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Abstract

Using a probabilistic interpretation of an n dimensional extension of
Papoulis's Generalized Sampling Theorem, an iterative algorithm has
been devised for 3D reconstruction of a Lambertian surface at sub-
pixel accuracy. The problem has been formulated as an optimization
one in a Bayesian framework. The latter allows for introducing a pri-
ori information on the solution, using Markov Random Fields (MRF).
The estimated 3D features of the surface are the albedo and the height
which are obtained simultaneously using a set of low resolution images.
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Low level image processing, Markov Random Fields (MRF).

1 Introduction

Most super-resolution algorithms proposed in the literature are confined to 2D
applications and are concerned with the direct problem of merging low resolution
2D data on a finer grid [8] [10] [11]. In [4] [17] a 3D version was proposed where the
high resolution albedo of a Lambertian surface was estimated with the knowledge
of high resolution height and vice versa. In this paper, the idea has been extended
to the inverse problem of simultaneous reconstruction of albedo and height. The
algorithm has been rigorously derived from the extension of Papoulis's Generalized
Sampling Theorem [13] to nD cases.

The problem has been formulated using an optimization approach in a proba-
bilistic framework, with Markov Random fields (MRF) [2] modeling the a priori
knowledge. A generalized simplex algorithm [16] has been proposed for optimiz-
ing a cost function iteratively, giving sub-pixel 3D information on the observed
surface. The simplex algorithm is initialized with a set of low resolution data.

Tests have been carried out on both synthetic and aerial or satellite images.
The algorithm can be applied in the area of aerial and satellite image processing.
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2 Preliminary Assumptions

We shall, henceforth, assume that our sensor is a pin-hole camera located far
enough from the observed surface so that the projection of any surface point on
the retina of the camera can be regarded as being orthographic. Moreover, camera
parameters will be assumed to be known. As for the surface, we shall, hereafter,
sample it into a two dimensional array and represent the surface albedo by g(x, y)
and the 3D graph of the surface by z(x, y).

Image irradiance will be defined by the impulse response or the Point Spread
Function (PSF) Hw(x,y) of the imaging system. The remotely sensed view is
usually affected by several impulse response functions: atmosphere ha, the optics
h0 and the sampling aperture hs. Therefore the resultant PSF is given by ha*h0*hs

(where * denotes convolution). Each component introduces a type of smoothing
operation and as a result, the net effect of these components in a complex remote
sensing system can often be quite reasonably approximated by a 2D Gaussian
pulse with a radius of gyration which depends on the resolution constraints of the
imaging system [18]. In general the PSF can be approximated by:
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where K is a constant depending on the gain of the system, wx\ and wyi are the
radii of gyration about the two axes and a is the coupling factor between two
directions. Using the following rotational transformation of our reference frame
[18]:

x — x\cos<p — 2/1 sirup

y = xisinip + y\cos<p

W
2

X = V

u>l = w
2
xlsin

2
<p-

we will obtain:

(3)

For the case where the gray levels are preserved by the system [18], we have
K = 2irJ w . Therefore assuming a circulary-symmetric (isotropic) Gaussian
function the radius of gyration about both axes will be equal and given by w = cr,

where a is the standard deviation of the kernel. Thus:

(4)

Therefore, by including a PSF [1][15] in our image formation model, we distin-
guish our image irradiance equation from the one defined in shape from shading
algorithms [9]. Thus, assuming shift invariance the image irradiance is given by:

/(*,/)= Yl Hw(x-xc,y-yc)g(x,y)R(x,y) (5)
(x,y)€w
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where I(k, I) is the image intensity at coordinates (k, I), Hw(x — xc, y — yc) is the
PSF shifted by (xc,yc), and R(x,y) is the reflection function of the Lambertian
surface, whose product with the albedo g(x,y) yields the luminance energy at co-
ordinates (x, y) in the sampled array. The reflection function is, in fact, a function
of the normal to the surface (see [9] and [3] for details).

Camera coordinates (k, I) are related to the world coordinate frame by:

k - aux + auy + ai3z + a14 (6)

/ = a2\x + 0222/ + a23z + a24 (7)

Assuming that camera motions from one low resolution frame to another are only
composed of translation and rotation around the origin of the world frame [7]:

an
 = a22 = Sxcos0 (8)

—a,\2 = o-2i = SySinO (9)

where Sx and Sy are the ratios of the sampling rates of the desired high resolu-
tion images to those of the low resolution frames along x and y axes, respectively,
and 8 is the rotation angle of the camera around the origin of the world frame.
Working on square images of widths d and D for the low resolution and the high
resolution frames, respectively, and assuming uniform and equal sampling rates
along both axes, we have: Sx = Sy = JJ . As for other camera parameters, we
have set a13 = a23 = 0 and a i 4 and a24 depend on the translation of the camera
along the two axes. The latter should be in such a way that sub-pixel overlap is
obtained between pixels of any two observed images in the sequence.

3 A Probabilistic view of Generalized Sampling
Theorem

We can, now, formulate the problem as that of solving equation (5) which is a
special case of the image irradiance equation [9] [3]. To this end we need to recall
some definitions as well as the Generalized sampling theorem in n dimensions:

Unless otherwise mentioned, all functions are n-dimensional vector functions
and f(i) «-* T{Q) denote a Fourier transform pair.

Definition: A finite energy function f(t) [14] is said to be a-band limited if its

Fourier transform T\w) = 0 outside the finite size hypercube \ w,- |> <r8- , i = 1 . . .n.

Theorem: nD Generalised Sampling Theorem

We apply a a-band limited function f(t) as a common input to m independent lin-

ear shift invariant systems with transfer functions 7ii(w)., .7ira(w). The resulting

outputs are:

^ / / n
) d w i . . . d w n (10)
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where r — l . . . m , u\...wn are the components of Co and T denotes the trans-

position. Next, we sample these outputs at -^th of the Nyquist rate along each

dimension, ie. with a sampling matrix S whose diagonal terms are ^-- '

S = [sab] , sab = if a = b = i (11)

It can be shown that [6] :

m oo oo

> <f>r(bk)yr{t — bk) (lz)

where k = [k\ . . .kn] is an integer valued vector and:

/yr(i) = -lMr[ •••/ Yr(u,
(2TT) J_Ol J_On

YT(uJ,i) are given by the following set of simultaneous equations:

(13)

l)^r),£=l...m (14)
r=l

where c = [ ^ . . . ̂ ] and -az <LOi < -en + ^ .

Note that the n-dimensional expansion in (12) is valid iff the sampling matrix
S is non-singular. Herein, we will assume that the matrix 5 is diagonal, ie. we
will assume a rectangular sampling. This, merely, implies that the sampling is
performed independently along each dimension, in which case, 5 will be automat-
ically non-singular, since the sampling density | S |= n"=i V5" 7̂  0-

Now, let the number of available low resolution frames be £ < m then by simply
applying the principle of superposition, one can attempt to reconstruct a sample
of f(t) at the resolution ^ t h of the Nyquist rate by minimizing the following error:

e
2
 =

oo

E MSk)yr(t-Sk))
2
} (15)

r = l ki = — oo

where ft (i) is a sample of f(i) at ^ t h of the Nyquist rate along each dimension
and £ represents the expected value. Alternatively, we can minimize the error
after sampling. Therefore if 4>r(Sk) denotes an estimate of <f>r(Sk):

r = l

An interesting situation arises when fi(i) is expressed in terms of two (or more)
variables (eg. albedo and height): ft(i) — /^(si(t), «2(i))- We can then seek high
resolution information for s\(i) and S2(t). This is obviously an inverse problem
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and can be tackled using regularization or equivalently MRF's.

The n-dimensional extension of Papoulis' sampling expansion is an ideal tool
for our purpose. In this context, in a sequence of low resolution images, each
frame can be assumed to contain the recuring samples of a nonuniform sampling
sequence obtained by applying a common input function to a set of linear shift
invariant systems. We, obviously, need to register the recuring samples using reg-
istration algorithms such as [7] [19].

Let g and z denote the vectors of unknown variables, ie. the vectors of the
albedo g(x,y)

 a nd the height Z(XtV) on the super-resolution grid at ^-th of the
Nyquist rate. Let also / denote the vector of all observed pixel values in our low
resolution frames. Then using Bayes law on probability distributions and assuming
that g and z are independent:

p(g, z | /) = K p(I | g, z) p(g)p(z) , where K is a constant (17)

Applying the Hammersley-Clifford theorem [12] to p(g) and p(z) and assuming a
Gaussian distribution for p(I \ g, z) we can calculate the Maximum a Posteriori
(MAP) estimator as follows:

E(g, z) = -In p((g, z) \ I) = t
T
C~

l
e + u

T
gC;

l
ug + uJC^u, + constant (18)

Using a membrane model for p(g) and p(z) [5], and assuming that e
T
C~

1
e = e?,

given by (16), we can write the following cost function at any point (x, y) of our
sampled array:

( , ) ( , ) ( , y )

(19)
where (̂k,i) is the set of all pixels in the neighbourhood of (k, I) whose intensities
are affected by the irradiance at (x,y), f(x,y) is the neighbourhood structure de-
pending on the order of the MRF associated with the estimates g and z , a\, cr'l
and a\ are the variances of the error vector, g and z, respectively. Therefore, the
MAP estimator amounts to minimizing (19) for which we have employed a gener-
alized simplex algorithm [16]. Equation (19) has been obtained by approximating
the covariance matrices as being diagonal with constant terms on the diagonal.

4 Proposed Algorithm

The algorithm is iterative and is shown schematically in Figure 1. It proceeds as
follows: we first initialize it using a set of low resolution images. The imaging
process is then simulated to create a set of low resolution estimates of sensor ob-
servations. The objective function in (19) characterizing the estimation error and
the Gibbs energy of our MRF is minimized simultaneously with respect to the
albedo and the surface height. The algorithm is repeated iteratively until no more
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Figure 1: Schematic diagram of the algorithm

reduction in the objective function is achieved for a preset number of successive
iterations.

The major obstacle is the non-convexity of the objective function. Different
optimization algorithms have been proposed in the litterature for minimising a
non-convex function which have been briefly compared in [3]. In this article, we
have considered the use of a generalized simplex algorithm which is based on the
idea of constructing a non-local linear approximation of a function by updating an
n-dimensional simplex in IRn (see [16] for details). We have initialized the simplex
algorithm using a set of low resolution images and a noisy/sparse low resolution
height map.

5 Discussion

By interpreting the Generalized Sampling Theorem in probabilistic terms we have
shown that it is possible to reconstruct, simultaneously, sub-pixel information on
the albedo and the height of a Lambertian surface, provided that a sequence of
independent images have been given at a lower resolution.

The method exploits the non-redundancy of information in a sequence of image
frames with interframe sub-pixel overlap, to enhance the spacial resolution by data
fusion. It is, indeed quite reasonable to assume that a set of images taken from
a surface, almost always contain non-redundant information, since the chance of
exact correspondence is extremly low.

Two main problems were encountered when testing the algorithm: one is the
trade-off between the regularization term and the error term in the cost function,
which proved to be not so easy when dealing with real images. For the synthetic
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image the problem was almost non-existent due to the fact that the test images did
not exhibit discontinuities. This problem could, therefore, be handled by taking
into acount a discontinuity field and hence by including extra terms in the cost
function. The second problem was the convergence of the simplex algorithm which
slows down as we get closer to the optimum point. A possible solution would be to
switch to a gradient method in the neighbourhood of the solution where the cost
function exhibits convexity. The simplex algorithm, however, is robust to noise
and is very efficient far from the solution.

Since the problem has been formulated as a constrained optimization one, fur-
ther extensions of the proposed method can be considered along the same direction.
Therefore, we might consider optimizing with respect to parameters of the imag-
ing system which could yield for example the interframe registration, optimal light
source direction, etc.

Experimental results follow.

6 Experimental Results

In this section we present some tests on both synthetic and real data. Signal to
Noise Ratio (SNR) is used for measuring the quality of results. Original images
were 50x50 and 100x100 for low resolution and high resolution, respectively.

Figure 2: (a), (b) albedo k height, (c) one of the simulated low resolution camera
images, (d) a noise corrupted low resolution height SNR=5 dB, (e) reconstructed
albedo SNR=34 dB, (f) reconstructed height SNR=27 dB
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Below are further results on real data. The aerial image has been assumed to
represent the albedo (Figure 3(a)). Using the high resolution height map a se-
quence of shifted and degraded low resolution images have been produced accord-
ing to the Lambertian model, described above (note that only one low resolution
frame has been shown below). The reconstructed images are given in Figure 3(e)
and 3(f)

Figure 3: (a) albedo, (b) height, (c) one of the low resolution camera images,
(d) a noise corrupted low resolution height SNR=5 db, (e) reconstructed albedo
SNR=25 dB, (f) reconstructed height SNR=22 dB
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Here are further results on an aerial image. Same comments apply:

Figure 4: (a) albedo, (b) height, (c) one of the simulated low resolution camera
images, (d) a noise corrupted low resolution height SNR=5 db, (e) reconstructed
albedo SNR=26 dB, (f) reconstructed height SNR=24 dB
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