
Sub-word Handling in Data-parallel Mapping

Georgia Psychou1, Robert Fasthuber2, Jos Hulzink3, Jos Huisken3, Francky Catthoor2

1 Comp. Eng. and Inform. Dep., Univ. of Patras, Greece
(currently at Electr. Eng. and Comp. Syst. Dep., RWTH Aachen Univ. Germany);

psychou@eecs.rwth-aachen.de
2 IMEC, Leuven, Belgium; {fasthuber,catthoor}@imec.be

3 Holst Center/IMEC, Eindhoven, The Netherlands; {hulzink,huisken}@imec-nl.nl

Abstract: Data-parallel processing is a widely applicable technique, which can be
implemented on different processor styles, with varying capabilities. Here we address
single or multi-core data-parallel instruction-set processors. Often, handling and re-
organisation of the parallel data may be needed because of diverse needs during the
execution of the application code. Signal word-length considerations are crucial to
incorporate because they influence the outcome very strongly. This paper focuses on
the broader solution space of selecting sub-word lengths (at design time) including
especially hybrids, so that mapping on these data parallel single/multi-core processors
is more energy-efficient. Our goal is to introduce systematic exploration techniques so
that part of the designers effort is removed. The methodology is evaluated on a repre-
sentative application driver for a number of data-path variants and the most promising
trade-off points are indicated. The range of throughput-energy ratios among the dif-
ferent mapping implementations is spanning a factor of 2.2.

1 Introduction

Today designers are using a very simplified methodology to exploit the available signal
quantisation freedom. That is in general the case for mapping applications to instruction-
set processors, which is our target in this paper. Exceptions are present for cost-sensitive
custom ASIC or FPGA oriented designs, but those are not our focus here. Usually, the
width of the available data-path (e.g. 32 bit) is used for representing all the signals in a
fixed-point notation. Alternatively, all data are just left in floating-point notation when the
processor platform supports it. That is the easiest and the most effective approach from a
design-time reduction point of view. Many processor vendors explicitly use that argument
to motivate the support of expensive floating-point arithmetic in their processors, even
in the embedded DSP domain where processor cost overhead is seen as undesirable (see
e.g. TI C6x DSPs). In the best case, designers use a quantisation technique that reduces
the word-length of all signals in a uniform way to a few power-of-2 values (e.g. [Ha04,
Wi11]). This allows to better exploit SIMD or sub-word parallel operation. Usually, that
leads to a division of the signals in a few categories: 8, 16 and 32 bit data.

However, we believe that recently introduced and still developing techniques for advanced
quantisation exploration [Pa10, No10a] allow to change this state-of-the-art paradigm.
With these new emerging techniques, a methodology is enabled where the minimal word-
length for all signals is determined individually based on quality of service (QoS) require-

409

409



ments. Examples are the bit-error rate (BER) in a wireless system or the signal-to-noise
ratio (SNR) for a multi-media system. As a result, a wide range of signals with a very non-
uniform distribution is produced, e.g. ranging from 6 to 24 bit [No10a]. So, we can exploit
a much wider variation of SIMD groupings and this motivates in its turn to go beyond state-
of-the-art hardware-based SIMD concepts where only a few power-of-2 word-lengths are
supported. In an ad hoc way, custom ASIC designers are sometimes using this fine-grain
quantisation information already, but the resulting range of word-lengths is then used to
hardwire different operators and not used for a time-multiplexed SIMD processor. We are
trying to explore such solutions with our methodology. Moreover, the methodology is not
only applicable on single processing elements (PEs) but also on multi-core processors with
multiple homogeneous PEs which are organised in a SIMD fashion.

Our first contribution is the systematic exploration of selecting data word-lengths on dif-
ferent SIMD platform options, with a given distribution over the signals of minimal word-
length requirements, including especially the attractive hybrid options. Secondly, we also
show how we can obtain a broad range of near-optimal mapping results in terms of per-
formance, energy and area trade-offs for realistic embedded applications on an single or
multi-core SIMD processor.

The structure of the paper is organized as follows: Section 2 presents related work, while
Sect. 3 exhibits the proposed systematic approach for data organisation within the data-
parallel processing context. A case study in Sect. 4 is used to illustrate the potential use
of the methodology and to show the benefits through some high-level comparisons with
alternative techniques. Section 5 concludes the paper.

2 Related work

In the literature, a number of mapping solutions on data-parallel platforms have been pro-
posed, especially for vector or conventional hardSIMD architectures. Regarding SIMD
implemented in software, a number of instantiations are discussed in [BD06, La07, No10b]
but without any systematic classification or selection process.

In order to exploit the data-level parallelism present in the application, often the data lay-
out (the order in which the data is stored in the memory) has to be modified and the data
sub-words that will be operated in parallel have to be (re-)packed together into words.
This process, together with the restructuring of the application code to perform the data
parallel execution, is called vectorization or SIMDization. Vector compiler-focused work
has been published in [LA00, Te05].Various SIMDization and transformations techniques
have been proposed in the general or embedded compiler literature [KL00, XOK07]. They
are focused on the basic parallelisation, potentially together with some cost functions to
reduce the overhead of dealing with various sub-word lengths. But they do not try to de-
scribe or explore the broad search space that is available with non-conventional techniques
or hybrids for effectively handling sub-words with different word-lengths.

Many researchers have addressed SIMD mapping on homogeneous SIMD architectures in
the past (see e.g. [CF04, Qi09]). They have focused however only on the pure hardware-
supported SIMD styles, and very seldom even on the sub-word parallel processing. Ex-
ceptions to this are the papers [Fr05, CVE09] which do address sub-word processing but
again without covering any design space exploration of hybrids.

410

410



3 Systematic exploration of sub-word handling hybrids

3.1 Target platforms description

Typically, the elements, that can be found in sub-word parallel SIMD architectures, are
the data memory and the register file, arithmetic operators such as shift-add units, and
a sub-word rearrangement unit such as a shuffler (if repacking or other operations are
necessary). Traditionally, within SIMD, the arithmetic hardware is capable of handling the
sign and carry (or other bits) propagation for each of the operands during the calculations,
so that they do not pollute each other (called hardSIMD further on). More recently, a
software-controlled technique has been introduced, named softSIMD [BD06]. SoftSIMD
does not include dedicated circuitry in the arithmetic units to support the data-parallel
operations. When operations move operands across their limits, techniques like resizing
of the sub-words (repacking) and masking through placing guard bits [BD06] then have
to be employed. The difference between hardware-implemented SIMD and the software
version, lies in the shuffler operator that now handles the bits on the MSB or LSB side that
can potentially pollute the adjacent sub-words. This sub-word parallel operation with the
corresponding support can be realized in a single core processor but also in a homogeneous
SIMD multi-core processor. In that case, the overall data parallel solution is constructed of
a hybrid between sub-word processing inside the cores and vector SIMD across the cores.
For instance if we have 8 cores of 64 bit each and we have support for sub-words of 8, 16
and 32 bit, then the mapping can contain 64 parallel operations on 8 bit, 32 operations on
16 bit and 16 operations on 32 bit.

3.2 Systematic exploration of sub-word lengths

For this analysis, a set of proposed word-lengths for each variable in the application code
is taken as input. The set comes from emerging systematic and hence automatable quanti-
zation techniques such as [Me10]. It includes information about hard and soft constraints
regarding the word-lengths. This allows the mapping stage to effectively exploit the word-
lengths that are reduced compared to conventional worst-case techniques.

The methodology to select the appropriate sizes for the signals of an application is il-
lustrated through a compact classification scheme (Fig. 1). This scheme can be used by
designers to find optimized options for the application word-lengths in a systematic way,
which makes sure that no important option is missed. Some of these solutions are well-
known but a number of them are novel (to the best of our knowledge), since the techniques
for exploring reduced word-length are not so widely applied yet. More importantly, this
top-down split-based tree organization allows a number of very promising hybrid solutions
to pop up which are not so easy to find simply by trying out different combinations. Hy-
brids come up by combining options. One such more obvious illustration is that software
SIMD can be used to improve the capabilities of a hardware SIMD platform. An example
mentioned in [BD06] is that softSIMD could be used in DSPs when, for instance, hard-
ware support for 16-bit SIMD operations is provided, but not for operands with a lower
word-length. In that case, 16-bit hardSIMD instructions are combined with lower word-
length softSIMD instructions inside the 16-bit segment. But the searching space is broad
and this is what we are trying to explore here.

411

411



Initially, the quantization information of all variables in the application code is collected.
Then, an important distinction has to be made between selecting signal sizes for applica-
tions that allow accuracy loss and those that do not (split a in Fig. 1). The information
about which direction we follow in the diagram, comes from the application designers,
who code the programs.

Sub-word
length

Resize the
sub-words

Longer
subword

width choice

Non-
controlled

way

Controlled
way

Accuracy
preservation

Accuracy-
loss

tolerance

accuracy
limitations

1
Stop bit

propagation

2
Add bits

5
Compile

time

6
Run time

i
Hardware-
based way

ii
Instruction-
based way

Subtree: modify bits

7
Stored in

data-memory

8
Modified in

RF

Subtree: modify bitsSubtree: modify bitsSubtree: modify bits

3
On LSB

side

4
On MSB

side

a

b

c

d

e

f g

h

Figure 1: Sub-word length selection

3.2.1 Accuracy loss tolerance.
When the type of application allows that data have some accuracy loss, two potential cases
can be found (split b). In the first case (left-hand side of split b), at compile time it can be
known exactly how many bits can be discarded from each data item, namely accuracy loss
takes place in a completely controlled way. In the second case (right-hand side of split b),
the loss of accuracy can not be fully determined until run-time. The bit loss is bounded by
a pre-analysed upper limit, to ensure correct functionality. This is the non-controlled sub-
category. Whether we are in the controlled or non-controlled branch depends on whether
we have sufficient knowledge of how the application evolves during execution time. An
example application in the controlled accuracy loss subcategory is a video encoder. Since
the code and typical (natural) data streams of the video encoder and the compression stan-
dards are predefined, it can be analysed at design time how much accuracy loss will be
present. This happens by profiling representative video input sequences and extrapolating
from these information regarding the accuracy loss. On the other hand, the subcategory of
uncontrolled accuracy loss solutions can be applied in cases like data transmission applica-

412

412



tions that are best effort-oriented, such as Skype-like protocols. Since it can not be known
exactly at design time how many users will appear, namely the load changes at run-time,
it is impossible to accurately preanalyse the data.

An example can be used to illustrate more effectively these cases. We use simple oper-
ations as additions and right shifts, which are representative cases of handling bits both
on the MSB and LSB side. In this example, the operands, resulting from the quantization
analysis, are 5-bit long and the data-path is 30 bits wide. Each of the operands takes part
in an addition and/or a right shift. Given a 30-bit data-path, we can operate 6 sub-words
of 5 bits in parallel.

In the controlled approach (left-hand side of split b), the accuracy loss can be guaranteed
either by stopping bit propagation (carry or LSBs) by means of hardware (leaf 1) or by
adding bits (leaf 2). This guarantee refers to making certain that the operands do not
cross their boundaries and pollute their neighbouring ones. Thus, the results remain valid.
Leaf 1 applies both to hardSIMD and softSIMD. For softSIMD, the bit cut off can be
similar to the hardSIMD case, but with a different internal hardware structure to create
less overhead especially when many (non power of 2) sub-word sizes exist. Adding bits
can be accomplished by extending the word-lengths and placing guard bits or modifying
bits in the existing space (applies for the softSIMD case). In the example shown in Fig. 2a,
the accuracy loss is being controlled leading to only 1-bit loss (instead of potentially 2 due
to the right shift). This happens by extending the 5-bit operands to 6 bits and zeroing out
their LSB before they are shifted.

30b

results

operands A0 0 0 00

6b

6b

>>2

(a) controlled accuracy loss

30b

+

= results

operands A

operands B
6b

6b

6b

(b) accuracy preservation

Figure 2: Extended sub-words for controlled accuracy loss and preservation

The placing of the guard bits can either take place in a hardware-based fashion (leaf 2i),
for instance by shuffling of bits, or in an instruction-based way (leaf 2ii). In the last case,
the data-word to be masked is entered as one input of the masking unit. Another word,
with the desired composition of guard bits, needs to have been stored upfront in the data
memory. The (re)placement occurs through a logic operation.

When accuracy loss occurs in the non-controlled way (right-hand side of split b), no spe-
cial care is taken for the sub-words of the output (after the addition or the shift). Only
an upper limit exists for the bit loss (see beginning of Subsect. 3.2.1). In the example,
the 5-bit values of the output may contain inaccurate data. Here, the case that there is
pollution of data of the neighbouring sub-words on the LSB side (leaf 3) or on the MSB
side (leaf 4) has to be discussed separately. Regarding leaf 3, inaccurate data appears (as
shown in Fig. 3a) when an overflow occurs during an addition. If no precaution is taken,

413

413



the overflow bit moves out of the sub-word and generates an inaccurate result for both this
and its neighbouring sub-word (the MSB enters the left-hand sub-word).

Also right-shift operations can lead to accuracy loss in an uncontrolled way (the shifted
bits -LSB- enter the right-hand sub-word). These instances are relevant to leaf 4. Since the
MSBs are influenced, it is possible that the results come out totally wrong. However, cases
exist that this does not happen, as the one illustrated in Fig. 3b. Here, the operands are two
32-bit sub-words. The data values needed to be represented are only 24 bits. If these 24
bits are chosen to be positioned on the right-hand side (LSB side) of the sub-words, then
the 4 bits that are shifted in from the left-hand side do not influence the results on the MSB
side. In this way, the results remain valid and no overhead operations need to take place.

5b

30b

5b

5b

+

= results

operands A

operands B

(a) during an addition

32b

>>4 results

operands A

24b

24b

32b

(b) during a right shift

Figure 3: Accuracy loss that occurs in a non-controlled way

3.2.2 Accuracy preservation.
The second category (right-hand side of split a) considers the case where a hard guarantee
exists for the accuracy preservation. This is true in mission critial applications where not
meeting these hard requirements on the results will have an unacceptable impact.

The accuracy preservation can happen either by enlarging the sub-words to prevent bit loss
during the operations (split e left-hand side) or by upfront (during the word-length decision
phase) selecting a bigger word-length before the beginning of the execution (right-hand
side of split e). In Fig. 2b although the operands are 5-bit long, 6 bits are reserved for each
one of them. The 6th bit (MSB) provides space for the overflow bit.

In the case of resizing (left-hand side of split e), sub-words are extended to prepare for the
operations that follow. The decision on the resizing can be made either at compile (leaf
5) or at run-time (leaf 6). The run-time mechanism could be realised with preinstalled
hardware that supports precoded senario-based mapping options. The latter are then se-
lected during run-time. For the addition case of our example, this means 6-bit sub-words
are selected before the beginning of the operation. For the right-shift operation, (5+n)-bit
sub-words are selected before the beginning of the shift by n. In this case, less sub-words
are processed in parallel, i.e. only 5 instead of 6 in the case of the addition. Still, every
sub-word of the output has a correct result and no sub-word is affected by its neighbouring
one. Thus, at the cost of extra resizing operations and a reduced number of parallel sub-
words, a hard guarantee can be provided for the accuracy. To achieve an efficient resizing
for the softSIMD case, guard bits are used. The placing of the guard bits can take place in
a similar way as for leaf 2 (subtree h).

414

414



At the right-hand side of split e, during the initial selection of the word-lengths, we choose
a bigger word-length in order to provide enough space for the extra bits i.e. the overflow
bit in the case of the addition. In our example instead of the minimal length of 5 bits, we
select 6-bit word-lengths. In that case, the correctness of the results is maintained, and
extra resizing is avoided, but we operate only 5 sub-words in parallel. The bigger word-
lengths can either have been stored in the data-memory in the intended extended form
(leaf 7) or the extension can take place during their stay in the register file (leaf 8). Within
softSIMD, the extra space provided by the bigger word-length selection is filled with guard
bits on the one or both sides of the sub-words depending on the next operations.

3.2.3 Hybrid solutions.
Most importantly, many hybrid solutions can be derived in a fully systematic way by
combining characteristics of any subset of leaves in Fig. 1. All these leaves are namely
potentially compatible with each other. Here, we will describe only a few to illustrate this
property. These combinations lead to new, non-obvious choices.

One such case is that within the controlled accuracy loss approach (left-hand side of split
b), the stopping of bit propagation (leaf 1) can be combined with the addition of bits
at specific places (leaf 2). In that way, space can be provided for the MSBs by cutting
off LSBs. The guard bits for this case are placed at the MSB side of the sub-words. In
Fig. 4 such an example is shown. The LSB of the 6-bit operands is stopped by means of
hardware during the right shift by 1. In combination to that, a guard bit is placed on the
MSB of the sub-words to potentially prepare them for an addition. If we would choose to
stop bit propagation on the MSB side as well (during the addition), then the neighbouring
sub-words would still be protected but the accuracy of the current sub-words would be
altered (as they cannot expand to the extra bit any longer). The other option to preserve
accuracy would be to resize the sub-words to a bigger word-length before the execution
of the operations. But this potentially means less parallelism exploitation. This hybrid
approach provides a way to avoid the use of a bigger word-length. A second hybrid

30b

results

operands A

6b

6b

>>1

Figure 4: Hybrid approach for controlled accuracy loss

illustration considers the combination of the resizing option (left-hand side of split e) with
controlled loss of accuracy (left-hand side of split b). This could be considered when
the loss of accuracy would be too big if no resizing takes place but a flawless accuracy
preservation is also not preferable (e.g. because it leads to lower parallelism exploitation).
Many other promising hybrids exist in the overall search space.

It becomes obvious that this diagram can be effective for the selection of the platform
characteristics, since certain platform options can lead to more optimized mapping results
depending on the application domain and the overall system requirements. However, even

415

415



when the platform is already defined this diagram remains partly relevant. For example,
instruction-based masking can be performed as long as the basic logical operations are
supported on the platform. This is common for conventional instruction-set processors.

The way to select and evaluate the different possibilities is dependent of course on the
application and platform characteristics. But also trade-offs are present. We briefly discuss
here the main issues that play a role in this decision making. A more systematic evaluation
is part of future work. The total number of groups of lengths should be small so that the
overhead involved with resizing the sub-words is minimized (e.g. in the shuffler). If, for
example, in an application among other word-lengths needed, 13- and 16-bit data occur at
similar frequencies, it would make sense to use the 16-bit value for both cases. In that way,
the support of an extra word-length is avoided. In addition, a resizing operation should be
avoided when the accuracy loss is acceptable compared to the gain due to more difficult
masking and repacking. For example, if an application allows that some LSBs are lost
then it is better to avoid repacking to preserve accuracy and make use of this tolerance
of the application so that energy consumption is further minimized. A specific example
illustrating trade-offs regarding this selection decision is discussed in Subsect. 4.2.

4 Evaluation of the proposed methodology
4.1 Driver algorithm

An image filter is used as driver for the evaluation of the proposed sub-word handling tech-
niques. The illustration regards the mapping of a 1-dimensional Gauss loop filter applied
to an input frame. Different architectures are considered for mapping the Gauss loop.
However, due to space limitations, only one mapping implementation will be discussed
more thoroughly now and the others will be summarized and compared in Sect. 4.3. The

program 1 Optimized Gauss loop (1D)
for x = 1 → N − 1 do

for y = 2 → M − 1 do
Op1:MulRes0 = imsub[x− 1][y] + imsub[x+ 1][y];
Op2:MulRes7 = MulRes0 ∗Gauss[0][1];
Op3:MulRes4 = imsub[x][y] ∗Gauss[0][2];
Op4:imgauss x[x][y] = MulRes4 +MulRes7;

end for
end for

optimized code of the 1D filter is depicted in program 1. The operations involved are two
additions (Op1, Op4) and two constant multiplications (Op2, Op3). The filter coefficients
are shown in Table 1. The multiplications can be performed either by using a multiplier
unit or by a shift-add unit (by applying strength reduction). For the current illustration,
when the multiplications are performed in a shift-add way, the right-shift approach is cho-
sen and for the constants the Canonical Signed Digit (CSD) [Ba07] encoding is considered
(see Table 1). The first multiplication is performed in three shift-add/subtract steps by 4,
by 3 and by 2. Similarly, for the second multiplication right shifts by 3, by 2 and by 5 and
the corresponding additions/subtractions need to take place.

416

416



Gauss[0][1] Gauss[0][2]
Decimal 655 983
Binary 1010001111 1111010111
CSD coding 101001000- 10000-0-00-

Table 1: Gauss coefficients

Signal Length
(bits)

Signal Length
(bits)

imsub 7 imgauss x 12
MulRes7 10, 11, 13 MulRes4 9, 10, 13

Table 2: Gauss loop signals

4.2 Application of the methodology

We will illustrate the mapping of the code using the softSIMD related leaves in Fig. 1.
SoftSIMD makes sense to use while performing simpler operations that do not lead to a
potential explosion of the operands’ word-length [BD06]. Thus, for the multiplications,
the shift-add scheme is employed. We consider a 48-bit data-path that consists of a shift-
add-subtract unit (SAS) for the arithmetic operations, a shuffler unit for the repacking
operations and intermediate registers (softSIMD data-path).

For the mapping, minimal quantization-based word-lengths (for the input signals, the in-
termediate results of the constant multplications and the final results), as shown in Table 2,
are our starting point. Then, in correspondence to the Fig. 1, the word-length choices of
this Gauss filter code occur as follows:

1. The first operation (Op1) is an addition of 7-bit values (imsub). The result needs to
be stored in 8-bit values. To avoid a repacking operation from 7 to 8 bits, the signals are
stored as 8-bit in the data memory (leaf 7). That means 6 sub-words are in parallel in the
48-bit data-path. The result of this operation (MulRes0) is used in the second operation
which is a multiplication with a Gauss coefficient. The second multiplication starts with
a right shift by 4. Since the operands need to be shifted by 4, they need to be extended
to 12-bit values, before they enter the data-path. So that accuracy is preserved during the
right shift, 1 LSB is cut-off from the first addition result (leaf 1) and guard bits are added
(leaf 5i or 5ii) so that the sub-words are 12-bit long to prepare for the next multiplication.
Combining these leaves is possible as explained in Subsect. 3.2.3.

2. During the second operation (Op2), after the first shift-add operation by 4 (explained
before) and prior to the second shift operation by 3, a repacking operation of the variable
to 16 bits needs to take place so that accuracy is preserved (leaf 5i or 5ii). Because two
guard bits are required at the left-hand side of the repacked multiplicand (one for the
additions within the multiplication and one extra for the addition of the fourth operation
of the Gauss loop), the result is shifted out of the sub-words during the last shift by 2. In
this case, care must be taken so that the extra bits are cut off and do not enter the adjacent
operand (leaf 1). This choice is a hybrid combination of the resizing option (leaf 5i or 5ii)
and the stopping of bit propagation (leaf 1), that allows us to exploit the given word-length
in an efficient way while we are also obeying the accuracy limitations. If the guard bits are
not placed, potential overflows coming from the additions can corrupt the results. On the
other hand, if the 2 LSBs are not cut-off, right-hand sub-words may be polluted. Another
alternative would be that an extra word-length is then supported, for example the 18-bit
or 24-bit word-length. But this would increase the hardware overhead (for example in the
shuffler because an additional repacking operation would have to be supported) and would
limit the parallelization potential. With the 18-bit or 24-bit option only two sub-words

417

417



could operate in parallel in the 48-bit data-path. This allows this hybrid combination to
appear as an optimal option.

3. For the third operation (Op3) similar choices with the previous operation are made. The
imsub data are stored as 8-bit in the data memory (leaf 7) and are resized to 12-bit by the
register file (leaf 8) before they enter the data-path. As before, the sub-words operate as
12-bit during the first cycle and as 16-bit during the two subsequent cycles.

4. The fourth operation (Op4) is an addition of the multiplication results (Op2, Op3)
stored into a 12-bit value (according to quantization results). In this case, 4 sub-words are
working in parallel.

More detailed information on the exact mapping is available in [Ps10].

4.3 Comparison with mapping on alternative data-paths

Alternative data-paths. Besides the softSIMD discussed above, alternative data-paths
are considered. Like softSIMD, hardSIMD data-paths also include a shift-add-subtract
(SAS) unit and a shuffler. The differences with softSIMD have been discussed in Sect. 3.
The cases considered are one more unconventional hardSIMD option (HardSIMD SAS,
3-wl) that supports all three sub-word sizes (8-, 12-, 16-bit), one more conventional (Hard-
SIMD SAS, 2-wl) that supports only power of 2 sub-word sizes (in this case 8-, 16-bit).
Moreover, the SIMD case where only one sub-word size (24-bit) is considered (SIMD
SAS, 1-wl). In the last case, no shuffler is needed and the SAS unit does not need to
handle the carry and other bits (the operands remain within their boundaries).

As further reference, we also consider hardwired multiplier data-paths. In this case, a mul-
tiplier is used in the position of the SAS unit. Operands’ width during the multiplications
is calculated as follows. The input operands (imsub[x. . . ]) are 7-bit and the Gauss coeffi-
cients are 10-bit long. That means that the width needed for each multiplication result is
at least 17 bits, and when rounded to the next power of 2, this becomes 32 bits. For the
multiplier approaches discussed in this paper, a more optimized choice of 24 bits is used
as an optimistic comparison reference. Moreover, for the additions existing in the applica-
tion an adder is needed and when more than one word-length is supported, a shuffler unit
is present. In this category, two cases are considered, one (HardSIMD Mult, 3-wl) where
three sub-word sizes (8-bit for the initial addition, 24-bit for the multiplications and 12-bit
for the final addition) are supported and one (SIMD Mult, 1-wl) where only one size is
supported. In the last case, six groups of two 24-bit operands are operating in parallel and
operands remain within their limits during the operations.

Relative area, energy consumption and throughput. The different data-path options
with the required functionalities have been implemented in TSMC 40 nm std. cell tech-
nology, using Cadence RTL Compiler and SoC Encounter for synthesis and place and
route. To obtain the area, energy and throughput numbers for the components, a similar
estimation flow as in [Fa09] has been applied. Each data-path is synthesized for the maxi-
mum clock frequency; no pipelining in the arithmetic data-path is applied. The algorithm
is manually scheduled and optimized for each data-path variant. Software pipelining is
applied in cases where more than one operator is present. The number of required clock
cycles (to complete one Gauss iteration; 12 pixels) together with the critical path is then

418

418



used to determine the relative throughput. For the energy estimation, the actual activation
count for each data-path unit is considered. Table 3 summarizes the results.

Data-path option Accesses of operators Area Energy Through-
put

Through.
/energy

SoftSIMD 27*SAS + 19*Shuf 1.63 0.80 1.69 2.12
HardSIMD SAS, 3-wl 27*SAS + 11*Shuf 1.48 0.72 1.27 1.76
HardSIMD SAS, 2-wl 30*SAS + 4*Shuf 1.28 0.72 1.33 1.85
SIMD SAS, 1-wl 48*SAS 1.00 1.00 1.00 1.00
HardSIMD Mult, 3-wl 5*Adder + 12*Mult +

9*Shuf
7.84 2.05 2.00 0.96

SIMD Mult, 1-wl 12*Adder + 12*Mult 6.63 2.00 2.29 1.15

Table 3: Estimation of the total relative area, energy consumption, throughput and
throughput-energy quotient for one Gauss iteration (data-path = 48 bits).

As it can be seen in Table 3, SIMD SAS 1-wl requires the lowest area, which is reasonable
since no bit handling among sub-words needs to take place. However, the delay signif-
icantly increases in this case. The softSIMD and hardSIMD SAS (3-wl) data-paths, that
exploit maximally the different solutions presented in Sect. 3, are among the near-optimal
solutions in the table. SoftSIMD achieves a higher throughput, compared to the other
SAS implementations (because of the small critical path and the dense scheduling). More
importantly, it achieves the highest throughput-energy ratio. HardSIMD SAS data-paths
exhibit energy-efficiency because of the simpler shuffler unit. HardSIMD SAS (2-wl) has
a more optimal throughput-energy combination than the hardSIMD (3-wl) because of the
slightly smaller critical path. The multiplier data-paths have a big area and energy over-
head but achieve the highest throughput. The throughput-energy ratio is a viable metric
because at the circuit level, it is the most relevant trade-off. A faster circuit indeed re-
quires more energy to perform a computation than a slower one, due to buffer sizing. For
instance, the softSIMD circuit could be made slower and therefore it will also consume
less energy. Note that these results scale as well to a multi-core processor composed of a
homogeneous set of PEs with sub-word parallel support, as indicated already in subsec-
tion 3.1. In that case the mapping above is simply copied for each of the PEs due to the
homogeneous overall mapping principle.

The table demonstrates a wide range of options in the total space, which lead to a wide
range of quantitative results. According to the objectives, the options are worth exploring.
For instance, when high timing constraints are present using a multiplier data-path is a
better option. When design time is not a hard limitation, softSIMD as well as hardSIMD
which supports non power-of-2 sub-word sizes are worth exploiting, since they exhibit the
best energy-efficiency.

5 Conclusion
In this paper, the broad solution space of organizing parallel data with minimal data word-
length requirements in domain-specific processors during mapping (at design time) is ex-
plored in a systematic way. These processors can consist of single or multi-core archi-
tectures organized in a homogeneous SIMD fashion. A methodical way reveals a broad
number of options and can potentially save design time. The application of the proposed

419

419



sub-word handling analysis on a driver algorithm has substantiated a wide mapping so-
lution space. Our goal is to facilitate an intermediate step of the mapping process, after
having selected the minimal word-length requirements and before the compiler tool de-
cides and applies the final mapping. This precompiler methodology can provide pragma
or intrinsic-based guidance to support the traditional compilers.

References
[Ba07] E.Backenius, Reduction of Substrate Noise in Mixed-Signal Circuits, PhD thesis,

Linkoping University, 2007.
[BD06] Emulate SIMD in software, http://www.bdti.com/InsideDSP/2006/12/

06/Bdti, 2006.
[CF04] G.Cichon, G.Fettweis, Mouse: a shortcut from Matlab source to SIMD DSP assembly

code, SAMOS’IV, Greece, July 2004.
[CVE09] J.Corbal, M.Valero, R.Espasa, Exploiting a new level of DLP in multimedia applications,

MICRO conf, New York, Dec. 2009.
[Fa09] R.Fasthuber et al, Novel energy-efficient scalable soft-output SSFE MIMO detector ar-

chitectures, Proc. Intnl. Conf. (IC-SAMOS), July 2009.
[Fr05] F.Franchetti et al, Efficient utilization of SIMD extensions, Proc. Of the IEEE, Vol.93,

2005
[Ha04] K.Han et al, Data wordlength reduction for low-power signal processing software, Proc.

IEEE Wsh. on Signal Proc. Syst. (SIPS), Austin TX, IEEE Press, pp.343-348, Oct. 2004.
[KL00] A. Krall, S.Lelait, Compilation techniques for multimedia processors, Int. Journal on

Parallel Programing, 28(4), 2000.
[LA00] S. Larsen, S.Amarasinghe, Exploiting superword level parallelism with multimedia in-

struction sets, ACM SIGPLAN Notices, 35(5):145156, 2000.
[La07] A.Lambrechts et al, Enabling word-width aware energy optimizations for embedded pro-

cessors, Proc. ODES, San Jose CA, pp.66-75, March 2007.
[Me10] D.Menard et al, Quantization mode opportunities in fixed-point system design, Proc. 18th

Eur. Sign. Proc. Conf.(EUSIPCO), Denmark, pp.-, Aug. 2010.
[No10a] D.Novo et al, Exploiting Finite Precision Information to Guide Data Flow Mapping, Proc.

47th ACM/IEEE Design Automation Conf. (DAC), Anaheim CA, pp.248-253, June 2010.
[No10b] D.Novo et al, Ultra Low Energy Domain Specific Instruction-set Processor for On-line

Surveillance, Proc. SASP co-located with DAC, Anaheim CA, pp.30-35, June 2010.
[Pa10] K.Parashar et al, Fast performance evaluation of fixed-point systems with un-smooth op-

erators, Proc. IEEE Intnl. Conf. Comp. Aided Des. (ICCAD), San Jose, pp.9-16, Nov.
2010.

[Ps10] G.Psychou, Optimized SIMD scheduling and architecture implementation for ultra-low
energy bioimaging processor, M.Sc. thesis, Univ. of Patras and IMEC NL, 2010.

[Qi09] M.Qiu et al, Energy-aware loop scheduling and assignment for multi-core, multi-
functional unit architecture, J.Signal Processing Systems, Vol.57, pp.363-379, 2009.

[Te05] C.Tenllado et al, Improving superword level parallelism support in modern compilers,
Wsh. Codes-ISSS, NY, pp.303-308, Oct. 2005.

[Wi11] Wikipedia, http://en.wikipedia.org/wiki/Fixed_point_arithmetic,
read Sep.2011.

[XOK07] L.Xue, O.Ozturk, M.Kandemir, A memory-conscious code parallelization scheme, Proc.
44th Conf. Design automation, pages 230–233, NY, USA, 2007. ACM Press.

420

420


