
(Sub)regular Robotic Languages
Chetan Rawal, Herbert G. Tanner and Jeffrey Heinz

Abstract— This paper brings together concepts from
linguistics and formal language theory and applies them
to model robot behavior. This is done by defining a class
of formal languages that capture the abstract behavior
of robots which can be described as hybrid systems with
stable continuous dynamics. It is shown that this class of
languages falls within the Subregular hierarchy, thereby
enabling computationally efficient operations between ele-
ments of the class. Specifically, we show that the languages
in question are Star-free, but do not belong into two well-
known subclasses, members of which have been used in
linguistics to construct models of natural language sound
pattern acquisition.

I. Introduction

This paper is a stepping stone toward automated
planning and control design synthesis for robotic sys-
tems. We present a language-theoretic framework that
allows exploitation of existing results in formal language
theory to bring in fresh perspective for analysis of
systems whose behaviors can be abstractly described as
a sequence of controllers. Such sequences bear close
resemblance with linguistic and computational analysis
studies since controller sequences can be viewed as
strings of symbols or words that describe a logical
overall behavior, just like strings of words in a language
follow grammatical rules to form logical sentences.

The continuous component of hybrid systems can
present significant challenges in terms of characterizing
sets of states reachable from given initial conditions,
or verifying whether certain state-dependent properties
hold over families of continuous-state trajectories. To
overcome these challenges, discrete abstractions for
continuous and hybrid systems have been proposed
[2], [3], [20], [25]. This type of abstract system dis-
cretization can broadly be classified into two categories:
environment-driven discretization and control-driven dis-
cretization [2]. Environment-driven discretization typi-
cally involves discretizing the workspace of the system
using polygons [3]. System control strategies then
evolve within each polygon and the system “flows”
between adjacent polygons to reach the desired goal.

Chetan Rawal and Herbert Tanner are with the Department of
Mechanical Engineering at the University of Delaware. Jeff Heinz
is with the Department of Linguistics and Cognitive Science at the
University of Delaware. This work is supported by NSF under grant
#1035577.

Highly complex environments can be discretized into
simpler polygons that allow specifications in terms of
temporal logic formulas [6], [17], [26]. These techniques
rely on model checking algorithms [8], [12] to ensure
that the design conforms to the desired specifications,
and simulation or bisimulation relations [9], [27] to
ensure that the design is implementable on an con-
crete system. Whereas environment-driven strategies dis-
cretize the systems’ workspace, control-driven strategies
discretize the continuous dynamics [7], [14], [16], [20],
[29]. The overall behavior is expressed as a sequence of
motion primitives [7] or motion description atoms [4],
[5], [18].

The approaches using temporal logics and motion
description languages are mostly top-down, where spec-
ifications are designed first, translated into a discrete
dynamical system and then intersected with the target
system to block whatever behavior of the concrete sys-
tem does not match the specifications. The output of the
control design algorithm is a supervising strategy that
dictates directly the evolution of the low-level continuous
dynamics. In contrast, the hypothesis in this paper is
based on a more bottom-up design, in which the rules by
which existing control designs can be interlaced, and the
control specifications are encoded into formal grammars,
and then the question asked is whether the language
generated by the former is contained in the language
of the latter. The difference is that instead of instructing
the practitioner how to re-design their control strategies,
the method suggests ways to combine existing solutions,
and under certain assumptions analysis can be performed
using the rules (grammars) only rather than the automata
representation of the system.

We hypothesize that the conditions that facilitate
working with grammars (as well as automata) in this
framework are those that restrict the languages de-
scribing the behaviors of the systems, into the regular
category of languages. Specifically, we believe that there
is “room at the bottom” of the Chomsky hierarchy, and
focus on regular languages to capitalize on their superior
decidability and cheaper set operation properties [13].
There is precedence in existing literature for the use
of regular languages in symbolic planning and control
[7], but the expressive power of the resulting models
when they are subject to constraints on what input
symbol can come after which, has not been explored.

Regular languages may not be able to express all the
type of specifications that ω-regular [6], [17], [26], [30]
or context-free [15] languages can, but they can still
capture meaningful constraints and objectives. In this
way, we essentially plan to trade off expressive power
for computational and analytic simplicity.

We start with a very special class of hybrid systems
with stable continuous dynamics and no jumps in the
continuous variables, and we implicitly use stability to
obtain an asymptotic abstraction [20] for each continu-
ous mode. Asymptotic abstraction [20] assigns discrete
symbols to each of the component closed-loop stable
continuous dynamics, and abstracts away the exact con-
tinuous evolution of the system between regions of the
continuous space defined similarly to the partitioning
seen in predicate abstraction [1], [10]. This discretization
of the continuous dynamics can be shown to yield finite
transition systems (or semiautomata) which are weakly
bisimilar to the concrete hybrid dynamics [28].

The purpose of this paper is not to document the
abstraction procedure (see [28] for that) but rather to
introduce the type of languages that describe the behav-
ior of the hybrid systems considered, at the very high
abstract level and investigate their position within the
Subregular hierarchy in order to determine their proper-
ties and the computational and analysis tools they might
admit. We refer to this class of languages as regular
robotic languages (RRLs). The regular robotic languages
are shown to be an intersection of languages belonging
to particular subregular classes. Due to the structure
present in these classes, intersection of languages within
a particular class is only as expensive as the intersection
of finite sets [11], unlike the intersections of context-free
or ω−regular languages [31], [32].

II. Preliminaries

Let Σ represent a finite collection of symbols (alpha-
bet) with Σ∗ the Kleene-star of Σ, which is the set of
all possible finite strings (including the empty string
ε) over Σ. The term “word” and “sequence” are used
interchangeably and is defined as a generic sequence
taken from Σ∗. We write Σ≤k to denote the set of all
words with length up to k. The length of a word w ∈ Σ∗

is denoted by |w|, and |w|l represents the number of times
the string l appears in word w. For example, |baaa|ba = 1
and |baaa|aa = 2. The symbols o and n denote the start
and end of a string respectively, and are not considered
part of the alphabet. Unless specified otherwise, we
assume w, v, u, f , l, x ∈ Σ∗, while k, n,m, t, i, j ∈ N.

Definition 2.1 ([19]): A regular expression over an
alphabet Σ is

• Any letter of the alphabet;
• ε (the null word) and ∅ (the empty set).

• If ψ and χ are regular expressions, then all of the
following are regular expressions: (i) ψ ∪ χ; (ii) ψ
∩ χ; (iii) ψ (the complement with respect to Σ∗);
(iv) ψ χ ; (v) ψ∗.

Definition 2.2 (Regular Languages): A language is
regular if it can be represented by a regular expression.1

Regular

Non Counting = Star-Free

Piecewise Testable

Strictly Piecewise

contiguous subsequences sequences

Regular
Robotic
Languages

Strictly Local

Locally Testable

LTTk,t

Fig. 1. Regular robotic languages in the Subregular hierarchy.

A. The Subregular Hierarchy

In formal language theory, the Subregular hierarchy
[19], [21]–[23] is a subset of the Chomsky hierarchy in
which one finds two distinct branches: the local branch,
and the piecewise branch (figure 1).

Definition 2.3 (cf. [21]): The k factors of a word w ∈
Σ∗ are the set of k-length contiguous sub-sequences of
symbols in w:

Fk(w) B

v ∈ Σk : w = uvx; u, x ∈ Σ∗, |w| ≥ k
w otherwise.

Definition 2.4 (cf. [21]): A (strictly) k-local gram-
mar is a set of k-factors including the start and end of
string symbols: GS Lk ⊆ Fk({o} · Σ∗ · {n}).
Such grammars allow us to specify which words belong
in a particular language, by constraining the set of k-
factors that they are allowed or forbidden to have.

Definition 2.5 (cf. [21]): A stringset L over Σ is
strictly k-local iff there is some strictly k-local grammar
G over Σ (for some k) such that L is the set of all strings
that agree with G:

L(GS Lk) B
{
w ∈ Σ∗ | Fk(o · w · n) ⊆ GS Lk

}
.

1Regular languages are also defined as the class of languages
accepted by a finite state automata. However, we will not deal with
automata in this paper and therefore only use the definition that
establishes equivalence with regular expressions.

The set of all strictly k-local languages forms the
language class denoted

LS Lk = {L(GS Lk) | GS Lk ⊆ Fk({o} · Σ∗ · {n}} .
Definition 2.6 (cf. [21]): A language is said to be

locally threshold k-testable up to t (LTTk,t) iff deciding
whether a word belongs to the language rests only
with its multiset of k-factors with multiplicity up to t.
More formally, ∃ k, t ∈ N such that ∀w, v ∈ Σ∗ and
∀l ∈ Fk(o · w · n) ∪ Fk(o · v · n), the following is true:[
|w|l = |v|l ∨ min{|w|l, |v|l} ≥ t

]
⇒

[
w ∈ L⇔ v ∈ L

]
.

Definition 2.7 (cf. [22]): A subsequence w of a word
v is a permutation of the strings formed from the symbols
of the word while retaining their relative ordering:

w v v⇔ w = σ1σ2 · · ·σn ∧ v ∈ Σ∗σ1Σ∗σ2Σ∗ · · ·Σ∗σnΣ∗,

where σi ∈ Σ.
The set of all subsequences of length k in a word

w ∈ Σ∗ is denoted

Pk(w) B {v ∈ Σk |v v w} ,

while the set of all subsequences of length up to k is
denoted P≤k(w) B {v ∈ Σ≤k |v v w}.

Definition 2.8: A k-piecewise grammar GS Pk is a set
of subsequences of length k:

GS Pk ⊆ Pk(Σ∗) .
The class of Piecewise Testable languages is intro-

duced in [24]:
Definition 2.9 (cf. [22]): A language L is Piecewise

k-Testable (PTk) iff

(∀w, v)[P≤k(w) = P≤k(v)]⇒ [w ∈ L⇔ v ∈ L] .
Definition 2.10 (cf. [19]): A language is star-free

(SF) if it can be represented by a regular expression that
can be written without the Kleene-Star (∗).

Star-free languages are sometimes called non-
counting. There are several equivalent definitions of this
class, including automata-theoretic and algebraic ones
[19].

III. A Hybrid RobotModel

We start with describing the system that we use in
our analysis followed by an example of the system that
makes the ideas concrete.

A. The Hybrid Robotic System

Definition 3.1 (Hybrid Robotic System):
The hybrid robotic agent is a tuple H ={
H ,K , f ,P,AP,←−· ,−→· , s,T

}
, where

• H = X × L is a set of hybrid states and is the
cartesian product of a continuous domain X ⊆ Rn,
and a set of boolean variables L ⊆ {0, 1}r. In this
context 1 stands for “true” and 0 stands for “false;”

• K is a finite set of discrete locations (modes) with
each κ ∈ K indexing a unique control law for the
closed loop continuous dynamics;

• P ⊆ Rm is the set of continuous variables parame-
terizing each control law in K ;

• F : X ×L × P × K → TX is a finite collection of
asymptotically stable vector fields;

• AP is a set of atomic propositions on H × P;
•
←−· : K → 2AP is a map that associates a control
law indexed by κ ∈ K with a set of pre-conditions
(Pre) which enable the activation and execution of
its control action on F, and we write (h, p) |= ←−κ
when these preconditions are all satisfied;

•
−→· : K → 2AP is a map that associates a control
law indexed by κ ∈ K with a set of post-conditions
(Post) which are true when the dynamics F driven
by controller κ have reached a steady state, and we
write (h, p) |= −→κ for the hybrid state h ∈ H in the
positive limit set of F when the Post of κ is satisfied
with controller parameters set to p ∈ P;

• s : H → 2P is a set valued reset map for the control
parameters p that determines the admissible values
for control parameterizations as a function of the
system’s hybrid state;

• T : H ×P ×K → H ×P ×K is the transition map
that regulates the switching between controllers,
according to which (h, p, κ)→ (h, p′, κ′) iff (h, p) |=
−→κ , p′ ∈ s(h), and (h, p′) |=

←−
κ′ .

The discontinuous changes that occur in H are only
because of the parameters p, and these changes are
the ones that activate the transitions between different
controllers, assuming that the transition is included in
the relation T . We say that a hybrid state h evolves into
another state h′ along a vector F and under a controller κ

parameterized by p, and we write h
κ[p]
↪→ h′. This transition

occurs continuously along the integral curves of F and
is not instantaneous.

Definition 3.2 (Feasible Controller Sequence): A
controller sequence s is said to be feasible if for each
κ{i} ∈ K , Post(κ{i})⇒ Pre(κ{i+1}), that is, ∀ i ∈ [1, |s| − 1],

∀ (h, p) ∈ H×P, ∃ p′ ∈ s(h) : (h, p) |=
−→
κ{i}∧(h, p′) |=

←−−−
κ{i+1}.

The set of all feasible controller strings for H form
its language, L(H):

Definition 3.3: The language L(H) of a hybrid system
H is the set of all feasible controller sequences. The finite
set of symbols composing the sequences in L(H) form
the control alphabet ΣH ⊆ K for H.

B. An example

A mobile manipulator is equipped with feedback
controllers that enable it to navigate in a cluttered
environment, and to pick and place small objects. The

components of the hybrid system model for this robot
can be defined as follows.

The set of continuous states X contains tuples of the
form (qp, θ, qm, qo), where (qp, θ) ∈ F1 ⊂ SE(2) 2 are
the position and orientation of the robot’s base within
its collision-free planar workspace F1, qm ∈ W ⊂ R3

is (cartesian) position of the manipulator’s end-effector
relative to its base within its reachable 3D workspace
W(qp, θ), and qo ∈ R

3 is the position of a object to be
manipulated.3

The set of logical variables L contains only one
boolean variable denoted g, which marks whether the
end-effector of the robot’s arm holds an object (g ⇔ 1)
or not (g⇔ 0).

The control parameter set P ⊂ R6 consists of tuples
(pp, po), where pp ∈ SE(2) is a desired base configura-
tion for the robot, and po ∈ R

3 is a reference position for
the manipulated object. The robot is equipped with three
controllers, each giving rise to a discrete system mode.
There is one controller for the robot base to navigate
from qi ∈ F1 to qd ∈ F1, is associated to symbol A.
The arm controller for picking an object at po and keep
it at the end-effector’s home position qh

m, is associated
to symbol B, and the arm controller for placing the
object held at po is associated with symbol C; thus
K = {A, B,C} = Σ. The set of atomic propositions AP
defined for this system consists of:
• α1 ⇔ qp ∈ pp +Bε , which when true it implies that

the base is close to its reference position (Bε is an
appropriately dimensioned ball of radius ε);

• α2 ⇔ qo ∈ po + Bε , which when true implies that
the object is in the neighborhood of location po;

• α3 ⇔ po ∈ W(qp, θ), which when true suggests
that with the base at qp, the reference location po

lies within the reachable workspace W(qp, θ) of the
manipulator; and

• α4 ⇔ g, is a binary variable indicating the state of
the gripper at the robot’s end effector.

A B C

Pre 1 {α2, α3,¬α4} {¬α2, α3, α4}
Post {α1} {¬α2, α3, α4} {α2, α3,¬α4}

TABLE I
Pre and Post conditions for the hybrid robotic agent in the example.

The sets are interpreted as conjunctions, i.e.,

{α2, α3,¬α4} ⇔ α2 ∧ α3 ∧ (¬α4).

The continuous dynamics of the system can be triv-

2SE(2) is the special Euclidean group of dimension 3.
3Typically, qo would be part of another system representing the

environment. For the purposes of this example, however, this variable
is lumped together with the robot’s states.

ially described by a vector field F in the form:q̇p

θ̇
q̇m

 =

[

v (cos θ, sin θ)>
ω
0

]
, k = A[

0
0
u

]
, otherwise.

C. Regular Robotic Languages

Constraints between controllers naturally arise due to
the conditions imposed by the transition map, expressed
in terms of the Pres and Posts of each discrete system
location. The nature of the binary relations of the form
Post(k) ⇒ Pre(k′) in Definition 3.2, naturally give rise
to one of the two following constraints.

a) Adjacency constraints: each 2-factor of the form
kk′ in a controller sequence s needs to satisfy Post(k)⇒
Pre(k′), and since the kk′ pair is contiguous, we call
the relation between the Pre of k′ and the Post of k,
an adjacency constraint. An example of such adjacency
constraints is the fact that in the case of the mobile
manipulator just discussed, we can never have CC or BB
as a 2-factor in any of its feasible controller sequences.
Since these constraints on pairs of consecutive symbols
can be expressed by a strictly 2-local grammar, adja-
cency constraints force the language of a hybrid robotic
system to exhibit strictly 2-local constraints (S L2). The
class of S L2 languages is denoted LS L2 .

b) Long distance constraints: Long distance (LD)
dependencies between controllers arise in part because
of the inability of some controllers to arbitrarily change
the hybrid state of the system in order to make (h, p), for
some p ∈ s(h), to satisfy the Pre of another controller.
In the example considered, the gripper constraints that
prevent CC or BB from appearing are (also) long dis-
tance constraints because for example, once g is set to
1 by B, only C can turn it back to 0 to allow another
B to be executed, irrespectively of how many As can
go in between. This type of long distance dependencies
cannot be captured by a language subclass within any of
the PT or LTT branches of Figure 1 because the distance
between the (discontiguous) occurrences of B (or C) is
not upper bounded in general. The class of languages
that are specified by this type of binary (S L2-type) long
distance dependencies will be denoted LLD.

We introduce a projection operator ELD, which acts
on a string w and yields the (sub-)string containing only
the symbols that are involved in some long distance
constraint according to T . Therefore, ELD “erases” the
symbols that are not long distance dependent. Thus if
w = σ1σ2 · · ·σn, then

ELD(w) B

σi1σi2 . . . σim , σi j ∈ F1(T)
ε otherswise

Thus, whenever a symbol found in any of the subse-
quences in T appears, it goes through the ELD filter.

To see why T cannot be used directly as a 2-piecewise
grammar to yield (a 2-piecewise) LLD, it suffices to
observe that in order to decide whether a word belongs
in a piecewise k-testable language, we need to verify
that all subsequences in the word can be found in the k-
piecewise grammar. In contrast, here we filter the string
first through ELD, discarding any “irrelevant” symbols,
and then we check for compliance with T .

The grammar that would work as an inclusion check-
ing mechanism for LLD is an object that needs to defined
separately. We will refer to these grammars, defined
through the projection operator ELD, as tier grammars:

Definition 3.4: A tier grammar GLDk is a set of per-
mitted factors of length k defined as

GLDk ⊆ Fk({o} · ELD(Σ∗) · {n}) .
The (tier) language LLD can now be defined in terms

of its grammar:

L(GLD) = {w ∈ Σ∗ | F2(ELD(w)) ∈ GLD2 } .

We denote this class of tier languages LLD.
Note that GLDk contains permitted k−factors of words

filtered through ELD. The tier language can also be
thought of as a language which excludes exactly those
words whose filtered 2−factors are forbidden. For a
grammar GLDk , the forbidden 2−factors is the set GLDk =

Fk({o} · ELD(Σ∗) · {n}) −GLDk .
Formally, let the tier based container of w be

CT (w) = {u ∈ Σ∗ : w ∈ F2(oELD(u)n)}.

Thus CT (w) is all words which contain w as a factor
on tier T. It follows that C̃T (w) is all words which do not
contain w on tier T. Since a language can also be thought
of as those words which do not contain any forbidden
factors on tier T, it follows (from DeMorgan’s laws) that

L(GLD) = ∩w∈GLDk
CT (w).

Languages with words that satisfy conjunctions of
adjacency and long-distance constraints form a class
which we call Regular Robotic Languages (RRLs).

Definition 3.5: The class of Regular Robotic Lan-
guages, LRRL is the set of finite intersections of lan-
guages in LS L2 and LLD.

In Section IV, we show that LRRL is a Star-free class,
but neither a proper subset of LLTT nor LPT (figure 1).

IV. Position of RRLs within the Subregular Hierarchy

Robotic languages being regular, they can generally
be equivalently represented in the form of a (class of)
finite state (semi)automata. We are interested in finding
where exactly they lay within the Subregular hierarchy.
We first show that the regular robotic languages are
star-free languages. We then show by counter-examples
that control sequences feasible in some hybrid robotic

system may fall outside both the local, and the piecewise
branches of the Subregular hierarchy shown in Figure 1.

Theorem 4.1: Regular robotic languages belong to the
star-free class of the Subregular hierarchy.

Proof: Let L ∈ LRRL. Then, by definition

L = L1∩L2∩L3 · · ·∩Ln, Li ∈ LS L2 ∪LLD, i ∈ {1, . . . , n} .

Since the star-free class is closed under intersection [19]
and it is known that LS L2 is a sub-class of star-free class,
it only remains to show that LLD is star-free.

Consider any language L′ in LLD. By definition, there
is some forbidden tier grammar GLD such that L′ =

∩w∈GLDk
CT (w). Since the star-free languages are closed

under complement and finite intersection, it remains to
show the CT (w) is star free for all w ∈ oT ∗ n.

First consider any w = σ1 . . . σn. Since (Σ \ T)∗ =

Σ∗TΣ∗ and Σ∗ = ∅, the set CT (w) can be written as
∅T∅σ1 · · ·σn∅T∅, which is a regular expression without
the Kleene-star. Hence, the languages LLD are star free.

Theorem 4.2: The robotic patterns do not belong to
the local branch of the Subregular hierarchy.

Proof: It is sufficient to prove this theorem with
a counter example, using the system of Section III-
B. Observe that ∀k and any t, w = AkBAkBAkCAk <
L(H) and v = AkBAkCAkBAk ∈ L(H). Then, we have
Fk(o · w · n) = Fk(o · v · n) and ∀l ∈ Fk(o · w · n)
it is the case that |w|l = |v|l Therefore, two words v and
w have the same k-factors and the same number of them,
but do not both belong to the same language L(H). By
definition, L(H) is not LTT , since there is at least one
system H that generates a language outside the class.

Theorem 4.3: Regular robotic languages do not be-
long to the piecewise branch of the Subregular hierarchy.

Proof: Again, it is proven by a counter-example
using the system of Section III-B. Consider and arbitrary
k and let w = Ak(BAkBAkCAkCAk)k < L(H), and
v = Ak(BAkCAkBAkCAk)k ∈ L(H). Then observe that
P≤k(w) = P≤k(v). Hence, even though the two words have
exactly the same k-subsequences (for any k), not both the
words are in the language. The language generated by
H is not a piecewise testable language.

V. Conclusion and FutureWork

In robotic systems which operate by switching be-
tween different controllers each ensuring asymptotic
stability for the particular task designed for, the possible
sequences of controllers activated over time form a
language with very special structure. The short and long-
distance dependencies between these controllers induce
a controller transition logic that can be captured by
a new combination of models within the subregular
category of formal languages. This paper characterizes

this combination as a finite intersection of strictly 2-
local languages, and languages from a new class, de-
fined through a set of rules on different tiers of the
language alphabet, as in autosegmental phonology. The
languages in this intersection are named regular robotic
languages in this paper. It is shown that these languages
are star free, and they are not properly contained in
either the locally testable or the piecewise testable cat-
egories within regular languages. Ongoing work targets
problems that involve compositions operations on these
type of languages, and exploration of the possibility for
automatic identification of these languages in the limit
from positive data (as in sound pattern learning).

References
[1] Rajeev Alur, Thao Dang, and Franjo Ivančić. Predicate abstrac-

tion for reachability analysis of hybrid systems. ACM Trans.
Embed. Comput. Syst., 5:152–199, February 2006.

[2] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and
G.J. Pappas. Symbolic planning and control of robot motion
[grand challenges of robotics]. Robotics Automation Magazine,
IEEE, 14(1):61–70, 2007.

[3] C. Belta, V. Isler, and G.J. Pappas. Discrete abstractions for
robot motion planning and control in polygonal environments.
Robotics, IEEE Transactions on, 21(5):864–874, 2005.

[4] R.W. Brockett. On the computer control of movement. In
Robotics and Automation, 1988. Proceedings., 1988 IEEE In-
ternational Conference on, pages 534–540 vol.1, April 1988.

[5] Magnus Egerstedt. Motion Description Languages for Multi-
Modal Control in Robotics, volume 4, pages 75–89. Springer
Berlin / Heidelberg, 2003.

[6] G.E. Fainekos, H. Kress-Gazit, and G.J. Pappas. Temporal logic
motion planning for mobile robots. In Robotics and Automation,
2005. ICRA 2005. Proceedings of the 2005 IEEE International
Conference on, pages 2020–2025, 2005.

[7] E. Frazzoli, M.A. Dahleh, and E. Feron. Maneuver-based motion
planning for nonlinear systems with symmetries. Robotics, IEEE
Transactions on, 21(6):1077–1091, 2005.

[8] Paul Gastin and Denis Oddoux. Fast ltl to büchi automata
translation. In Gérard Berry, Hubert Comon, and Alain Finkel,
editors, Computer Aided Verification, volume 2102 of Lecture
Notes in Computer Science, pages 53–65. Springer Berlin /
Heidelberg, 2001. 10.1007/3-540-44585-4 6.

[9] Antoine Girard and George J. Pappas. Hierarchical control sys-
tem design using approximate simulation. Automatica, 45:566–
571, 2009.

[10] Susanne Graf and Hassen Saidi. Construction of abstract state
graphs with pvs. In Orna Grumberg, editor, Computer Aided
Verification, volume 1254 of Lecture Notes in Computer Science,
pages 72–83. Springer Berlin / Heidelberg, 1997. 10.1007/3-540-
63166-6 10.

[11] Jeffrey Heinz. String extension learning. In Proceedings of
the 48th Annual Meeting of the Association for Computational
Linguistics, pages 897–906, Uppsala, Sweden, July 2010. Asso-
ciation for Computational Linguistics.

[12] Gerard J. Holzmann. The model checker spin. IEEE Trans. Softw.
Eng., 23:279–295, May 1997.

[13] John E. Hopcroft and Jeffrey D. Ullman. Formal languages and
their relation to automata. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1969.

[14] D. Hristu and S. B. Andersson. Symbolic feedback control for
navigation. IEEE Transactions on Automatic Control, 51(6):926–
937, 2006.

[15] D. Hristu-Varsakelis, M. Egerstedt, and P.S. Krishnaprasad. On
the structural complexity of the motion description language
mdle. In Decision and Control, 2003. Proceedings. 42nd IEEE
Conference on, volume 4, pages 3360–3365 vol.4, 2003.

[16] E. Klavins, R. Ghrist, and D. Lipsky. A grammatical approach to
self-organizing robotic systems. IEEE Transactions on Automatic
Control, 51(6):949–962, 2006.

[17] Marius Kloetzer and Calin Belta. A fully automated framework
for control of linear systems from ltl specifications. In João
Hespanha and Ashish Tiwari, editors, Hybrid Systems: Compu-
tation and Control, volume 3927 of Lecture Notes in Computer
Science, pages 333–347. Springer Berlin / Heidelberg, 2006.
10.1007/11730637 26.

[18] V. Manikonda, P.S. Krishnaprasad, and J. Hendler. A motion de-
scription language and a hybrid architecture for motion planning
with nonholonomic robots. In Robotics and Automation, 1995.
Proceedings., 1995 IEEE International Conference on, volume 2,
pages 2021–2028 vol.2, May 1995.

[19] Robert McNaughton and Seymour A. Papert. Counter-Free
Automata (M.I.T. research monograph no. 65). The MIT Press,
1971.

[20] J.L. Piovesan, H.G. Tanner, and C.T. Abdallah. Discrete asymp-
totic abstractions of hybrid systems. In Decision and Control,
2006 45th IEEE Conference on, pages 917–922, 2006.

[21] James Rogers. Aural pattern recognition experiments and the
subregular hierarchy. In 10th Mathematics of Language Confer-
ence, pages 1–7, 2007.

[22] James Rogers, Jeffrey Heinz, Gil Bailey, Matt Edlefsen, Molly
Visscher, David Wellcome, and Sean Wibel. On languages
piecewise testable in the strict sense. In Christian Ebert, Gerhard
Jäger, and Jens Michaelis, editors, The Mathematics of Language,
volume 6149 of Lecture Notes in Computer Science, pages 255–
265. Springer Berlin / Heidelberg, 2010. 10.1007/978-3-642-
14322-9 19.

[23] Imre Simon. Piecewise testable events. In H. Brakhage, editor,
Automata Theory and Formal Languages 2nd GI Conference
Kaiserslautern, May 20–23, 1975, volume 33 of Lecture Notes in
Computer Science, pages 214–222. Springer Berlin / Heidelberg,
1975. 10.1007/3-540-07407-4 23.

[24] Imre Simon. Piecewise testable events. In Automata Theory and
Formal Languages, pages 214–222. 1975.

[25] P. Tabuada. Symbolic sub-systems and symbolic control of linear
systems. In Decision and Control, 2005 and 2005 European
Control Conference. CDC-ECC ’05. 44th IEEE Conference on,
pages 18–23, 2005.

[26] P. Tabuada and G.J. Pappas. Linear time logic control of discrete-
time linear systems. Automatic Control, IEEE Transactions on,
51(12):1862–1877, 2006.

[27] Paulo Tabuada. Approximate simulation relations and finite
abstractions of quantized control systems. In A. Bemporad,
A. Bicchi, and G. Buttazzo, editors, Hybrid Systems: Compu-
tation and Control, volume 4416 of Lecture Notes in Computer
Science, pages 529–542. Springer-Verlag, 2007.

[28] Herbert G. Tanner, Chetan Rawal, Jie Fu, Jorge L. Piovesan,
and Chaouki T. Abdallah. Finite asymptotic abstractions for
hybrid systems with stable continuous dynamics. Discrete Event
Dynamic Systems (submitted), 2010.

[29] A. Tiwari and G. Khanna. Nonlinear systems: Approximating
reach sets. In R. Alur and G. Pappas, editors, Hybrid Systems:
Computation and Control, volume 2993 of LNCS, pages 600–
614. Springer, March 2004.

[30] Moshe Vardi. An automata-theoretic approach to linear temporal
logic. In Faron Moller and Graham Birtwistle, editors, Logics
for Concurrency, volume 1043 of Lecture Notes in Computer
Science, pages 238–266. Springer Berlin / Heidelberg, 1996.
10.1007/3-540-60915-6 6.

[31] Moshe Y. Vardi. An automata theoretic approach to automatic
program verification. Yorktown Heights, N.Y. : International
Business Machines Inc., Thomas J. Watson Research Center,
1986.

[32] Sheng Yu, Qingyu Zhuang, and Kai Salomaa. The state complex-
ities of some basic operations on regular languages. Theoretical
Computer Science, 125(2):315–328, 1994.

