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Radio-frequency pulses are used in nuclear-magnetic-resonance spectroscopy to produce unitary transfer of
states. Pulse sequences that accomplish a desired transfer should be as short as possible in order to minimize
the effects of relaxation, and to optimize the sensitivity of the experiments. Many coherence-transfer experi-
ments in NMR, involving a network of coupled spins, use temporary spin decoupling to produce desired
effective Hamiltonians. In this paper, we demonstrate that significant time can be saved in producing an
effective Hamiltonian if spin decoupling is avoided. We provide time-optimal pulse sequences for producing an
important class of effective Hamiltonians in three-spin networks. These effective Hamiltonians are useful for
coherence-transfer experiments in three-spin systems and implementation of indirect swap andL2(U) gates in
the context of NMR quantum computing. It is shown that computing these time-optimal pulses can be reduced
to geometric problems that involve computing sub-Riemannian geodesics. Using these geometric ideas, ex-
plicit expressions for the minimum time required for producing these effective Hamiltonians, transfer of
coherence, and implementation of indirect swap gates, in a three-spin network are derived~Theorems 1 and 2!.
It is demonstrated that geometric control techniques provide a systematic way of finding time-optimal pulse
sequences for transferring coherence and synthesizing unitary transformations in quantum networks, with
considerable time savings~e.g., 42.3% for constructing indirect swap gates!.

DOI: 10.1103/PhysRevA.65.032301 PACS number~s!: 03.67.2a, 32.80.Qk
in
et
n

on
s
n-
es
ca
in

e
e

ut
ra
le
c
a

to
g
a

a
m

n
ar

ys-

me

m-

r-

ini-

r
co-

t the
n be
rtest
aper,
s of
ei.
ro-
I. INTRODUCTION

The central theme of this paper is to compute the m
mum time it takes to produce a unitary evolution in a n
work of coupled quantum systems, given that there are o
certain specified ways in which we can effect the evoluti
This is the problem of time-optimal control of quantum sy
tems@1–3#. This problem manifests itself in numerous co
texts. Spectroscopic fields, such as nuclear magnetic r
nance ~NMR!, electron magnetic resonance, and opti
spectroscopy rely on a limited set of control variables
order to create desired unitary transformations@4–6#. In
NMR, unitary transformations are used to manipulate an
semble of nuclear spins, e.g., to transfer coherence betw
coupled spins in multidimensional NMR experiments@4# or
to implement quantum-logic gates in NMR quantum comp
ers@7#. The sequence of radio-frequency pulses that gene
a desired unitary operator should be as short as possib
order to minimize the effects of relaxation or decoheren
that are always present. In the context of quantum inform
tion processing, it is important to find the fastest way
implement quantum gates in a given quantum technolo
Given a set of universal gates, what is the most efficient w
of constructing a quantum circuit given that certain gates
more expensive in terms of time it takes to implement the
All these questions are also directly related to the questio
determining the minimum time required to produce a unit
evolution in a quantum system.

*Email address: navin@hrl.harvard.edu
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Recall that the unitary state evolution of a quantum s
tem is given by

uc~ t !&5U~ t !uc~0!&,

where uc(t)& represents the systems state vector, at so
time t. The unitary propagatorU(t) evolves according to the
Schrödinger’s equation

U̇52 iH ~ t !U, ~1!

whereH(t) is the Hamiltonian of the system. We can deco
pose the total Hamiltonian as

H5Hd1(
j 51

m

ujH j ,

whereHd is the internal Hamiltonian of the system and co
responds to couplings or interactions in the system.H j are
the control Hamiltonians that can be externally effected@8#.
The question we are interested in asking is, what is the m
mum time it takes to drive this system~1! from U(0)5I to
some desiredUF @1,2#.

In Refs.@9,10#, a general control theoretic framework fo
the study and design of time-optimal pulse sequences in
herent spectroscopy was established. It was shown tha
problems in the design of shortest pulse sequences ca
reduced to questions in geometry, such as computing sho
length paths on certain homogeneous spaces. In this p
these geometric ideas are used to explicitly solve a clas
problems involving control of three coupled spin 1/2 nucl
In particular, the focus is on a network of coupled hete
©2002 The American Physical Society01-1
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nuclear spins. We compute bounds on the minimum ti
required for transferring coherence in a three-spin sys
and derive pulse sequences that accomplish this transfer
also derive time-optimal pulse sequences producing a c
of effective Hamiltonians that are required for implemen
tion of indirect swap andL2(U) gates in context of NMR
quantum computing@9#.

The paper is organized as follows. In the following se
tion we recapitulate the basics of product operator formal
used in NMR. The reader familiar with the product opera
formalism may skip to the next section. Section III prese
the main problem solved in this paper. In Sec. IV, we re
pitulate the key geometric ideas required for producing tim
optimal pulse sequences. These ideas are developed in
detail in our work @1#. In Sec. V, we use these geometr
ideas to compute the time-optimal pulse sequences for
ducing a class of effective Hamiltonians in a network
linearly coupled heteronuclear spins. Finally, these ideas
used to find pulse sequences for coherence-order sele
in-phase coherence transfer in three-spin system and sy
sis of logic gates in NMR quantum computing.

II. PRODUCT OPERATOR BASIS AND NMR
TERMINOLOGY

The unitary evolution ofn interacting spin1
2 particles is

described by an element of SU(2n), the special unitary
group of dimension 2n. The Lie algebra su(2n) is a 4n21
dimensional space, identified with the space of tracelesn
3n skew-Hermitian matrices. The inner product betwe
two skew-Hermitian matrix elementsA and B is defined as
^A,B&5tr(A†B). An orthogonal basis used for this space
expressed as tensor products of Pauli spin matrices@10#
~product operator basis!. Recall the Pauli spin matricesI x ,
I y , I z defined by

I x5
1

2 S 0 1

1 0D ,

I y5
1

2 S 0 2 i

i 0 D ,

I z5
1

2 S 1 0

0 21D ,

are the generators of the rotation in the two-dimensional H
bert space and basis for the Lie algebra of traceless sk
Hermitian matrices su~2!. They obey the well-known rela
tions

@ I x ,I y#5 i I z ; @ I y ,I z#5 i I x ; @ I z ,I x#5 i I y , ~2!

I x
25I y

25I x
25 1

4 1, ~3!

where

15S 1 0

0 1D .
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Notation 1: We choose an orthogonal basis$ iBs% ~product
operator basis!, for su(2n) taking the form

Bs52q21)
k51

n

~ I ka!aks, ~4!

a5x, y, or z and

I ka51^¯^ I a ^ 1, ~5!

whereq is an integer taking values between 1 andn, I a the
Pauli matrix appears in the above equation~5! only at thekth
position, and1 the two-dimensional identity matrix, appea
everywhere except at thekth position.aks is 1 in q of the
indices and 0 in the remaining. Note that we must haveq
>1 asq50 corresponds to the identity matrix and is not
part of the algebra.

Example 1. As an example forn52 the product basis for
su~4! takes the form

q51, i $I 1x ,I 1y ,I 1z ,I 2x ,I 2y ,I 2z%,

q52, i $2I 1xI 2x,2I 1xI 2y,2I 1xI 2z,2I 1yI 2x,2I 1yI 2y,2I 1yI 2z

32I 1zI 2x,2I 1zI 2y,2I 1zI 2z%.

Remark 1. It is very important to note that the expressio
I ka depends on the dimensionn. For example, the expres
sions for I 2z for n52 and n53 are 1^ I z and 1^ I z^ 1,
respectively. Also observe that these operators are only
malized forn52 as

tr~BrBs!5d rs2
n22. ~6!

To fix ideas, we compute one of these operators explicitly
n52,

I 1z5
1

2 F1 0

0 21G ^ F1 0

0 1G ,
which takes the form

I 1z5
1

2F 1 0 0 0

0 1 0 0

0 0 21 0

0 0 0 21

G .

In this paper, we want to control a network of couple
heteronuclear spins. The internal Hamiltonian for a netw
of weakly coupled spins takes the form

Hd52p(
i

n i I iz12p(
i j

Ji j I izI jz ,

wheren i represents Larmor frequencies for individual spi
andJi j represents couplings between the spins. The value
the frequenciesn i and Ji j depend on the particular spin
being used; typically,n i5108– 109 Hz, while for neighbor-
ing spinsJi j 510– 102 Hz. Throughout this paper, we wil
assume that the Larmor frequencies of spins are well se
1-2
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SUB-RIEMANNIAN GEOMETRY AND TIME OPTIMAL . . . PHYSICAL REVIEW A 65 032301
rated (un i2n j u@uJi j u). In a frame rotating about thez axis
with the spins at respective frequenciesn i , the Hamiltonian
of the system takes the form

Hd52p(
i j

Ji j I izI jz .

We can also apply external radio-frequency~rf! pulses on
resonance to each spin. Under the assumption of wide s
ration of Larmor frequencies, the total Hamiltonian in t
rotating frame can be approximated by

H52p(
i j

Ji j I izI jz12p(
i

~v i1I ix1v i2I iy!,

whereI ix and I iy represent Hamiltonians that generatex and
y rotations on thei th spin. By application of a resonant
field, also called aselective pulse, we can varyv i1 and v i2
and thereby perform selective rotations on individual spi
In this context, we use the termhard pulseif the rf amplitude
is much larger than characteristic spin-spin couplings. S
hard pulses can still be spin selective if the frequency diff
ence between spins is larger than the rf amplitude~measured
in frequency units! @4#. In particular, this is always the cas
for the heteronuclear spins under consideration. In m
situations, it is possible to ‘‘turn off’’ one or more of thes
couplingsJi j . This is done through standardspin decoupling
techniques, for details see Ref.@4# and the Appendix.

We now present the main problem addressed in this pa

III. OPTIMAL CONTROL IN THREE-SPIN SYSTEM

Problem 1. Consider a chain of three heteronuclear sp
coupled by scalar couplings (J1350). Furthermore, assum
that it is possible to selectively excite each spin~perform
one-qubit operations in context of quantum computing!. The
goal is to produce a desired unitary transformationU
PSU(8), from the specified couplings and single-spin o
erations in shortest possible time. This structure appears
ten in the NMR situation. The unitary propagatorU, describ-
ing the evolution of the system in a suitable rotating frame
well approximated by

U̇52 i S Hd1(
j 51

6

ujH j DU, U~0!5I , ~7!

where

Hd52pJ12I 1zI 2z12pJ23I 2zI 3z ,

H152pI 1z ,

H252pI 1y ,

H352pI 2x ,

H452pI 2y ,

H552pI 3x ,

H652pI 3y .
03230
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The symbolsJ12 andJ23 represent the strength of scalar co
plings between spins~1, 2! and ~2, 3!, respectively. We will
be most interested in a unitary propagator of the form

U5exp~2 iuI 1aI 2bI 3g!,

where the indexa, b, gP$x,y,z%. These propagators ar
hard to produce as they involve trilinear terms in the effe
tive Hamiltonian. We will refer to such propagators astrilin-
ear propagators. To highlight geometric ideas, here we wi
treat the important case of this problem when the coupli
are both equal (J125J235J). Without loss of any generality
we assumeJ.0.

Remark 2. Please note that it suffices to compute the mi
mum time required to produce the propagators belonging
the one-parameter family

UF5exp~2 iuI 1zI 2zI 3z!, uP@0,4p#,

because all other propagators belonging to the set$exp
(2iuI1aI2bI3g)ua,b,gP$x,y,z%% of trilinear propagators can b
produced fromUF in arbitrarily small time by selective hard
pulses. As an example

exp~2 iuI 1xI 2zI 3z!5expS 2 i
p

2
I 1yD

3exp~2 iuI 1zI 2zI 3z!expS i
p

2
I 1yD .

It will be shown that finding shortest pulse sequences
these propagators, constitute an essential step in opt
implementations of logic gates in the context of NMR qua
tum computing.

Remark 3. We first compute the minimum time it takes t
produce the propagator of the above type using spin dec
pling. The main computational tool used for this purpose
the Baker-Campbell-Hausdorff formula~BCH! @4#. Recall
given the generatorsA, B, Csatisfying

@A,B#5C, @B,C#5A, @C,A#5B.

The BCH implies

exp~At!B exp~2At!5B cost1C sint,

and, therefore,

exp~At!exp~B!exp~2At!5exp~B cost1C sint !.

This can then be used in Problem 1 to produce a propag
of the form exp(2iuI1z I2zI3z).
The standard procedure uses decoupling and operates by
decoupling spin 3 from the network~this can be achieved by
standard refocusing techniques@4#, see Sequence A of Fig. 2
A brief review of the basic ideas involved in spin decoupli
is presented from a control viewpoint in the Appendix. T
effective Hamiltonian then takes the form
1-3
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Heff
1 52pJI1zI 2z .

Now by use of external rf pulses and the HamiltonianHeff
1 ,

we can generate the unitary propagator exp(2ipI1zI2x) as fol-
lows:

expS 2 i
p

2
I 2yDexpS 2 i

Heff
1

2J DexpS i
p

2
I 2yD

5exp~2 ipI 1zI 2x!.

The creation of this propagator takes 1/2J units of time.
Similarly by decoupling spin 1 from the network, we are le
with an effective HamiltonianHeff

2 52pJI2zI3z, which can be
used along with external rf pulses to produce a propag
exp„2 i (uI 2yI 3z/2)…, which takes anotheru/4pJ units of
time. Now using the commutation relations

@2I 1zI 2x,2I 2yI 3z#5 i4I 1zI 2zI 3z ,

@4I 1zI 2zI 3z,2I 1zI 2x#5 i2I 2yI 3z ,

@4I 1zI 2zI 3z,2I 1zI 2x#5 i2I 2yI 3z ,

we obtain that

exp~2 ipI 1zI 2x!expS 2 i
uI 2yI 3z

2 Dexp~ ipI 1zI 2x!

5exp~2 iuI 1zI 2zI 3z!.

Therefore, the total time required to produce the unit
propagator is

1

2J
1

u

4pJ
1

1

2J
5

4p1u

4pJ
5

21k

2J
,

wherek5u/2p ~see Fig. 2!.
We will show that this propagator can be produced in

significantly shorter time using pulse sequences derived
ing ideas from results in geometrical control theory. Befo
we turn to time-optimal pulse sequences, we give new imp
mentations of the trilinear propagators that are considera
shorter than the ones given in Remark 3, even though t
are not time optimal. These sequences do not involve de
pling. We present one such sequence here, for compar
with the time-optimal pulse sequences in Theorem 1~see
Sequence B of Fig. 2!.

Notation 2. Let A52 i (I 1zI 2x1I 2xI 3z), B52 i (I 1zI 2y
1I 2yI 3z), C52 i (2I 1zI 2zI 3z1I 2z/2), and D
52 i (4I 1zI 2zI 3z). Then observe the following commutatio
relations hold:

@A,B#5C, @B,C#5A, @C,A#5B; ~8!

@A,D#52B, @B,D#5A.

Definition 1. Any set of three generatorsA, B, Csatisfying
the Eq.~8! will be referred to as the so~3! Lie algebra

Remark 4. Using the commutation relations stated abo
it follows from BCH that
03230
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P5expS p

2
ADexpS u

2
BDexpS 2

p

2
AD

5expX2 iuS I 1zI 2zI 3z1
I 2z

4 D C.
It takes arbitrarily small time to generate the propagatorQ
5exp(iuI2z/4), using selective hard pulses. Thus the tim
required to generate the desired propagatorPQ
5exp„2 i (uI 1zI 2zI 3z)… is just the time needed to produceP,
which can be computed explicitly. The propagat
exp„p/2A… requires 1/4J units of time, and the propagato
exp„(u/2)B… requiresu/4pJ units of time. Hence the tota
time is

1

4J
1

u

4pJ
1

1

4J
5

11k

2J
.

Thus we see that it is possible to reduce the time of pu
sequences for implementing desired effective Hamiltonia
by not decoupling spins in the network. The savings are
much as 50% for smallk ~see Fig. 1!

We now state results on time-optimal pulse sequences
coherence transfer and synthesis of logic gates in three-
systems. The main theorems of this paper are stated as
lows.

Theorem 1. Given the spin system in Eq.~7!, with J12
5J235J andJ1350, the minimum timet* (UF) required to
produce a propagator of the formUF5exp(2iuI1zI2zI3z), u
P@0,4p# is given by

t* ~UF!5
A2pu2~u/2!2

2pJ
5

Ak~42k!

2J
,

wherek5u/2p.
This theorem can be used to compute the bounds on m

mum time and the shortest pulse sequence required fo
phase coherence transfer in the three-spin network given
Eq. ~7! and construction of swap gates between spin 1 an
This is stated in the following theorem.

Theorem 2 (indirect swap gates and coherence transf.
Given the spin system in Eq.~7!, with J125J235J and J13
50, the minimum time required for producing a swap ga

FIG. 1. The graph shows the comparison of time required
pulse sequences for creating trilinear propagators as a functio
k5u/2p. ~a! Pulse sequence using spin decoupling,~b! improved
sequence without decoupling~see Remark 4!, and~c! time-optimal
pulse sequence~see Theorem 1!.
1-4
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between spin 1 and 3 is 3)/2J. The minimum time required
for the complete in-phase transferI 1

25(I 1x2 i I 1y) to I 3
2

5(I 3x2 i I 3y) is <3)/2J.
Remark 5. The conventional approach for the above in

rect swap gate involves three direct swap operations.
first operation swaps spin 1 and 2, followed by a swap 2
3 and finally a swap between 1 and 2 again. Each opera
takes 3/2J units of time. The total time for this pulse se
quence is 9/2J. Compared to this the time-optimal sequen
only takes 1/)557.7% of the total time. It is possible t
transfer I 1

2→I 3
2 completely using two sequential selectiv

isotropic steps that involves decoupling, each of which ta
3/2J units of time@11#. This takes in total 3/J units of time.
The improved pulse sequence takes at most)/2586.6% of
this time.

We now derive the time-optimal pulse sequences that g
the shortest times described in above theorems. We begi
recapitulating the main geometric ideas developed in@1# for
finding these time-optimal pulse sequences.

IV. MAIN IDEAS

Let G denote the unitary group under consideration. In
equation

U52 i S Hd1(
j 51

m

v jH j DU, U~0!5I ,

the set of allU8PG that can be reached from IdentityI
within time t will be denoted byR(I ,t). We define

t* ~UF!5 inf$t>0uUFPR~ I ,t !%,

whereR(I ,t) is the closure of the setR(I ,t), and I is the
identity element.t* (UF) is called theinfimizing time for
producing the propagatorUF . Observe that the contro
Hamiltonians$H j%, generate a subgroupK, given by

K5exp~$H j%LA !,

where $H j%LA is the Lie algebra generated by$2 iH 1 ,
2 iH 2 ,...,2 iH m%. It is assumed that the strength of the co
trol Hamiltonians can be made arbitrary large. This is a go
approximation to the case when the strength of exte
Hamiltonians can be made large compared to the inte
couplings represented byHd . Under these assumptions th
search for time-optimal control laws can be reduced to fi
ing constrained shortest length paths in the spaceG/K. It can
be shown@1#, that

Theorem 3 (equivalence theorem). The infimizing time
t* (UF) for steering the system

U̇52 i FHd1(
j 51

m

v jH j GU,

from U(0)5I to UF is the same as the minimum time r
quired for steering the adjoint system

Ṗ5HP, HPAdK~2 iH d!, PPG, ~9!
03230
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from P(0)5I to KUF , where AdK(2 iH d)
5$k1

†(2 iH d)k1uk1PK%.
We will use this result to find time-optimal pulse s

quences for three-spin system. The key observation lea
to the equivalence theorem is summarized as follows.

Minimum time to go between cosets. If the strength of the
control Hamiltonians can be made very large, then start
from identity propagator, any unitary propagator belongi
to K can be produced in arbitrarily small time. This notion
arbitrarily small time is made rigorous using the concept
infimizing time as defined earlier. Therefore, ifUFPK then
t* (UF)50. Similarly, starting fromU1 , anykU1 , kPK can
be reached in arbitrarily small time. This strongly sugge
that to find the time-optimal controlsv i that drive the evolu-
tion ~1! from U1 to U2 in minimum possible time, we should
look for the fastest way to get from the cosetKU1 to KU2
~the cosetKU1 denotes the set$kU1ukPK%!.

Controlling the direction of flow in G/K space. The prob-
lem of finding the fastest way to get between points inG
reduces to finding the fastest way to get between corresp
ing points ~cosets! in G/K space. Letg represent the Lie
algebra of the generators ofG and k5$H j%LA represent the
Lie algebra of the generators of the subgroupK. Consider the
decompositiong5p% k such thatp is orthogonal tok and
represents all possible directions in theG/K space. The flow
in the groupG, is governed by the evolution equation~1!
and, therefore, constraints the accessible directions in
G/K space. The directly accessible directions inG/K, are
represented by the setAdK(2 iH d). To see this, observe tha
the control Hamiltonians do not generate any motion inG/K
space as they only produce motion inside a coset. There
all the motion inG/K space is generated by the drift Ham
tonianHd . Let k1 andk2 belong toK, the coset containing
identity. Under the drift HamiltonianHd , these propagators
after time dt1 will evolve to exp(2iHd dt)k1 and exp
(2iHd dt)k2, respectively. Note

exp~2 iH ddt !k15k1~k1
† exp„2 iH ddt…k1!,

and thus is an element of the coset represented by

k1
† exp~2 iH ddt !k15exp~2 ik1

†Hdk1dt !.

Similarly exp(2iHddt)k2 belongs to the coset represented
element exp(2ik2

†Hdk2dt). Thus in G/K, we can choose to
move in directions given byk1

†(2 iH d)k1 or k2
†(2 iH d)k2 ,

depending on the initial pointk1 or k2 . Therefore, all direc-
tionsAdK(2 iH d) in G/K can be generated by the choice
the initial kPK, by use of control Hamiltonians$H j% ~we
can move inK so fast that the system hardly evolves und
Hd in that time!. The setAdK(2 iH d) is called the adjoint
orbit of 2 iH d under the action of the subgroupK. This form
of direction control has been defined as an adjoint con
system@1#. Observe that the rate of movement in theG/K
space is always constant because all elements ofAdK( iH d)
have the same norm,iHdi5ik†Hdki ~k is unitary sokk† is
identity!. Therefore, the problem of finding the fastest way
get between two points in the spaceG/K reduces to finding
the shortest path between those two points under the
1-5
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NAVIN KHANEJA, STEFFEN J. GLASER, AND ROGER BROCKETT PHYSICAL REVIEW A65 032301
straint that the tangent direction of the path must alw
belong to the setAdK(2 iH d). This is the content of equiva
lence theorem.

Finding sub-Riemannian geodesics in homogene
spaces. The set of accessible directionsAdK(2 iH d), in gen-
eral case is not the whole ofp, the set of all possible direc
tions in G/K. Therefore all the directions inG/K space are
not directly accessible. However, motion in all directions
G/K space may be achieved by a back and forth motion
directions we can directly access. This is the usual idea
generating new directions of motion by using nonco
muting generators (exp„(eA… exp„eB…exp„2eA…exp„2eB…
;exp„2e2@A,B#…). The problems of this nature, where on
is required to compute the shortest paths between points
manifold subject to the constraint that the tangent to the p
always belong to a subset of all permissible directions h
been well studied under sub-Riemannian geometry. Th
constrained geodesics are called the sub-Riemannian ge
sics @12,17#. The problem of finding time optimal contro
laws, then reduces to finding sub-Riemannian geodesic
the spaceG/K, where the set of accessible directions is t
setAdK(2 iH d).

In Ref. @1#, these sub-Riemannian geodesics were co
puted for the space SU(4)/SU(2)̂ SU(2), in thecontext of
optimal control of coupled two-spin systems. It was sho
that the space SU(4)/SU(2)̂ SU(2) has the structure of
Riemannian symmetric space that facilitates explicit com
tation of these constrained geodesics. In the following s
tions we will study these sub-Riemannian geodesics to c
pute the time-optimal control for three-spin systems.

V. TIME-OPTIMAL PULSE SEQUENCES

In the following lemma, we describe the infimizing tim
for the heteronuclear three-spin system, described by Eq~7!
with J125J235J and J1350, in terms of its associated ad
joint control system

Ṗ5HP, HPAdK„2 i2pJ~ I 1zI 2z1I 2zI 3z!…,

whereK denotes the subgroup generated by control Ham
tonians$H j% j 51

6 .
Lemma 1. In Eq. ~7!, let K denote the subgroup generat

by control Hamiltonians$H j% j 51
6 . The infimizing time

t* (UF), required to produce a unitary propagatorUF is the
same as the minimum timeT, required to steer the adjoin
control system

Ṗ5HP, HPAdK„2 i2pJ~ I 1zI 2z1I 2zI 3z!…, ~10!

from P(0)5I to P(T)PKUF .
Proof. The lemma follows directly from the equivalenc

Theorem 3. Q.E.D.
In the following theorem, we develop a characterizati

of time-optimal control laws for the adjoint control syste
~9! . This characterization is obtained using the maxim
principle of Pontryagin. We briefly review the maximu
principle here. The reader is advised to look at the refere
@13# for more details.
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Remark 6 (Pontryagin maximum principle!. Consider the
control problem of minimizing the time required to steer t
control system

ẋ5 f ~x,u!, xPRn, uPV,Rk,

from some initial statex(0)5x0 to some final statex1 . The
Pontryagin maximum principle states that if the controlū(t)
and the corresponding trajectoryx̄(t) are time optimal then
there exists an absolutely continuous vectorl(t)PRn, such
that the Hamiltonian function h„x(t),l(t),u(t)…
5lT(t) f „x(t),u(t)…, satisfies

h„x̄~ t !,l~ t !,ū~ t !…5max
uPV

h„x̄~ t !,l~ t !,u…

and

l j~ t !52
]h

]xj
, j P1...n.

The vectorl(t) is called the adjoint vector and any tripl
(x,l,u) that satisfies the above conditions is called an
tremal pair. The basic ideas of this theorem can be then g
eralized to control problems defined on Lie groups@14,16#.
We use these ideas to give the necessary conditions for
time-optimal control laws for the adjoint control system~9!.

Theorem 4. For the adjoint control system~9! , if H̄(t) is
the time-optimal control law, andP̄(t) is the corresponding
optimal trajectory, such thatP̄(0)5I andP̄(T)PKUF , then
for tP@0,T#, there existsM (t)Pp, ~directions in G/K
space! such that

H̄~ t !5argmax
H

tr„HM ~ t !…, HPAdK~2 iH d!, ~11!

dP̄~ t !

dt
5H̄~ t !P̄~ t !, ~12!

dM~ t !

dt
5@H̄~ t !,M ~ t !#. ~13!

Proof. First noteH†52H as H is skew-Hermitian. We
represent the linear functional onṖ as fl( Ṗ)5tr(l†HP)
with Pl†Pp ~the directions corresponding toG/K space!.
The Hamiltonian function is then

h„P~ t !,l~ t !,H~ t !…5tr„l†~ t !H~ t !P~ t !….

Then the maximum principle gives

H̄~ t !5argmax
H

tr~HP̄l†!, HPAdK~2 iH d!, ~14!

l̇~ t !52
]h

]P
5H̄~ t !l~ t !. ~15!

Let M (t)5 P̄(t)l†(t). The differential equation forM (t) is

Ṁ ~ t !5@H̄~ t !,M ~ t !#, ~16!
1-6



of

sh
ie
fo
of
p
th

n

e
w

fo

t

-

-

SUB-RIEMANNIAN GEOMETRY AND TIME OPTIMAL . . . PHYSICAL REVIEW A 65 032301
such thatM (t)Pp and the result follows. Q.E.D.
Remark 7. In the following theorem, we will use the

maximum principle, to solve the time-optimal problem
steering the adjoint control system~10! from P(0)5I to the
coset KUF , where UF5exp(2iuI1zI2zI3z), uP@0,4p#. We
hasten to add that the proof presented here only establi
that the control laws and the corresponding trajector
given in the following theorem are extremal trajectories
the problem of time-optimal control. A complete proof
optimality is beyond the scope and aim of the present pa
and will be presented elsewhere. We first state a lemma
will be used in the following theorem.

Lemma 2. Let A, B, C be as in Notation 2. Then

exp~22pC!exp~a1A1a2C!5I

for a1
21a2

25(2p)2.
Proof. Recall thatA, B, C satisfy the commutation relatio

@A,B#5C, @B,C#5A, @C,A#5B.

Therefore using BCH we can write exp(a1A1a2C)
5exp(uB)exp(2pC)exp(2uB) for someu. Now observe

exp~22pC!exp~uB!exp~2pC!exp~2uB!

5exp~uB!exp~2uB!5I ,

where the first identity follows again by BCH. Q.E.D.
Theorem 5. Let UF5exp(2iuI1zI2zI3z),uP@0,4p#, and b

52p2u/2. The control law

H̄~ t !52 i2pJF ~ I 1zI 2x1I 2xI 3z!cosS bt

T D2~ I 1zI 2y

1I 2yI 3z!sinS bt

T D G
steers the adjoint system~10! from P(0)5I to P(T)
PKUF , in

T5

A2pu2
u2

4

2pJ
5

Ak~42k!

2J

units of time and is time optimal.
Proof. Let A, B, C, D be as in Notation 2. Then using th

commutation relations for these operators and the BCH,
can rewriteH̄(t) as

H̄~ t !52pJ expS 2
bCt

T DA expS bCt

T D .

The corresponding trajectoryP̄(t), takes the form

P̄~ t !5expS 2
bCt

T DexpXS bC

T
12pJAD t C.

This can be verified by just differentiating the expression
P̄(t). Next observe thatP̄(T)PKUF . To see this note that
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exp~22pC!exp~2pJTA1bC!5I ,

whereI is the identity matrix. This identity follows directly
from the fact (2pJT)21b25(2p)2 and Lemma 2. There-
fore,

P̄~T!5expS uC

2 D5expX2 iuS I 1zI 2zI 3z1
I 2z

4 D C,
implying P̄(T)PKUF . To see that the control lawH̄(t) is
extremal, observe for

M ~ t !52H̄~ t !2
b

T
D,

the pair@ P̄(t),M (t),H̄(t)# satisfies the variational Eqs.~14!
and ~16!, of Theorem 4. To see this, recall

H̄~ t !52pJXA cosS bt

T D2B sinS bt

T D C;
therefore, the commutation relations

@A,2D#5B,@B,2D#52A

imply

@H̄,M #5
2pJb

T FA sinS bt

T D1B cosS bt

T D G .
Furthermore,

Ṁ5
2pJb

T FA sinS bt

T D1B cosS bt

T D G .
Therefore, M (t) satisfies the variational equationṀ
5@H̄,M # and clearly H̄(t) maximizes the function
tr„HM (t)… for HPAdK„2 i2pJ(I 1zI 2z1I 2zI 3z)… and M (t)
52H̄(t)2(b/T)D. Q.E.D.

Corollary 1. Let UF5exp(2iuI1aI2bI3g), uP@0,4p#, and
(a,b,g)P(x,y,z). The minimum timeT, required to steer
the adjoint system fromP(0)5I to P(T)PKUF , is

T5

A2pu2
u2

4

2pJ
.

Proof. The proof follows from the observation tha
I 1aI 2bI 3g belongs to the same coset asI 1zI 2zI 3z . Therefore
the result of Theorem 5 applies.

Proof of Theorem 1. The proof is now a direct conse
quence of the equivalence Theorem 3 and Theorem 5.

Geodesic pulse sequence. The pulse sequence that pro
duces the propagator

UF5exp~2 iuI 1zI 2zI 3z!,

in Theorem 1 is as follows:
1-7
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UF5expS 2 i
p

2
I 2yDexpS 2 i Fp1

b

2G I 2xD
3expXTS 2 i2pJ~ I 1zI 2z1I 2zI 3z!1 i

b

T
I 2xD C

3expS i
p

2
I 2yD ,

whereb and T are as defined in the above Theorem 5.
sequenceC of Fig. 2 a possible implementation of this ge
desic pulse sequence is schematically shown. Although
simple implementation shown in SequenceC of Fig. 2 is
constrained in terms of bandwidth, it forms the basis of m
broadband sequence that will be presented in a future ex
mental paper.

VI. INDIRECT SWAP GATES AND COHERENCE
TRANSFER IN THREE-SPIN NETWORKS

In this section, we will consider the problem of transfer
in-phase coherenceI 1

2 to I 3
2 , for the heteronuclear three

spin network described by Eq.~7!.
Lemma 3. The unitary propagator

VF5exp„2 i2p~ I 1zI 2zI 3z1I 1yI 2zI 3y1I 1xI 2zI 3x!…

FIG. 2. The panel shows three pulse sequences for synthes
the trilinear propagatorUF5exp(2iuI1zI2zI3z) with u52pk. The
conventional pulse sequenceA uses decoupling and takes timet
5(21k)/2J. The second pulse sequenceB improves the first se-
quence by avoiding decoupling and has a durationt85(11k)/2J.
The final pulse sequenceC is time optimal and has a durationt*
5Ak(42k)/2J. The radio-frequency amplituden r f of the hatched
pulse is (22k)J/Ak(42k).
03230
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completely transfers the coherenceI 1
2 to I 3

2 .
Proof. First observe that I 1zI 2zI 3z , I 1yI 2zI 3y , and

I 1xI 2zI 3x commute; therefore,

VF5exp~2 i2pI 1zI 2zI 3z!exp~2 i2pI 1yI 2zI 3y!

3exp~2 i2pI 1xI 2zI 3x!.

Furthermore, observe that$I 1x,4I 1yI 2zI 3z,4I 1zI 2zI 3z% forms a
so~3! Lie algebra. Therefore,

expS 2 i
p

2
~4I 1zI 2zI 3z! D I 1x expS i

p

2
~4I 1zI 2zI 3z! D

54I 1yI 2zI 3z .

Also note that$4I 1yI 2zI 3z,4I 1yI 2zI 3y ,I 3x% forms a so~3! Lie
algebra. Therefore,

expS 2 i
p

2
~4I 1yI 2zI 3y! D4I 1yI 2zI 3z expS i

p

2
~4I 1yI 2zI 3y! D

5I 3x .

Combining the above equalities we obtainVFI 1xVF
†5I 3x .

Similarly one can verify thatVFI 1yVF
†5I 3y . Hence the

Lemma is proved. Q.E.D.
Proof of Theorem 2 (coherence transfer!. We need to

compute the minimum time required to produce the pro
gator

VF5exp~2 i2pI 1zI 2zI 3z!exp~2 i2pI 1yI 2zI 3y!

3exp~2 i2pI 1xI zI 3x!.

We have already shown that the minimum time required
produce a propagator of the form exp(2i2pI1aI2bI3g), where
(a,b,g)P(x,y,z) is

A2p~2p!2~p!2

2pJ
5
)

2J
.

ThereforeVF can be produced in time less than or equal
3)/2J ~see following remark!. Since there might be othe
unitary propagators, that might achieve this coherence tra
fer and take less time to synthesize, we can only claim t
the minimum time required to transfer the coherenceI 1

2 to
I 3

2 is less than or equal to 3)/2J.
Pulse sequence. The pulse sequence that produces

propagator

VF5exp„2 i2p~ I 1zI 2zI 3z1I 1yI 2zI 3y1I 1xI 2zI 3x!…

is as follows. Let U15exp„2 i2p(I 1zI 2zI 3z)…, U2
5exp„2 i2p(I 1yI 2zI 3y)…, and U35exp„2 i2p(I 1xI 2zI 3x)….
Then,

ing
1-8
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U15expS 2 i
p

2
I 2yDexpS 2 i Fp1

b

2G I 2xD
3expXTS 2 i2pJ~ I 1zI 2z1I 2zI 3z!1 i

b

T
I 2xD C

3expS i
p

2
I 2yD ,

U25expS i
p

2
I 1xDexpS i

p

2
I 3xDU1 expS 2 i

p

2
I 1xD

3expS 2 i
p

2
I 3xD ,

U35expS 2 i
p

2
I 3yDexpS 2 i

p

2
I 1yDU1

3expS i
p

2
I 1yDexpS i

p

2
I 3yD .

Finally,

VF5U1U2U3 ,

whereb5p andT5)/2J.
Remark 8. It can in fact be shown, that the minimum tim

required to produce the propagatorVF in the above theorem
is 3)/2J. A rigorous proof is beyond the goals of th
present paper; however, the key observation is th
I 1zI 2zI 3z , I 1yI 2zI 3y , and I 1xI 2zI 3x commute; therefore, the
minimum time required to produce the propagator

VF5exp~2 i2pI 1zI 2zI 3z!exp~2 i2pI 1yI 2zI 3y!

3exp~2 i2pI 1xI 2xI 3x!

is the sum of minimum time required to produce the in
vidual propagators exp(2i2pI1zI2zI3z), exp(2i2pI1yI2zI3y),
and exp(2i2pI1xI2zI3x).

Proof of Theorem 2 (indirect swap gates). The indirect
swap gateUsw~1, 3! is given by
03230
t,

-

Usw~1,3!5exp„2 i2p~ I 1zI 2zI 3z1I 1yI 2zI 3y

1I 1xI 2zI 3x!…expS i
p

2
I 2zD .

The propagator exp@i(p/2)I2z# can be produced in arbitrarily
small time by selective hard pulses. Therefore, the minim
time required to produce the swap gate is the same as
minimum time required for creating exp„2 i2p(I 1zI 2zI 3z
1I 1yI 2zI 3y1I 1xI 2zI 3x)…, which is 3)/2J. Hence the theo-
rem is proved. Q.E.D.

Remark 9 [synthesis ofL2(U) gates#. Pulse sequences fo
producingL2 gates, in the context of NMR quantum com
puting need to synthesize effective Hamiltonians of the fo
I 1aI 2bI 3g . To see this, observe that

L2~ I z!53
1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 21

4 .

This can be rewritten as

L2~ I z!5expS 2 ipF0 0

0 1G ^ F0 0

0 1G ^ F0 0

0 1G D
5expF2 ipS 1

2
2I 1zD ^ S 1

2
2I 2zD ^ S 1

2
2I 3zD G .

Thus the effective Hamiltonian takes the form
TABLE I. Comparison of pulse-sequence durations.

Unitary transformation t ~state of the art sequences! t* ~geodesic sequences!
t*

t

UF5exp(2i2pkI1aI2bI3g)
21k

2J

Ak~42k!

2J

Ak~42k!

21k

UF5exp(2i2pI1aI2bI3g)
3

2J

)

2J
1

)
557.7%

Swap~1,3!
9

2J

3)

2J
1

)
557.7%

I 1
2→I 3

2

3

J

3)

2J

)

2
586.6%
1-9
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Heff5pS 1

2
2I 1zD ^ S 1

2
2I 2zD ^ S 1

2
2I 3zD

5pS 1

8
1

~ I 1z1I 2z1I 3z!

4
1

~ I 1zI 2z1I 2zI 3z1I 1zI 3z!

2

1I 1zI 2zI 3zD .

Since the termI 1zI 2zI 3z commutes with other terms in th
effective Hamiltonian, it needs to be produced besides
other terms in theHeff to synthesize theL2(I z) gate. We
have already computed the time-optimal pulse sequence
the optimal implementation of an effective Hamiltonian
the form I 1zI 2zI 3z . Therefore, to derive optimal implemen
tations ofL2(I z) gates, further work is required to compu
the shortest pulse sequences for synthesizing an effe
Hamiltonian of the formI 1zI 3z .

VII. CONCLUSION

In this paper, we have demonstrated substantial impro
ment in the time that is required to synthesize an import
class of unitary transformations in spin systems consistin
three spins 1/2~see Table I!. It was shown that computing th
time-optimal way to transfer coherence in a coupled s
network can be reduced to problems of computing s
Riemannian geodesics@12#. These problems were then e
plicitly solved for a linear three-spin chain. These ideas
not just restricted to the three-spin case considered in
paper but can be extended to find time-optimal pulse
quences in a general quantum network@15#.
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APPENDIX: SPIN DECOUPLING

Given the evolution of the unitary propagator

U̇52 i S Hd1(
j 51

m

v jH j DU, U~0!5I ,

let Hd have a decompositionHd5Hd
A1Hd

B such that
@Hd

A ,Hd
B#50. The control Hamiltonians$H j%, generate a

subgroupK, given by

K5exp~$H j%LA !,

where $H j%LA is the Lie algebra generated by$2 iH 1 ,
2 iH 2 ,...,2 iH m%. Let kPK be such that

k21~Hd
A1Hd

B!k5~Hd
A2Hd

B!. ~A1!

It is assumed that the strength of the control Hamiltonia
can be made arbitrarily large. Under this assumption
propagatork can be produced in arbitrarily small time, suc
that the evolution due to the driftHd during this time can be
neglected. Now consider the evolution

U~ t !5expS 2 iH d

t

2D k21 expS 2 iH d

t

2D k.

From Eq.~A1!, we obtain

U~ t !5expS 2 i @Hd
A1Hd

B#
t

2DexpS 2 i @Hd
A2Hd

B#
t

2D
5exp~2 iH d

At !.

Therefore the net evolution is as if the system evolved un
the drift termHd

A for time t. If Hd
B represents the coupling o

a specified spin to the rest of a network coupled spins, the
elimination of Hd

B corresponds to decoupling the spin fro
the network.
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