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ABSTRACT. Let f(t) be a nonnegative concave function on 0 < ¢ < oo with
f(0) =0, and let X, Y be nxn matrices. Then it is known that || f(|X+Y|)|1 <
NFAXDIL+NF£AY DI, where ||+ |1 is the trace norm. We extend this result to
all unitarily invariant norms and prove some inequalities of eigenvalue sums.

1. INTRODUCTION

The eigenvalues of an n x n Hermitian matrix H are denoted by \;(H) (i
1,2,--+,n) and arranged in increasing order, that is, A\(H) < Ao(H) < ---
An(H). The following sums are very important: for 1 < k < n,

IA

k n
o) (H) ;:ZMH), oM (H) = Y N(H).

i=n—k-+1

These are represented as follows:

k
(1) o (H) = min{Z(Hei,el) : {e1,- - ,ex} is orthonormal},

i=1
k

(2) o™ (H) = max{Z(Hei,eZ) : {e1, - ,ex} is orthonormal}.
i=1

Hence o,y (H) (or o®)(H)) is a concave (or convex) function of H(cf. [7]).
A norm | - || on the n x n matrices is called a unitarily invariant norm if

IUXVI = I1X]

for all X and for all unitary matrices U and V. The operator norm || X ||, Schatten
p-norms

X1, = D M(X D3P (0= 1),
=1

where |X| = (X*X)'/2, and Ky Fan k-norms 1 X || xy == oc®(X]) (k=1,2,---,n)
are typical unitarily invariant norms. It is well known that o¢®)(|X|) < o®)(|Y])
(k=1,2,--- ,n) implies | X| < |Y| for every unitarily invariant norm || - ||.
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1406 MITSURU UCHIYAMA

o™ (X)) <a®(Y]) (k=1,2,---,n) means that the sequence {\;(|X])}7_, is
submajorized by {A\p(|Y])}7_, by definition; so one can restate some of the results
in this paper by using the word “submagorized ”.

Let f(t) be a nonnegative concave function on 0 < ¢ < co. Then Rotfel’d [§] and
Thompson [J] (see also Theorem 4.2.14 of [4]) have shown that

IFAX + YDl < [FAXDI+ 1 AY DI

We show in the fourth section that the above inequality holds for every unitarily
invariant norm.

For Hermitian matrices A and B the inequality A < B means (4x,x) < (Bx,x)
for all vectors x, where (-, -) is the inner product. A continuous function ¢ defined
on an interval I is called an operator monotone function if for all A, B whose
eigenvalues lie in I, A < B implies ¢(A) < ¢(B). Likewise, a continuous function
@ on I is called an operator convex function if

p(sA+ (1 —5)B) < sp(A) + (1 - 5)p(B)

for all A, B whose eigenvalues lie in I and for every s with 0 < s < 1. ¢ is called
an operator concave function if —p is operator convex.

We also give, in the third section, a simple proof of the following result [2]:
for a nonnegative operator monotone function ¢ on [0,00) and for every unitarily
invariant norm || - |,

le(A+ B)l < llp(A) +o(B)] (0 <A,B).

For details on this field we refer the readers to [4]. We appreciate the referee’s
useful comments.

2. ESSENTIAL RESULTS

For Hermitian matrices A and B the trace of BA?B — AB?A vanishes. But,
in general, it is difficult to estimate the trace of CBA?BC — CAB?AC. The next
lemma follows from the more general result shown in [5]. However, this special case
is useful and worth stating, so we prove it directly.

Lemma 2.1. Let A > 0 and B > 0, and let Q be an orthogonal projection such that
QB = BQ. Ifinf{|[Bx|| : Qx = x, [|x]| = 1} = sup{|[ Bx|| : (1 - Q)x = x, [|x[| = 1},

then

(3) trQBA’BQ > trQAB%AQ,

(4) tr(1 - Q)BA’B(1-Q) < tr(1—-Q)AB*A(1 - Q).
Proof. Let

An A B, 0
A= B =
e ar]oe= % 8]

be the decompositions of A and B corresponding to C" = QC" @ (1 —Q)C". Then

o [ BiA% By + BiA1pAL,By 0
(5) QBA2BQ = [ 0 .
A11B2A; + A1 B2AY 0
2 B 1157411 12534719
(6) QAB2AQ = [ 0 0 ] :
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The assumption implies there are real numbers mq, my > 0 such that Bf > my >
mo > B%. Since
tr BiA1oA}yBy = tr AT,BI A1 > my - tr Al, A
> my - tr Ayg ALy > tr Ay B2 AL,
we get ([B). One can see (@) in the same way or by using (3)). O

Notice that ) in the above lemma is the orthogonal projection onto the space
spanned by eigenvectors of B corresponding to A, (B), An—1(B), -+, \p—g+1(B) for
some k : 1 < k <n. We can see that the above lemma is right for operators on an
infinite Hilbert space as well if A is of Hilbert-Schmidt class; so we used “inf (or
sup)” instead of “min (or max)”.

Corollary 2.2. Let A >0 and B > 0, and let Q be an orthogonal projection such
that QB = BQ. Suppose the sharper inequality:
inf{[| Bx|| : Qx =x, |[x|| =1} > sup{[|Bx| : (1 - Q)x = x.[[x| = 1}.
Then tr QBA?BQ = tr QAB?AQ if and only if QA = AQ.
Proof. Assume tr QBA?2BQ = tr QAB?AQ. Then by (), (@) we get
tr BiAjo A, By = tr Ajo B2 A%,

Since we can take my and my in the preceding proof as my > maq, tr A;2 A}, must
vanish, and hence A5 = 0. This implies QA = AQ. The converse statement is
clear. [l

In this paper the terms “increasing” and “decreasing” are used in the wider
sense, that is, they mean “non-decreasing” and “non-increasing”, respectively.

Proposition 2.3. Let f(t) be a continuous function on a <t < b with a >0, and
let A, B be n X n nonnegative Hermitian matrices such that a < A+ B <b. If f(t)
is decreasing and tf(t) is increasing, or if f(t) is increasing and tf(t) is decreasing,
then for 1 <k <n

o™ (AV2f(A+ B)AY? + BY2f(A+ B)B?) > o™ ((A+ B)f(A + B)).
Hence, for any unitarily invariant norm || - ||
JAY2F(A+ BYAV + BY2f(A+ B)BH] > [(A+ B)f(A+ B)].

Proof. The second inequality immediately follows from the first one, so we only

show the first inequality. To do it we first assume that f(¢) is decreasing and ¢ f(t)

is increasing. Notice that f(¢) is then nonnegative. Denote the unit eigenvector of

A+ B corresponding to \; := \;(A+B)bye; (1<i<n).As(A+B)f(A+B)e; =

Aif(N)e; and A f(A;) < Nix1f(Xix1), the less side of the first inequality equals

> i n—wy1 Mif(Ai). Therefore, by (@), it is sufficient to show

Z (AY2f(A+ B)A'? + B'?f(A+ B)B'?)e;.e;) > Z Aif (Ni),
i=n—k+1 i=n—k+1

which is equivalent to

tr{PAY?f(A+ B)AY?P + PBY?f(A+ B)BY?P} > trP(A+ B)f(A+ B)P,
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1408 MITSURU UCHIYAMA

where P is the orthogonal projection onto the space spanned by {e,_xi1, - ,€n}.
Since f(Ai) > f(Ait1), by @)

tr PAV2f(A+ B)AY?P > tr Pf(A+ B)Y/2Af(A + B)'/?P,
tr PBY2f(A+ B)BY?P > tr Pf(A+ B)'/?Bf(A+ B)/?P,

Summing both inequalities yields the required inequality. We next assume that f(¢)
is increasing and ¢ f(t) is decreasing; hence f(t) < 0. To see the required inequality
we may prove

o) (A2 f(A+ B)AY? + BV f(A+ B)B'?) < 04y ((A+ B)f(A+ B)),

because the traces of the matrices on both sides are identical. Since tf(¢) is de-
creasing, by ([IJ) it is enough to show that

tr(PAV?f(A+ B)A'Y?P+ PB'?f(A+ B)B'?’P) < Y Nf(N\),
i=n—k+1

where P is the orthogonal projection onto the space spanned by {e,_x+1,- - ,€n}.
We can obtain this inequality in the same way as above. O

When we study the operator convexity, we often encounter a pair of matri-
ces X and Y with X*X + Y*Y = 1. But in this case, XX* + YY* is not nec-
essarily contractive; in fact, suppose A + B is invertible for A,B > 0. Then
(A4+B)"Y2A(A+B)~'/?4+(A+B)"'/2B(A+B)~/? = 1; but putting f(t) = 1/t in
the above proposition, we get o(®¥)(AY/2(A+ B)~'AY2 + BY/2(A+ B)"'BY/?) > k.
Furthermore, we get

Corollary 2.4. Let A and B be nonnegative Hermitian matrices such that A+ B
is invertible. Then the following are equivalent:

(1) H:= AY?(A+ B)"'AY?2 + BV/?(A+ B)"'BY/? <1,

(i) H =1,

(iii) AB = BA.
Proof. (i) = (ii). As we mentioned above, we get o®)(H) > o®)(1). Thus (i)
implies o™ (H) = ¢*) (1) = k for 1 < k < n and hence H = 1.

(ii) = (iii). Assume A,(A+ B) > -+ > M\y_gr1(A+ B) > A\_i(A+ B). Let

e; be the unit eigenvector of A + B corresponding to A;(A + B), and let @ be the
orthogonal projection onto the space spanned by e, -+ ,e,_r+1. Then by Lemma

2T
k

trQHQ = tr QAY?(A+ B) 1 AY2Q + tr QBY?(A+ B)"'B'/2Q
trQ(A+ B)"V2AA+ B)"Y2Q+tr QA+ B)"Y?B(A+ B)"'/?Q
= trQ ==k,

Y

from which it follows that
tr QAY2(A+ B)'AY2Q = tr Q(A+ B)"Y/24(A + B)"1/2Q.

Thus by Corollary we obtain AQ = QA. Therefore, one can see that A com-
mutes to every spectral projection of A+ B. Thus AB = BA. Needless to say, (i)
follows from (iii). O
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3. OPERATOR CONCAVE FUNCTIONS

Henceforth, we give some applications of Proposition 2.3 and assume every func-
tion is continuous. To start with, we give an another proof of the first statement of
Ando and Zhan’s theorem:

Theorem A ([2]). Let o(t) be a nonnegative operator monotone function on [0, 00).
Then for n x n Hermitian matrices A > 0 and B > 0,

o ® (p(A) + ¢(B)) > oW (p(A+ B)) (1<k<n).

Let 9(t) be a strictly increasing function on [0,00) with 1(0) = 0 and ¥ (o0) = o0
such that the inverse function 1 ~1(t) is operator monotone. Then

oM (p(A) +$(B)) < oM (W(A+ B)) (1<k<n).

To prove the first inequality we may assume that A+ B is invertible. Then, since
(A4 B)~1/2A'/2 is contractive, by Hansen and Pedersen’s inequality [6] we have

0(A) = o(AY2(A+ B) YA+ B)(A+ B)~1/2A1/?)
AY2(A+ B)"Y2p(A+ B)(A+ B)"1/24Y2
¢(B) BY?(A+ B)"'?p(A+ B)(A+ B)~'/?B'/2,
Since ¢(t) is increasing and ¢(t)/t is decreasing, by Proposition 23] we get
o (p(A) + @(B)) 20 W (A2 (p/t)(A+ B)A? + B2 (p/t)(A + B)B'/?)
>0™(p(A+B)) (1<k<n).

2
2

We can similarly prove the following extension of the first statement in the above

theorem:
Let ¢(t) be an operator monotone function on [0,00). Then for A, B,C >0 and
fork=1---n,

o™ (p(A+ B+ C)) = o™ (p(A) + ¢(B) + ¢(C)).

Recall that ¢(t) on [0,00) is operator monotone if and only if ¢(t) is operator
concave and ¢(co0) > —oo (cf. Proposition 3.5 of [I0]). As ¢(t) in the preceding
theorem is operator concave, it is natural to ask for a similar inequality related to
an operator convex function.

Proposition 3.1. Let 1(t) be a non-constant, increasing operator convex func-
tion on [0,00). Then )(t) is strictly increasing and its inverse function ¥~1(t) is
operator concave on [1)~1(0),c0).

Proof. Assume 9(0) = 0. Then it is known that ¢(t)/t is operator monotone on
(0,00). Since the right-side limit of @ at t = 0 exists and is nonnegative, 1 (t)/t
has the natural extension that is nonnegative and operator monotone on [0, 00); we
denote it by ¥(t)/t again. Since v (t)/t is increasing, 1 (t) is strictly increasing. By
Lemma 5 of [I] the inverse function of ¥ (t) = t(¢(t)/t) is operator monotone and
hence operator concave. Assume next ¥ (0) # 0. For ¢(t) := 9 (t) — (0) we get
»1(t) = o7t — ¥(0)). Since ¢! is operator concave, so is 1 1(¢). O

The converse of the previous proposition does not holds; for instance, t*/3 is
an operator concave function on [0, 00), but its inverse function ¢* is not operator
convex.
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1410 MITSURU UCHIYAMA

The following corollary can be shown by making use of the second inequality of
Theorem A.

Corollary 3.2. Let 1(t) be a non-constant and increasing operator convezx function
on [0,00) with 1¥(0) = 0. Then for n x n Hermitian matrices A >0 and B > 0,

oM ((A) +$(B)) < oM (W(A+ B)) (1<k<n).
4. MAIN RESULTS

We notice that if X and Y are contractive such that X*X +Y*Y =1 and if the
spectra of A and B are both in an interval I, then the spectrum of X*AX +Y*BY
is in I as well. A function is said to be monotone if it is increasing or decreasing.

Proposition 4.1. Let f(t) be a concave function on an interval I, and let A, B be
n x n. Hermitian matrices with the spectra in I. Then for X,Y such that X*X +
Y'Y =1and fork=1,2,--- 'n

() o (FXAX + Y*BY)) > 0o (X" f(A)X + Y f(B)Y).
Moreover, if f(t) is monotone, then
(8) Mo(F(X*AX + Y*BY)) > M(X*F(A)X + Y* f(B)Y).

Proof. Let {\;}"_; be the eigenvalues of X*AX + Y*BY so that f(A1) < f(A2) <
- < f(An), and let {e;} be the corresponding eigenvectors. Then the left side of
@ equals f(A1) + -+ f(Ax). By the concavity of f, we have

k
S UX F(AX + Y f(B)Y)e;, e;)
i=1
Xe; Xe; Ye; Ye;
_ e; i ’ i Y ; 2 B 7 , 7
E:W P e e Ve B g e
X ’L ei Xei v i 9 B Yei Yei
< Z{” el (A e e+ Wl (B ey
k
< Zf(((X*AX +Y*BY e, e) = 3 (M),
i=1 =1

Thus, by () we get ([@).
If f(t) is increasing, we can arrange eigenvalues {\;}7; as A; < A1 and f(\;) <

f(Xix1). For every unit vector x that is a linear combination of e1,--- , ey,
(X*fAX +Y"f(B)Y)x,x) < f({(X*AX +Y*BY)x,x))
< f(w),
for (X*AX +Y*BY)x,x) < A\;. From this, by the mini-max theorem, (8) follows.
It can be similarly shown even if f(t) is decreasing. O

Corollary 4.2. Let f(t) be a monotone and concave function on I. If 0 € I and
f(0) >0, then for all X such that X*X <1,

Me(F(X*AX)) > M(X*F(A)X) 1<k <n).

Proof. Put B=0and Y = (1 — X*X)"/2 in ). Since X*f(A)X +Y*f(0)Y >
X*f(A)X, we obtain the required inequality. O
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Corollary 4.3. Let g(t) be a convex function on I. Then for all n x n Hermitian
matrices A, B with the spectra in I and for all X,Y such that X*X +Y*Y =1,

oM (g(X*AX +Y*BY)) < o™ (X*g(A)X +Y*g(B)Y) (1<k<n).
Moreover, if g(t) is monotone, then
M(g(XTAX +Y*BY)) < M(X"g(A) X +Y"g(B)Y) (1<k<n).

Proof. Since A\y(—H) = —Mn—x+1(H), by putting f = —g in Proposition 4.1, we
get this corollary. O

Corollary 4.3 has been shown in [3] when X and Y are both real numbers. Now
we are in position to show the following main theorem.

Theorem 4.4. Let f(t) be a nonnegative, continuous and concave function on
[0,00). Then for all n x n (not necessarily Hermitian) matrices A and B and for
k=1,---,n

(9) oM (f(1A+ BI) < o™ (f(1AD) + o™ (f(|B]).

Proof. Since f(t) is nonnegative and concave on [0, 00), f(¢) is increasing. Though
the right-side limit of (f(t) — f(0))/t at t = 0 is not necessarily finite, by considering
f(t+¢€) — f(e) instead of f(t) for an arbitrary € > 0, we may assume that f(t) is
right diffentiable at ¢ = 0 and f(0) = 0. Then we can extend f(t)/t continuously
to [0,00) and denote the extension by f(t)/t again. Since f(t) is nonnegative and
concave, f(t)/t is decreasing on [0, c0).

We first show (@) in the case A > 0 and B > 0. In this case there is no loss of
generality in assuming that A+ B is invertible. Since f(t) = t- f(t)/t, by Proposition

23

oM (f(A+B))

o™ (AY2(A+ B)"'f(A+ B)AY? + BY?(A + B)"'f(A + B)B'/?)

oM (AY2(A+ B)"'2f(A+ B)(A+ B)"'/2A1/?%)
o®(B?(A+B)"'?f(A+ B)(A+ B)"'/?B'/?)

B (f(A)) + oM (f(B)),

where the second inequality is due to the subadditivity of ¢(*) and the last inequality
follows from Corollary

We next consider general matrices A and B. Then there are unitary matrices U
and V such that

IN 4+ INIA

|A+ B| <U*|A|U + V*|B|V

(see [9]). Hence we have A (f(|A+ B|)) < M\ (f(U*|A|U +V*|B|V) for 1 < k < n.
Thus from the result shown above it follows that

oM (f(|A+ B|) < o®(F(UA|U + V*|B|Y))
< s®(FUTAI)) + B (F(VF|BIY))
B (U F(|ANU) + o (V= F(IB)V)
B (f(1AD) + B (f(IBI)). m

~~ o~ o~
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By considering unitarily invariant norm || - || instead of ¢*) in the above proof,
we have

Corollary 4.5. Under the same condition as Theorem &4l
IFCA+BDI < IFAADT+ LA (1B
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