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Radio-frequency pulses are used in nuclear-magnetic-resonance spectroscopy to produce unitary transfer of
states. Pulse sequences that accomplish a desired transfer should be as short as possible in order to minimize
the effects of relaxation, and to optimize the sensitivity of the experiments. Many coherence-transfer experi-
ments in NMR, involving a network of coupled spins, use temporary spin decoupling to produce desired
effective Hamiltonians. In this paper, we demonstrate that significant time can be saved in producing an
effective Hamiltonian if spin decoupling is avoided. We provide time-optimal pulse sequences for producing an
important class of effective Hamiltonians in three-spin networks. These effective Hamiltonians are useful for
coherence-transfer experiments in three-spin systems and implementation of indirect swiggldhdates in
the context of NMR quantum computing. It is shown that computing these time-optimal pulses can be reduced
to geometric problems that involve computing sub-Riemannian geodesics. Using these geometric ideas, ex-
plicit expressions for the minimum time required for producing these effective Hamiltonians, transfer of
coherence, and implementation of indirect swap gates, in a three-spin network are (Eneegms 1 and)2
It is demonstrated that geometric control techniques provide a systematic way of finding time-optimal pulse
sequences for transferring coherence and synthesizing unitary transformations in quantum networks, with
considerable time savingse.g., 42.3% for constructing indirect swap gates

DOI: 10.1103/PhysRevA.65.032301 PACS nuntber03.67—a, 32.80.Qk

I. INTRODUCTION Recall that the unitary state evolution of a quantum sys-
tem is given by
The central theme of this paper is to compute the mini-
mum time it takes to produce a unitary evolution in a net- [p(1))=U(D)]4(0)),

work of coupled quantum systems, given that there are onl
. ped g M SYy: g . ¥vhere|¢(t)) represents the systems state vector, at some
certain specified ways in which we can effect the evolution,

This is the problem of time-optimal control of quantum sys—gme-t' The L,mltary p'ropagatdd(t) evolves according to the
) . ; . chralinger’s equation

tems[1-3]. This problem manifests itself in numerous con-

texts. Spectroscopic fields, such as nuclear magnetic reso- U=—iH(tU 1)

nance (NMR), electron magnetic resonance, and optical '

spectroscopy rely on a limited set of control variables inwhereH(t) is the Hamiltonian of the system. We can decom-

order to create desired unitary transformatidds-6]. In pose the total Hamiltonian as

NMR, unitary transformations are used to manipulate an en-

semble of nuclear spins, e.g., to transfer coherence between

coupled spins in multidimensional NMR experimefys or H=Hq+ 2‘1 uiH;j,

to implement quantum-logic gates in NMR quantum comput- :

ers[7]. The sequence of radio-frequency pulses that generaighereH, is the internal Hamiltonian of the system and cor-

a desired unitary operator should be as short as possible fgsponds to couplings or interactions in the systemare

order to minimize the effects of relaxation or decoherencehe control Hamiltonians that can be externally effedigt

that are always present. In the context of quantum informaThe question we are interested in asking is, what is the mini-

tion processing, it is important to find the fastest way tomum time it takes to drive this systefh) from U(0)=1 to

implement quantum gates in a given quantum technologysome desired)¢ [1,2].

Given a set of universal gates, what is the most efficient way In Refs.[9,10], a general control theoretic framework for

of constructing a quantum circuit given that certain gates ar¢he study and design of time-optimal pulse sequences in co-

more expensive in terms of time it takes to implement themherent spectroscopy was established. It was shown that the

All these questions are also directly related to the question gfroblems in the design of shortest pulse sequences can be

determining the minimum time required to produce a unitaryreduced to questions in geometry, such as computing shortest

evolution in a quantum system. length paths on certain homogeneous spaces. In this paper,
these geometric ideas are used to explicitly solve a class of
problems involving control of three coupled spin 1/2 nuclei.

*Email address: navin@hrl.harvard.edu In particular, the focus is on a network of coupled hetero-

m
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nuclear spins. We compute bounds on the minimum time Notation X We choose an orthogonal bai8} (product
required for transferring coherence in a three-spin systeroperator basjs for su(2") taking the form
and derive pulse sequences that accomplish this transfer. We .
also derive time-optimal pulse sequences producing a class g1 a
of effective Hamiltonians that are required for implementa- Bs=2 kljl (Tka) ™, )
tion of indirect swap and\,(U) gates in context of NMR
guantum computing9]. a=X, Y, orzand
The paper is organized as follows. In the following sec-
tion we recapitulate the basics of product operator formalism le=1®®1,81, 5

used in NMR. The reader familiar with the product operator h _ . Ki | h
formalism may skip to the next section. Section Il presentdV€réq is an integer taking values between 1 and,, the

the main problem solved in this paper. In Sec. IV, we recaauli matrix appears in the above equatinonly at thekth
pitulate the key geometric ideas required for producing timeP0Sition, andl the two-dimensional identity matrix, appears
optimal pulse sequences. These ideas are developed in gré&Y€rywhere except at thigh position.ays is 1 in g of the
detail in our work[1]. In Sec. V, we use these geometric Indices and 0 in the remaining. Note that we must hgve
ideas to compute the time-optimal pulse sequences for pro= 1 @5d=0 corresponds to the identity matrix and is not a
ducing a class of effective Hamiltonians in a network of Part of the algebra. .
linearly coupled heteronuclear spins. Finally, these ideas are Example 1As an example fon=2 the product basis for
used to find pulse sequences for coherence-order selectivé(4) takes the form

in-phase coherence transfer in three-spin system and synthe- T U P PP T

sis of logic gates in NMR quantum computing. == by tlzai2xst 2yt 2z

=2, {20525l 2yv2I 1xl 22,2l 1l 2% 2l 1yl 2y:2I 1yl 2z
II. PRODUCT OPERATOR BASIS AND NMR
TERMINOLOGY X 2117l 2020 121 2,2 171 2}

The unitary evolution oh interacting spin particles is Remark 11t is very important to note that the expression
described by an element of SU\2 the special unitary 1, depends on the dimensian For example, the expres-
group of dimension 2 The Lie algebra su(d is a 4'-1 sions forl,, for n=2 andn=3 are 1®1, and 181,81,
dimensional space, identified with the space of tracefess respectively. Also observe that these operators are only nor-
Xn skew-Hermitian matrices. The inner product betweenmalized forn=2 as
two skew-Hermitian matrix elemen#s and B is defined as _2
(A,B)=tr(A"B). An orthogonal basis used for this space is tr(B/Bs) = 152" *. (6)
expressed as tensor products of Pauli spin matrjd€s

(product operator basisRecall the Pauli spin matrices, To fix ideas, we compute one of these operators explicitly for

Iy, 1, defined by n=2,
|:3(0 1) '12:%[(1) —01 ®§) ﬂ
*x2\1 o)
which takes the form
1/(0 —i
'y=§<i 0)’ 10 0 O
110 1 O
|Z=%<; _01)' 2310 0 1 o0
0 0 0 -1
are the generators of the rotation in the two-dimensional Hil- | this paper, we want to control a network of coupled

bert space and basis for the Lie algebra of traceless skeWgteronuclear spins. The internal Hamiltonian for a network
Hermitian matrices 9@2). They obey the well-known rela- ¢ weakly coupled spins takes the form

tions

=il [y0d=ih: [ohd=ily, Ho=2m2 wiligt 272 Jjlilje,

=11, (3 where v; represents Larmor frequencies for individual spins
andJ;; represents couplings between the spins. The values of
the frequenciesy; and J;; depend on the particular spins
being used; typicallyy;=10—10 Hz, while for neighbor-
1:(1 O). ing spinsJi]:lO—l(? Hz. Throughout this paper, we will
assume that the Larmor frequencies of spins are well sepa-

where

032301-2



SUB-RIEMANNIAN GEOMETRY AND TIME OPTIMAL . .. PHYSICAL REVIEW A 65 032301

rated (v;—v;|>|J;j]). In a frame rotating about theaxis ~ The symbolsl;, andJ,; represent the strength of scalar cou-

with the spins at respective frequencies the Hamiltonian ~ Plings between spingl, 2) and (2, 3), respectively. We will
of the system takes the form be most interested in a unitary propagator of the form

U=exp—ifli,loals,),
HdZZW% ‘]iinZIjZ' F( la'2p 37)

where the indexa, B, ye{X,y,z}. These propagators are
We can also apply external radio-frequeridy pulses on  hard to produce as they involve trilinear terms in the effec-
resonance to each spin. Under the assumption of wide sepive Hamiltonian. We will refer to such propagatorstekn-
ration of Larmor frequencies, the total Hamiltonian in the ear propagators To highlight geometric ideas, here we will

rotating frame can be approximated by treat the important case of this problem when the couplings
are both equalJ;,=J,3=1J). Without loss of any generality
H=272 Jijlilj,+ 272 (vidlixtoizliy), we assumel>0.
1] |

Remark 2Please note that it suffices to compute the mini-
mum time required to produce the propagators belonging to

wherel;, andl;, represent Hamiltonians that generatand 4 one-parameter family

y rotations on thdth spin. By application of a resonant rf
field, also called aselective pulsewe can varyvi; andv;, Uc=ext —i 6l 1.1 0er0 4
and thereby perform selective rotations on individual spins. F=exnl 1l orla,), (0.4,
o o . et o o GucjeEaUSE e aler propagators blongng (0 e (s
9 ) . SpIn-sp pings. - —i0l1,)54l3,)| B, ye{xy,z}} of trilinear propagators can be
hard pulses can still be spin selective if the frequency differ- v 4 e . ;
S ; produced fromUg in arbitrarily small time by selective hard
ence between spins is larger than the rf amplit(rdeasured
. ! . e pulses. As an example
in frequency units[4]. In particular, this is always the case
for the heteronuclear spins under consideration. In many
situations, it is possible to “turn off” one or more of these oy —jg1, 1,,15,)=expg —i T
. o . . exp( 1xl2zl3z) =€ 7'y
couplingsJ;; . This is done through standasgin decoupling
techniques, for details see Rg4] and the Appendix. -
We now present the main problem addressed in this paper. Xexp(—i6lq,l5, 3z)exp<i glly) .

Ill. OPTIMAL CONTROL IN THREE-SPIN SYSTEM . N
It will be shown that finding shortest pulse sequences for

Problem 1 Consider a chain of three heteronuclear spinghese propagators, constitute an essential step in optimal
coupled by scalar couplings{z;=0). Furthermore, assume implementations of logic gates in the context of NMR quan-
that it is possible to selectively excite each sgperform  tum computing.
one-qubit operations in context of quantum computifidne Remark 3We first compute the minimum time it takes to
goal is to produce a desired unitary transformation produce the propagator of the above type using spin decou-
e SU(8), from the specified couplings and single-spin op-pling. The main computational tool used for this purpose is
erations in shortest possible time. This structure appears ofhe Baker-Campbell-Hausdorff formul@BCH) [4]. Recall
ten in the NMR situation. The unitary propagatdrdescrib-  given the generator&, B, Csatisfying
ing the evolution of the system in a suitable rotating frame is
well approximated by [A,B]=C, [B,C]=A, [C,A]=B.

6
Hyt+ >, ujHj>U, u)=lI, 7) The BCH implies
=1

exp(At)B exp(—At) =B cost + C sint,

U=—i

where

Hy=2md10l 15l 0, 2793l 5,1 35, and, therefore,
H,i=2mxl4,, exp(At)exp(B)exp( — At) = exp(B cost + C sint).

Ho=2ml,y, This can then be used in Problem 1 to produce a propagator
of the form exp(i6ly,15,l3,).

Ha=2mla, The standard procedure uses decoupling and operates by first
H,=2ml,,, decoupling spin 3 from the netwofkhis can be achieved by
y standard refocusing techniqueyd, see Sequence A of Fig. 2.
Hg=2l 3, A brief review of the basic ideas involved in spin decoupling
is presented from a control viewpoint in the Appendix. The
He=2ml3. effective Hamiltonian then takes the form
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Hi=2mdl,l,,. W2'
15

o]

Now by use of external rf pulses and the Hamiltontag,,
we can generate the unitary propagator expfl ,,l,,) as fol-
lows:

[=2

[e]

1 0.5

;{ 'Trl )ex;{ iHeﬁ)exp<i7Tl )
exp —i5lyy -l == 5 lay 0 . . , .
2 2] 2 0.5 1 1.5 2

:exq_i’ﬂllzlzx). K

o

. . . . FIG. 1. The graph shows the comparison of time required by
The creation of this propagator takes 1(#its of time. pulse sequences for creating trilinear propagators as a function of

Similarly by decoupling spin 12fr0m the network, we are left . — g2, (3 Pulse sequence using spin decouplif,improved
with an effective Hamiltoniarg;=2mJl2,l3,, which can be  sequence without decoupligee Remark 4 and (c) time-optimal
used along with external rf pulses to produce a propagatQfulse sequencésee Theorem)l

exp(—i(6l,,13,/2)), which takes anothew/4mJ units of

time. Now using the commutation relations T 0 -
) P=ex;<§A)exp<§B exp(—EA)
[211,]5,2 2yI 32] =141 17l 5,1 37,
: I
[41 10251 32,21 1,1 o) ] =121 5yl 37, =exp<—i 0( 170223, + %) )

41 5,053,215 =121 51 55, o .
(412l 221 32,21 121 2] i3z It takes arbitrarily small time to generate the propag#&or

we obtain that =exp(dl,,/4), using selective hard pulses. Thus the time
required to generate the desired propagat®Q

_ Oloyls, ) =exp(—i(0l,l,,13,)) is just the time needed to prodube
exp— il l p)exp —i ——— [expliml,l o) which can be computed explicity. The propagator
_ exp(w/2A) requires 1/4 units of time, and the propagator
=exp(—i0l 5l 2,l3,). exp((6/2)B) requires #/4m) units of time. Hence the total
time is
Therefore, the total time required to produce the unitary
propagator is 1 0 1 1+«
—t—t == .
16 1 4m+0 2+« 41 4n) 4] 2]
2] 4m) 2] 4w 23 Thus we see that it is possible to reduce the time of pulse

sequences for implementing desired effective Hamiltonians,

where« = /27 (see Fig. 2 by not decoupling spins in the network. The savings are as
We will show that this propagator can be produced in amyuch as 50%pforgsrrr1)alrk (see Fig. 1 ' ¢

significantly shorter time using pulse sequences derived us- We now state results on time-optimal pulse sequences for

ing ideas frpm res_ults in geometrical control t_heory. B.eforecoherence transfer and synthesis of logic gates in three-spin
we turn to time-optimal pulse sequences, we give new imple

: - . systems. The main theorems of this paper are stated as fol-
mentations of the trilinear propagators that are considerabl

shorter than the ones given in Remark 3, even though they
are not time optimal. These sequences do not involve decou-
pling. We present one such sequence here, for comparis
with the time-optimal pulse sequences in Theorenisée
Sequence B of Fig.)2

Notation 2 Let A:_i(llZ|2X+|2XI3Z)1 B:_i(llzlz _ 2 _
Tlols),  C——i(2lylaletinf2),  and D t*(Up) = vam8—(612)° _ Nx(4—r)

Theorem 1 Given the spin system in Eq7), with J;,
Jo3=J andJ;3=0, the minimum time&* (Ug) required to
‘fﬂ'oduce a propagator of the forthg=exp(—ifllols,), 6
€[0,44] is given by

= —1i(4l 1, ,13,). Then observe the following commutation 2mJ 2J '
relations hold: wherex= 0/21.
[A,B]=C, [B,C]=A, [C,A]=B; (8) This theorem can be used to compute the bounds on mini-
mum time and the shortest pulse sequence required for in-
[A,D]=-B, [B,D]=A. phase coherence transfer in the three-spin network given by

Eq. (7) and construction of swap gates between spin 1 and 3.
Definition 1 Any set of three generatofs B, Csatisfying  This is stated in the following theorem.

the Eq.(8) will be referred to as the $8) Lie algebra Theorem 2 (indirect swap gates and coherence transfer)
Remark 4 Using the commutation relations stated above,Given the spin system in Eq7), with J;,=J,3=J and J;5
it follows from BCH that =0, the minimum time required for producing a swap gate
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between spin 1 and 3 isv3/2J. The minimum time required from  P(0)=I to KUg, where Adk(—iHy)
for the complete in-phase transféf =(1,,—il;y) to I3 ={kI(—in)kl|kleK}.
=(la3x—ilgy) is <3v3/2J. We will use this result to find time-optimal pulse se-

Remark 5The conventional approach for the above indi- quences for three-spin system. The key observation leading
rect swap gate involves three direct swap operations. Tht® the equivalence theorem is summarized as follows.
first operation swaps spin 1 and 2, followed by a swap 2 and Minimum time to go between coselfsthe strength of the
3 and finally a swap between 1 and 2 again. Each operatiotontrol Hamiltonians can be made very large, then starting
takes 3/2 units of time. The total time for this pulse se- from identity propagator, any unitary propagator belonging
guence is 9/2. Compared to this the time-optimal sequenceto K can be produced in arbitrarily small time. This notion of
only takes W3=57.7% of the total time. It is possible to arbitrarily small time is made rigorous using the concept of
transferl; —1; completely using two sequential selective infimizing time as defined earlier. Therefore Uf: € K then
isotropic steps that involves decoupling, each of which take$* (Ug) = 0. Similarly, starting fromlJ,, anykU,, ke K can
3/2J units of time[11]. This takes in total & units of time.  be reached in arbitrarily small time. This strongly suggests
The improved pulse sequence takes at mB42=86.6% of that to find the time-optimal controts that drive the evolu-
this time. tion (1) from U, to U, in minimum possible time, we should
We now derive the time-optimal pulse sequences that givéook for the fastest way to get from the coset); to KU,
the shortest times described in above theorems. We begin {jhe coseKU, denotes the sgkU,|keK}).

recapitulating the main geometric ideas developefLirfor Controlling the direction of flow in & space The prob-

finding these time-optimal pulse sequences. lem of finding the fastest way to get between pointsGn
reduces to finding the fastest way to get between correspond-

IV. MAIN IDEAS ing points (coset$ in G/K space. Letg represent the Lie

_ _ _ algebra of the generators & and ¢={H;}  represent the
Let G denote the unitary group under consideration. In the_je algebra of the generators of the subgréugConsider the

equation decompositiong=pa@ ¢ such thatp is orthogonal tot and
m represents all possible directions in {B&K space. The flow
— ' _ in the groupG, is governed by the evolution equatidh)
u=-i Hd+j21 UJHI)U’ vo=l. and, therefore, constraints the accessible directions in the

G/K space. The directly accessible directions@GhK, are
the set of allU’ € G that can be reached from Identity represented by the sAd¢(—iH4). To see this, observe that

within time t will be denoted byR(l,t). We define the control Hamiltonians do not generate any motiofsitK
space as they only produce motion inside a coset. Therefore,
t*(Up)=inf{t=0|Ur e R(l,t)}, all the motion inG/K space is generated by the drift Hamil-

- _ tonianH,. Let k; andk, belong toK, the coset containing
whereR(l,t) is the closure of the seR(l,t), andl is the identity. Under the drift Hamiltoniait 4, these propagators

identity element.t*(Ug) is called theinfimizing timefor  after time 6t; will evolve to expEiHg &)k, and exp
producing the propagator. Observe that the control (—iH, &t)k,, respectively. Note

Hamiltonians{H;}, generate a subgroug, given by
K=exp{H;}.a),

where {H;} » is the Lie algebra generated bly-iH4,

—iH,,...,—iH}. Itis assumed that the strength of the con- k] exp(—iH g8t)k; =exp( —ik]H gk, 8t).

trol Hamiltonians can be made arbitrary large. This is a good

approximation to the case when the strength of externaBimilarly exp(-iHy&t)k, belongs to the coset represented by
Hamiltonians can be made large compared to the internadlement exp¢ikiHdk,8t). Thus inG/K, we can choose to
couplings represented Hyy. Under these assumptions the move in directions given bYI(—in)kl or k;(—in)kz,
search for time-optimal control laws can be reduced to findgepending on the initial poirk; or k,. Therefore, all direc-

ing constrained shortest length paths in the sga@€. It can tions Adyx(—iH4) in G/K can be generated by the choice of

exp( —iH got)ky =kq (kI exp(—iH g6t)k,),

and thus is an element of the coset represented by

be shown(1], that S the initial ke K, by use of control HamiltoniangH } (we
. Theorem 3 (equivalence theoremlhe infimizing time  can move inK so fast that the system hardly evolves under
t*(Ug) for steering the system Hq in that time. The setAdc(—iH) is called the adjoint

orbit of —iH 4 under the action of the subgro#p This form
of direction control has been defined as an adjoint control
system[1]. Observe that the rate of movement in BéK
space is always constant because all elementsdafiH 4)
from U(0)=1 to U is the same as the minimum time re- have the same nornjH||=||k"Hgk| (k is unitary sokk is

U=—i u,

m
Hd+2 UlHl
i=1

quired for steering the adjoint system identity). Therefore, the problem of finding the fastest way to
) get between two points in the spaGéK reduces to finding
P=HP, HeAdx(—iHy), PeG, (9)  the shortest path between those two points under the con-
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straint that the tangent direction of the path must always Remark 6 (Pontryagin maximum principléConsider the
belong to the seAdx(—iHg). This is the content of equiva- control problem of minimizing the time required to steer the

lence theorem. control system
Finding sub-Riemannian geodesics in homogeneous ) N ‘
spacesThe set of accessible directioAsly(—iH 4), in gen- x=f(x,u), xeR" ueQCR,

eral case is not the whole ¢f the set of all possible direc-

tions in G/K. Therefore all the directions i®/K space are ggmrsg”}ﬁ Lﬂgﬁﬁ;ﬁm(ﬁg; Xlg t;)t;g:?hg?ﬁl tit:tgéﬁgg;a
not directly accessible. However, motion in all directions in yag P P

G/K space may be achieved by a back and forth motion i and the _correspondmg tra]ecto_ﬂt) are ime Opt'Tal then
ere exists an absolutely continuous veaotér) e R", such

directions we can directly access. This is the usual idea o L X
generating new directions of motion by using noncom-tfatT ]Ehe Hamllton!ap function h(x(t),A(t),u(t))
muting generators (expeA) exp(eB)exp(— eA)exp(— eB) =M (DT (D),u(t)), satisfies

~exp(— €’[A,B])). The problems of this nature, where one BX(E), N (1), T(t))=maxbh(X(t),\(t),u)

is required to compute the shortest paths between points on a ueQ

manifold subject to the constraint that the tangent to the path

always belong to a subset of all permissible directions havand

been well studied under sub-Riemannian geometry. These

constrained geodesics are called the sub-Riemannian geode- () =— ﬂ jel..n.
sics [12,17. The problem of finding time optimal control ! ;'

laws, then reduces to finding sub-Riemannian geodesics in

the spaceS/K, where the set of accessible directions is the! "€ VECtor(t) is called the adjoint vector and any triple
setAdg(—iHy). (x,A,u) that satisfies the above conditions is called an ex-

In Ref. [1], these sub-Riemannian geodesics were Com'gremal pair. The basic ideas of this theorem can be then gen-

puted for the space 4)/SU(2)® SU(2), in thecontext of eralized to con'trol proble.ms defined on Lie gro@gs,la.
optimal control of coupled two-spin systems. It was shownWe use _these ideas to give the necessary conditions for the
that the space S4)/SU(2)2 SU(2) has the structure of a time-optimal control laws for the adjoint control sy_staéﬁj.
Riemannian symmetric space that facilitates explicit compu- Theorem 4For the adjoint control syste®) , if H(t) is

tation of these constrained geodesics. In the following secthe time-optimal control law, an®(t) is the corresponding

tions we will study these sub-Riemannian geodesics to comgptimal trajectory, such tha@(0)=1 andP(T) e KUg, then
pute the time-optimal control for three-spin systems. for te[0,T], there existsM(t)ep, (directions in G/K

spacé such that
V. TIME-OPTIMAL PULSE SEQUENCES

t)= Xr(HM(t)), Adg(—iHg), (11
In the following lemma, we describe the infimizing time o ar%ina (HMD), - HeAdd(~iHq), (1D

for the heteronuclear three-spin system, described by&q.

with J1,=J,3=J and J;3=0, in terms of its associated ad- dP(t) —
joint control system —gt ~ HOP®), (12
P=HP, HeAdd(—i27I(I1] 2+ 12,13,)), dM(t)  —
| —gr ~LHOMO]. (13
whereK denotes the subgroup generated by control Hamil-

tonians{H;}{_,.

Lemma 1In Eq.(7), let K denote the subgroup generated
by control Hamiltonians{Hj}je:l. The infimizing time
t*(Ug), required to produce a unitary propagatdy is the
same as the minimum timé€, required to steer the adjoint

control system H(P(t), N (1), H(1)=tr\ T () H(D)P(1)).

Proof First noteH'=—"H asH is skew-Hermitian. We

represent the linear functional d as ¢, (P)=tr(\ "HP)
with PATep (the directions corresponding ©B/K space.
The Hamiltonian function is then

P=HP, HeAd«(—i27I(I1,l2,+12,03,)), (100  Then the maximum principle gives
from P(0)=1 to P(T) e KUf. H(t)=argmaxtr(HPAT), HeAdc(—iHy), (14

Proof. The lemma follows directly from the equivalence H
Theorem 3. Q.E.D.

In the following theorem, we develop a characterization
of time-optimal control laws for the adjoint control system
(9) . This characterization is obtained using the maximum .
principle of Pontryagin. We briefly review the maximum Let M(t)=P(t)\T(t). The differential equation foM (t) is
principle here. The reader is advised to look at the reference ) .

[13] for more details. M(t)=[H(t),M(1)], (16

. J —
)\(t)=—(9—2=H(t))\(t). (15
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such thatM (t) e p and the result follows. Q.E.D.
Remark 7 In the following theorem, we will use the

PHYSICAL REVIEW A 65 032301

exp(—27C)exp 27 ITA+ BC) =1,

maximum principle, to solve the time-optimal problem of wherel is the identity matrix. This identity follows directly

steering the adjoint control systefh0) from P(0)=1 to the
cosetKUg, where Up=exp(=ifl,l,ls), 6<[0,4m]. We

from the fact (2rJT)?+ %= (2m)? and Lemma 2. There-

hasten to add that the proof presented here only establishes

that the control laws and the corresponding trajectories,
given in the following theorem are extremal trajectories for
the problem of time-optimal control. A complete proof of

IZZ
l1,00,05,+ —
1z'2z'3z 4

fore,
— oC ,
P(T)=exp<7>=exp<—|0 )

optimality is beyond the scope and aim of the present papgmplying P(T) e KU . To see that the control lad(t) is
and will be presented elsewhere. We first state a lemma thaiktremal, observe for

will be used in the following theorem.
Lemma 2 Let A, B, C be as in Notation 2. Then

exp —27wC)expaA+ a,C)=1

for ai-l— a§= (2m)2.
Proof. Recall thatA, B, C satisfy the commutation relation

[A,B]=C, [B,C]=A, [C,A]=B.

Therefore using BCH we can write exp@+a,C)
=exp(EB)exp(2rC)exp(— 6B) for somed. Now observe

exp —27C)exp 6B)exp 27 C)exp(— 6B)
=exp(#B)exp—6B)=1,

where the first identity follows again by BCH. Q.E.D.
Theorem 5 Let Ug=exp(—ifllsl3,),0€[0,47], and B
=2m— 6/2. The control law

H(t)=—i27J

t
(IlzI 2x+|2x|32)co{ﬂ?) _(l lzI 2y

il

+15l 3Z)sin('[%

steers the adjoint systenilO) from P(0)=I to P(T)

S KUF, n
92
\/ 270 T

== -

Vr(4—k)
2J

units of time and is time optimal.

Proof. Let A, B, C, D be as in Notation 2. Then using the
commutation relations for these operators and the BCH, we T=

can rewrite(t) as
_ BCt BCt
H(t)=2mJ exp( - ?> A exp{ ?) .

The corresponding trajecto@(t), takes the form

F(t)=exp( - B?Ct) exp( @+27TJA)t).

T

M(t)=—77(t)—$D,

the pair[E(t),M(t),??(t)] satisfies the variational Eq&l4)
and(16), of Theorem 4. To see this, recall

H(t)= ZwJ(A cos(@ -B sin(?) );

therefore, the commutation relations

[A,—D]=B,[B,-D]=—A

imply
— 2wIB (Bt Bt
[H,M]—? Asm(? +Bcos(?”.
Furthermore,
2wl (Bt Bt
M—?[Asm T +Bcos<? }

Theiefore, M (1) satisfiei the variational equatioM
=[H,M] and clearly H(t) maximizes the function
tr(HM(t)) for HEAdK(_|27TJ(I1ZI 22+|22|3Z)) and M(t)
=—H(t)—(B/T)D. Q.E.D.

Corollary 1. Let Ug=exp(=ifly,lo4l3,), 6€[0,47], and
(a,B,7) € (X,¥,2). The minimum timeT, required to steer
the adjoint system fron®(0)=1 to P(T) e KU, is

[ 02
2w0— Z

2mJ

Proof. The proof follows from the observation that
l1412413, belongs to the same coset lasl,,l 3,. Therefore
the result of Theorem 5 applies.

Proof of Theorem 1The proof is how a direct conse-
quence of the equivalence Theorem 3 and Theorem 5.

Geodesic pulse sequencBhe pulse sequence that pro-
duces the propagator

Up=exp(—i 6l 1.l 2,13,),

This can be verified by just differentiating the expression for

E(t). Next observe thaP(T) e KUg. To see this note that

in Theorem 1 is as follows:
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A my Ehy completely transfers the cohererigeto I3 .
I I I Proof. First observe thatl,l,,l5,, I1ylz,l3y, and
&, &, &, 5.5, B, I 141 2,1 3x commute; therefore,
a | | | | |
m, o, m, Ve=exp( —i2ml 1l 5.l 3p) eXpl =i 27l 11 5,1 3y)
13 I I XeX[i—i27T|1x|22|3x).
o 1 b K i 1 o
2J 2J 2J
B Furthermore, observe thélty,, 4l 11,1 3,,4 1,1 2,1 3.} forms a
I sa(3) Lie algebra. Therefore,
(%)y é)—y %['x é)rx %)y é)x(%[)y
el | | K K
-— - - exp —I E(4|12|22|3Z) leex I§(4|12|22|3Z)
; I} 2] o
3
=4 1y| ZZI 3z
C Also note that{4l 1yl 13,41 11,1 3y,1 54} forms a s@3d) Lie
Ho_ algebra. Therefore,
& (21'5—% [ ‘jz't)y

. T .
ex% —i E(4I ly|22|3y))4| 1yl 27132 ex;{l §(4| 1yl 241 3y))

= | 3+
FIG. 2. The panel shows three pulse sequences for synthesizing
the trilinear propagatot)-=exp(—iflils,l3,) with 6=2m7«. The C . " . t_
. . . ombining the above equalities we obtaifal ,Ve=13,.
conventional pulse sequenéeuses decoupling and takes time Similarl 9 . q thatVel VT—IM 1|f| F 33[(h
=(2+«)/2J). The second pulse sequenBamproves the first se- imilarly one can verify thatVel, Ve=lsy. Hence the
quence by avoiding decoupling and has a duratiea(1+ «)/2J. Lemma is proved. Q.E.D.

The final pulse sequend® is time optimal and has a duratid# Proof of Theorem 2 (coherence transfeiVe need to
= x(4=x)/2]. The radio-frequency amplitude; of the hatched ~COMPute the minimum time required to produce the propa-
pulse is (2 k) I/ Vk(4—«). gator
T . B VF: eXF( - | 2’7T| lZI 2ZI 3Z)exq - | 27T| 1y| 22' 3y)
Up=exp —i 51y |exp —ij 7+ 5|l )
2 2 XeXF(—I27r|1X|Z|3X).
: B . : .
Xexp T| —i273(1 1l o,+ 15,1 5,) +i $|2x We have already shown that the minimum time required to
produce a propagator of the form exp@ml,,l,4l3,), where
LT (a’,ﬁ,’y)E(X,y,Z) is
X ex |§I2y ,
27(2m)— ()2 V3
where 8 and T are as defined in the above Theorem 5. In 2] 27

sequenceC of Fig. 2 a possible implementation of this geo-

desic pulse sequence is schematically shown. Although th?hereforeVF can be produced in time less than or equal to

simple implementation shown in SequenCeof Fig. 2 is : . .
constrained in terms of bandwidth, it forms the basis of more3‘/§/2‘] (see following remark Since there might be other

. . unitary propagators, that might achieve this coherence trans-
Enrgr?tdall)e;r;:):(requence that will be presented in a future EXPEYEr and take less time to synthesize, we can only claim that

the minimum time required to transfer the coherehgeto
I3 is less than or equal tov3/2J.

VI. INDIRECT SWAP GATES AND COHERENCE Pulse sequenceThe pulse sequence that produces the

TRANSFER IN THREE-SPIN NETWORKS propagator
In this section, we will consider the problem of transfer of
in-phase coherenck to I3, for the heteronuclear three- Ve=exp(—i2m(l 17l 57l 37+ L1yl o7l 3y 1l 271 30))
spin network described by E¢7).
Lemma 3 The unitary propagator is as follows. Let U;=exp(—i27(l,lol3,)), U,
=exp(—i2m(l 1yl 22|3y))a and Uz =exp(—i27(I 14l 221 3x)).
Ve=exXp(—127(1 17l o7l 32 11yl 22l 3y + 11y 221 3%)) Then,

032301-8
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71'4—E

2 IZX

.7T .
U,=ex —|§|2y exp —i
xex;{T
LT
X ex |§I2y,
.7T .7T .7T
U,=ex IEID‘ ex |§I3X U, ex —|5le
T
X ex| _IEI3X’
.71- .7T
Us=ex —|§I3y ex —|§Ily U,

_i27TJ(|12|22+|2Z|32)+i glzx))

PHYSICAL REVIEW A 65 032301
USV\Kl!S) = eX[X— i 2’7T(| 1Z| ZZI 3Z+ | 1y| ZZI 3y

LT
+|lx|2z|3x))ex |E|22-

The propagator exfg(#/2)l,,] can be produced in arbitrarily
small time by selective hard pulses. Therefore, the minimum
time required to produce the swap gate is the same as the
minimum time required for creating eXp-i27 (1,513,

+ 11yl ol 3y + 114241 34)), Which is 3/3/2]. Hence the theo-
rem is proved. Q.E.D.

Remark 9 [synthesis df,(U) gated. Pulse sequences for
producingA, gates, in the context of NMR quantum com-
puting need to synthesize effective Hamiltonians of the form
l1412413,. TO see this, observe that

- o L 0 0 0 0O 0O 0O Of
Xexy{iilly)ex;{iEIw). 0 1L 00 O OO O
o 0 01 0O0O0OO O
Finally, N 0001000 O
Ve=U;U,Us3, 19515 000100 o
where =7 and T=v3/2J. 00000100
Remark 81t can in fact be shown, that the minimum time 0 00O OO0 OTZ1 O
required to produce the propagaid¢ in the above theorem 000000 0 -1
is 3v3/2J. A rigorous proof is beyond the goals of the - -
present paper; however, the key observation is that,
l17l 27132, T1ylozl sy, and 1yl ls commute; therefore, the This can be rewritten as
minimum time required to produce the propagator
VF:qu_iZWIlZ|22|3Z)qu_i27TI1y|22|3y) 0 0 00 0 O
; Ay(l,)= —i
X exp(—i277] 1] o1 3,) 2(12) eXp( '"mo 1|%0 1/%0 1})
is the sum of minimum time required to produce the indi- _ o [1 | 1 | 1 |
vidual propagators exp(i2mlills,), exp(i2mlyylals), =eXR I 571 | O 57 12z | @ 57 sz ] |-

Proof of Theorem 2 (indirect swap gate§)he indirect

swap gatdJg,(1, J) is given by

Thus the effective Hamiltonian takes the form

TABLE |. Comparison of pulse-sequence durations.

Unitary transformation

7 (state of the art sequenges

7 (geodesic sequenoes _
p

. 2+ kK
Up=exp(=i2m«l 1a|2ﬁ| 37) 2]
_ 3
Ur=exp(=i2ml,l4l3,) 2]
9
Swap(1,3) 2]
3
;=15 J

Vi(4—k) Vr(4— k)
2J 2+ kK
V3 1
7 —=57.7%
2J V3
3v3 1
57 —=57.7%
2J V3
33 ‘/3—86 6%
21 2 e
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APPENDIX: SPIN DECOUPLING
E_ I 3z

1 1
He= 1| 5—11,|@| 5= 15| ®
of Tr(z lz) (2 2 Given the evolution of the unitary propagator

=l = (Ilz+|22+|32) + (Ilz|22+|2z|3z+llz|32)
8 4 2

m
Hgt+ >, v,-Hj)u, u)=I,
i=1

+1,05,03,].
1z'2z 32) let Hy have a decompositiorHyg=H4+HS such that

[H4,H51=0. The control HamiltoniangH;}, generate a

Since the term 4,l,,l3, commutes with other terms in the subgroupk, given by

effective Hamiltonian, it needs to be produced besides the
other terms in theH . to synthesize the\,(l,) gate. We
have already computed the time-optimal pulse sequences for K=exp({H}.a),

the optimal implementation of an effective Hamiltonian of

the formI,l,,13,. Therefore, to derive optimal implemen- where {H;} o is the Lie algebra generated bfy-iH,,
tations of A,(l,) gates, further work is required to compute —iH,,...,—iH}. Letke K be such that

the shortest pulse sequences for synthesizing an effective

Hamiltonian of the forml 4,l5,. k’l(HQJrHS)k:(HQ—HE). (A1)

It is assumed that the strength of the control Hamiltonians
can be made arbitrarily large. Under this assumption the
In this paper, we have demonstrated substantial improvepropagatok can be produced in arbitrarily small time, such
ment in the time that is required to synthesize an importanthat the evolution due to the drifl4 during this time can be

class of unitary transformations in spin systems consisting ofieglected. Now consider the evolution

three spins 1/2see Table)l It was shown that computing the

time-optimal way to transfer coherence in a coupled spin ¢ i
U(t) ex;{—lHdz)k exp( )k

VII. CONCLUSION

network can be reduced to problems of computing sub-
Riemannian geodesid42]. These problems were then ex-
plicitly solved for a linear three-spin chain. These ideas are
not just restricted to the three-spin case considered in thisrom Eq.(Al), we obtain
paper but can be extended to find time-optimal pulse se-
guences in a general quantum netwftk.

~iHg

t t
U(t):exp( —i[H§+Hg] E)exp( —i[HG—Hg] E)
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