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SUBADDITIVITY OF EIGENVALUE SUMS

MITSURU UCHIYAMA

(Communicated by Joseph A. Ball)

Abstract. Let f(t) be a nonnegative concave function on 0 ≤ t < ∞ with
f(0) = 0, and let X, Y be n×n matrices. Then it is known that ‖f(|X+Y |)‖1 ≤
‖f(|X|)‖1 +‖f(|Y |)‖1, where ‖ · ‖1 is the trace norm. We extend this result to
all unitarily invariant norms and prove some inequalities of eigenvalue sums.

1. Introduction

The eigenvalues of an n × n Hermitian matrix H are denoted by λi(H) (i =
1, 2, · · · , n) and arranged in increasing order, that is, λ1(H) ≤ λ2(H) ≤ · · · ≤
λn(H). The following sums are very important: for 1 ≤ k ≤ n,

σ(k)(H) :=
k∑

i=1

λi(H), σ(k)(H) :=
n∑

i=n−k+1

λi(H).

These are represented as follows:

σ(k)(H) = min{
k∑

i=1

〈Hei, ei〉 : {e1, · · · , ek} is orthonormal},(1)

σ(k)(H) = max{
k∑

i=1

〈Hei, ei〉 : {e1, · · · , ek} is orthonormal}.(2)

Hence σ(k)(H) (or σ(k)(H)) is a concave (or convex) function of H(cf. [7]).
A norm ||| · ||| on the n × n matrices is called a unitarily invariant norm if

|||UXV ||| = |||X|||
for all X and for all unitary matrices U and V . The operator norm ‖X‖, Schatten
p-norms

‖X‖p := {
n∑

i=1

λi(|X|)p}1/p (p ≥ 1),

where |X| = (X∗X)1/2, and Ky Fan k-norms ‖X‖(k) := σ(k)(|X|) (k = 1, 2, · · · , n)
are typical unitarily invariant norms. It is well known that σ(k)(|X|) ≤ σ(k)(|Y |)
(k = 1, 2, · · · , n) implies |||X||| ≤ |||Y ||| for every unitarily invariant norm ||| · |||.
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1406 MITSURU UCHIYAMA

σ(k)(|X|) ≤ σ(k)(|Y |) (k = 1, 2, · · · , n) means that the sequence {λk(|X|)}n
k=1 is

submajorized by {λk(|Y |)}n
k=1 by definition; so one can restate some of the results

in this paper by using the word “submajorized ”.
Let f(t) be a nonnegative concave function on 0 ≤ t < ∞. Then Rotfel’d [8] and

Thompson [9] (see also Theorem 4.2.14 of [4]) have shown that

‖f(|X + Y |)‖1 ≤ ‖f(|X|)‖1 + ‖f(|Y |)‖1.

We show in the fourth section that the above inequality holds for every unitarily
invariant norm.

For Hermitian matrices A and B the inequality A ≤ B means 〈Ax,x〉 ≤ 〈Bx,x〉
for all vectors x, where 〈·, ·〉 is the inner product. A continuous function ϕ defined
on an interval I is called an operator monotone function if for all A, B whose
eigenvalues lie in I, A ≤ B implies ϕ(A) ≤ ϕ(B). Likewise, a continuous function
ϕ on I is called an operator convex function if

ϕ(sA + (1 − s)B) ≤ sϕ(A) + (1 − s)ϕ(B)

for all A, B whose eigenvalues lie in I and for every s with 0 ≤ s ≤ 1. ϕ is called
an operator concave function if −ϕ is operator convex.

We also give, in the third section, a simple proof of the following result [2]:
for a nonnegative operator monotone function ϕ on [0,∞) and for every unitarily
invariant norm ||| · |||,

|||ϕ(A + B)||| ≤ |||ϕ(A) + ϕ(B)||| (0 ≤ A, B).

For details on this field we refer the readers to [4]. We appreciate the referee’s
useful comments.

2. Essential results

For Hermitian matrices A and B the trace of BA2B − AB2A vanishes. But,
in general, it is difficult to estimate the trace of CBA2BC − CAB2AC. The next
lemma follows from the more general result shown in [5]. However, this special case
is useful and worth stating, so we prove it directly.

Lemma 2.1. Let A ≥ 0 and B ≥ 0, and let Q be an orthogonal projection such that
QB = BQ. If inf{‖Bx‖ : Qx = x, ‖x‖ = 1} ≥ sup{‖Bx‖ : (1−Q)x = x, ‖x‖ = 1},
then

trQBA2BQ ≥ tr QAB2AQ,(3)
tr(1 − Q)BA2B(1 − Q) ≤ tr (1 − Q)AB2A(1 − Q).(4)

Proof. Let

A =
[

A11 A12

A∗
12 A22

]
, B =

[
B1 0
0 B2

]

be the decompositions of A and B corresponding to Cn = QCn ⊕ (1−Q)Cn. Then

QBA2BQ =
[

B1A
2
11B1 + B1A12A

∗
12B1 0

0 0

]
,(5)

QAB2AQ =
[

A11B
2
1A11 + A12B

2
2A∗

12 0
0 0

]
.(6)
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The assumption implies there are real numbers m1, m2 ≥ 0 such that B2
1 ≥ m1 ≥

m2 ≥ B2
2 . Since

tr B1A12A
∗
12B1 = tr A∗

12B
2
1A12 ≥ m1 · tr A∗

12A12

≥ m2 · tr A12A
∗
12 ≥ tr A12B

2
2A∗

12,

we get (3). One can see (4) in the same way or by using (3). �

Notice that Q in the above lemma is the orthogonal projection onto the space
spanned by eigenvectors of B corresponding to λn(B), λn−1(B), · · · , λn−k+1(B) for
some k : 1 ≤ k ≤ n. We can see that the above lemma is right for operators on an
infinite Hilbert space as well if A is of Hilbert-Schmidt class; so we used “inf (or
sup)” instead of “min (or max)”.

Corollary 2.2. Let A ≥ 0 and B ≥ 0, and let Q be an orthogonal projection such
that QB = BQ. Suppose the sharper inequality:

inf{‖Bx‖ : Qx = x, ‖x‖ = 1} > sup{‖Bx‖ : (1 − Q)x = x.‖x‖ = 1}.
Then tr QBA2BQ = tr QAB2AQ if and only if QA = AQ.

Proof. Assume tr QBA2BQ = tr QAB2AQ. Then by (5), (6) we get

tr B1A12A
∗
12B1 = tr A12B

2
2A∗

12.

Since we can take m1 and m2 in the preceding proof as m1 > m2, tr A12A
∗
12 must

vanish, and hence A12 = 0. This implies QA = AQ. The converse statement is
clear. �

In this paper the terms “increasing” and “decreasing” are used in the wider
sense, that is, they mean “non-decreasing” and “non-increasing”, respectively.

Proposition 2.3. Let f(t) be a continuous function on a ≤ t ≤ b with a ≥ 0, and
let A, B be n×n nonnegative Hermitian matrices such that a ≤ A + B ≤ b. If f(t)
is decreasing and tf(t) is increasing, or if f(t) is increasing and tf(t) is decreasing,
then for 1 ≤ k ≤ n

σ(k)(A1/2f(A + B)A1/2 + B1/2f(A + B)B
1
2 ) ≥ σ(k)((A + B)f(A + B)).

Hence, for any unitarily invariant norm ||| · |||

|||A1/2f(A + B)A1/2 + B1/2f(A + B)B
1
2 ||| ≥ |||(A + B)f(A + B)|||.

Proof. The second inequality immediately follows from the first one, so we only
show the first inequality. To do it we first assume that f(t) is decreasing and tf(t)
is increasing. Notice that f(t) is then nonnegative. Denote the unit eigenvector of
A+B corresponding to λi := λi(A+B) by ei (1 ≤ i ≤ n). As (A+B)f(A+B)ei =
λif(λi)ei and λif(λi) ≤ λi+1f(λi+1), the less side of the first inequality equals∑n

i=n−k+1 λif(λi). Therefore, by (2), it is sufficient to show
n∑

i=n−k+1

〈(A1/2f(A + B)A1/2 + B1/2f(A + B)B1/2)ei.ei〉 ≥
n∑

i=n−k+1

λif(λi),

which is equivalent to

tr{PA1/2f(A + B)A1/2P + PB1/2f(A + B)B1/2P} ≥ trP (A + B)f(A + B)P,
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where P is the orthogonal projection onto the space spanned by {en−k+1, · · · , en}.
Since f(λi) ≥ f(λi+1), by (4)

tr PA1/2f(A + B)A1/2P ≥ tr Pf(A + B)1/2Af(A + B)1/2P,

tr PB1/2f(A + B)B1/2P ≥ tr Pf(A + B)1/2Bf(A + B)1/2P.

Summing both inequalities yields the required inequality. We next assume that f(t)
is increasing and tf(t) is decreasing; hence f(t) ≤ 0. To see the required inequality
we may prove

σ(k)(A1/2f(A + B)A1/2 + B1/2f(A + B)B1/2) ≤ σ(k)((A + B)f(A + B)),

because the traces of the matrices on both sides are identical. Since tf(t) is de-
creasing, by (1) it is enough to show that

tr (PA1/2f(A + B)A1/2P + PB1/2f(A + B)B1/2P ) ≤
n∑

i=n−k+1

λif(λi),

where P is the orthogonal projection onto the space spanned by {en−k+1, · · · , en}.
We can obtain this inequality in the same way as above. �

When we study the operator convexity, we often encounter a pair of matri-
ces X and Y with X∗X + Y ∗Y = 1. But in this case, XX∗ + Y Y ∗ is not nec-
essarily contractive; in fact, suppose A + B is invertible for A, B ≥ 0. Then
(A+B)−1/2A(A+B)−1/2+(A+B)−1/2B(A+B)−1/2 = 1; but putting f(t) = 1/t in
the above proposition, we get σ(k)(A1/2(A+B)−1A1/2 +B1/2(A+B)−1B1/2) ≥ k.
Furthermore, we get

Corollary 2.4. Let A and B be nonnegative Hermitian matrices such that A + B
is invertible. Then the following are equivalent:

(i) H := A1/2(A + B)−1A1/2 + B1/2(A + B)−1B1/2 ≤ 1,
(ii) H = 1,
(iii) AB = BA.

Proof. (i) ⇒ (ii). As we mentioned above, we get σ(k)(H) ≥ σ(k)(1). Thus (i)
implies σ(k)(H) = σ(k)(1) = k for 1 ≤ k ≤ n and hence H = 1.

(ii) ⇒ (iii). Assume λn(A + B) ≥ · · · ≥ λn−k+1(A + B) > λn−k(A + B). Let
ei be the unit eigenvector of A + B corresponding to λi(A + B), and let Q be the
orthogonal projection onto the space spanned by en, · · · , en−k+1. Then by Lemma
2.1

k = tr QHQ = tr QA1/2(A + B)−1A1/2Q + tr QB1/2(A + B)−1B1/2Q

≥ tr Q(A + B)−1/2A(A + B)−1/2Q + tr Q(A + B)−1/2B(A + B)−1/2Q

= tr Q = k,

from which it follows that

tr QA1/2(A + B)−1A1/2Q = tr Q(A + B)−1/2A(A + B)−1/2Q.

Thus by Corollary 2.2 we obtain AQ = QA. Therefore, one can see that A com-
mutes to every spectral projection of A + B. Thus AB = BA. Needless to say, (i)
follows from (iii). �
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3. Operator concave functions

Henceforth, we give some applications of Proposition 2.3 and assume every func-
tion is continuous. To start with, we give an another proof of the first statement of
Ando and Zhan’s theorem:

Theorem A ([2]). Let ϕ(t) be a nonnegative operator monotone function on [0,∞).
Then for n × n Hermitian matrices A ≥ 0 and B ≥ 0,

σ(k)(ϕ(A) + ϕ(B)) ≥ σ(k)(ϕ(A + B)) (1 ≤ k ≤ n).

Let ψ(t) be a strictly increasing function on [0,∞) with ψ(0) = 0 and ψ(∞) = ∞
such that the inverse function ψ−1(t) is operator monotone. Then

σ(k)(ψ(A) + ψ(B)) ≤ σ(k)(ψ(A + B)) (1 ≤ k ≤ n).

To prove the first inequality we may assume that A+B is invertible. Then, since
(A + B)−1/2A1/2 is contractive, by Hansen and Pedersen’s inequality [6] we have

ϕ(A) = ϕ(A1/2(A + B)−1/2(A + B)(A + B)−1/2A1/2)

≥ A1/2(A + B)−1/2ϕ(A + B)(A + B)−1/2A1/2,

ϕ(B) ≥ B1/2(A + B)−1/2ϕ(A + B)(A + B)−1/2B1/2.

Since ϕ(t) is increasing and ϕ(t)/t is decreasing, by Proposition 2.3 we get

σ(k)(ϕ(A) + ϕ(B)) ≥σ(k)(A1/2(ϕ/t)(A + B)A1/2 + B1/2(ϕ/t)(A + B)B1/2)

≥σ(k)(ϕ(A + B)) (1 ≤ k ≤ n).

We can similarly prove the following extension of the first statement in the above
theorem:

Let ϕ(t) be an operator monotone function on [0,∞). Then for A, B, C ≥ 0 and
for k = 1, · · · , n,

σ(k)(ϕ(A + B + C)) ≥ σ(k)(ϕ(A) + ϕ(B) + ϕ(C)).

Recall that ϕ(t) on [0,∞) is operator monotone if and only if ϕ(t) is operator
concave and ϕ(∞) > −∞ (cf. Proposition 3.5 of [10]). As ϕ(t) in the preceding
theorem is operator concave, it is natural to ask for a similar inequality related to
an operator convex function.

Proposition 3.1. Let ψ(t) be a non-constant, increasing operator convex func-
tion on [0,∞). Then ψ(t) is strictly increasing and its inverse function ψ−1(t) is
operator concave on [ψ−1(0),∞).

Proof. Assume ψ(0) = 0. Then it is known that ψ(t)/t is operator monotone on
(0,∞). Since the right-side limit of ψ(t)

t at t = 0 exists and is nonnegative, ψ(t)/t
has the natural extension that is nonnegative and operator monotone on [0,∞); we
denote it by ψ(t)/t again. Since ψ(t)/t is increasing, ψ(t) is strictly increasing. By
Lemma 5 of [1] the inverse function of ψ(t) = t(ψ(t)/t) is operator monotone and
hence operator concave. Assume next ψ(0) 	= 0. For ϕ(t) := ψ(t) − ψ(0) we get
ψ−1(t) = ϕ−1(t − ψ(0)). Since ϕ−1 is operator concave, so is ψ−1(t). �

The converse of the previous proposition does not holds; for instance, t1/3 is
an operator concave function on [0,∞), but its inverse function t3 is not operator
convex.
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The following corollary can be shown by making use of the second inequality of
Theorem A.

Corollary 3.2. Let ψ(t) be a non-constant and increasing operator convex function
on [0,∞) with ψ(0) = 0. Then for n × n Hermitian matrices A ≥ 0 and B ≥ 0,

σ(k)(ψ(A) + ψ(B)) ≤ σ(k)(ψ(A + B)) (1 ≤ k ≤ n).

4. Main results

We notice that if X and Y are contractive such that X∗X + Y ∗Y = 1 and if the
spectra of A and B are both in an interval I, then the spectrum of X∗AX +Y ∗BY
is in I as well. A function is said to be monotone if it is increasing or decreasing.

Proposition 4.1. Let f(t) be a concave function on an interval I, and let A, B be
n × n Hermitian matrices with the spectra in I. Then for X, Y such that X∗X +
Y ∗Y = 1 and for k = 1, 2, · · · , n,

(7) σ(k)(f(X∗AX + Y ∗BY )) ≥ σ(k)(X∗f(A)X + Y ∗f(B)Y ).

Moreover, if f(t) is monotone, then

(8) λk(f(X∗AX + Y ∗BY )) ≥ λk(X∗f(A)X + Y ∗f(B)Y ).

Proof. Let {λi}n
i=1 be the eigenvalues of X∗AX + Y ∗BY so that f(λ1) ≤ f(λ2) ≤

· · · ≤ f(λn), and let {ei} be the corresponding eigenvectors. Then the left side of
(7) equals f(λ1) + · · · + f(λk). By the concavity of f , we have

k∑
i=1

〈(X∗f(A)X + Y ∗f(B)Y )ei, ei〉

=
k∑

i=1

{‖Xei‖2〈f(A)
Xei

‖Xei‖
,

Xei

‖Xei‖
〉 + ‖Y ei‖2〈f(B)

Y ei

‖Y ei‖
,

Y ei

‖Y ei‖
〉}

≤
k∑

i=1

{‖Xei‖2f(〈A Xei

‖Xei‖
,

Xei

‖Xei‖
〉) + ‖Y ei‖2f(〈B Y ei

‖Y ei‖
,

Y ei

‖Y ei‖
〉)}

≤
k∑

i=1

f(〈(X∗AX + Y ∗BY )ei, ei〉) =
k∑

i=1

f(λi).

Thus, by (1) we get (7).
If f(t) is increasing, we can arrange eigenvalues {λi}n

i=1 as λi ≤ λi+1 and f(λi) ≤
f(λi+1). For every unit vector x that is a linear combination of e1, · · · , ek,

〈(X∗f(A)X + Y ∗f(B)Y )x,x〉 ≤ f(〈(X∗AX + Y ∗BY )x,x〉)
≤ f(λk),

for 〈(X∗AX + Y ∗BY )x,x〉 ≤ λk. From this, by the mini-max theorem, (8) follows.
It can be similarly shown even if f(t) is decreasing. �
Corollary 4.2. Let f(t) be a monotone and concave function on I. If 0 ∈ I and
f(0) ≥ 0, then for all X such that X∗X ≤ 1,

λk(f(X∗AX)) ≥ λk(X∗f(A)X) (1 ≤ k ≤ n).

Proof. Put B = 0 and Y = (1 − X∗X)1/2 in (8). Since X∗f(A)X + Y ∗f(0)Y ≥
X∗f(A)X, we obtain the required inequality. �
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Corollary 4.3. Let g(t) be a convex function on I. Then for all n × n Hermitian
matrices A, B with the spectra in I and for all X, Y such that X∗X + Y ∗Y = 1,

σ(k)(g(X∗AX + Y ∗BY )) ≤ σ(k)(X∗g(A)X + Y ∗g(B)Y ) (1 ≤ k ≤ n).

Moreover, if g(t) is monotone, then

λk(g(X∗AX + Y ∗BY )) ≤ λk(X∗g(A)X + Y ∗g(B)Y ) (1 ≤ k ≤ n).

Proof. Since λk(−H) = −λn−k+1(H), by putting f = −g in Proposition 4.1, we
get this corollary. �

Corollary 4.3 has been shown in [3] when X and Y are both real numbers. Now
we are in position to show the following main theorem.

Theorem 4.4. Let f(t) be a nonnegative, continuous and concave function on
[0,∞). Then for all n × n (not necessarily Hermitian) matrices A and B and for
k = 1, · · · , n

σ(k)(f(|A + B|)) ≤ σ(k)(f(|A|)) + σ(k)(f(|B|)).(9)

Proof. Since f(t) is nonnegative and concave on [0,∞), f(t) is increasing. Though
the right-side limit of (f(t)−f(0))/t at t = 0 is not necessarily finite, by considering
f(t + ε) − f(ε) instead of f(t) for an arbitrary ε > 0, we may assume that f(t) is
right diffentiable at t = 0 and f(0) = 0. Then we can extend f(t)/t continuously
to [0,∞) and denote the extension by f(t)/t again. Since f(t) is nonnegative and
concave, f(t)/t is decreasing on [0,∞).

We first show (9) in the case A ≥ 0 and B ≥ 0. In this case there is no loss of
generality in assuming that A+B is invertible. Since f(t) = t·f(t)/t, by Proposition
2.3,

σ(k)(f(A + B))

≤ σ(k)(A1/2(A + B)−1f(A + B)A1/2 + B1/2(A + B)−1f(A + B)B1/2)

≤ σ(k)(A1/2(A + B)−1/2f(A + B)(A + B)−1/2A1/2)

+ σ(k)(B1/2(A + B)−1/2f(A + B)(A + B)−1/2B1/2)

≤ σ(k)(f(A)) + σ(k)(f(B)),

where the second inequality is due to the subadditivity of σ(k) and the last inequality
follows from Corollary 4.2.

We next consider general matrices A and B. Then there are unitary matrices U
and V such that

|A + B| ≤ U∗|A|U + V ∗|B|V
(see [9]). Hence we have λk(f(|A + B|)) ≤ λk(f(U∗|A|U + V ∗|B|V ) for 1 ≤ k ≤ n.
Thus from the result shown above it follows that

σ(k)(f(|A + B|)) ≤ σ(k)(f(U∗|A|U + V ∗|B|Y ))

≤ σ(k)(f(U∗|A|U)) + σ(k)(f(V ∗|B|Y ))

= σ(k)(U∗f(|A|)U) + σ(k)(V ∗f(|B|)V )

= σ(k)(f(|A|)) + σ(k)(f(|B|)). �
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By considering unitarily invariant norm ||| · ||| instead of σ(k) in the above proof,
we have

Corollary 4.5. Under the same condition as Theorem 4.4

|||f(|A + B|)||| ≤ |||f(|A|)||| + |||f(|B|)|||.

References

[1] T. Ando, Comparison of norms |||f(A) − f(B)||| and |||f(|A − B|)|||, Math. Z., 197 (1988),
403–409. MR0926848 (90a:47021)

[2] T. Ando, X. Zhan, Norm inequalities related to operator monotone functions, Math. Ann.,
315 (1999), 771–780. MR1727183 (2000m:47008)

[3] J. S. Aujla, F. C. Silva, Weak majorization inequalities and convex functions, Linear Alg.
App., 369 (2003), 217–233. MR1988488 (2004g:47021)

[4] R. Bhatia, Matrix Analysis, Springer-Verlag, 1997. MR1477662 (98i:15003)
[5] J. C. Bourin, Some inequalities for norms on matrices and operators, Linear Alg. Appl., 292

(1999), 139–154. MR1689308 (2000b:47022)
[6] F. Hansen, G. K. Pedersen, Jensen’s inequality for operators and Löwner’s theorem, Math.
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