αd1 − αd3 + αc3,

(αd3 − αc3)− (αd1 − αc1)}.

6In Appendix L, it is explained how we choose the power allocation using
the insight obtained from LD-PIMAC.
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d3,c ≤ min{[αd3 + r3,c −max{0, αd1 + r1,a, αd1 + r1,p, αd3 + r3,a, αd3 + r3,p, αc2 + r2,p1, αc2 + r2,p2}]+,
[αc3 + r3,c −max{0, αc1 + r1,a, αc1 + r1,p, αc3 + r3,a, αc3 + r3,p, αd2 + r2,p1, αd2 + r2,p2}]+}, (147)

da ≤ min{[αc1 + r1,a −max{0, αc1 + r1,p, αc3 + r3,p, αd2 + r2,p2}]+,
[αd3 + r3,a −max{0, αd1 + r1,p, αd1 + r1,a, αd3 + r3,p, αc2 + r2,p1, αc2 + r2,p2}]+,

[αd1 + r1,a −max{0, αd1 + r1,p, αd3 + r3,p, αc2 + r2,p1, αc2 + r2,p2}]+}, if
|hd1|
|hc1|

<
|hd3|
|hc3|

(148)

da ≤ min{[αc1 + r1,a −max{0, αc1 + r1,p, αc3 + r3,p, αd2 + r2,p2}]+,
[αd1 + r1,a −max{0, αd1 + r1,p, αd3 + r3,p, αd3 + r3,a, αc2 + r2,p1, αc2 + r2,p2}]+,

[αd3 + r3,a −max{0, αd1 + r1,p, αd3 + r3,p, αc2 + r2,p1, αc2 + r2,p2}]+}, if
|hd3|
|hc3|

<
|hd1|
|hc1|

(149)

Hence, we achieve the following GDoF

dΣ,IA−CP,3B(α) = (αd3 − αc3) + (αd2 − αc2) + d3,c + da.
(151)

Due to the fact that in sub-regime 3B, d3,c + da is al-
ways positive, the achievable GDoF is strictly larger than
(αd3 − αc3) + (αd2 − αc2). Moreover, by substituting d3,c

into (151), we obtain dΣ,IA−CP,3B(α) = αd3 + da which is
larger than αd3 since in sub-regime 3B, da is positive. Hence,
we conclude that the achievable GDoF of IA-CP is larger than
that of TDMA-TIN given in (73) in sub-regime 3B.

Finally, we show Corollary 6 for sub-regime 3C. To this
end, we choose the power allocation parameters of IA-CP
accordingly. The following power allocation parameters can
be used to show that IA-CP outperforms TDMA-TIN in terms
of GDoF in sub-regime 3C, and thus prove Corollary 6 in this
sub-regime.

r1,a = −(αc1 − αc3)+ − 1

log2 ρ
, r1,p = −αc1 −

1

log2 ρ
,

r2,p1 = −αc2 −
1

log2 ρ
,

r2,p2 = max{d(1)
a , d(2)

a } − αd2 −
1

log2 ρ
,

r3,c = −∞, r3,a = −(αc3 − αc1)+ − 1

log2 ρ
,

r3,p = −αc3 −
1

log2 ρ
,

where d(1)
a and d(2)

a are defined in Table V. These parameters
correspond to setting

P1,a = P3,a
|hc3|2

|hc1|2
, P3,p =

1

2|hc3|2
, P1,p =

1

2|hc1|2
,

P2,p1 =
1

2|hc2|2
, P3,c = 0.

The remaining parameters are given in Table VI.
The given power allocation parameters satisfy the power

constraint and the alignment constraint. By substituting these
power allocation parameters in the constraints in Proposition

6 and letting ρ→∞, we obtain

d3,c = 0, d1,p ≤ αd1 − αc1, d3,p ≤ αd3 − αc3
d1,p + d3,p = max{αd1 − αc1, αd3 − αc3}
d2,p1 = αd2 − αc2 −min{αc1, αc3}
d2,p2 = max{d(1)

a , d(2)
a }, da = min{d(1)

a , d(2)
a },

where d
(1)
a and d

(2)
a are provided in Table V. Hence, the

proposed scheme achieves

dΣ,IA−CP,3C(α)

= 2da + d1,p + d3,p + d2,p1 + d2,p2 + d3,c

= da + max{αd3 − αc3, αd1 − αc1}+ αd2 − αc2︸ ︷︷ ︸
dΣ,TDMA-TIN,3C(α)

> dΣ,TDMA-TIN,3C(α),

since in sub-regime 3C, da is positive.
Therefore, TDMA-TIN is outperformed by IA-CP in regime

3, in terms of GDoF. This shows that TDMA-TIN cannot
achieve the GDoF of the Gaussian PIMAC in regime 3 which
completes the proof of corollary 6.

APPENDIX M
AN EXAMPLE FOR CHOOSING POWER ALLOCATION

PARAMETERS

Here, we explain how to use the insight of the linear
deterministic case, for choosing the power allocation pa-
rameters for the Gaussian case. To do this, we explain the
power allocation IA-CP for sub-regime 3B. First we recall the
graphical illustration of the received signal in the LD-PIMAC
in this sub-regime shown in Fig. 10. Since we are interested
in how to allocate the powers for the Gaussian case, we need
to replace the bit levels with the power levels. To do this, we
replace nk by αk for all k ∈ {d1, c1, d2, c2, d3, c3}. Doing
this, we get Fig. 12. Notice that, while the length of each
block in Figure 10 (for the LD-PIMAC) represents the rate
of the corresponding signal, in the Gaussian case it represents
the DoF achieved by each signal. As an example, the length
of the block which represents x3,c is given by d3,c in Fig. 12.
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d
(1)
a d

(2)
a

αd3 − αc3 > αd1 − αc1
αc3 < αc1 αd3 − αc3 − αd1 + αc1 αd1 − αc1 − αd3 + 2αc3

αc1 ≤ αc3 αd3 − αc3 − αd1 + αc1 αd1 − αd3 + αc3

αd3 − αc3 < αd1 − αc1
αc3 < αc1 αd1 − αc1 − αd3 + αc3 αd3 − αd1 + αc1

αc1 ≤ αc3 αd1 − αc1 − αd3 + αc3 αd3 − αc3 − αd1 + 2αc1

TABLE V: The values of d(1)
a and d(2)

a .

P3,a P2,p2

|hd3|
|hc3|

>
|hd1|
|hc1|

|hc3|2 < |hc1|2 P
2

max
{

|hd3|2|hc1|2
2|hd1|2|hd2|2|hc3|2

,
P |hd1|2|hc3|4

2|hd3|2|hc1|2|hd2|2

}
|hc1|2 ≤ |hc3|2 P

2
|hc1|2
|hc3|2

max
{

|hd3|2|hc1|2
2|hd1|2|hd2|2|hc3|2

,
P |hd1|2|hc3|2
2|hd3|2|hd2|2

}
|hd3|
|hc3|

<
|hd1|
|hc1|

|hc3|2 < |hc1|2 P
2

max
{

|hd1|2|hc3|2
2|hc1|2|hd3|2|hd2|2

,
P |hd3|2|hc1|2
2|hd1|2|hd2|2

}
|hc1|2 ≤ |hc3|2 P

2
|hc1|2
|hc3|2

max
{

|hd1|2|hc3|2
2|hc1|2|hd3|2|hd2|2

,
P |hd3|2|hc1|4

2|hc3|2|hd1|2|hd2|2

}
TABLE VI: Power allocation parameters (P3,a and P2,p2) for IA-CP in sub-regime 3C.

0
Tx1 Tx2 Tx3 Tx1 Tx2 Tx3

Rx1 Rx2

αd3
x3,c

0

x3,a

0

x3,p

0αc2
0

αd1
x1,a

0

x1,p

αc1
x1,a

0

da

αd2, αc3
0

x2,p1

0

x2,p2

x3,c

0

x3,a

0

Fig. 12: A graphical illustration showing the received signals at receivers 1 and 2 of the Gaussian PIMAC for sub-regime 3B.

Notice that the length of the blocks which represent x1,a and
x3,a are the same and d1,a = d3,a = da.

Now, we are ready to choose the power allocation param-
eters. In what follows, first we choose the power allocation
parameters of the common signal, next alignment signals and
finally we deal with private signals. First, consider x3,c. As it
is shown in Figure 12, this signal is received at Rx1 at power
level αd3. Roughly speaking, this power level is a logarithmic
representation of P |hd3|2. By dividing this received power
by |hd3|2 which represents the channel from Tx3 to Rx1, we
obtain the transmit power of x3,c. Hence, at the moment we
set the power of x3,c to P . Similarly, we can set the power of
x1,a to P . Since x3,a and x1,a have to be aligned at Rx2, the
alignment condition

P3,a|hc3|2
!
= P1,a|hc1|2

has to be satisfied. Hence, we set the power of x3,a to P |hc1|2
|hc3|2 .

Now, we need to choose the power of the private signals. First
consider x1,p, x2,p1, and x3,p. All these signals are received at
the noise level at the undesired Rx. Hence, we set the power of
x1,p, x2,p1, and x3,p to 1

|hc1|2 , 1
|hc2|2 , and 1

|hc3|2 , respectively.
Finally, we set the power of x2,p2. This signal is received at

Rx2 at power level αc1 − da. We can obtain da easily from

Ra = min{(nd3 − nc3)− (nd1 − nc1), nd1 + nc3 − nd3}

(given for the linear deterministic case). To obtain da, we
replace the n-parameters in Ra with the α-parameters. Hence,
we write

da = min{(αd3 − αc3)− (αd1 − αc1), αd1 + αc3 − αd3}

Hence, x2,p2 is received at Rx2 at power level

αc1−da = max{(αd3−αc3)−(αd1−αc1), αd1−(αd3−αc3)}.

Writing this power level in linear scale, we obtain

max

{
P |hd3|2P |hc1|2

P |hc3|2P |hd1|2
,
P |hd1|2P |hc3|2

P |hd3|2

}
.

Note that this is the received power of x2,p2 at Rx2. To obtain
the transmit power of x2,p2, we divide this expression by
|hd2|2. Doing this, the allocated power to x2,p2 is

max

{
P |hd3|2P |hc1|2

P |hc3|2P |hd1|2|hd2|2
,
P |hd1|2P |hc3|2

P |hd3|2|hd2|2

}
.

It is obvious that the chosen powers violate the power con-
straint P . To fix this, we scale the allocated powers by a
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constant such that the power constraints are satisfied. Hence,
we write

P1,a = aP, P1,p = a
1

|hc1|2
, P2,p1 = a

1

|hc2|2
,

P3,c = aP, P3,a = a
P |hc1|2

|hc3|2
, P3,p = a

1

|hc3|2

P2,p2 = amax

{
|hd3|2|hc1|2

|hc3|2|hd1|2|hd2|2
,
P |hd1|2|hc3|2

|hd3|2|hd2|2

}
.

with

max{P1,a + P1,p, P2,p1 + P2,p2, P3,c + P3,a + P3,p}
!
≤ P.

All three power constraints will be satisfied if a ≤ 1
3 . For

sake of simplicity, we choose a such that its binary logarithm
is integer. Hence, here we use a = 1

4 . Notice that since a
does not grow with ρ, this scaling does not have any impact
on the GDoF. Now, we want to obtain the power allocation
parameter r for each signal. For instance, consider signal x3,c

with power P3,c = P
4 . Then, we can write

r3,c =
log2

(
P3,c

P

)
log2 ρ

=
−2

log2 ρ

Similarly, for all other signals, we can write

r1,a =
−2

log2 ρ
, r1,p =

−2

log2 ρ
− αc1,

r2,p1 = − 2

log2 ρ
− αc2, r3,p =

−2

log2 ρ
− αc3,

r3,c =
−2

log2 ρ
, r3,a = − 2

log2 ρ
+ αc1 − αc3,

and

r2,p2 = max{(αd3 − αc3)− (αd1 − αc1),

αd1 − (αd3 − αc3)} − αd2 −
2

log2 ρ
.

APPENDIX N
SUB-OPTIMALITY OF TIN WHEN αd3 − αc3 = αd1 − αc1
In this section, we show the sub-optimality of TDMA-TIN

when αd3−αc3 = αd1−αc1 holds. To do this, we propose a
scheme which outperforms TDMA-TIN in term of GDoF. This
scheme is similar to IA-CP (proposed in Appendix K) from
this aspect that both schemes are based on common and private
signalling with interference alignment. The difference of the
schemes is that while in IA-CP the interference alignment
is done in the signal level space, in this scheme, the phase
alignment is required [28]. This scheme is called PA-CP (phase
alignment with common and private signalling).

Before we present the scheme in details, we simplify our
model as follows. In Gaussian PIMAC, the received signals of
two receivers are given by

y1 = |hd1|ejϕd1x1 + |hc2|ejϕc2x2 + |hd3|ejϕd3x3 + z1

y2 = |hc1|ejϕc1x1 + |hd2|ejϕd2x2 + |hc3|ejϕc3x3 + z2.

Now, by defining x̃1 = ejϕd1x1, x̃3 = ejϕd3x3, ỹ2 =
e−j(ϕc1−ϕd1)y2, and z̃2 = e−j(ϕc1−ϕd1)z2, we write

y1 =|hd1|x̃1 + |hc2|ejϕc2x2 + |hd3|x̃3 + z1

ỹ2 =|hc1|x̃1 + |hd2|ej(ϕd2−ϕc1+ϕd1)x2

+ |hc3|ej(ϕc3−ϕd3−ϕc1+ϕd1)x̃3 + z̃2.

We proceed by defining x̃2 = ej(ϕd2−ϕc1+ϕd1)x2, θ = ϕc2 −
ϕd2 +ϕc1−ϕd1, and ϕ = ϕc3−ϕd3−ϕc1 +ϕd1. Doing this,
we obtain

y1 = |hd1|x̃1 + |hc2|ejθx̃2 + |hd3|x̃3 + z1

ỹ2 = |hc1|x̃1 + |hd2|x̃2 + |hc3|ejϕx̃3 + z̃2.

As it is shown above the input-output relationship of any
PIMAC can be rewritten such that all channels except two of
them are real. Hence, without loss of generality, we present
the transmission scheme for a simple PIMAC with the input
output relationship given as follows

y1 = |hd1|x1 + |hc2|ejθx2 + |hd3|x3 + z1 (152)

y2 = |hc1|x1 + |hd2|x2 + |hc3|ejϕx3 + z2. (153)

Note that all input and output signals in (152) and (153)
are complex. Now, by writing the complex numbers in an
alternative vector form with real entries (as in [28]), we obtain[

yR1
yI1

]
=|hd1|

[
xR1
xI1

]
+ |hc2|

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
xR2
xI2

]
+ |hd3|

[
xR3
xI3

]
+

[
zR1
zI1

]
(154)[

yR2
yI2

]
=|hc1|

[
xR1
xI1

]
+ |hd2|

[
xR2
xI2

]
+ |hc3|

[
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

] [
xR3
xI3

]
+

[
zR2
zI2

]
, (155)

where xR and xI represent the real and imaginary part of
signal x, respectively. Now, we are ready to present the
transmission scheme. The transmitters split their messages as
follows:
• Tx1 splits its message W1 into WR

1,p, W I
1,p, and W I

1,a

with rates RR1,p, RI1,p, and RI1,a, respectively.
• Tx2 splits its message W2 into WR

2,p and W I
2,p with rates

RR2,p, RI2,p, respectively.
• Tx3 splits its message W3 into WR

3,c, W
I
3,c, and WR

3,a

with rates RR3,c, R
I
3,c, and RR,n3,a , respectively.

Note that in what follows we set RI1,a = RR3,a = Ra.

A. Encoding:

Similar to the scheme presented in Appendix K, while the
alignment messages are encoded using nested-lattice codes
(Λf ,Λc) with power 1 and rate Ra, other messages are
encoded using Gaussian random codebooks. Encoding the
alignment signals is done in the same way as discussed in
Appendix K. For example, the message W I

1,a is encoded into
a length-n codeword λI,n1,a using the nested-lattice codebook
(Λf ,Λc). Then, the signal

xI,n1,a =
√
P I1,a

[(
λI,n1,a − d

I,n
1,a

)
mod Λc

]
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is constructed, where P I1,a is the power allocated to this signal
and dI,n1,a is an n-dimensional random dither vector which is
also known at the receivers. Similarly, Tx3 generates xR3,a. The
generated signals and their powers are summarized in Table
VII.

Then, each transmitter generates its signal as follows7[
xR1
xI1

]
=

[
xR1,p
xI1,p

]
+

[
0
xI1,a

]
,

[
xR2
xI2

]
=

[
xR2,p
xI2,p

]
, (156)[

xR3
xI3

]
=

[
xR3,c
xI3,c

]
+ xR3,a

[
sin(ϕ)
cos(ϕ)

]
. (157)

Note that the assigned powers given in Table VII satisfy the
power constraint.

B. Decoding:

First, we present the decoding at Rx1. By using (156) and
(157), we rewrite the received signal (154) as follows[

yR1
yI1

]
=|hd1|

([
xR1,p
xI1,p

]
+

[
0
xI1,a

])
+ |hc2|

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
xR2,p
xI2,p

]
+ |hd3|

([
xR3,c
xI3,c

]
+ xR3,a

[
sin(ϕ)
cos(ϕ)

])
+

[
zR1
zI1

]
.

Note that yR1 and yI1 are received over two orthogonal dimen-
sions, i.e., real and imaginary part of the received signal y1.
Hence, Rx1 can decode each dimension without suffering from
any interference caused by the other dimension. Here, Rx1
decodes first yR1 and then yI1 . Rx1 decodes yR1 in the following
order: WR

3,c → WR
3,a → WR

1,p. The receiver decodes each of
these signals while the remaining signals in yR1 are treated as
noise, then it removes the contribution of the decoded signal,
and proceeds with decoding. Similar to Appendix K, we can
write the conditions for the reliable decoding of xR3,c, x3,a, and
xR1,p as in (158)-(160). As long as the rates of the messages
satisfy the conditions (158)-(160), Rx1 is able to decode xR3,c,
xR3,a, and xR3,p successfully. Hence, Rx1 is able to remove the
interference caused by xR3,a before decoding yI1 . Doing this
Rx1 obtains

yI1 − cos(ϕ)xR3,a =|hd1|(xI1,p + xI1,a) + |hc2|(sin(θ)xR2,p

+ cos(θ)xI2,p) + |hd3|xI3,c + zI1 .

Next, Rx1 decodes in the following order: W I
3,c → W I

1,a →
W I

1,p. This successive decoding is done similar to above.
The successful decoding can be accomplished as long as the
conditions in (161)-(163) are satisfied. Now, we explain the
decoding at Rx2. The received signal at Rx2 in (155) can be
rewritten as[
yR2
yI2

]
= |hc1|

([
xR1,p
xI1,p

]
+

[
0
xI1,a

])
+ |hd2|

[
xR2,p
xI2,p

]

+ |hc3|


[
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

]
︸ ︷︷ ︸

U

[
xR3,c
xI3,c

]
+

[
0
xR3,a

]+

[
zR2
zI2

]
.

7We drop the superscript n since all sequences have the length n.

Note that due to the rotation matrix U , signals xR3,c and
xI3,c are received in both components yR2 and yI2 . In order to
separate these two signals in two orthogonal dimensions, we
rotate the vector

[
yR2 yI2

]T
by multiplying UT from right

hand side to it. Note that UTU = I2. Hence, we have

UT

[
yR2
yI2

]
=UT

[
|hc1|

([
xR1,p
xI1,p

]
+

[
0
xI1,a

])
+ |hd2|

[
xR2,p
xI2,p

]
+|hc3|

[
0
xR3,a

]
+

[
zR1
zI1

]]
+ |hc3|

[
xR3,c
xI3,c

]
. (164)

Now, Rx2 decodes WR
3,c and W I

3,c separately. This can be
done successfully as long as the conditions in (165) and
(165) are satisfied. After successful decoding of xR3,c and
xI3,c, Rx2 rotates the vector in (164) back to

[
yR2 yI2

]T
by multiplying U from right hand side to (164). Next, it
removes the interference caused by xR3,c and xI3,c and obtains[
ỹR2 ỹI2

]T
given by[

ỹR2
ỹI2

]
=|hc1|

([
xR1,p
xI1,p

]
+

[
0
xI1,a

])
+ |hd2|

[
xR2,p
xI2,p

]
+ |hc3|

[
0
xR3,a

]
+

[
zR1
zI1

]
.

Now, Rx2 proceeds by decoding xR2,p while xR1,p is treated
as noise. Notice that all signals which are contained in ỹI2
do not cause any interference during decoding xR2,p. Reliable
decoding of xR2,p is possible as long as

RR2,p ≤
1

2
log2

(
1 +

|hd2|2PR2,p
1
2 + |hc1|2PR1,p

)
. (167)

Next, Rx2 decodes W I
2,p → f(WR

3,a,W
I
1,a), where

f(WR
3,a,W

I
1,a) is the sum

(
λR3,a + λI1,a

)
mod Λc. Rx2 can

decode W I
2,p successfully if

RI2,p ≤ (168)

1

2
log2

(
1 +

|hd2|2P I2,p
1
2 + |hc1|2P I1,p + |hc1|2P I1,a + |hc3|2PR3,a

)
.

Next, Rx2 removes the interference caused by xI2,p and
decodes f(WR

3,a,W
I
1,a). Note that xR3,a and xI1,a have to be

aligned at Rx2 since the transmit power of xR3,a and xI1,a need
to satisfy

|hc1|2P I1,a = |hc3|2PR3,a.

The decoding of f(WR
3,a,W

I
1,a) is done successfully as long

as [29]

Ra ≤
1

2

[
log2

(
1

2
+

|hc1|2P I1,a
1
2 + |hc1|2P I1,p

)]+

. (169)

This schemes achieves

RΣ,PA-CP =RR1,p +RI1,p +Ra +RR2,p +RI2,p

+RR3,c +RI3,c +Ra, (170)

where all rates above satisfy (158)-(163) and (165)-(169). By
dividing the sum-rate in (170) by log2 ρ and letting ρ → ∞,
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Encoded Message Generated Signal Power Encoding

WR
1,p xR,n

1,p PR
1,p = 1

4
1

|hc1|2
Gaussian random codebook

W I
1,p xI,n1,p P I

1,p = 1
4

1
|hc1|2

Gaussian random codebook

W I
1,a xI,n1,a P I

1,a = P
4
min

{
1,

|hc3|2
|hc1|2

}
nested-lattice codebook

WR
2,p xR,n

2,p PR
2,p = 1

4
1

|hc2|2
Gaussian random codebook

W I
2,p xI,n2,p P I

2,p = 1
4

1
|hc2|2

Gaussian random codebook

WR
3,c xR,n

3,c PR
3,c =

{
P
4

if |hd2|2
|hc2|2

≤ P |hc3|2

0 otherwise
Gaussian random codebook

W I
3,c xI,n3,c P I

3,c =

{
P
4

if |hd2|2
|hc2|2

≤ P |hc3|2

0 otherwise
Gaussian random codebook

WR
3,a xR,n

3,a PR
3,a = P

4
min

{
1,

|hc1|2
|hc3|2

}
nested-lattice codebook

TABLE VII: The message encoding and the allocated power to each signal are given in this table.

RR3,c ≤
1

2
log2

(
1 +

|hd3|2PR3,c
1
2 + |hd3|2PR3,a sin2(ϕ) + |hd1|2PR1,p + |hc2|2(cos2(θ)PR2,p + sin2(θ)P I2,p)

)
(158)

Ra ≤
1

2
log2

(
1 +

|hd3|2PR3,a sin2(ϕ)
1
2 + |hd1|2PR1,p + |hc2|2(cos2(θ)PR2,p + sin2(θ)P I2,p)

)
(159)

RR1,p ≤
1

2
log2

(
1 +

|hd1|2PR1,p
1
2 + |hc2|2(cos2(θ)PR2,p + sin2(θ)P I2,p)

)
. (160)

RI3,c ≤
1

2
log2

(
1 +

|hd3|2P I3,c
1
2 + |hd1|2P I1,p + |hd1|2P I1,a + |hc2|2(sin2(θ)PR2,p + cos2(θ)P I2,p)

)
(161)

Ra ≤
1

2
log2

(
1 +

|hd1|2P I1,a
1
2 + |hd1|2P I1,p + |hc2|2(sin2(θ)PR2,p + cos2(θ)P I2,p)

)
(162)

RI1,p ≤
1

2
log2

(
1 +

|hd1|2P I1,p
1
2 + |hc2|2(sin2(θ)PR2,p + cos2(θ)P I2,p)

)
. (163)

RR3,c ≤
1

2
log2

(
1 +

|hc3|2PR3,c
1
2 + cos2(ϕ)[|hc1|2PR1,p + |hd2|2PR2,p] + sin2(ϕ)[|hc1|2(P I1,p + P I1,a) + |hd2|2P I2,p + |hc3|2PR3,a]

)
(165)

RI3,c ≤
1

2
log2

(
1 +

|hc3|2P I3,c
1
2 + sin2(ϕ)[|hc1|2PR1,p + |hd2|2PR2,p] + cos2(ϕ)[|hc1|2(P I1,p + P I1,a) + |hd2|2P I2,p + |hc3|2PR3,a]

)
(166)

we write the achievable GDoF

dΣ,PA-CP(α) =dR1,p + dI1,p + da + dR2,p + dI2,p

+ dR3,c + dI3,c + da, (171)

where

dC1,p =
RC1,p

log2 ρ
, da =

Ra
log2 ρ

,

dC2,p =
RC2,p

log2 ρ
, dC3,c =

RC3,c
log2 ρ

,

C ∈ {R, I} as ρ → ∞. The terms above can be obtained by
substituting the powers of each signal given in Table VII into
the rate constraints in (158)-(163) and (165)-(169). Hence, we

write

dR1,p = dI1,p =
1

2
(αd1 − αc1) (172)

da =
1

2
min{αc1, αc3} if ϕ mod π 6= 0 (173)

dR2,p =
1

2
(αd2 − αc2) (174)

dI2,p =
1

2
[(αd2 − αc2)−min{αc1, αc3}] (175)

dR3,c = dI3,c =
1

2
(αc3 − (αd2 − αc2))+. (176)
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Now, by substituting (172)-(176) into (171), we see that this
schemes achieves a GDoF of

dΣ,PA-CP(α) =αd1 − αc1 + αd2 − αc2 + (αc3 − [αd2 − αc2)]+︸ ︷︷ ︸
dΣ,TDMA-TIN(α)

+
1

2
min{αc1, αc3} if ϕ mod π 6= 0. (177)

Since PA-CP achieves a higher GDoF than TDMA-TIN as
long as ϕ mod π 6= 0, we conclude that TDMA-TIN cannot
achieve the GDoF of PIMAC when αd3 − αc3 = αd1 − αc1
except over a subset of channel coefficient values of measure
zero.
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