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Abstract

We present the results of an experiment in which we observe a sub-

Poissonian photocurrent. This photocurrent is generated by detecting

the light emitted from a high-quantum-e�ciency light-emitting diode

driven by a high-impediance current source. We also present classi-

cal, semi-classical and quantum mechanical theories of photoelectric

detection. The observed sub-Poissonian statistics are in agreement with

quantum mechanical predictions, but are unexplainable using the clas-

sical and semi-classical theories. The experiment uses only equipment

already found in most undergraduate laboratories, making this a nice

experiment to demonstrate a purely quantum mechanical e�ect.
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1 Introduction

The statistical properties of light beams have been of interest to physicists since

at least the end of the last century. This interest arises naturally from attempts

to answer the question; \Is light a particle or a wave?" The arguments in favor

of either interpretation are numerous, and many scientists have hoped that a

deeper understanding of the full statistics of di�erent types of light beams

could help illuminate the answer to this seemingly unanswerable question.

It was Einstein who �rst applied Plank's radiation formula to the problem

of the energy 
uctuations of blackbody radiation in an enclosure at thermal

equilibrium. [1, 2] We will call E� the energy of the radiation at frequency �

in a small frequency interval d�. By using Plank's blackbody radiation law,

Einstein showed that the variance of the energy 
uctuations is given by [3]

h(�E�)
2i = h�hE�i+

c3

8��2d�V
hE�i2; (1)

where V is the volume of the enclosure.

As Einstein recognized, the �rst term corresponds to the 
uctuations of

classical particles of energy h�, while the second term corresponds to the 
uc-

tuations of classical waves. This second term alone is obtained if the Rayleigh-

Jeans formula for blackbody radiation is used. Thus, as far back as 1909 it

was realized that light 
uctuations have two distinct components: a wave-like

component, and a particle-like component.
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Here we will not directly discuss the question of the wave-particle duality of

light. The main question we will attempt to address is, \When is it necessary

to treat light �elds as quantum mechanical objects?" The fully quantum

mechanical model of light detection is the only model in agreement with all

experiments to date. However, in most cases it is not necessary to treat the

�eld quantum mechanically, and classical or semi-classical detection theory

is su�cient to describe experimental results. Here we will describe the basic

elements of classical, semi-classical and quantum mechanical photodetection

theory. We will describe how they are similar, but also how they are di�erent.

Particular attention will be paid to the circumstances when the quantum model

allows for predictions that cannot occur in the other two models.

We then present the results of an experiment that is in agreement with

quantum mechanical detection theory, but violates classical and semi-classical

theories. In this experiment, we observe the statistical properties of the light

emitted by a high-quantum-e�ciency light-emitting diode (LED). We show

that under certain conditions, the 
uctuations of the detected light are smaller

than those allowed by classical and semi-classical photodetection theory. This

noise reduction indicates that the light �eld generated by the LED is purely

quantum mechanical, and has no classical analog.

The results of this experiment are not new, having been previously re-

ported. [4, 5, 6] However, we have simpli�ed the apparatus necessary for

observing a convincing quantum mechanical e�ect (0.7 dB). The necessary
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equipment will be found in most undergraduate laboratories. Recently an un-

dergraduate experiment for observing Poissoninan and Bose-Einstein photon

statistics has been reported. [7] The experiment we describe here provides a

nice complement to this previous work.

As will be seen, probably the most important aspect to this experiment is

the calibration of the detectors, the speci�cs of which are not often reported

in the literature. In keeping with the pedagogical aspect of this paper, we will

carefully outline our calibration procedure.

2 Theory

With the development of quantum mechanics, it has become apparent that it is

important to discuss the statistics of measured quantities. For light beams, the

light itself is not measured, but rather one measures the photocurrent from a

detector on which the light beam impinges. Thus, a theory of light 
uctuations

describes the statistics of the photocurrent, and these photocurrent statistics

are what must be compared to experiments. In order to treat the detection

of light, one must have a model for both the light and the detector. Models

fall into three general categories: classical (both the light and the detector are

treated classically), semi-classical (light is a classical wave, but the detector is

treated quantum mechanically), and quantum mechanical (both the light �eld

and the detector are treated quantum mechanically).
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2.1 Classical and Semi-Classical Theories

We begin with a classical model developed by Mandel in the late 1950's; [8, 9]

this model is chosen for two reasons: the �rst is that it successfully described

all experimental results up until the 1970's. The second is that this model

yields results identical with the semi-classical model, giving it a special place

among purely classical models. This second feature also allows us to state the

semi-classical results without having to go into great detail.

Consider an optical detector that accepts a classical light wave as its input,

and emits electrons as its output. The details of the interaction between the

light and the electrons are unimportant, but we make three assumptions about

the nature of the output photoelectrons. The �rst is that the emission of each

electron is a random event, and the probability P (1; t; t + dt) of one electron

being emitted in a short time interval from t to t + dt is

P (1; t; t+ dt) = 
I(t)dt: (2)

In Eq. (2), I(t) is the classical intensity of the incoming light beam and 
 is the

e�ciency of the detector (having units of 1/energy). The second assumption

is that the time interval dt can be chosen small enough to ensure that at most

one electron emission occurs (i.e., only 0 or 1 electrons are emitted within dt).

The last assumption is that the number of photoemissions in nonoverlaping

time intervals are statistically independent. Given these assumptions, it is

possible to show that the probability P (n; t; t+dt) of n photoevents occurring
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in a macroscopic time interval of width dt is given by [8, 9]

P (n; t; t+ dt) =
(
W )n

n!
e�
W ; (3)

where W is the integrated intensity

W =
Z t+dt

t
I(t0)dt0: (4)

In general, the light intensity I(t) is a random process, and no more can

be said about the photoelectron statistics determined by Eq. (3) without

specifying the form of the intensity 
uctuations. In other words,W is a random

variable, and Eq. (3) must be considered to be a conditional probability

distribution of the form P (njW ) - the number of counts n is conditioned on

knowledge of W . Since W is not explicitly known, what is actually measured

in experiments is the unconditional probability [8, 9]

P (n) =
Z

1

0

P (njW )pW (W )dW

=
Z

1

0

(
W )n

n!
e�
WpW (W )dW; (5)

where pW (W ) is the probability density of the integrated intensityW . Here we

have eliminated the explicit dependence on the time window from our notation.

It will be understood that P (n) represents the probability of obtaining n of

photocounts in a particular time interval.

In our experiments, we do not measure the full probability distribution

P (n), but rather moments of this distribution. It can be shown using Eq. (5)

that the mean and variance of the number of photocounts are given by

hni = 
hW i (6)
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and

h(�n)2i = 
hW i+ 
2h(�W )2i

= hni+ 
2h(�W )2i: (7)

Equation (7) shows that there are two contributions to the variance of the

number of photocounts. There is a term linear in the integrated intensity W

(i.e., the energy incident on the detector in the time interval dt), and a term

quadratic in W . This should be reminiscent of Einstein's expression for the

energy 
uctuations of a blackbody [Eq. (1)]. The �rst term represents noise

introduced by the random emission of photoelectrons, which is analogous to

Einstein's particle noise. We refer to this term as the \shot-noise". The second

term comes from the 
uctuations of the wave incident on the detector, and is

the classically expected result that would be obtained in the absence of any

particle-like 
uctuations; it is usually referred to as the \wave-noise". There

is an important di�erence between Eqs. (1) & (7), however, that deserves

note. Einstein's expression is for the energy 
uctuations of a particular electric

�eld, that of a blackbody; Eq. (7) represents the measured photoelectron


uctuations obtained from detecting an arbitrary classical wave.

An important special case occurs when we consider a wave that has a

constant amplitude with no 
uctuations. In this case the distribution of in-

tegrated intensities is a delta function pW (W ) = �(W �W ), with hW i = W .

Substituting this distribution into Eq. (5), we obtain for the distribution of
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photocounts

P (n) =
(
W )n

n!
e�
W : (8)

This is a Poissonian distribution of counts, which is not surprising, as the

assumptions that went into our classical model are exactly the assumptions

necessary to ensure that electron emission is a Poissonian random process. [9]

Since the intensity of the wave is constant, the wave-noise is zero, and the

mean and variance of the photocount distributions can be obtained from Eqs.

(6) and (7) as

hni = 
W

h(�n)2i = hni: (9)

As can be seen in Eq. (9), the variance of the number of counts is equal to

the mean, as expected for a Poissonian distribution. The noise level obtained

in detecting this constant intensity signal, as expressed by the variance, is

the minimum noise level allowed by classical theory for the detection of any

optical signal of a given mean. This can be seen by examining Eq. (7); the

wave-noise term is strictly positive, so the minimum noise will be obtained

when the wave-noise is zero. This signal is said to be \shot-noise limited",

and for a time it was believed that it was impossible to detect optical signals

with less noise than this.

In semi-classical detection theory the optical signal is again treated as a

classical wave, but now the emission of electrons in the detector is treated
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quantum mechanically. Since we are no longer treating the detector as a

black box, we can derive the rate at which electrons are emitted from the

detector, without having to resort to postulates. The �rst successful semi-

classical detector model was put forth in 1964, and we will not go over this

model in detail.[10, 11] It is enough to state that the semi-classical model

shows explicitly that the probability that an electron will be emitted by the

detector in a short time interval is proportional to the incident light intensity.

In other words, the semi-classical model derives Eq. (2) from the quantum

mechanical interaction of an atom and an electric �eld. The semiclassical

model also shows that the detector e�ciency is given by 
 = �d=(h�), where

�d is a dimensionless quantity known as the quantum e�ciency of the detector.

The rest of the assumptions in the classical model are the same as those of

the classical model, and the results of the two models are identical. So, the

semiclassical model also predicts the shot-noise as the minimum noise in the

detection of a light signal.

2.2 Quantum Theory

In the quantum mechanical treatment, the electric �eld is no longer a classical

random variable, but a quantum mechanical operator (for more details of �eld

quantization, the reader is referred to Refs. [11, 12, 13]). The operator Ê for

a plane-wave mode of an electric �eld is

Ê = i!

 
�h

2V "0!

! 1

2
�
âei(

~k�~r�!t) � âye�i(~k�~r�!t)
�
: (10)
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Here, ~k is the wavevector of the �eld, ! is its angular frequency, and V is the

quantization volume. The operators â and ây are annihilation and creation

operators for the photons in the �eld mode, in analogy to the raising and

lowering operators of the quantum mechanical harmonic oscillator. The fact

that these operators appear in the electric �eld is not surprising, since an

electric �eld is an oscillating wave. Indeed, a single mode of an electric �eld

is a quantum mechanical harmonic oscillator, and everything we know about

simple harmonic oscillators can be used to describe the behavior of an electric

�eld. The creation and annihilation operators satisfy the commutation relation

�
â; ây

�
= 1; (11)

and the operator which yields the number of photons in the �eld is n̂ = âyâ.

Having de�ned the operators which describe an electric �eld, we must now

describe the states that the �eld can occupy. A convenient set of orthonormal

basis states are the number states, or Fock states , jni which are eigenstates

of the number operator

n̂jni = njni; (12)

with eigenvalues n being positive integers or zero. These states yield the fa-

miliar Hermite-Gaussian wavefunctions of the harmonic oscillator. The action

of the creation and annihilation operators on these states is given by

âyjni =
p
n + 1 jn+ 1i; (13)

âjni =
p
n jn� 1i: (14)
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Given a number state jni, the expectation value for the electric �eld asso-

ciated with this state can be calculated as

hÊi = hnjÊjni = 0: (15)

The fact that the mean �eld for light in a number state is zero for all times

indicates that this light di�ers signi�cantly from light which can be described

by a classical theory in which the �eld is sinusoidally oscillating. However,

the fact that the mean �eld is zero does not mean that there is no energy

(photons) associated with light in a number state. If an electric �eld is in a

state j i, then the probability that the �eld will contain n photons is given by

P (n) = jhnj ij2: (16)

Thus, if the �eld is in the number state jmi, the photon number distribution

is

P (n) = jhnjmij2 = �nm; (17)

where �nm is the Kronecker delta function. In this case the �eld contains a

de�nite number of photons.

Again, we are most interested in moments of the photon number distribu-

tion and not the distribution itself. For a �eld in the state j i, the mean and

the variance of the photon number are

hn̂i = h jn̂j i (18)

h(�n̂)2i = h(n̂� hn̂i)2i = h jn̂2j i � h jn̂j i2: (19)
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For the number state j i = jmi, the mean and variance are

hn̂i = m (20)

h(�n̂)2i = 0; (21)

consistent with a �eld containing a de�nite number of photons and having no


uctuations. If we had a perfect detector, for which every incident photon was

converted to a photoelectron, this �eld would show zero noise in its photocount

distribution, in stark contrast to the classical and semi-classical results. Below

we will explore how close to this perfect result we can come.

There is one other set of �eld states of interest to us here, and these are

the coherent states j�i.[14] Coherent states are eigenstates of the annihilation

operator

âj�i = �j�i: (22)

Because the operator â is not Hermitian, the eigenvalues � are complex. By

solving the eigenvalue problem of Eq. (22), one can show that the eigenval-

ues (referred to as the amplitude of the coherent state) can be any complex

number. The eigenstates can be expressed in terms of the number state basis

as

j�i = e�j�j2=2
X
n

�np
n!
jni: (23)

The coherent states are of interest because they are the quantum mechan-

ical state which is the closest equivalent to a classical electromagnetic wave.
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If the �eld is in a coherent state, the expectation value of the electric �eld

operator is

hÊi = E0 cos (k � r � !t) ; (24)

indicating that the mean �eld has a particular amplitude and phase, like that

of a constant amplitude classical wave. By using Eqs. (16) & (23), it is seen

that for a �eld in the state j�i the photon number distribution is

P (n) =
j�j2n
n!

e�j�j2: (25)

Thus, coherent states contain a Poissonian distribution of photons, with a

mean and variance of

hn̂i = j�j2 (26)

h(�n̂)2i = j�j2 = hn̂i: (27)

If we had a perfect detector, the distribution of photocounts from a coherent

state beam of light would be Poissonian, in agreement with classical and semi-

classical detection theories. This indicates that the results of the classical

and semi-classical theories for the case of a constant amplitude wave can be

reproduced in the quantum theory by using a coherent state for the state of

the light �eld.

Now we must address the problem of detecting the above described quan-

tum mechanical light �elds. The full quantum theory of photodetection was

developed by Kelley and Kleiner in 1964, and here we present only as much
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of the theory as we need to understand our experiment.[15, 11, 12] The essen-

tial point of quantum detection theory is that a quantum detector converts

incident photons to photoelectrons. As alluded to above, a perfect detector

does this with 100% e�ciency, and hence the photoelectron statistics exactly

mimic the photon statistics. Ine�ciencies in the detector degrade this 1:1 cor-

respondence between photons and photoelectrons, and tend to mask quantum

mechanical e�ects. In order to understand the results of our experiment, it

is essential to understand how the detector e�ciency a�ects the photocount

statistics. Rather than directly treating ine�ciencies in the detector, which

is mathematically involved, we will use a simpler, equivalent model. We will

model the detection process as involving a �ctitious beamsplitter which causes

the incident light beam to su�er a certain amount of loss, followed by a perfect

detector which measures the statistics of this loss-modi�ed beam.

In Fig. 1 we show a diagram of a beamsplitter, and we have labeled the

incoming and outgoing �elds by their corresponding annihilation operators.

The light �eld we are attempting to measure is in mode â1. The beamsplitter

introduces a loss (the light which escapes through â4), which serves to model

the imperfect quantum e�ciency of the detector, and the attenuated mode â3

is detected by a perfect detector. Thus, by determining the photon statistics of

â3, we determine the photocount statistics recorded by an imperfect detector.

The output �eld operators must be related to the input operators by the
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re
ection and transmission coe�cients of the electric �eld r1, r2, t1, t2:

â3 = t1â1 + r2â2

â4 = r1â1 + t2â2: (28)

In general the coe�cients r1, r2, t1, t2 are complex numbers, and these co-

e�cients must satisfy certain constraints.[11] For example, energy must be

conserved, so the total output energy must equal the total input energy (as-

suming a nonabsorbing beamsplitter). Also, each of the four �elds are in

modes which can be independently measured; it is therefore necessary that

the operators for each of these modes commute. In particular, it must be true

that

�
âi; â

y
j

�
= �ij: (29)

A solution that satis�es all of the necessary constraints is one where r and t

satisfy t = t1 = t2, r = �r1 = r2 and jtj2 + jrj2 = 1. This makes the relations

in Eq. (28)

â3 = tâ1 + râ2

â4 = tâ2 � râ1: (30)

By examining Eq. (30), we see that the statistics of â3 will depend not only

on the �eld of primary interest â1, but also on â2. In a classical treatment we

can completely ignore the mode â2, since the only light incident on the detector

comes from â1. Quantum mechanically â2 cannot be ignored, as it is necessary
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to ensure that the commutation relations [Eq. (29)] are satis�ed. The question

arises then, what do we specify for the state of the �eld in mode â2? Since the

only energy incident on the detector comes from â1, â2 must be in a zero energy

state. Thus, â2 is in a so-called vacuum state j0i, which is either number state

with n = 0, or a coherent state with � = 0. Since the statistics of â3 depend on

the states of two modes, we must label these states by two quantum numbers

(i.e. : the state jn1; 0i indicates that â1 is in a number state containing n1

photons, while â2 is in a vacuum state.)

We are now ready to calculate the photon statistics of mode â3. The

operator for the number of photons in mode â3 is

n̂3 = â
y
3 â3 =

�
t�â

y
1 + r�â

y
2

�
(tâ1 + râ2)

= jtj2n̂1 + jrj2n̂2 + t�râ
y
1 â2 + r�tâ

y
2 â1: (31)

If â1 is in a number state, the mean number of detected photons is then

hn̂3i = hn1; 0j
�
jtj2n̂1 + jrj2n̂2 + t�râ

y
1 â2 + r�tâ

y
2 â1

�
jn1; 0i

= jtj2n1

= �dn1: (32)

The quantum e�ciency of the detector �d is the fraction of input photons

converted to photoelectrons, and is given by the intensity transmission of the

beamsplitter �d = jtj2. A little algebra shows that the variance of the photo-

counts when mode â1 is in a number state is

h(�n̂3)2i = jrj2jtj2n1 =
�
1� jtj2

�
jtj2n1
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= (1� �d) �dn1 = (1� �d) hn̂3i: (33)

In the limit of perfect detection (�d ! 1) h(�n̂3)2i ! 0, as would be expected

for a noiseless input state. We see from Eq. (33), however, that for less than

unity detection e�ciency there will be some 
uctuation in the photocounts,

despite the fact that the input light �eld is noiseless. One way to interpret

this is that the transmission of a photon through the beamsplitter is a random

process. Each photon incident on the beamsplitter will be transmitted with

probability jtj2, while it will be re
ected with probability 1�jtj2. On average,

jtj2 � 100% of the photons will be detected [c.f. Eq. (32)], but the number of

detected photons will 
uctuate from measurement to measurement.

For a coherent state input, the mean and variance of the detected signal

are found to be

hn̂3i = h�1; 0j
�
jtj2n̂1 + jrj2n̂2 + t�râ

y
1 â2 + r�tâ

y
2 â1

�
j�1; 0i

= jtj2j�1j2

= �dj�1j2; (34)

and

h(�n̂3)2i = jtj2j�1j2 = �dj�1j2

= hn̂3i: (35)

Thus, an attenuated coherent state has a photon number variance equal to its

mean, just as it had before attenuation.
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A useful measure of the noise strength is the Fano factor, which is the

variance of the detected signal normalized by the shot-noise h(�n̂)2sni of a

signal with the same mean signal strength. The shot-noise variance [c.f. Eq.

(9)] is equal to the mean signal. We denote the Fano factor for an incident

number state incident as Fns, and it is given by

Fns =

D
(�n̂3)

2
E

D
(�n̂3)

2

sn

E =
h(�n̂3)2i
hn̂3i

= (1� �d) : (36)

As can be seen in Eq. (36), Fns depends only on the quantum e�ciency of the

detector.

For a coherent state input the Fano factor is

Fcs =
h(�n̂3)2i
hn̂3i

= 1; (37)

which is a constant, independent of the e�ciency. Since the quantum me-

chanical results for a coherent state are the same as those of classical and

semi-classical theories for a constant amplitude wave, these theories would

predict a Fano factor of unity for detecting a classical wave with no amplitude


uctuations.

In brief, classical and semi-classical detection theories predict that the pho-

tocount statistics for a constant classical wave will be Poissonian. This leads

to a minimum noise level, the shot-noise level, for a �eld of a given amplitude.

The detected Fano factor of this wave will be equal to 1, independent of the
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e�ciency of the detector. In the quantum theory, the coherent state is a light

�eld which when detected has a Fano factor of 1. However, quantum theory

shows that for certain light �elds it is possible to perform optical detection

with noise lower than the shot-noise level; the amount of noise reduction de-

pends on the e�ciency of the detection process. When a detected �eld has

a Fano factor of less than 1, as is the case of a light �eld in an attenuated

number state, then the �eld is said to be sub-Poissonian. Such a �eld is only

describable using quantum mechanics and has no classical analog.

3 Experiment

In our experiment the noise is measured by observing the electrical current

generated by a photodetector. Measurements are made at frequency f within

a bandwidth �f , using either a spectrum analyzer or a digitizing oscilloscope.

Here we relate the measurements we perform to the theory presented above.

The mean current hii from the photodetector is simply the 
ux of elec-

trons in a time interval T . Assuming most of the electrons in our current are

photoelectrons (i.e.: any \dark" current is much smaller than the photocur-

rent), the mean current can be expressed in terms of the mean number hni of

photoelectrons being counted as

hii =
hnie
T

; (38)

where e is the charge of an electron. The variance of the current will be
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h(�i)2i = hi2i � hii2

=
�
e

T

�2 h
hn2i � hni2

i

=
�
e

T

�2

h(�n)2i

= (2e�f)2 h(�n)2i; (39)

where �f = 1

2T
is the electrical bandwidth of the detection system. The noise

is broadband, with equal amplitude for all frequencies (within the limits of

the electrical response of the ampli�cation system and the other electronic

components). Thus, the variance of the current 
uctuations at at a particular

frequency is simply proportional to the variance of the photoelectron counts.

The variance for the current as shown in Eq. (39) is dependent upon the

variance in the number of photoelectrons, which is in turn dependent upon the

state of the light. Using the results from Eqs. (33) and (35) for the variance

in n, we can say

h(�i)2i =

8><
>:

(2e�f)2 hni for coherent state signal

(2e�f)2 hni(1� �) for number state signal.

(40)

In Eq (40) we have substituted �, the total system e�ciency, for �d, the de-

tector e�ciency. The total e�ciency is the product of the e�ciencies of all

the processes between the generation of the light, and its conversion to photo-

electrons (i.e. the e�ciency of the LED, the collection e�ciency of the optics,

and the e�ciency of the photodetector). In making this substitution, we are

20



assuming that all of these losses can be modeled by a beamsplitter loss as

described above. The beamsplitter is a good model for losses due to collection

and detector ine�ciencies. However, the beamsplitter model is not necessarily

very good in describing the e�ciency of converting electrons to photons in

the LED. This is because the electrons in the LED are fermions, and they

do not partition the same way at a junction as the bosons in our beamsplit-

ter model. [6] Despite this limitation, we can measure the drive current to

the LED and the average photocurrent, and then calculate what we call the

current-to-current conversion e�ciency. This is a reasonable estimate of the

overall system e�ciency �.

Shown in Fig. (2) is a schematic overview of the experimental apparatus.

The two current sources are outlined with dashed lines and are marked as

the constant current source (CCS) and the Poissonian current source (PCS);

the LED can be driven with either one of these two current sources. The

LED (Hammamatsu L2656) is a high e�ciency GaAlAs semi-conductor emit-

ter with a speci�ed quantum e�ciency of 0.22 photons-per-electron at a center

wavelength of 890 nm. The LED is mounted on an aluminum block, which is

in turn mounted to a thermo-electric cooler (TEC). The temperature of the

LED is controlled by a laser-diode temperature controller (ILX LDT-5525).

The photodiode ( Hammamatsu S5107, labeled PD B in Fig. 2) has a large

active area of 1 cm2 and a speci�ed quantum e�ciency of 0.93. In order to

collect as much light as possible, the LED is positioned directly in front of
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the photodiode. The current from the photodiode is converted to a voltage

with a transimpedence ampli�er, and then further ampli�ed. [16] The noise

power is measured with a Hewlett Packard HP-8590L Spectrum analyzer. The

spectrum anlayzer gives the electrical power of the signal as a function of fre-

quency.

The essence of this experiment is that we wish to detect a signal below the

shot-noise level. In order to do this, we must be able to determine exactly what

the shot-noise level is. In the theoretical discussion above, we showed that the

shot-noise level was given by the mean number of detected photoelectons.

It is also equal to the variance of a coherent state signal �eld (i.e., a �eld

with Poissonian statistics). Thus, if we can generate a �eld with Poissonian

statistics and measure its noise level, we can compare other measured �elds

to it. In order to generate a �eld with Poissonian statistics, we drive the LED

with a Poissonian current source. [6]

In our experimental setup, the PCS consists of a halogen lamp which

illuminates two reverse biased photodiodes (UDT 10-DP, labeled PD A in

Fig. 2). The current produced by these photodiodes is used to drive the

LED. The variance in this current, h(�iPCS)2i, can be expressed as either,

h(�iPCS)2i = hiPCSi or h(�iPCS)2i = (1��)hiPCSi, depending upon the state

of the light incident on the diodes. However, as the e�ciency � approaches zero

(while holding the mean current �xed), the variance in the photocurrent will

be approximately the same regardless of the state of the incident light. If the
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e�ciency approaches zero, the current noise will approach the shot-noise as de-

�ned in Eq (9). In the PCS, the halogen lamp was driven with approximately

3 amps of current, which then produced approximately 30 mA of current in

the photodiodes. Using the current-to-current conversion ratio, � = 0:01, the

noise in the current generated by the photodiodes is a good approximation of

the shot noise.

There are two di�erent purposes for photodiodes in the experimental setup,

and some confusion could arise concerning to which photodiode we are refering.

The photodiodes in the PCS (labeled PD A)are used to generate a current

with Poissonian statistics, which is then used to drive the LED. Hence, any

references to the current from these photodiodes will hereafter be speci�ed as

the driving current. The photodiode (labeled PD B) in the detection system

is used to measure the noise of the light incident upon it. The current from

this photodiode will hereafter be speci�ed simply as the photocurrent.

We must be certain that the light statistics we use as our reference are Pois-

sonian, and not super-Poissonian. If the light statistics are super-Poissonian,

the amount of noise reduction observed (relative to the shot-noise reference

level) would be apparently greater than the actual noise reduction. To verify

that the PCS is actually creating light with shot-noise variance, there are two

things which can be experimentally checked.

(1) Equation (40) gives the variance in the photocurrent as a linear function

of the mean photocurrent. In our experiments, the variance is measured
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as electrical noise power. From Eq. (7) we see that any additional


uctuations present on the light beam will be quadratic in the optical

power (or photocurrent). Thus, if the photocurrent noise is linear with

the mean photocurrent, we can be con�dent that the noise power is due

to the shot-noise, and not other noise sources within the electronics of

the detection and ampli�cation system. Also, by ensuring the linearity

of the noise for large mean photocurrents, we can be sure the detection

system is not being saturated at higher DC levels.

This test was performed by shining a red �ltered white light source on

the detector, and then changing the amount of light falling on the de-

tector to vary the DC photocurrent. The plot of the noise power as a

function of the DC photocurrent is shown in �gure (3). The linearity of

this plot indicates that the noise output from the detection and ampli-

�cation system is shot-noise and not spurious noise. The upper range

of the plot also indicates that the detector is not being saturated at DC

currents of almost 10 mA, which is a higher photocurrent than used in

the experiment. This linearity test was then repeated using the LED

driven by the PCS as the light source; this produced the same results as

the white light source.

(2) Equation (37) gives the normalized noise (Fano factor) for light with

Poisson statistics as being constant with e�ciency. In contrast, Eq.

(36) states that the noise for a number state �eld is a linear function of
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the e�ciency, with the noise decreasing as the e�ciency increases. The

measured normalized variance in the photocurrent with the LED driven

by the PCS should thus be constant with varying e�ciency.

This test was performed by measuring the noise at a �xed photocurrent,

as the e�ciency was varied. The e�ciency was decreased between mea-

surements by simply increasing the separation distance from the LED

to the photodiode; the driving current was then adjusted to give the

same mean photocurrent for all of the measurements. The e�ciency was

measured as the ratio of the photocurrent to the driving current. As

can be seen in Fig. (4), the noise is constant with varying e�ciency (to

within our measurement precision), indicating that the light statistics

are indeed Poissonian when the LED is driven by the PCS.

The constant current source consists of a voltage source ( a rechargeable

lead-acid battery ) in series with a high impedence (a resistance of 274 
).

For additional noise suppresion, an inductor, a surge suppresor, and an EMI

�lter were placed between the battery and the resistor. The CCS was used to

generate current with variance well below the shot-noise. The current in the

CCS is not subject to the shot-noise limitations, because the electrons which

make up the current are fermions (i.e. they are not independent particles).

[17] Since the drive current is essentially noise free, the light output will be

noise free within the limits imposed by the e�ciency of the LED. So the light

from the LED driven by the CCS should upon detection show variance below
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the shot noise limit as determined by Eq (36). [4, 5, 6]

We have shown that the PCS produces light with shot noise variance.

Thus the Fano factor for a measured signal can be obtained by normalizing

the noise in the measured signal to the noise produced by the light from the

PCS (assuming the same mean photocurrent for the measured signal and the

PCS signal).

Shown in Fig. (5) are the spectrum analyzer traces for the photocurrent

noise for light produced by the PCS (a), the CCS (b), and the electronic noise

with no light incident on the photodiode (c). The noise for the PCS and

CCS were measured at the same photodiode mean current. The average noise

reduction seen from the PCS to the CCS is 0.7 dB (i.e., light with a Fano

factor of 0.85). Based on an overall e�ciency of 0.18, one would predict a

Fano factor of 0.82 .

Shown in Fig. (6) are the measured Fano factor (circles) and the theoretical

Fano factor (solid line, determined from measured e�ciency) as a function of

the e�ciency. We see that the Fano factor decreases with increasing e�ciency,

exactly as we would expect from the theoretical result in Eq. (36). We see

that the measurements give Fano factors consistently higher than would be

predicted by the measured overall e�ciency. This same discrepancy has been

seen by other authors. [6]

In a separate experiment, the LED was cooled to 100K using a cryostat

in order to increase the e�ciency of the LED. The e�ciency of the LED at
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100K was approximately twice its value at 283K (10� C). However, the light

collection e�ciency was lower with the LED inside the cryostat, because the

photodetector was outside the cryostat and we were unable to image all of

the light emitted from the LED onto the face of the detector. With the LED

(at 100K) in the cryostat, we were able to increase the overall e�ciency to

20%, an improvement over the best e�ciency we could obtain with the LED

(at 283K) positioned directly in front of the photodetector (18%). We were

thus able to observe a noise reduction of 1.0 dB with the LED at 100K. It

may be interesting to note that with the LED at 100K the amount of noise

reduction we observed agreed quite well with the theoretical value of 1.0 dB

predicted from the measured current-to-current conversion e�ciency, while the

agreement at near room temperature is not as good.

In a last experiment, we wanted to see if it would be possible to reduce the

cost of the experiment even further, and use only equipment already found in

most undergraduate laboratories. The two pieces of equipment that we have

used above which are somewhat specialized and expensive are the temperature

controller and the RF spectrum analyzer. In this experiment we have run the

LED at room temperature without temperature control. Since we were not

cooling the LED very much anyway, this has no noticeable e�ect on the results.

Also, we have replaced the spectrum analyzer in our apparatus with a digital

oscilloscope (Tektronix 2232), in order to use a more widely available data

acquisition instrument.
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We acquire 1024 points per trace with the digital scope, at a sample rate of

5 MHz. For each trace we transfer the data to the computer, then compute the

power spectrum of the signal using a fast Fourier transform (FFT). With our

sampling parameters the power spectrum has a resolution of approximately

5 kHz, and a maximum frequency of 2.5 MHz. To decrease the sampling

noise, we average the power spectra from 400 traces; this is equivalent to

video averaging on the spectrum analyzer. Our sample rate is above the high

frequency cuto� of the detector, which is necessary to ensure that the signal

does not experience aliasing. If the sample rate is set to low, high frequency

noise is aliased into lower frequencies, and the noise spectrum is 
at all the

way down to DC. With proper sampling the noise decreases at low frequencies

because of the high-pass �lter in the detector circuit.

Shown in Fig. (7) are noise spectra taken with the Poissonian current

source and the constant current source. The electronic noise is approximately

10 dB below both of these curves. Between 200 & 500 kHz, the average noise

reduction is found to be 0.6 dB (Fano factor of 0.87), while the measured

current-to-current conversion e�ciency would predict a noise reduction of 0.8

dB (Fano factor of 0.83). Thus, it is possible to use a digital scope to observe

this quantum e�ect, obviating the need for a relatively specialized RF spectrum

analyzer if one is not available. Further averaging will reduce the noise in the

power spectra shown in Fig. (7), but acquiring, transferring and processing

the 400 traces for each of the curves shown requires approximately 20 minutes.
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Taking data with the spectrum analyzer is much quicker, since one can narrow

in on the frequency range of interest, and hence acquire data quickly.

4 Conclusions

The theory and experiment presented above explore the statistical properties

of photocurrents. Shot-noise is found to be a limitation for the noise in a

photocurrent, while quantum theory predicts no such limitation. The experi-

ment measured a photocurrent with a noise power below the shot-noise level,

in agreement with the quantum theory but not describable using classical or

semi-classical detection theory. This experiment thus provides an accessible

way for undergraduates to experimentally observe a purely quantum mechan-

ical e�ect.
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Figure Captions

Figure 1: Beamsplitter model of photodetector, the operators for the individ-

ual �elds are marked as âi.

Figure 2: Overview of the experimental apparatus: The current sources are

outlined in dashed lines. PCS is the Poissonian current source, while CCS is

the Constant current source; we can alternate between the current sources. In

the PCS, light from the lamp is detected by the photodiodes labeled PD A.

The light from the LED is detected with the photodiode labeled PD B. We

measure the average current through PD B by measuring the voltage at the

point labeled DC. The noise power is measured after ampli�cation at the point

labeled RF.

Figure 3: Experimental (points) and linear �t (solid line) of noise power as

a function of mean photocurrent for red �ltered white light incident on the

photodiode.
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Figure 4: Photocurrent noise power for light from the LED driven by the PCS

as a function of overall system e�ciency. The points are measured values,

while the horizontal line represents the average of the measured points.

Figure 5: Measured photocurrent noise power for the LED driven by the PCS

(a), CCS(b), and electronic noise(c). The mean photocurrent was the same

(6.85 mA) when the LED was driven by both the PCS and the CCS. The

electronic noise was measured with no light incident on the photodiode. The

average noise reduction between the PCS and the CCS is 0.7 dB. For each of

these curves, the resolution bandwidth was 1.0 kHz , the video bandwidth was

30 Hz, and each trace was averaged 50 times.

Figure 6: Experimental (points) and theoretical (solid line) Fano factor as a

function of current-to-current conversion e�ciency, �.

Figure 7: Photocurrent noise power for the LED driven by the PCS [solid

line](a) and CCS [dashed line](b) as measured using the digitizing oscilloscope.

Average noise reduction between 200 and 500 kHz was 0.6 dB. Each curve is

an average of 400 traces, and the resolution is 5 kHz.
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