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Introduction 

In a broad sense, the objective of this paper is to call at tention to certain relations 

that  exist between non self-adjoint operator algebras on Hi]bert space and the C*-algebras 

they generate. These relations make it possible to predict, from knowledge of the subalgebra 

alone, certain features of its generated C*-algebra. As a typical application, one is able to 

conclude tha t  certain isometric linear maps between certain non self-adjoint operator 

algebras are implemented by  .-isomorphisms of their generated C*-algebras (2.2.5). In  

turn, the latter makes it possible to obtain a classification (to uni tary equivalence) of 

certain Hi]bert space operators which are neither normal nor compact (3.6.12 and 3.2.11). 

The invariants of this classification involve an infinite-dimensional analogue of the 

minimum polynomial of a matrix. 

A principal concept underlying these results is tha t  of boundary representations. Let  

B be an (abstract) C*-algebra and let A be a linear subspace of B. An irreducible represen- 

tation ~ of B on a Hi]bert space ~ is called a boundary representation for ~4 if the only 

completely positive linear map of B into L(~) which agrees with ~ on ~1 is ~ itself. Thus, 

boundary representations have un/que completely positive linear extensions from their 

restrictions to A. I t  is crucial for the applications that  this definition make sense in general, 

requiring no a ivr/or/ relationship between A and B (for example, A § need not be 

dense in B). The properties of boundary representations are developed in Chapter 2. 

Chapter 3 contains a variety of examples of boundary representations, along with 

applications to operators on Hi]bert space. We regard this as the main chapter, at  least in 

terms of immediate applications, and refer the reader to the introductory paragraphs of 

chapter 3 for a summary of its contents. 

The first chapter contains a discussion of completely positive linear maps of C*-algebas. 

The most basic result here is an extension theorem, of Hahn-Banach type, for operator- 

valued linear maps of subspaces of C*-algebras (1.2.3). Most of the results of this paper 

depend, ultimately, upon this extension theorem. In section 1.3 we identify the commutant  

of the image of a C*-algebra under a completely positive linear map, and in the last section 

1.4 we give solutions to a number of extremal problems in the partially ordered cone of 

completely positive maps of a C*-algcbra. 

Our original plan was to include two additional chapters dealing with a generalized 

dilation theory for the Hilbert space representations of arbitrary Banach algebras. These 

chapters have been omitted, due to the length of Chapter 3, and we will take up dilation 

theory in a subsequent paper. 

For  the most part,  our terminology follows [4], with the following exceptions. The term 

C*-algebra means a complex invohitive Banach algebra B satisfying II~*xH = [1~[[ 2 (xEB) 
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and which contains a multiplicative identity. L(~) (resp. LC(~)) denotes the algebra of all 

bounded (resp. compact) operators on a Hilbert space ~. For TEL(~) we shall write P(T) 

for the norm-closed algebra generated by all polynomials in T, and C*(T) for the C*-algebra 

generated by T and the identity. More generally, C*(S) for S a subset of a C*-algebra B 

means the C*-subalgehra of B generated by S and the identity. 

We will say two operators T~ EL(~t) (i = 1, 2) are algebraically equivalent if there is a 

,-isomorphism ~ of C*(T1) on C*(T~) such that  g(T1) = T~. I t  is easy to see that  two normal 

operators are algebraically equivalent iff they have the same spectrum (the spectrum of T 

will be written sp (T)). Thus, one may regard algebraically equivalent nonnormal operators 

as having the same "spectrum" in a generalized sense. T 1 and T 2 are said to be quasi- 

equivalent if the above map a can be extended to a ,-isomorphism between the respective 

yon Neumann algebras generated by T 1 and T2. Again, for normal operators T~ on separ- 

able spaces, one can show that  quasi-equivalence is the same as requiring that  sp (T1)= 

sp (Tu) and the spectral measures of T 1 and T 2 be mutually absolutely continuous. Finally, 

and in a more familiar sense, T 1 and T~. are unitarily equivalent if there is a uni tary operator 

U from ~1 to ~ such that  UT 1 = T~ U. Each of these equivalence relations clearly implies 

the preceding one. 

Sets of (bounded, linear) operators are written with script letters ~ ,  B, R, etc., and ~ '  

denotes the commutant of }~. German letters stand for Hilbert spaces and their subsets, 

Greek letters stand for vectors, and the usual brackets are employed for closed linear 

spans (e.g., [ ~ ]  denotes the closed linear span of all vectors T~, T E 14, ~ E ~). The spectrum 

of an operator TEL(~) is written sp (T). A reducing subspace for a subset A_=L(~) is 

a closed subspace of ~ which is invariant under both ~4 and ~4"; ~4 is irreducible if only 

the trivial subspaces, 0 and ~, reduce J4. Remaining notations are (we hope) defined in 

context. 

We remark, finally, that  some of the results of this paper were announced in [1]. 

Chapter 1. Completely positive maps 

1.1. Preliminaries. This section begins with a discussion of a theorem of Stinespring 

characterizing completely positive operator-valued linear maps of C*-algebras, and some 

associated material, much of which is known. We then describe, for later use in section 

1.2, some topological properties of certain spaces of operator-valued linear maps. 

Let B and B' be C*-algebras, and let V be linear map of B into B'. q~ is positive if qg(x) >I 0 

for every positive x in B. For every integer n >~ l, let Mn be the C*-algebra of all complex 

n • n matrices. There is a natural way to make the algebra B |  n of all n • n matrices 
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over B into a .-algebra (for example, the involution is (x~j)*= (xj,*)), and moreover, there 

is a unique C*-norm on this .-algebra (existence follows by  tensoring faithful representa- 

tions of B and Mn, and uniqueness follows from p. 18 of [4]). Thus, it is not ambiguous 

to speak of B| as a C*-algebra. Note tha t  unique means identical, not  merely equiva- 

lent, so that  the preceding statement would be false for a general Banach algebra in place 

of B. Now given the linear map ~, one can define a linear map ~n: B|174 by 

applying ~0 element by  element to each matrix over B. ~ is called completely positive if 

each ~n is positive, n >~ 1. The term is due to W. F. Stinespring [23], as are some of the results 

we will presently describe. 

A .-homomorphism is easily seen to be completely positive. I t  is shown in [23] tha t  

every positive map of a commutative C*-algebra into L(~) is completely positive, as is 

every scalar-valued positive linear map of a general C*-algebra. I t  follows easily from the 

latter tha t  a positive map into a commutative C*-algebra is completely positive (see, for 

example, the proof of 1.2.2). I t  follows tha t  a positive linear map of B into B'  is completely 

positive if either B, or B', is commutative. 

In  even the simplest non-commutative cases, however, there exist positive maps which 

are not completely positive. While an example is given in [23], we shall describe here a 

somewhat simpler one. Let  n >i 2 be an integer and let B = B'= Mn. Let  ~ be the positive 

linear map of M~ into itself which takes every matrix to its transpose (note tha t  ~ is an 

anti-automorphism of Mn). We will show that  ~n is not completely positive. Let  {E~j: 

1 ~< i, ?" ~< n} be the canonical system of matrix units for Mn, and define E E M~ | Mn to be the 

n • n matrix (Etj). Note tha t  (1/n)E is a self-adjoint projection, and so is positive. But  ~ ( E )  

is the matr ix (~(Etj))= (Eji), which is self-adjoint, nonscalar, and satisfies q)n(E)9"= I (I 

denoting the identi ty in Mn| i.e., ~,(E) is a nonsealar self-adjoint uni tary element. 

Such an operator must have the form 2 P - I ,  where P is a self-adjoint projection different 

from 0 and I ,  and obviously no such operator is positive. Thus, ~ is not completely positive. 

Let  ~ be a Hilbert space, and let B be a C*-algebra. If  V is a bounded linear operator 

from ~ into some other Hilbert space ~,  and ~ is a representation of B on ~, then ~0(x) -~ 

V*#(x) V defines a linear map of B into L(~). I t  is easy to see that  ~ is completely positive; 

for if (x,j) is a positive n •  matrix over B, and ~1 ..... ~nE~, then choose z~jEB such tha t  

(x~j) = (z~j)* (z~) and observe tha t  

~,j i.j LLk 

TMs implies tha t  the operator matrix (~(x~j)) is positive, as an operator on ~| 

| O~ ,  and hence ~ is positive. Because n was arbitrary, the complete positivity of 
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is established. W.  F. Stinespring proved in [23] that  this in fact characterizes completely 

positive maps. F o r  the reader's convenience, we will state this formally and outline a 

(slightly simplified) proof. 

T~.o~av.~a 1.1.1 (Stinespring). Let B be a C*.algebra with identity and let ~ be a Hilbert 

space. Then every completely positive linear map o / B  into JL(~) has the form q~(x) = V're(x) V, 

where re is a representation o[ B on some Hilbert space ~ and V is a bounded operator/tom 

~ t o ~  

Proo/. Consider the vector space tensor product B |  and define a bilinear form {. , .  } 

on B |  as follows; if u=x l |174  . and v=yl |  +Y,| put  

{u,  v} = ~: (q~(y* xj) ~, ~,), 
t,1 

~0 being the given map of B into L(~). The fact that  ~v is completely positive guarantees 

tha t  ( . , - }  is positive semi-definite. For each x E B, define a linear transformation n0(x ) 

on B |  by ~o(x): ~ x j |  xxj| reo is an algebra homomorphism for which 

/u, zo(x)v} =(u0(x*)u, v}, for all u, veB| I t  follows that,  for fixed u, ~(x) -- {re0(x)u, u} 

defines a positive linear functional on B, i.e., ~(x*x)>>-0, hence 

{reo(x)u, ~o(x)u} = {reo(z*)~o(X)u, u}  = {re0(x*~)u, u}  = e(~*x) < IIx*~lle(e) = I1~11~{ u, u} ,  

where e is the identity of B. 

Now let ~ = { u e B |  (u, u )=0} .  ~ is a linear subspace of B |  invariant under 

no(X) for every x E B (by the preceding sentence), and ( . , . )  determines a positive definite 

inner product on the quotient B |  in the usual way: ( u + ~ ,  v + ~ )  = (u ,  v). Letting 

be the Hilbert space completion of the quotient, the preceding paragraph implies that  

there is a unique representation re of B on $~ such that  

re(x)(u+~) =reo(X)U+~, xEB,  u E B |  

Finally, define a linear map V of ~ into R by V ~ = e |  I t  follows that  II V~I]*= 

(T(e)~, ~)~< IIq~(e)ll IM] ~, so that  V is bounded, and the required formula ~v(x) = V*a(x) V 

follows from the definition of V by a routine computation. 

Remarks. Let q~(x) = V're(x) V be as in the theorem. Letting R0 = [re(B) V~], then the 

restriction ~z 0 of re to ~0 also satisfies ~v(x) -- V*xro(x ) V, and so there is no essential loss if we 

require that  [re(B) V~] = ~ .  Such a pair (~, V) will be called minimal. Observe that  a mini- 

mal pair is uniquely determined by ~ in the following sense. Let ~1 and re, be representations 
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of B on Hilbert spaces R1 and ~s, and let VIEL(~, ~)  be such that  [ ~ ( B ) V ~ ]  =Rt  and 

V~z~x(X ) V 1 = V ~ ( z )  V~ for every x G B; then there is a unitary map U of ~ on ~ such that  

U V1 = V~ and U~(x)=~(x)U for all z ~ B (for the proof, simply check that  the mapping 

|=I I - 1  

is a densely defined isometry of R1 on a dense subspace of Rs, whose unitary extension U 

has the stated properties). 

Let rp(x)= V*~(x)V be as in the theorem. Note that  ff ~ ( e ) = I  then V*V=I ,  tha t  is, 

V is an/sometric embedding of ~ in R. Using V, then, we can identify ~ with a subspace 

of R, and the original equation takes the form ~0(x)=P~(x)[�9 P being the projection of 

on ~ (the new V is the inclusion map of ~ into ~, whose adjoint is P). 

I t  should also be pointed out tha t  a theorem very similar to Stinespring's was found 

independently by  Sz.-Nagy [25]. We have given Stinespring's version for two reasons. First, 

it is formulated in terms of C*-algebras, with which we are concerned in this paper. More 

importantly, however, it makes explicit the role of complete positivity, in terms of the 

"matr ix"  algebras B| n=l,  2, .... Indeed, the results of this paper have strongly 

indicated that  to effectively study general (non seif-adjoint) operator algebras on Hilbert 

space, one should study not only the algebra A but also the sequence of algebras A |  

(each regarded as a subalgebra of the corresponding C*-algebra C*(A)| Accordingly, 

given a nonnormal operator T, we shall consider "matrix-vahied" (as well as scalar-valued) 

polynomials in T (cf., 3.6 and 3.7). 

We now describe certain topological properties of the space of all operator-valued 

linear maps of a subspace of a C*-algebra, for use later on in section 1.2. Let  S be a linear 

subspaee of a C*-algebra B, and let ~ be a Hilbert space, fixed throughout the remainder 

of this section. ]g(S, ~) will denote the vector space of all bounded linear maps of S into 

L(~). Note that  ~(S, ~) is a Banach space in the obvious norm. We shall endow B(~q, ~) 

with a certain weak topology, relative to which it becomes the dual of another Banach 

space. 

For r>0 ,  let ]g~(S, ~) denote the closed ball of radius r: ~r(S, ~)={~0E ]g (S, ~): 

[l~(a)[[ ~<r[[al[ for all aES). First, topologize ~r as follows: by definition, a net ~0vE ~r(S, ~) 

converges to ~E ~ ( S ,  ~) if qJv(a)-~q~(a) in the weak operator topology, for every aES. 

A convex subset ~ of ]~(S, ~) is open if ~ N ]~r (S ~) is an open subset of B~ (S, ~), for 

every r > 0. The convex open sets form a base for a locally convex Hausdorff topology on 

]g(S, ~), which we shall call the BW-topology (this topology is Hausdorff because the con- 

vex sets of the form ~.ma.t={~E ~(~, ~): Re (~(a)~, r/)~t}, ~, )/E~, aES, tER, are BW- 
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open and separate elements of B(S, ~)). Equivalently, the BW-topology is the strongest 

locally convex topology on B(S, ~) which relativizes to the prescribed topology on each 

ball Br(S, ~), r > O. 

I t  is clear tha t  a linear functional / on •(S, ~) is BW-continuous iff the restriction of 

/ to every Br(S, ~) is continuous. By linearity, we conclude that  ] is BW.continuous i]/the 

restriction o / / t o  ~1(S, ~) is continuous. 

There are other ways the BW-topology could have been defined (for example, see 

1.1.4), but  the description above is easiest to apply for our immediate purposes. In  fact, 

we shall require only one or two properties of this topology. 

Remark 1.1.2. For every r > 0, Br(S, ~) is compact in the relative BW-topology. Indeed, 

this is an immediate consequence of a general theorem of R. V. Kadison [14]. 

Remark 1.1.3. The restriction map ~ - ~  Is of B(B, ~) into B(S, ~) is BW-continuous. 

For since restriction is linear, it  suffices to show that  q~-~/(q~ls) is a BW-continuous linear 

functional on B(B, ~), for every BW-continuous linear functional ] on B(S, ~); and by  the 

above remarks, this will follow from the BW-continuity on BI(B, ~). But  if ~ is a net  in 

B(B, ~), ]]~vll ~< 1, and ~p->~ (BW), then in particular ~ ( a ) - ~ ( a )  in the weak operator 

topology, for every aeS,  and thus ~ lz ->~ls  in the relative BW-topology of BI(S, ~). 

Thus ~0~ ]s->~ls (BW), by definition of the topology, a n d / ( ~  I s)-~/(~ Is) follows. 

This topology has a number of pleasant properties, which we do not need, some of which 

we now describe (without proof) for the benefit of the reader. The proofs are not difficult 

and, by  and large, the methods are adapted from those on pp. 427-429 and p. 512 of [6]. 

Let  B(S, ~ ) .  denote the vector space of all BW-continuous linear functionals on B(S, ~). 

Because such functionals are necessarily bounded relative to the norm topology on B(S, ~), 

~(S, ~ ) .  becomes a normed linear space with the norm H/II =sup (]](~)l: ~e  Bl(s, ~)}. 

Then we have: 

(i) B(S, ~ ) .  is a Banach space. 

(ii) The duality (q~, /} =/(q~), cf e B(S, ~), /e  B(S, ~) ,  de]ines an isometric isomorphism 

o] B(S, ~) onto the dual o/ B(S, ~) .  which identifies the BW-topology with the 

1.1.4. weak*-topology. 

(iii) The elements o/ B(S, ~) .  are precisely those linear/unctionals that admit a repre- 

sentation o/ the /orm /(~)=~W=lO~(~(a~)), where {a~} is a bounded sequence in S 

and {0n} is a sequence o/ultraweakly continuous linear/unctionals on L(~) such 

The preceding discussion fits nicely into a more general format. I t  is not hard to see 

that,  if one replaces B(S, ~) with the Banach space B(X, Y*) of all bounded linear maps 

10-- 692908 Acta mathematica 123. Imp~m~ lo 21 Janvier  1970 
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of a Banach space X into the dual of a Banach space Y, and if one imitates the definition 

of the BW-topology in this setting, then all the preceding statements remain trim (note, 

incidentally, tha t  L(~) is the dual of the Banach space L(~) .  of all ultraweakly continuous 

linear functionals on L(~) [5], so that  ]~(S, ~) does have the form B(X, Y*)). The repre- 

sentation (iii), for example, becomes/(~0) =~,~ y , ) ,  where (xn} is a bounded se- 

quence in X, y ,E Y is such that  ~]]YnH < co, and ( ' , - )  is the canonical pairing of Y* and Y. 

1.2. An exCenslon theorem. Let S be a self-adjoint linear subspace of a C*-algebra B, 

such that  the identi ty e of B belongs to S. A familiar theorem of M. Krein ([17], p. 227) 

implies that  every positive linear functional on S has a positive linear extension to 

B (~: S-~C is positive if Q(a) >10 for every positive element a in S). The fact tha t  e ES insures 

tha t  there are plenty of positive elements in S, indeed iM]e-a is positive for every self- 

adjoint a; and from this it follows easily tha t  a positive linear functional on S is necessarily 

sel~-adjoint (cf. the proof of 1.2.3). We shall require a generalization of Krein's theorem 

to operator-valued maps, under the additional requirement tha t  S be norm-closed. A 

linear map ~0 of S into another C*-algebra B'  is called positive if qo(a) >70 for every positive 

element a of S. Significantly, the obvious generalization of Krein's theorem is false: an 

operator-valued positive linear map ~0: S-~L(~) (~ denoting a Hilbert space) need not have 

a positive extension to B, even when B is commutative and ~ is finite-dimensional (an 

example is given in appendix A.2). 

The proper generalization involves the notion of complete positivity. For S ~  B as 

above and n a positive integer, the linear space S |  n of all n • n matrices over S is a sub- 

space of the C*-algebra B| and a linear map r of S into another C*-algebra B' induces 

a linear map ~.: S | 1 7 4  by applying ~ element by element to each matrix over S. 

Definition 1.2.1. qo is called complddy positive, completely contractive, or completely 

aceor ng as each V, is positive, contractive ( i .e ,  I1 -II < 1), or isometric. 

Theorem 1.2.3 below asserts tha t  a completely positive linear map of S into L(~) has 

a completely positive extension: the following result implies tha t  a scalar-valued positive 

linear map is already completely positive. Thus, 1.2.3 generalizes Krein's theorem. 

PROPOSITION 1.2.2. Let S be a sel/-adjoinf subspace o/ a C*-algebra B, and let B' be a 

commutative C*-algebra. Then every positive linear map of S into B' is completely positive. 

Proof. We can assume tha t  B'= C(X), for X a compact Hansdorff space. Let  9 be a 

positive map of S into C(X), let n be a positive integer, and let (a~j) be a positive element 

of B |  such that  a,jES for all i, j. 
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Let  /~j=~(a~j)EC(X); we must show that  the matrix (/~) is a positive element of 

G(X) @M~. This will follow if we show that  (/~(x)) is a positive matrix for every x E X (one 

way to check this known result is to use the fact tha t  every pure state of C(X)@Mn has the 

form $=@~ where ~ is a pure state of M~ and ~ is the evaluation functional for some xEX, 

see [27]; thus ~((/~j))>/0 for every pure state a Of C(X)| and it is apparent from this 

that  (/~j) >t0). But  if 21, ..., 2~E13 then for each x E X  we have 

E l,,(x) ~.,~., = (E/,,~.j~.,) (x) = (E ~(a,,) ~.,~.,) (x) = ~(E aJ . ,~ )  (x) >1 O, 

because ~ a~2~2~ is a positive element of S and ~ is a positive linear map. That completes 

the proof. 

We can now state the main extension theorem. 

TH~.OREM 1.2.3. Let S be a norm-closed sel/-ad]oint linear subspace o] a C*-algebra B, 

which contains the identity o] B, and let ~ be a Hilbert space. Then/or every completely positive 

linear map 7~: S-->L(~), there is a completely positive linear map q~l: B-+L(~) such that 

The proof will occupy a number of steps, some of which we state as lcmmas. First 

let CP (S, ~) (resp. CP (B, ~)) denote the set of all completely positive linear maps of S 

(resp. B) into L(~). Each is a subset of B(S, ~) and B(B, ~), respectively, and thus inherits 

a BW-topology from the larger space (cf. section 1.1). In addition, it is apparent that  

both CP (S, ~) and CP (B, ~) are convex cones, and the set CP (B, S)Is of all restrictions 

of maps in CP (B, ~) to 8 is a subcone of CP (S, ~). We must prove, of course, tha t  

vP (B, ~)Is=C'P (& ~). 

LEMMA 1.2.4. CP (B, ~)]s is a closed cone in B(S, ~), relative to the BW-topology. 

Proo/. We f st that II oll = bol ll, for every  eOP (B, Choose and V, as 

in Theorem 1.1.1., such that  ~(x)= V*z~(x) V, xEB. Then Ibll < II V*ll" I1 vii = II v'vii = 

lb(e)ll; since e E S it follows that  Ibll < I1~ bib The opposite inequality is trivial. 

Next, observe that  GP(B, ~) is a BW-eloscd subset of B(B, ~); indeed, since GP(B,~)  

is convex, t hen  by definition i t  is closed iff CP (B, ~) 0 Br(B, ~) is (relatively) closed, for 

every r>0 .  But  if ~v is a bounded net in GP (B, ~) such that  ~ - ~ E  B(B, ~) (BW), then 

~p(x)-~(x) in the weak operator topology, for every xEB, and this makes it plain that  

must also be completely positive. 

By remark 1.1.2, it  follows that  for every r >0, GP (B,~) D Br(B, ~) is BW-compact. 

The first paragraph of the proof shows that  the restriction map ~-~01s carries CP (B,~) N 
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Br(B, ~) onto CP (B, ~)Is  n Br(S, ~), and by remark 1.1.3, restriction is BW-continuous; 

we conclude that  eP (B, ~)]z n B~(S, ~) is compact, and therefore closed. Since eP (B, ~)Is 
is convex, it follows from the definition of the BW-topology that  this set is closed, and the 

proof of the lemma is complete. 

Now let / be an arbitrary BW-continuous linear functional such that  

Re/(CP (B, ~)Is)/>0; 

we will show that  Re/(~)  >~0 for every ~ ECP (S, ~). This, along with 1.2.4 and a standard 

separation theorem, leads to the desired conclusion CP (S, ~)~_ CP (B, ~)]s. 

The first step is to find a complex-linear functional g on B(S, ~) which agrees with 

Re / on CP (S, ~), as follows. Introduce an involution ~ - ~ "  in B(S, ~) by ~- (x) =~0(x*)* 

(here we use the fact that  S =S*). Note that  every ~0 ECP (S, ~) is seifadjoint in the sense 

that  ~ =~- ,  or what is the same, ~(a)=~(a)* for every seif-adjoint a in S. Indeed, both 

Italic and IlaHe-a are positive elements of S, thus q~(a)=q)(HaHe)-q)(Haile-a ) is a dif- 

ference of positive operators in L(~), so ~(a) is self-adjoint. Now define g on B(S, ~) by  the 

equation g(y~)= �89 I t  is clear that  ~ - ~ "  is BW-continuous on bounded subsets 

of B(S, ~) (because X~X*  is a weakly continuous map of L(~)), and so by definition of 

the BW-topology yJ -~"  is continuous, g is therefore a complex-linear BW-continuous 

functional, and the preceding remarks show that  g=Re/  on CP (S, ~). What we must 

prove, therefore, is that  g(CP (B, ~)]s)>~0 implies g(CP (S, ~))>/0. 

Assume, from here on in the proof, that  g(CP (B, ~)Is)~>0. 

Now let :~ be the net  of all finite-dimensional projections in L(~), directed in the 

increasing sense by the usual partial order P ~ Q. We will define a net gp of linear functionals 

as follows. First, define Pq~P for ~E B(S, ~) by Pq~P(a)=PqJ(a)P, dES. I t  is clear tha t  for 

fixed P,  ~-+Pq~P is linear and BW-continuous (again, it suffices to check continuity on 

bounded sets, but  that  is obvious), and carries CP (S, ~) into itself. Now let gp(~)= 

g(Pq~P). 

LEMMA 1.2.5. limp gp(~)=g(~), /or every ~0E B(S, ~). 

Proo/. Since g is BW-continuous, it  suffices to show that  limp Pq~P=q~ in the BW- 

topology, for every T E B(S, ~). Now the net (P} converges to the identi ty operator in the 

strong operator topology, and since multiplication is strongly continuous on the unit  ball 

of L(~), it follows that  PXP--->X strongly, for every X EL(a ). In particular, Pq~(a)P--->q~(a) 

in the weak operator topology, for every a E S; and since (Pq)P} is a bounded net, it follows 

from the definition of the BW-topology that  limp PqJP=% completing the proof. 
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Using 1.2.5, then, g(CP (S, ~))/>0 will follow if we prove tha t  ge(CP (S, ~)) ~>0, for 

every finite-dimensional projection P EL(~). Now fix such a P,  and let n be the dimension 

of P. The next  step is the decisive one. 

L ~ A  1.2.6. Let ~1, ~i . . . . .  ~n be an orthonormal base/or P~. Then there is an n • 

array a~ o/elements o] S such that 

gp (~o) = ~ (~(a,~) ~ ~), 

/or every q~E B(S, ~). 

Proo/. Let (E~j} be a family of partial isometries in L(P~) such tha t  E~jSk = ~jk~, i, ~, 

k ~<n. For the moment,  fix i and ?', 1 ~< i, ] ~<n. Every  bounded linear functional F on S 

defines an element ~'| of B(S, ~) in the following way: F| aES. 

Now if g is as above define an element a~j in the bidual of S by o:~s(F)=g(F| We 

claim: ~ j  is a weak*-eontinuous linear functional on the dual of S. By  the Krein-Smulyan 

theorem ([6], p. 429), it suffices to show tha t  ~ j  is weak*-continuous on the unit ball. 

But  if F~ is a net of functionals on S such tha t  IIF~[I ~< 1 and F~->F (weak*), then F~(a)E,~ 

tends boundedly to F(a)E~ in the weak operator topology of L(~), for every a E S. Thus, 

F~|174 in the BW-topology of B(S, ~), and since g is BW-continuous, we see 

tha t  
~(F~) = g(F~ | E~)-~g(F| E~) = a~(F),  

as asserted. 

Because S is norm-closed, there is an ar ray  a~ES such tha t  g ( F |  

F(a~), for every bounded functional _~ on S. Now fix ~ E B(S, ~), and define functionals 

F~  on S by  F~(a)=(q~(a)$~, ~). Letting P~ be the projection on [~] we have, for eve~ T 

a E S, P~q~(a)P~ = (q)(a)~, ~) E~ = F~| E~(a), and therefore 

The proof of the lemma is complete. 

Now, in the notation of the preceding lemma, we claim tha t  the n • n matr ix  (aij) is a 

positive element of B| Choose a /a i th /ul  representation ~ of B on some Hilbert  space 

~. Then the canonical representation ze~: B | M ~ L ( ~  | C") defined by 7en(X~j) = (~(x~j)) 

(the lat ter  regarded as an n • n operator matrix,  acting on ~ |  ... |  is also faithful, and 

thus it suffices to show tha t  the operator matr ix  (s(a~j))=s,(a~j) is positive. Choose an 

arbi t rary  set of n vectors ~1 ..... Sn from ~. Since ~1 .... .  ~ are linearly independent vectors 

in P ~ ,  there is a unique bounded linear transformation VEL(~, ~) defined by  V~=$ i ,  

1 <~i<~n, and V=O on P~•  We can now write 
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(~(a~#) ~'~, ~',) = ~ (F*:g(a~j) F~#, ~:,) = ge (V* ~I  r Is) = !7(F* ~ F Is) I> O, 
f." ~.t 

because P V * x V P =  V*xV, F*~F belongs to CP (B, ~), and g(CP (B, ~)Is) ~>0. This shows 

that  (x(atj))>~0 , proving the assertion. 

We can now prove that  ge(CP (S, ~))~>0. Indeed, if q)ECP (B, ~)  then we have, by  

1.2.6, ge(~)=~(~(a~j)~j, ~t); but  (~(a~s)) is a positive operator matrix, by  the preceding 

paragraph and the fact tha t  ~ is completely positive. Thus ge (~) >/0, and the proof of the 

theorem is complete. 

No doubt, one could weaken the requirement tha t  e E S by assuming merely that  S 

contains a bounded approximate identity for B. For our purposes, however, 1.2.3 will be 

enough. 

We shall now indicate how 1.2.3 can be adapted to cover the case where S is not  neces- 

sarily self-adjoint. Recall tha t  the numerical radius w(T) of an operator T EL(~) is defined by 

w(T) =sup II&ll =1) 

L~MM/~ 1.2.7. Let A be a linear subspace o / a  C*-algebra B, such that eEA,  and let rp 

be a linear map o / A  into L(~),  /or some Hilbert space ~, such that q~(e)=I and IIq)ll =1. 

Then w(q~(a)+qJ(b)*)< Ila-~b*ll, /or every a, beA .  

Proo/. Fix ~ E ~,  I1~ H = 1. Then the linear functional a E A-+ (~0(a)~, ~) has norm at  most 

1, and takes the value 1 at  e. By the Hahn-Banach theorem it has a norm-preserving ex- 

tension e to B. Clearly Ilell =#(e) = 1, so that  e is a state, and in particular e(a)=e(a*)for 

every aEA.  Thus, 

I ((~(a) + ~(b)*) ~, ~) [ = ] (r $, $) + (r ~, ~)] = [ e(a) + e(b) l = ]Q(a + b*) I ~< H a + b* H. 

The required conclusion follows by taking the supremum over {H~II = 1}. 

PROPOSITION 1.2.8. Let A be a linear subspace o /a  C*-algebra B, such that eEA, and 

let S be the norm-closure o / A  + A*. Then every contractive linear map q) o / A  in L ( ~ ) , / o r  

which q~(e) = I, has a unique bounded sel/-adjoint linear extension q~l to S. q)l is positive, and it is 

completely positive i/q~ i8 completely contractive. 

Proo/. I t  is plain that ,  if a bounded self-adjoint extension to S exists a t  all, it must be 

unique. By 1.2.7 we have, for a, b EA, IIq)(a)+q~(b)*ll <~2w(q~(a)+q~(b)*)<~211a+b*ll, and 

thus there is a bounded linear map ~i of S such that  ~l(a-bb*) =~(a) ~-~(b)*, a, bEA. q)l is 

clearly a self-adjoint extension of ~ to S. 
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To see tha t  ql is positive, choose a unit  vector ~E~.  As in the proof of 1.2.7, there is 

a state ~ of B such tha t  ~(a)=(q~(a)~, 2), aEA.  Because Q and ql are both self-adjoint, 

we have ~(z)=@l(z)~ , ~) for all zES. So if z is a positive element in S we see tha t  

(~l(z)~, ~) =~(z)/>0; it follows tha t  ~01 is positive. 

Now assume ~0 is completely contractive. For each n >~ 1, note tha t  A |  + (A | 

is dense in S| so tha t  the argument  of the preceding paragraph shows tha t  q~.. >~ 0" 

That  completes the proof. 

We can now state an analogoue of theorem 1.2.3 for linear subspaces which are not 

necessarily self-adjoint. 

TTr~OR~M 1.2.9. Let A be a linear subspace of a C*-algebra B, such that eEA, and let 

be a Hilbert space. Let qJ be a completely contractive linear map of A into L(~) such that 

~(e) = 1. Then q~ has a completely positive linear extension to B. 

Proo/. By 1.2.8, q has a unique completely positive extension to the closure of A +A*, 

and now 1.2.3 applies to complete the proof. 

Remarks. One can regard the preceding theorem as providing operator-valued "repre- 

senting measures" for certain linear maps of subspaees of C*-algebras. 

Combining 1.2.9 with 1.1.1, we see tha t  there is a representation zr of B on a Hilbert  

space ~ and a linear map  VEL(~,  ~) such tha t  q(a) = V*~(a) V, aEA. The condition ~(e) = I  

implies tha t  V is an isometry. I f  A is a subalgebra of B and ~ is a (completely contractive) 

homomorphism of A, then  it follows from the multiplieativity of ~ tha t  V~ is a semi-invariant 

subspaee of ~ for the algebra g(A) (see A.1). Thus, the pair (~t, V) gives a generalized 

"dilation" of ~, completely analogous to the uni tary (power) dilation of a contraction. 

We will take up dilation theory in a subsequent paper. 

We shall make repeated use of the following two observations. 

PROPOSITION 1.2.10. Let S be a closed sel]-adjoint linear subspace o / a  C*.algebra B, 

~.uch that e E S, and let q9 be a completely positive linear map o / S  into a C*-algebra B r Then 

/or every n>~l, q~ has norm I[~(e)H. 

Proo]. There is no loss if we assume B 1 is a sub-C*-algebra of L(~) for some }tilbert 

space ~.  Note first tha t  ll~]] = [[q(e)]]; for by  1.2.3 and Stinespring's theorem (1.1.1), there 

is a representation ~ of B on a Hflbert  space ~ and an operator VEL(~,  ~) such tha t  

cp(a) = V*~(a) V, aES. Thus, II (a)ll < II V*ll" tl (a)ll" II VII Ilall" II v ,  vii = Ilall �9 II (e)ll, and  
the opposite inequality is trivial. 

I f  n>~l, then ~ ,  is a completely positive map  of S |  so tha t  I1 =11 = II~(e)tl fonows 
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from the preceding and the fact that  if en is the identity of B|  then H~n(en)H = H~(e)ll. 

That  completes the proof. 

We remark that  1.2.10 is false for positive linear maps of S (see A.2). Note also tha t  

1.2.10 and 1.2.9 together imply that  if ~ is a linear map of S into L(~) such that  ~ (e )=I ,  

then ~ is completely positive if, and only if, it is completely contractive. 

PROPOSITION 1.2.11. Let A be a linear subspace o] a C*-algebra B, such that eEA. 

Then every contractive linear map o] A into a commutative C*-ali]ebra, which preserves the 

identity, is completely contractive. 

Proo/. Call the map % and let S be the norm-closure of A +A*. According to 1.2.8 

has a unique positive linear extension ~1 to S. By 1.2.2, ~1 is completely positive, thus the 

conclusion follows from the preceding proposition. 

1.3. Lilting Commutants. Let  B be a C*-algebra with identity, let ~ be a Hilbert space, 

and let ~ be a completely positive linear map of B into L(~). According to Stinespring's 

theorem (1.1.1) there is a representation ~r of B on a Hilbert space ~, and a bounded linear 

map V: ~ ->~  such that  q~(x) = V*~t(x) V and [~r(B) V~] = ~ .  In the sequel, we shall require 

information about operators commuting with the self-adjoint linear space of operators 

~(B). Because of the arbitrariness in the relation of V and the subspace [V~] to ~r(B) (for 

example, [V~] need not be affiliated with either zt(B)" or 7t(B)"), it may  be somewhat un- 

expected that  there is an intimate relation between q~(B)' and zt(B)'. This is based on the 

following. 

TH~ORV.M 1.3.1. Let ~, ~ be Hilbert spaces, let V be a bounded linear operator/rom 

into ~, and let • be a sel/-adjoint subalgebra o/L(~)  such that [BV~] =~. Then/or every 

T EL(~) which commutes with V* BV, there is a unique operator T 1EL(~) having the properties 

(i) T1E B' 

(ii) T~V = FT. 

The map T ~ T  1 is an ultraweakly continuous surjective *.homomorphism o/ V*BV' on 

B' 0 ( VV*}', /or which T1 =0 i// V T =  FT* =0. In  particular, when V has trivial nullspace, 

T ~ T  1 is a ..isomorphism. 

Proo/. Fix T E V*BV'. T 1 is constructed as follows. Let  ~1 . . . . .  ~nE~,  A 1 . . . .  , AnE B; 

we claim that  [1~. AkVT~kll ~ IITII" II~Ak V~kll. Assume first tha t  n = l .  Then HAVT~II2= 

(V*A*AVT~, T~). Now V*A*A F E V* BV is a positive operator which commutes with T, 

and so must its positive square root K. Thus, 
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proving the claim for n = 1. The case of a general integer n is reduced to the preceding by  

the following device. Let  ~ '  = C a | ~ (resp. ~ '  = C ~ | ~), let T '  = I n | T EL(~ ' )  ( I  t denoting 

the identi ty on Cn), V' = I = |  V E L ( ~ ' ,  ~ ' ) ,  and let A'  be the operator on ~ '  given by  the 

matr ix  

A ' =  0 . 

0 

Then V ' * A ' * A ' V ' E L ( ~ ' )  has the matr ix  ( V * A T A j V ) ,  which commutes with T '  because 

V * A ~ A ~ V E V * B V  for all i , j .  So if we put  ~ ' = ~ i ( ~ . . . ( ~ n ~ '  then I I ~ A j V T ~ j ] I 2 =  

~ .  ,( V ' A *  A j V T~j, T ~ )  = ( V '*A'*A'  V' T'~',  T'~') which is not greater than  n T '  H~IIA ' V'~' [[3 = 

I ITIMI~AjV~jI I  ~ by the argument  already given. That  proves the claim. Therefore the 

operator 
Ti: ~ .A jV~ j  t---> ~ A j V T ~ j  

is well-defined, and extends uniquely to an operator on [B V~] = ~ of norm at  most n T ll, 

denoted by the same letter T 1. Now [ ~ ]  contains [ BV~] = ~, so tha t  ]~= B* has trivial 

nullspace; the double commutant  theorem now shows tha t  the strong closure of B contains 

the identity, and from the relation T 1 A V ~ = A  VT~  (~E~,  A E B) we may  conclude tha t  

T 1 V = V T  by allowing A to approach I .  Tha t  T 1 commutes with ~ is evident from its 

definition. 

The remainder of the proof is routine, and we merely sketch the details. The uniqueness 

of the operator T 1 satisfying (i) and (ii) is an immediate consequence of [ ~ V ~ ]  = ~ .  I t  

follows tha t  products and linear combinations behave right under the map T-+ T 1. (T1)*= 

(T*)I means T* V =  VT*,  or equivalently V * T I = T V * ;  to see this, let ~E~,  A E B, and 

write V*T1A V~ = V ' A T  1 V~ = V*A VT~  = T V * A  V~, using the fact tha t  T commutes 

with V*A V. The conclusion follows since [ B V~] = ~ .  This argument  also shows tha t  T 1 

commutes with VV*, for T 1 VV* = V T V *  = V(VT*)* = V(T~ V)* = V V * T  1. Thus, T--+T 1 

is a . -homomorphism of V* 7JV' into ~'f3 (VV*} ' .  The kernel is easily identified; indeed 

T 1 = 0  implies T* =0,  so V T  = T 1 V = 0  and VT* = T~ V =0.  The converse implication is 

clear from the relation (ii). 

I t  remains to show tha t  T ~ T  1 is surjective and continuous. Let  T1E.,4' , T 1 V V * =  

V V * T  1. Let  V = H W  be the polar decomposition of V, where H is the positive square root 

of V V*, W is a partial  isometry in L(~,  ~), and W W*H = H W W *  = H .  Define T = W*T 1 W E 

L(~). Then V T  = H W W * T  1 W = H T  1 W = T 1 H W  = T 1 V, since T 1 commutes with H = 
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(VV*) t. A similar calculation shows that  T commutes with V*•V. Thus, T ~ T  1 is a 

surjective ,-homomorphism whose kernel is ultrawealdy closed. I t  is well known that  such 

a homomorphism is ultraweakly continuous. That  completes the proof. 

Now let B be a C*-algebra, and let ~, ~, and V be as in the discussion preceding 1.3.1; 

cp(x)=V*rt(x) V, xEB. The following characterization of ~(B)' is an immediate conse- 

quence of the preceding theorem. 

COROLLARY 1.3.2. Assume V has trivial nullspace. Then there is a canonical ,-iso- 

morphism between the yon Neumann algebras q~(B)' and ~(B)" • {VV*}'. 

This corollary allows one to make certain gross statements about the "size" of q(B) '  

in terms of g, when V has trivial nullspace. For example, if ~(B)' is a finite yon Neumann 

algebra then so is q(B)'; if ~(B) is multiplicity-free (i.e., g(B) '  is abelian) then so is ~(B); 

and if u is an irreducible representation of B then r is an irreducible family of operators. 

If T is a contraction on a Hilbert space ~ such tha t  the powers of T* tend strongly to 

0, then the minimal unitary dilation of T is the shift of multiplicity dim ~ [9], and one may 

associate with T a characteristic inner function U ([10], p. 103). I t  is natural to ask how 

one may characterize certain properties of T, such as irreducibility, in terms of U. We 

shall indicate how theorem 1.3.1 can be used to give quite a concrete answer to one of these 

questions. We begin with a general lemma. Recall [20] tha t  a subspace ~ of a Hilbert  

space ~ is called semi-invariant under a subalgebra A of L(~) if the map A EA-~PA I~ (P 

denoting the projection of R on ~) is multiplicative. If ~TJ~s--[A~] and ~ x  = ~ 9 . O ~ ,  then 

~J~xc_~J~2, each ~j~ is A-invariant (el. [20], Lemma 0), and ~=~YJ~20~x. Let  ~ be the 

yon Neumann algebra generated by  A, and suppose [R~] = ~. 

L~.MMA 1.3.3. Let A, R, and ~ = ~J~2~J~l be as above. Assume the linear space of opera- 

tors .,4 + A* is weakly dense in ~. Then/or every T e ~', one has T~  c_ ~ i/, and only i/, 

T ~  ~ ~PJ~ and T * ~  1 ~ ~j~. 

Proo/. We note first tha t  [A*@] |  is a direct sum decomposition of ~. Indeed, if 

~6~,  r and A 6 A ,  then (A*~, r A t ) = 0 ,  since A r  and ~ x •  The sum is 

therefore direct; it clearly contains [A*~] and [A~]=~| so that  it contains [ (A+  

A*)~]=[R~] =~. 

If T O ~  and T e n ' ,  then T~J~=T[A~]c_[AT~]c_[A~]=~i~, and similarly 

T[A*~J~_[A*~]. But by the above note, [ A * ~ ] = ~ f ,  and so T * ~  follows from 

T~ml~#ti -c ~l~atl �9 Conversely, if T EL(~) is such that  T~J~s_ ~J~z and T*~J~ i ~ ~1, then m~ll c_ ~ul~#~l 

so that  ~ = ~ i  = ~ s  fl ~J~ is an intersection of T-iuvariant subspaces, therefore 

invariant itself. Tha t  completes the proof. 

The following is an immediate consequence. 
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COROLLARY 1.3.4. Under the above hypotheses, an operator TE R' is reduced by 

i], and only i/, it is reduced by both ~J~l and ~ .  

Now let ~ be a separable Hilbert space, let T be the unit circle with normalized 

Lebesgue measure do, and consider the Hilbert  space L2(T, 0; ~) of all square-integrable 

measurable ~-valued functions on T. We want to consider a certain semi-invariant sub- 

space for the unitary operator Lz (multiplication by e~), as follows. L e t / ~  be the closed 

linear span of all functions of the form ~o+e~l+. . .+e~~ ~jE~, n>~O, and let U(e ~~ 

be a (weakly) measurable function on T taking values in the unitary group of L(~). We 

assume U is an inner function in the sense that  all the negative Fourier coefficients of each 

function (U(e~~ ~)(~, ~ 6~) vanish. U gives rise to a unitary operator Lv on L~(T, 0; ~) 

(Lv is "pointwise" multiplication by  U in the usual sense) and the analyticity requirement 

cited above insures tha t  LvH~g I-~. Define ~ =I-~OL~I-~, and let Sv be the projection 

of Lz onto ~: 
Sv = P�9 L~I�9 . 

Let  R be the yon Neumann algebra generated by  Lz, and let A be the algebra of all poly- 

nomials in L z. I t  is known that  R is the algebra of all multiplications by  scalar L ~ (T, o) 

functions, R' is the algebra of all multiplications by  L(~)-valued bounded measurable 

functions, and that  A +A* is ultraweakly dense in R (equivalently, trigonometric poly- 

nomials are weak*-dense in L~176 da); for the details see [10]). 

The inner function U has a canonical analytic extension to the interior D = {]z ] < 1 } 

of the unit  disc, and we shall write U(D) for the set of operators {U(z): zED}. Now it 

follows, from the known convergence U(e ~~ =weak limr_,lU(re ~~ almost everywhere on 

T, tha t  almost every unitary operator U(e ~) belongs to the weak closure of U(D). More- 

over, the subspace LvH~ is unaffected if we replace U by the function UW, where W is 

any (constant) uni tary operator in L(~). Therefore we shall assume U is so normalized that  

the identi ty operator belongs to the weak closure of U(D) (e.g., replace U with U. U(e~~ * 

for an appropriate choice of 0). Finally, we shall assume that  U is completely nonvon~tant 

(i.e., the only vector ~E~ for which z ~  U(z)~ is constant is ~=0;  cf. appendix A.1.). The 

following result implies tha t  Sv is irreducible precisely when U takes on enough values so 

that  U(D) is an irreducible subset of L(~). 

THEORV.~ 1.3.5. Let T be an operator in L(~) which commutes with Svand S*u. Then 

there is a (constant) operator A 6L(~) such that A commutes with U(D) U U(D)* and T = 

La[a. The correspondence T~-*A is a .-isomorphism between the yon Neumann algebras 

{Sv, S*)' and (U(D) U U(D)*)'. In  particular, S~ is irreducible i[, and only i[, U(D) is an 

irreducible set o/operators in L(~). 
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Proo/. Let  T have the stated property.  Taking for g the inclusion map: ~ - ~ ,  we see 

tha t  V* is the projection of ~ on ~,  and Sv= g*Lz V. Clearly T commutes with S~: = 

V*L~V and S*~ n --V*L~,V for all n>~0. So if • is the algebra of all polynomials in Lz, we 

have Te  V*(A+A*)V'; and since A§ is weakly dense in the yon Neumann algebra 

generated by  Lz we conclude tha t  TE V*~V'. Now [ ~ ]  =L2(T, o; ~), because U is 

completely nonconstant (see A.1.3 and A.I.1), and so we may  apply Theorem 1.3.1. Thus, 

there exists T 1E ~ '  such tha t  T 1 commutes with VV* =P~ and T 110 = T. The preceding 

remarks  indicate tha t  there is a measurable bounded L(~)-valued function A(e ~~ on T 

such tha t  TI=L A. Now, using A.1.3 once again, we see tha t  [~4~] =H~ and [ A ~ ] ~  = 

T. [ J2  C T4"2 LyriC; so an application of 1.3.4 gives ~A--~- -~e ,  L~ .H~_I~ ,  L,4LuHe_LvHe,2~ 9. and 
2 LA.LuII~_LuH ~. Now the first two inclusions imply tha t  both A and A* are in H~~ i.e., 

A is constant a.e. (r (we identify A with its constant value). The second two imply tha t  

both  U(e~~ i~ and (U(e~~176176 ~~ are in H~,  so there exists 

a constant operator C such tha t  U(e~~176 or AU(e~~176 almost every- 

where on T. This formula extends to the interior of the disc to give A U(z) = U(z) C, ] z ] < 1. 

Since IEU(D)-, we may  take an appropriate weak limit to conclude tha t  C=A; thus 

A e U(D)'. Now replace A with A* to obtain A E U(D)*'. Note tha t  LA, and therefore A, 

is uniquely determined by T (1.3.1); and since V has trivial nullspace, the mapping T ~ A  

is 1 - 1 .  A routine calculation shows tha t  the algebraic operations are preserved (including 

the *-operations), and finally the above steps can, in an obvious way, be reversed to show 

tha t  every A E U(D)' is the image of some T E {Sv, S~:}'. That  completes the proof of the 

theorem. 

I t  seems worth pointing out the fact, proved implicitly above, tha t  a necessary and 

sufficient condition for a (constant) operator A EL(~) to have the proper ty  LA(H~Q UH~) ~_ 
2 H e ~  UH~ is tha t  A commute with U(D) (provided, of course, tha t  U is normalized so 

tha t  the identi ty belongs to the weak closure of U(D)). 

1.4. The order structure o /CP (B, ~). Let  B be a C*-algebra and ~ a Hilbert  space. 

We wish to analyze the set CP (B, ~) of all completely positive linear maps of B into 

L(~),  one goal of which is to give complete solutions to three extremal  problems associated 

with completely positive maps. While there is a considerable literature dealing with 

similar problems in the set of positive maps (cf. [24] and [13] for two notable examples), 

the known results are not always definitive, and it is somewhat surprising tha t  the much 

more tractable family of completely positive maps has not received very much attention. 

The results in the later portions of this section go somewhat beyond our immediate 

needs in this paper; we feel, however, tha t  these results may  be interesting, and tha t  they  
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will prove useful in future developments. We also remark that ,  while a few of the results 

of this section resemble results in [24], a close reading shows that  they are somewhat 

different. 

There is a natural partial ordering on CP (B, ~), defined by  ~ ~<~ if ~ - ~  is completely 

positive. We begin by describing this ordering in terms of the representations ~r of B 

associated with elements q~ECP (B, ~) through the relation q = V*~zV. 

L v . ~ A  1.4.1. Let ~I and q~= belong to CP (B, ~), and suppose ~)1~)2. Let q~(x)= 

V~ xq(x) V~ be the canonical expression o/q~, where ~ is a representation of B on ~ such that 

[~(B)  V ~ ]  = ~ ,  i = 1, 2. Then there exists a contraction T E L ( ~ ,  ~1) such that 

(i) TV~ = V~, and 

(ii) Tz~(x) = ~(x) T, x E B. 

Proo/. Let  ~1 . . . . .  ~nE ~, xx . . . . .  xaE B. Then 

II ~. ~/:1 (g~J) Vl ~,~ l[ 2 = ~. (V~ ~1 (x~ x/) V 1 ~, ~f) 

since ~Ol~O 2 and the matrix (x*xj) is a positive element of B| Therefore, there is a 

unique contraction T defined on [7t2(B ) V2~]=~s which satisfies Tze2(x ) Vs~=~Zl(X)VI~, 

for all xEB, ~E~. Taking x : e ,  we have TVs= V1, and Tzts(x)=7el(x ) T follows from the 

definition via T~s(x)~z~(y ) V2~ ~ Tze~(xy) V ~  :7q(xy) VI~ :~zl(x)~l(Y) VI~ :~l(X) T~(y) V~,  

using once more the fact tha t  [~z~(B) V ~ ]  = ~z- That  proves the lemma. 

The next  result can be thought of as a Radon-Nikodym theorem, and gives quite a 

useful description of the order relation in the set of completely positive maps. Some nota- 

tion will be of help: for cfECP (B, ~), let [0, ~] =(~vECP (B, ~): yJ~<~}. [0, ~] is a convex 

set, which is at the same time an order ideal in CP (B, ~). Let  q~(x) = V*g(x) V be the canoni- 

cal expression of ~, where g is a representation of B in L(~) and V EL(~, ~) is such that  

[ze(B) V~]=~. For each operator TEz(B)', define a linear map ~r: B--->L(~) by q~T(X) = 

V*T3z(x) V. Clearly the correspondence T~VT is linear, and it is injeetive because if ~ r : 0 ,  

then for all x, yEB and ~ ,~E~,  one has (Txc(x) V~, ~e(y) V~):(V*TTe(y*x)V~,~): 

(qgT(y*x)~, ~)=0 and from [~z(B)V~] : ~  it follows that  T=O. 

T H]~ OR ~.M 1.4.2. T--->qDT is an a/line order isomorphism el the partially ordered convex 

set o/operators (T  e~(B)': 0 < T <. I} onto [0, ~v]. 

Proo/. The preceding remarks show that  the correspondence is affine and 1 - 1 .  Let  
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TE~(B) ' ,  0 ~< T ~< I .  We claim ~r~ [0, ~]. Indeed, if ~ .. . .  , ~, E~ and (x~) is a positive matr ix 

in B| then letting KE~(B)' be the positive square root of T, we have 

| , t  

since the matrix (~(x~)) is a positive element of L(~) | Mn. This shows that  ~r is completely 

positive. Replacing T with I -  T, we conclude also that  ~r  ~<~. Thus, ~r G [0, ~]. In  the same 

way, we see that  if T~ E~(B)' and 0 ~< Tx ~< T~ ~< I then 0 ~<~VT, ~<~r, ~<~ (Consider T~ - T~). 

We claim next  tha t  if T E~(B)' and ~r  is completely positive, then T>~0. Indeed, 

if ~ 6 ~  has the form ~=~(x~)V~+. . .  +~(x~)V~ (~:~6 ~, x~EB), then 

(T~, ~) = ~. (V* #(x,)* T#(z#) V~,, ~,) = ~. ( ~* T#(z~ z~) V~, ~,) = ~. (9~r (z* z#) ~, ~,) >i O, 
~.1 

since (x* x~) is a positive element of B | M,.  T/> 0 follows because such ~'s are dense in ~. 

By considering differences as in the preceding paragraph, we conclude from the above 

that  if Tx, T 2 E~r(B)' and 0 ~ r l  ~<~~ ~<~0, then 0 ~ T x ~< T2 ~<I. 

I t  remains to show that  every ~0 E [0, ~0] is of the form Cpr, for some T E~(B)', 0 ~< T ~< I .  

Since ~o is completely positive, there is a representation a of B on ~1 and a linear map W 

of ~ into ~x such that  [ a ( B ) W ~ ] = ~ I  and ~o(x)= W*a(x)W. By lemma 1.4.1, there is a 

contraction X: ~ - ~ 1  such tha t  X V =  W and X~(x)=a(x)X, xfiB. Put T = X * X .  Then 

clearly O<~T<~I, and T~(x)=X*a(x)X=~(x)T, so that  TE~(B)'. Finally, we have, for 

(q~(x)~, )1) = (x*x~(x)  V#, V)1) = (x~(x) v)1, xv)1) = (a(x)xv~,  xv)1) 

= (~(x) w~ ,  w)1) = (~(x)~,)1). 

That  completes the proof. 

There are a number of extremal problems associated with completely positive maps, 

of which we shall consider three. The problems are to identi ty the following sets: 

(i) the extreme rays of the cone GP (B,~) 

(ii) the extreme point~ of [0, q~] (for a fixed ~ in 01" (B, ~) 

Off) the extreme points of the set CP (B, ~; K)={9~ECP (B, ~): 9~(e)=K}, where K i~ a 

fixed positive operator in L(~). 

The descriptions of (i) and (ii) are almost immediate consequences of the preceding 

theorem. First, let us call a completely positive map ~ E C P  (B, ~) pure if, for every 

~E CP(B, ~), ~ implies yJ is a scalar multiple of ~; equivalently, ~ is pure if the only 
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possible decompositions of ~ of the form ~(x) =~,(x) + ~ ( x )  (~  6 GP (B, $)) are when each 

~, is a scalar multiple of ~. The extreme rays ([15], p. 133, and [16], p. 87, 123) of GP (B, ~)  

can be characterized as the half-lines {t~: t~>0}, where ~ is a pure element of GP (B, ~). 

Thus, the solution of (i) is given by: 

COROLLARY 1.4.3. The nonzero pure elements o /GP (B, $) are precisely those o/the 

]orm q~(x) = V*~(x) V where ~ is an irreducible representation o / B  on some Hilbert space 

and V eL(~, ~), V +O. 

Proo/. Let  ~ be a nonzero pure element, and let q0(x) = V*g(x) V be its canonical repre- 

sentation. 1.4.2 shows that  {T 6g(B)': 0 ~< T ~< I} consists of scalar multiples of the identity, 

which implies tha t  g is irreducible. Conversely, if g is any irreducible representation of 

B on ~ and V is any nonzero element of L(~,  ~), then [V~] g=0 is necessarily cyclic for 

g(B), and another application of 1.4.2, along with the fact tha t  g(B) '  =scalars, shows tha t  

q~(x) = V*z(x) V is pure. The proof is complete. 

Note that  1.4.3 generalizes a familiar theorem of Gelfand and Segal about positive 

linear functionals on C*-algebras. The commutative case B = C(X), X compact Hausdorff, 

is also noteworthy. The nonzero pure elements of GP (C(X), ~) are those of the form 

r = / ( p ) H , / 6 C ( X ) ,  where p is a point of X and H is a positive operator of rank 1 (here, 

is one-dimensional, ~([ )=/(p)I~,  and V has rank 1 ... so V*V has rank 1 and the repre- 

sentation follows by taking H = V'V). 

The description of (ii) is an equally direct consequence. 

COROLLARY 1.4.4. Let ~(x) = V*~(x) V be nonzero and completely positive. Then the 

extreme points o/[0, ~] are those maps o/ the /orm q~p, where P is a pr~ection in g(B)'. 

Proo/. This follows from 1.4.2, and the well-known fact tha t  for any yon Neumann 

algebra ~, the extreme points of {T 6 ~: 0 < T < I} are the projections in ~. 

We turn now to the extremal problem (iii). Recall tha t  a closed subspace ~ of a Hilbert  

space ~ is said to be a separating subspace for a yon Neumann algebra R__L(~) if for every 

X e  ~, X~[~={0} implies X=O; equivalently, the linear map ~ ( X ) = P ~ X I ~  of L(~) into 

L(~J~) satisfies the condition: ~(X*X)=O implies X=O, for every X 6  R. The following 

property, which is somewhat stronger, plays an essential role in the discussion to follow. 

De/inition 1.d.5. A closed subspace ~D~ of ~ is said to be/a i th/ul  for a yon Neumann 

algebra R if, for every X 6  ~, PXI~  =0 implies X =0,  P denoting the projection of ~ on ~D~. 

Before proceeding with the extremal problem, we give a few examples of faithful sub- 

spaces. Note first tha t  a faithful subspace ~ (for R) must also be separating, which is the 
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same as being cyclic for •': [~'9~] = ~  ([5], p. 6). On the other hand, as some of the follow- 

ing examples show, a cyclic subspace for ~ '  need not be faithful for }~. In  the special case 

where 992 reduces ~, however, then P X  ]~ =0 if X 19~ =0,  for every X e ~,  so tha t  9J~ is 

faithful for R if and only if [ R'gJ~] = ~.  

There are interesting examples of faithful subspaces which are affiliated with neither 

nor ~ ' .  As one example, let m be Haar  measure on the unit  circle T, and let ~ =L~(T, m). 

Let  R be the yon Neumann algebra of all multiplications L r by  bounded measurable func- 

tions / and, as usual, let H ~ be the closed linear span of the functions en(e ~~ =e n~~ n>~O. 

I t  is a familiar fact tha t  R = R'. Note also tha t  H 2 is a faithful subspace for R; indeed if 

/ eL~(T ,  m), then for every m, n>~0 one has 

(P,,.L, en, = (le , e.) ft(e'~ etCh-re) Odin, 

and from the condition PH~LI[ ~ =0 it follows tha t  every Fourier coefficient of ] vanishes, 

hence L I = 0  (for ra ther  different purposes, this fact has already been pointed out in [2]). 

Note also tha t  it follows from the above argument  tha t  if S is any set of integers such tha t  

S - S = Z  (e.g., S={O, l, 3, 5, 7 . . . .  }), then ~ = [ e , :  neS] is a faithful subspaee for the 

multiplication algebra ~. 

I f  U is any  uni tary operator which normalizes R (URU-I= R) and ~ is a faithful 

subspace for R, then so is U~J~, as a very simple argument  shows. So if ~ and ~ are as in 

the preceding paragraph and v/EL~176 m) is such tha t  I~Pl = 1 almost everywhere, then  

~. 9~ =Lv~J~ is faithful for ~. A different class of examples arises as the subspaces of the 

form U~J~, where U is the (normalizing) unitary operator induced by an invertible measure- 

preserving transformation of T. 

The following examples of subspaces of L2(T, dm) which are not faithful for the multi- 

plication algebra will be of interest in the sequel. Let  ~p be an inner function in L~~ m) 

(i.e., [W[ =1 a.e. and (~p, e~) =0  for all n<0 ) ,  and let 9~=H20~oH ~. I t  is shown in A.1 tha t  

9)2 is cyclic for the multiplication algebra R; but  9~ is not faithful because yJ- ~___ ~v- H ~_ ~ •  

hence P~Lv[~ =0,  while of course L~ ~=0. 

We can now state the solution of the extremal problem (iii). Let  B be a C*-algebra 

with identity, let ~ be a Hilbert  space, and let K be a positive operator in L(~). Let  r be 

a completely positive map of B into L(~), and let ~(x) = V're(x) V be the canonical expres- 

sion for % with re a representation of B on R and V EL(~, R). Then of course, ~ ~ CP (B, ~; K) 

if, and only if, V*V =K. 

THEOREM 1.4.6. Let q~ = V*reV be as above, with V* V=K. Then cp is an extreme point o/ 

CP (B, ~; K) i/, and only i/, IVy]  is a/aith/ul subspace /or the commutant re(B)' o/re(B). 
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Proo/. Suppose first tha t  ~J~=[V~] is faithful for re(B)', and let 90=tv21+(1-t)~ 2 

with ~p~ECP (B,~ ;  K), 0 < t < l .  Then 90~t~fll , so by  1.4.2 there is an operator TEn(B) ' ,  

0 ~< T ~< 1, such tha t  t~pa(x) = V* Tre(x) V, x E B. Setting x = e we obtain V* T V = tK = t V* 1 r, 

and so (P~ TV~, V~I)=(V*TV~, ~)=t(V~, V~) for all~,~/E~. I t  follows that P ~  T I ~ = t I  ~ 

and hence T =tI~ because ~J~ is faithful. Thus t~l =tV*reV =@ and we conclude ~0 1 =YJ2 =90. 

Thus, 90 is extreme. 

Conversely, suppose 90 is extreme. Define the positive linear map ~u: re(B)'~L(~J~) 

by~u(X) =P~X]~ .  We must  show t h a t / z  is injective. Take XE ~ '  such tha t  ~u(X)=0; we 

claim X =0.  Since/z preserves adjoints, it follows tha t /z (Re X) = # ( I m  X) =0,  and so we 

can assume tha t  X is self-adjoint. Choose positive scalars s, t such tha t  �88 <~sX +tI~ ~ ~I~ 

and put  A = s X  + tI~. Then �88 ~#(A)  = t I~  ~ ~I~, so tha t  0 < t < 1. Define ~l(X) = V'Are(x) V 

and yJ~(x) = V*(I-A)Tr(x)  V. Then ~0 1 and ~ are completely positive (1.4.2) because 0 ~<A ~< 

I~, one has ~0~(e) = V * A V =  V*#(A)V=tV*V =tK, and similarly ~2(e) = V*t~(I -A ) V =  

(1 - t ) K .  Of course, y~t+~o,=90. Since t-l~01 and (1 -t)-t~0~ are in CP (B, ~; K), it follows 

from the extremali ty of 90 tha t  t -hp l=(1- t ) - ty~=90 .  In  particular, V'Are(x)V=y~t(x)= 

tV*~r(x) V for every xEB.  From the uniqueness s ta tement  of 1.4.2 we conclude tha t  

A = t. I~; so finally sX, and therefore X itself, must  be 0. Tha t  completes the proof. 

The following two corollaries describe the multiplicative properties of certain extremal  

positive maps. 

COROLLARY 1.4.7. Let 90 be an extreme point o /CP  ( B, ~ ; I)  and let Z be the center o/ B. 

Assume 90(Z)=90(B)'. Then 90(xz)=90(x)90(z), /or every xEB,  zEZ. 

Proo/. Let 90 = V*reV be the canonical expression for 90, with re: B-~L(R) and V EL(~, ~). 

Then V*V=90(e)=I, so V is an isometry and hence VV* is a projection in L(~). Let  zEZ. 

Then 90(z) E90(B)' so by  1.3.1 there is an operator TEar(B)', TVV*  = VV*T, such tha t  T V  = 

V90(z), hence V*TV=90(z). On the other hand, re(z)E~r(B)' and V*3z(z)V=90(z)= V*TV.  

B u t  the map T En(B)'-~ V*TV is injective, by  extremali ty of 90 and 1.4.6, so tha t  re(z) = T; 

in particular, ~r(z) commutes with VV*. Thus, 90(xz) = V*rr(x)re(z) V =  V*rr(x)re(z) VV*V = 

V*Tr(x) VV*~r(z) V =90(x)90(z), completing the proof. 

Note in particular tha t  the preceding gives a new proof of the known result tha t  an 

extreme point of CP (B, ~; I)  is multiplicative, when both B and 90(B) are commutative.  

Also, the reader will have no trouble modifying the preceding proof to obtain the following 

result, which should be compared with Theorem 3.1 of [24]. Let  90 = V*reV be an extreme 

point of CP (B, ~; I)  (B is a general C*-algebra with identity) and let TETr(B)' be such 

tha t  To=  V*TV commutes with 90(B); then V're(x) T V  =90(x) To, for every xEB.  

I t  is known tha t  for commutative C*-algebras B 1 and B2, the extreme points of the 

1 1 -  692908 Acta mathematica 123. Imprim6 le 22 ganvior 1970 
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identi ty preserving positive maps of B 1 into B2 are precisely the .-homomorphisms [24], 

[12]. I t  is known (and follows directly from 1.4.6, for example, by taking ~ = ~ ,  ~ ,  

and V ~identi ty)  tha t  a representation of B is extremal in CP (B, ~; I). On the other hand, 

an extreme point of CP (B, ~; I)  need not be multiplicative, even when B is commutative 

(an example relevant to this work follows 1.4.8). Recall, incidentally, tha t  when B is com- 

mutative, positive maps of B are identical with completely positive maps [23]. One natural 

question, for a commutative B, is how "close" do the extreme points of CP (B, ~; I) come 

to being multiplicative? The answer is that  the kernel, at least, of an extreme point is the 

same as the kernel of a representation. 

COROLLARY 1.4.8. Let B be a commutative C*-algebra with identity, and let K be a posi- 

tive operator on a Hilbert space ~. Then/or every extreme point ~ o /CP (B, ~;  K), {xE B: 

~(x) =0} is a closed ideal in B. 

Proo/. Let  q~(x) = V*~(x) V be the representation of ~ as in 1.4.6. We show that  ker~ = 

ker 7e. I t  is apparent  tha t  ~ (x )=0  implies ~(x)=0.  Conversely if ~o(x)=0 = V're(x) V, then 

if follows that  P[v~] :~(x)Itv~] =0. ~(B) is commutative and thus ~(x) Ez~(B)'; since [V~] 

is faithful for ~(B)' we conclude that  ~(x) =0, and the proof is complete. 

We digress, momentarily, to present a simple example. Consider the commutative 

C*-algebra C(T) of continuous functions on the unit circle T, let m be Haar  measure on 

T, and let H 2 be the usual subspace of L2(T, m). Define a positive linear map ~0 of C(T) 

into L(H ~) by 
+(1) = P,,LrIH,, / e  C(T), 

L r denoting "multiplication b y / " .  Letting ~ be the representation of C(T) on L2(T, m) 

defined by ~(]) =LI,  and V the inclusion map of H ~_ L 2 in to /2 ,  then r = V*g V is the canoni- 

cal representation of ~. Now ~(C(T))' is the algebra of all multiplications by L~(T, m) 

functions, and the discussion following 1.4.5 shows that  H ~ is faithful for g(C(T))'. I t  

follows from 1.4.6 tha t  T is an extreme point of CP (C(T), H~; I). Clearly ~ is not  multi- 

plicative on C(T), while in this case ker ~ is the trivial ideal 0. 

We conclude this section with some information about the question: when is a sum of 

extremal maps extremal? These results allow us to give a complete description of the 

extremal positive maps of C(X) into a matrix algebra, thus solving a problem taken up in 

[24]. 

Now, it is not  hard to see tha t  if ~ is an extreme point of CP (B, ~; K) and ~e[0,  r 

then ~fl is an extreme point of CP (B, ~; ~(e)) (the proof makes use of 1.4.2 to obtain the 

canonical expression for ~0 in terms of that  for ~0, so that  1.4.6 can be applied in a straight- 

forward manner; we omit the details since this result does not bear directly on the sequel). 
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I t  follows that  if cf~ECP(B,~;K~) and ( p l + . . . + ~ n  is an extreme point of CP(B,~;  

K1 + -.- ~-/~n), then each Tf is extreme in CP (B, ~; Kt). The following lemma gives a partial 

converse. 

We shall say an operator TEL(~)  lives in a closed subspace ~J~ of ~ if both T and T* 

vanish on ~j~z: equivalently, ~ contains the range of both T and T*. A finite collection 

{ ~ 1  . . . .  , ~)~,} of subspaces of ~ is called weakly independent if, whenever T~ lives in ~ 

and Tl+... + Tn=O, t h e n  T 1 . . . . .  T , = 0 .  A linearly independent family of subspaces 

(i.e., ~i E ~)~ and ~l +...  + ~n = 0 implies ~1 . . . . .  ~n = 0) is necessarily weakly independent, 

but  the converse is false. A simple example is obtained by taking ~1  = [~], ~ 2  = [~] and 

~f)~a = [~ +~], where ~ and ~ are linearly independent vectors; {~ l ,  ~)~, ~)~a} is not linearly 

independent, but  some simple calculations (which we leave to the reader) will show that  

it is a weakly independent family. We also remark that  when ~ is finite dimensional, weak 

independence of {~1 ..... ~ , }  is equivalent to the linear independence of the family { ~ }  

of subspaces of ~ |  defined by ~ i= [~ |  ~e ,~E~] .  This rests on the fact that  the 

vector space L(~) is isomorphic with ~ |  in such a way that  the subspaee of operators 

tha t  live on ~ corresponds to ~ (the details of which we again leave to the reader). 

We also recall Mackey's notion of disjointness: Two representations ~rl and ~r 2 of a 

C*-algebra B are disjoint (Jr I ~ ~r~) if no nonzero subrepresentation of 7r 1 is equivalent to 

any subrepresentation of z~. I t  follows that  if ~r 1 and ~r~ are respectively multiples of two 

inequivalent irreducible representations, then ~rl ~ ~r~. 

L ~ ~ ~ ~ 1.4.9. Let B be a C*-algebra, ~ a Hilbert space, let K 1 .... , K~ be positive operators 

on ~, and let q~ = V~zr~ V~ be an extreme point o/CP (B, ~; K~) 1 <i 4n. Assume that 

(i) ~r~ ~ zr~ i / i  4], and 

(ii) ( [ K i l l  ..... [ K ~ ] }  is a weakly independent/amily o/subspaces o/~.  

Then ~l +... +q~n is an extreme point o/CP (B, ~ ;  K l +  ... +K~). 

Pros~. First, we shall exhibit the canonical expression for ~0=~1+...+r L e t ~  be 

the Hilbert space on which ~r~ acts; we can assume, of course, that  [~r~(B) V ~ ]  = ~ .  Define 

the operator V EL(~, ~1| | ~ )  by  V~ = V1 ~ | | V, ~, and put  ~(x) =zrl(x ) | | E 

L(~I |174  xEB. Then V*x~V=~ V* ~r~ V~ = ~  ~0~, so that  V*xeV will be the canonical 

expression for ~+. . .+~0~ provided that  [~z(B)V~]= | But since the ~r~ are pair- 

wise disjoint it follows that  g~ 4 | ~.~ ~r~ ([4], Prop. 5.2.3), and so the projection E~ of 

~ l | 174  on its ?'th coordinate space belongs to the center of 7r(B)" ([4], Prop. 5.2.4). 

Thus, [~r(B) V~] contains [~r(B)E~V~]=O|174 V ~ ] | 1 7 4 1 7 4 1 7 4 1 7 4 1 7 4  

(the nonzero summand occurs in the ]th place) for 1 ~<] ~<n, and hence [~r(B) V~] contains 

~ l |174  as required. 
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To show tha t  r + ... + r  is extremal, we make use of 1.4.6. Choose T E~(B)' such that  

V*TV=0.  For each j, we have TEjEg(B)E~, so tha t  T has the "diagonal" form T =  

TI |174  where TjEL(~j) and commutes with ~j(B). Now 0 =  V*TV= V~T~ V~+... § 

V* T~ V~, and of course V~ T~ V~ lives in [ V~ V~ ~ ]  ~ [K~ ~]. By (ii), then, we have V~ T~ V~ = 0, 

l~ j~<n.  Since each cj  is extremal and T~Eg~(B)', 1.4.6 implies tha t  T~ . . . . .  Tn=O, 

hence T = T I | 1 7 4  , and the proof is completed by another application of 1.4.6. 

We can now describe the extremal positive maps from a commutative C*-algebra 

into a matrix algebra. 

THEOR~.M 1.4.10. Let X be a compact Hausdor// space, let ~ be a finite dimensional 

Hilbert apace, and let K be a positive operator on ~. Then the extreme points o/GP (C(X), ~; K) 

are the positive maps o/ the/orm 

~(1) =/(x~)K, +... +/(x.)K., / e C(X), 

where n >1 1, x 1 ..... xn are distinct points o / X ,  and K 1 ..... K ,  are positive operators satis/yiny 

(i) K I + . . . + K , = K  , and 

(ii) { [ K ~ ]  ..... [K,~]} is a weakly independent/amily o/subspaces. 

Proo/. Suppose ~0 has the given form ~(/) =~j / (x j )K s, and set ~j ( / )=/ (xl )K j. Let  ~ s=  

[Kj~],  Vj = K~, and let g(/)j be the scalar operator/(xj) I~j. Then ~j(/) = V~j( / )  Vj, and clear- 

ly [ V j ~ ] = [ K ~ ] = [ K j ~ ] = ~ j ,  so that  this is the canonical form for cj. If TEL(~j)  and 

F~TVj=O=K~TK~,  then clearly T=O because K~ is an isomorphism of [KIWI onto 

itself. 1.4.6 now shows that  ~j is extreme. Since x~ ~:xj we have ~ 6 ~j by the remark preced- 

ing 1.4.9, and so by 1.4.9 it follows that  ~1 +.. .  + ~ ,  is extreme in CP (C(X), ~; K 1 +... + Kn). 

Conversely, let ~0 be an extreme point of GP (B, ~; K), and let r = V*xeV be its canoni- 

cal representation, with ~ a representation of C(X) on ~, V EL(~, ~), and [~(C(X)) V~] = ~. 

By 1.4.6, the linear map T E z ( C ( X ) ) ' ~ V * T V E L ( ~ )  is injective, so that  xe(C(X))' is a 

finite dimensional yon Neumann algebra. In  particular, the reducing subspaces for the 

C*-algebra 7e(C(X)) satisfy the chain conditions, and a familiar argument shows that  g is 

a finite direct sum of irreducible representations. Each irreducible representation is of 

the f o r m / ~ / ( x )  I (I being a one-dimensional identi ty operator and x being a point of X), 

so that  we can arrange 7c in the form 

~(1) = t(xl) E1 +.. .  +/ (x . )  E.,  I e C(X), 

where x~ =~xj if i :~j, and E 1 ..... En is a set of mutually orthogonal projections in L(~) 

with sum I. Since the subrepresentations/-~/(x~) E~ are mutually disjoint, it follows that  
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E~ETr(C(X))" ([4], t~.op. 5.2.4), l<~i<~n. Now put  Kj=V*EjIZ, and note tha t  q~(f)= 

~j V*/(xj)Ej V = ~j/(xs)Kj. Clearly Z Ks = r = K; we shall complete the proof by  showing 

{[KI~] . . . .  , [Kn~]} is a weakly independent family of subspaces of ~. 

Choose TjEL(~) such that  T~ lives in [Ks~ ] and T I + . . . + T n = 0 .  Pu t  Vj=EjVE 

L(~, Es~  ). Then V~ V~=Kj, so that  the polar decomposition of V s takes the form Vs= 

UsK~, where U s is a partial isometry with initial space [Kj~] and range [E s V~]. Now the 

restriction of K~ to [Ks~ ] is injective, so it has a positive inverse K~-�89 Define 

the operator AsEL(~ ) by A s = UsK/�89 TsK~-�89 U~; then A s lives in [Us~] = [Ej V~], and we 

have V~AsVs= Ts, l<~j~n. So if we put  A=AI+...+AnEL(~ ) (note tha t  the sum is 

direct), then each A~ commutes with {Es} , hence AEg(C(X))'. Moreover, V*AV= 

~jV*AsVs=~sTs=O. Since ~ is extreme, 1.4.6 implies tha t  A = 0 ,  hence As=EsA=O, 

hence Ts= IZ~A~ V s =0, 1 ~<j ~<n. That  completes the proof. 

Chapter 2. Boundary representations and Silov boundaries 

We now take up the general problem mentioned in the introduction: to what extent  

does an algebra of operators on a t t i lbert  space determine the structure of the C*-algebra 

it generates? More precisely, let ~ be a Hilbert space and let A be a subalgebra of L(~) 

which contains the identi ty operator. The meaning of this question can be illustrated in 

terms of invariants. Let  us say a property of C*(•) is invariant (relative to ~ )  if, for every 

operator algebra A1 which is completely isometrically isomorphic to ,~, C*(A1) has the 

property when, and only when, C*(A) has it. Accordingly, if there are enough invariant 

properties to determine C*(,,4) to within .-isomorphism, then in an obvious sense ,~ deter- 

mines the structure of its generated C*-algebra. 

I t  is not obvious that  invariant properties should exist at  all. We will show, however, 

tha t  certain irreducible representations of C*(A) (the boundary representations) are 

A-invariant in the above sense. This leads to a body of general results, relating to analogues 

of Silov boundaries and the problem of implementing certain linear maps of operator 

algebras with .-isomorphisms (Section 2.2). 

In  sections 2.3 and 2.4, we obtain a characterization of boundary representations 

which is more useful for specific applications, a number of which are taken up later in 

Chapter 3. 

2.1. Boundary Representations. Let  A be a linear subspace of a C*-algebra B, such 

that  B=C*(A). We assume, throughout this chapter, tha t  such an A always contains the 
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identi ty of B. I f  eo is any  representation of B, then e0[A has just one multipllcative com- 

pletely positive extension to B (namely co); in general, however, there may  be other linear 

completely positive extensions of ~o[A. 

De]inition 2.1.1. An irreducible representation eo of B is called a boundary representa- 

tion for A if eo I A has a unique completely positive linear extension to B. 

When B = C(X) (for X a compact Hausdorff space), the irreducible representations 

correspond to point evaluations; and if A is a separating linear subspace of C(X) then the 

boundary representations correspond to points of X which have unique representing 

measures (relative to A). This is one of the characteristic properties of points in the Choquet 

boundary of X relative to A [16]. When dealing with one-dimensional boundary representa- 

tions of a general C*-algebra B, the analogy with Choquet boundary points carries over 

quite well (cf. section 3.1). General boundary representations, on the other hand,, can 

possess properties for which there is no commutat ive counterpart  (cf. section 3.5), and 

one should probably not t ry  to push the analogy too far. 

The very useful feature of boundary representations of B is their invariance relative 

to A, as described in the following theorem. 

THEOREM 2.1.2. Let B and B t be C*-algebras and let A and A t be linear subspaces o/ 

B and B1, respectively. Assume B=C*(A) and BI=C*(At). Let q~ be a completely isometric 

linear map o / A  on A t such that q~(e)=e. Then/or every boundary representation eoo/ B 

(relative to A) there exists a boundary representation co t o~ B 1 (relative to A1) such that 0) 1 o~(a) = 

co(a), aEA. 

Proo/. We may assume tha t  B1 acts on a Hilbert  space ~. By 1.2.9, ~ may  be extended 

to a completely positive linear map  of B into L(~), which we denote by  the same let ter  ~. 

:Now the map q~(a)-+co(a), aEA, is a completely contractive linear map of A 1 into 

co (A)~L(~ )  which takes the identi ty to the identity, ~ being the Hilbert  space on 

which ~o(B) acts, so by  1.2.9, there exists a completely positive linear map ~: B I - ~ L ( ~ )  

such tha t  ~oT(a)=w(a),  aEA. We will show tha t  such a ~ must  be a representation of B 1. 

This will complete the proof, for two representations which agree on ~ ( A ) = A  1 must  agree 

on C*(At)= B1, and such a ~ must  be irreducible because Q(BI)=C*(Qo?(A))=C*(~o(A))= 

~o(B) and ~o is irreducible; thus ~ is the required boundary representation of B1, relative to A 1. 

Now clearly C*(q~(B))~ C*(q~(A))= B1, so there is, by 1.2.3, a completely positive map  

~: C*(~(B))-~L(~o) such tha t  ~ =~ on B r By 1.1.1, there is a representation ~ of C*(cp(B)) 

on ~ and an operator VEL(~o, ~) such tha t  ~(x) = V*:~(x) V, xEC*(~(B)), and V ~  is cyclic 

for ~(C*(~(B)): For aEA, eo(a)=~oq~(a)=V*TeoqJ(a)V, so tha t  xEB-+V*~o~(x)V is a 
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completely positive extension of co [A to B. Since (o is a boundary representation, we con- 

clude tha t  co(x)= V*zo~o(x)V, for all x E B. 

We claim now tha t  V is unitary.  Indeed, V*V = g*~oqJ(e) V =w(e) = I ,  so V is isometric, 

and it suffices to show tha t  [ V ~ ]  =R.  But  [ V ~ ]  is cyclic for ~(C*(~(B)))=C*(Tcocf(B)), 

and so [ V ~ ] = R  follows if we prove tha t  the self-adjoint family of operators zo~(B)  

leaves [ V ~ ]  invariant.  Choose a uni tary element u in B. Then for ~ E ~ ,  we have 

II ov(u) W (u) ll 2 = II ov(u) V ll 2 - 2  Re (V*zov(u) V~, r ][r 2 

= II ov(u) V ll 2 -  II (u) ll 2 = I l i o n ( u )  V ll II ll ll ll II [I = 0, 

since V*~oq)(u) V=co(u), o)(u) is unitary,  and HT~o~(u)] I 41.  Thus, 7~o~0(u) V~= Vw(u)~E 

[ V ~ ] ,  for every ~ E ~ ,  and hence ~oT(u ) leaves [ V ~ ]  invariant. Since B is the norm- 

closed linear span of its uni tary elements, we see tha t  uo~0(B) leaves [ V ~ ]  invariant; 

by  the above comments, V is unitary. 

Thus ~ = V-I~V is a representation of C*(q)(B)), and hence ~ = ~ ] B  1 is a representation 

of B r That  completes the proof. 

Note tha t  the proof shows somewhat more than  we have claimed, when B~ acts on a 

Hilbert  space ~; namely, for every completely positive extension ~ of ~ to B, there exists 

a unique completely positive map p: C*(~(B))->L(~), which is necessarily a .-representa- 

tion, such tha t  ~o~(x)=w(x),  xEB. 

We shall give a number  of applications of this theorem, a basic result of this paper, 

in the following two sections and in Chapter 3. Chapter 3 also contains a number  of examples 

of boundary representations. 

Let  X be a compact Hausdorff space and let A be a linear subspaee of C(X) which 

contains the constants and separate points of X. Then there is a smallest closed subset 

K of X such tha t  every function in A achieves its maximum modulus on K, called the 

Silov boundary of X relative to A [16]. We now introduce a non-commutat ive generaliza- 

tion of the Silov boundary. 

De/inition 2.1.3. Let  A be a linear subspace of a C*-algebra B such tha t  A contains 

the identi ty and generates B as a C*-algebra. A closed (two-sided) ideal J in B is called 

a boundary ideal for A if the canonical quotient map q: B-~B/J is completely isometric 

on A. A boundary ideal is called the Silov boundary for A if it contains every other bound- 

ary  ideal. 

I f  B=C(X) and K is a closed subset of X, then J=(/EC(X):/(K) =0} is a closed ideal 

in B, and the quotient norm in BIg is given by  ]l/] KH =supxEK ]/(X)], for /E C(X). Thus, 

J is a boundary ideal for A iff K is a boundary for A in the sense of the discussion preceding 
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2.1.3 (here we use the fact tha t  a constant-preserving isometric linear map between sub- 

spaces of abelian C*-algebras is completely isometric, by  1.2.11). The known correspondence 

between closed subsets of X and ideals in C(X) now shows tha t  2.1.3 reduces to the usual 

definition of the Sflov boundary for subspaces of commutat ive C*-algebras. 

Note tha t  the Silov boundary of A _ B is unique, whenever it exists. Whether  or not 

it always exists under the general conditions of 2.1.3 is, however, still an open question. 

In  the commutat ive case B = C(X), it is known tha t  the closure of the set of all Choquet 

boundary points is the Silov boundary. We will show in the next  section tha t  a similar 

fact is true for "admissible" subspaces of arbi t rary U*-algebras, but  tha t  is the best general 

result we now know. For reasons brought out clearly in the next  section, this question 

has significance in the development of an abstract  theory of (non self-adjoint) operator 

algebras. 

2.2. Admissible subspaces o/C*-algebras. In  this section, we show tha t  the Silov boundary 

exists for "admissible" subspaces, and we obtain some consequences; toward the end of the 

section we discuss a sufficient condition for admissibility. 

Let  A be a linear subspace of a C*-algebra B such tha t  B = C*(A). We remind the reader 

tha t  A is always assumed to contain the identity. 

De]inition 2.2.1. A is called an admissible subspace of B if the intersection of the 

kernels of the boundary representations (for A) is a boundary ideal for A. 

Let  bd A denote the class of all boundary representations for A (to avoid set-theoretic 

difficulties, one should regard bd A as a set of representatives, one taken from each uni- 

t a ry  equivalence class of boundary representations: we shall be deliberately casual about  

this kind of distinction). The reader can easily see tha t  A is admissible if, and only if, i t  

satisfies the condition: ]or every integer N >~ 1 and every N • N matrix (a,) over A ,  one has 

II(a.)H= sup II(w(a,,))ll, 
r 

where the norm of (a~j) is inherited from B| Note also that ,  since a representation of 

B is always completely contractive, one need only check the inequality ~<. I t  is significant 

tha t  admissibility is an invariant  for completely isometric linear maps: 

THEOREM 2.2.2. Let A (resp. A1) be a linear subspace o / a  C*-algebra B (resp. B1) 

such that B=C*(A)  (resp. B 1 =C*(AO) and suppose there is a completely isometric linear map 

o / A  on A 1 such that qJ(e) =e. I / A  is admissible then so is A 1. 

Proo/. We will show tha t  A 1 satisfies the condition of the preceding paragraph. Let  

~V be a positive integer and let (btj) be an N • N matr ix  over A r Then there exists elements 



SUBALGEBRAS OF C*-ALGEBRAS 171 

a~j6A such tha t  ~0(a~j)=b~. For each 0)Ebd A, let 0)1 be the element of bd A 1 satisfying 

0)1o~ =0) (by 2.1.2). Since A is admissible and ~ is completely isometric, we have 

H (b,j)[[ = II (a~)II = s u p  AI[ (0)(a,J))ll = sup A ]] (0)~ (b~J)) II < ~, ,sup [1(0), (b~,)) H, 

and the proof is complete. 

PROPOSITIO~ 2.2.3. Let A be a subspace o[ B such that C*(A) = B, let J be a boundary 

ideal/or A, and let 0)Ebd A. Then J c_ker 0). 

Proo/. Let  q be the quotient map of B into B/J. Then q] A is completely isometric, 

q(e)=e, and C*(q(A))=q(C*(A))=q(B)=B/J. By 2.1.2, there exists a representation 0)x 

of B/J such tha t  0)1oq =0) on A. Since 0)1oq and 0) are , -homomorphisms and A generates 

B, we have eo 1 o q =0) on B. Thus, if x E J = Ker  q, then 0)(x)=0)10q(x)= 0; thus J~_ ker o~, 

completing the proof. 

T }t ~ o R E M 2.2.3. Let A be an admissible subspace o/B, and let K be the intersection o/all 

kernels o/boundary representations. Then K is the Silov boundary ideal/or A. 

Proo/. By hypothesis, K is a boundary ideal. I f  J is any  other boundary ideal and if 

0)Ebd A, then by 2.2.2 we have J _ K e r  0); hence, Jc_K, and we are done. 

Now let A be an admissible subspaee of B, let K = N o ,ba  Ker  0) be the Silov boundary 

for A, and let q be the quotient map of B onto B/K. The process of passing from A to 

q(A) c_ B/K is analogous to passing from a subspace A of C(X) to the space of restrictions 

A [~X_~ C(aX), and in dealing with "abs t rac t"  admissible subspaees, it is convenient to 

do this. Note, for example, tha t  we have the following. 

PROPOSITION 2.2.4. Let A be an admissible subspace o/ a C*-algebra B such that 

B=C*(A), let K be the Silov boundary ideal/or A, and let q be the quotient map o / B  in B/K. 

Then q(A) is an admissible 8ubspace o / B / K  which has {0} as its Silov boundary. 

Proo/. The admissibility of q(A) is evident from 2.2.2. By  2.1.2, the relation 0)1oq =w 

sets up a bijective correspondence eeoc) 1 between the boundary representations for A 

and those for q(A) (note tha t  the equation 0)1oq =w on A entails its validity on B = C*(A), 

since w, o)1, and q are all .-homomorphisms).  Thus, for x 6 B, q(x) E N bet 0) 1 implies 0)(x) = 

0)loq(x) = 0  for all w Ebd A, hence xE N o E ~ K e r  0)=K, and so q(x)=0. 2.2.3 now shows 

tha t  {0} is the Silov boundary for q(A). 

I t  is natural  to ask the extent  to which a subalgebra or subspaee, A, of a C*-algebra 

B determines the structure of B. Even when B is commutat ive and is generated by  A, 

there can be quite a variation of structure. For example, let D be the closed unit disc, and 
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let A be the closed subalgebra of C(D) consisting of all sup-norm limits of polynomials. 

A separates points of D and thus C*(A)= C(D). On the other hand, the unit circle T is a 

subset of D, and the restriction map /EC(D)~/[TE C(T) is a .-homomorphism of C(D) 

on C(T) which is completely isometric on A by the maximum modulus principle (cf. 1.2.11). 

Thus, AI=AIT is the "same" as A, whereas C*(A1)=C(T) is quite different from C(D). 

The following result implies, among other things, that  an admissible subspace com- 

pletely determines the structure of its generated C*-algebra, once one has factored by the 

Silov boundary ideal. 

THEOREM 2.2.5. Let A (resp. A1) be an admissible subspace o/a C*-algebra B (resp. B1) 

such that B = C*(A ) (resp. B 1 = C*(A1) ). Assume that both A and A 1 have trivial Silov boundary 

ideals. Then every completely isometric linear map o / A  on A 1, which takes e to e, is imple- 

mented by a .-isomorphism o] B on B 1. 

Proo/. Let S be the set of all equivalence classes of boundary representations of B 

(for A). For each nES  choose a representative w~ for n. Let ~ be a completely isometric 

linear map of A on A 1 such that  ~(e)=e. By 2.1.2, there exists, for each nES, a boundary 
�9 �9 t 

representation w~ of B 1 (for A1) such that  wno~ =wn on A. As n runs over S, ~o~ runs over 

all (classes) of boundary representations of B 1. So by hypothesis, and 2.2.3, we have 

n n Ker o) n = A n Ker o)n = {0}. Thus the representations 7~ = Qn ~0~ and :~' = (~ neon are, 

respectively, faithful representations of B and B 1. Moreover, ~ ' o T = ~  on A, by con- 

struction. I t  follows that  ~'(B1) = C*(~'o~(A)) = C*(ze(A))=Te(B), and since both 7~ and ~'  

are injective, the mapping G=(y~')-log is in fact a .-isomorphism of B on B 1. The rela- 

tion 7~'ocf(a)= g(a), a EA, implies a I A =% and the proof is complete. 

COROLLARY 2.2.6. Let A be an admissible subalgebra o / a  C*-algebra B, such that B = 

C*(A ). Then every completely isometric linear mapping o /A  onto itsel/ which leaves the identity 

fixed is an algebra automorphism. 

Proo/. Let K be the Silov boundary ideal for A and let q be the quotient map of B 

on B/K. Let ~ be a completely isometric map of A on A such that  ~(e)=e, and put ~1= 

qo~oq-l:  q(A)~q(A).  By 2.2.5, ~1 is implemented by a .-automorphism of B/K,  and in 

particular ~1 is multiplicative on q(A). Since q is an algebra isomorphism of A on q(A), 

it follows that  ~ =q-lO~lO q is multiplicative on A. That completes the proof. 

We conclude this section with a discussion of one sufficient condition for a subspaee 

to be admissible. This condition is not always satisfied, but it is effective in dealing with a 

variety of examples. Also, we point out that  some related questions will be taken up in 

section 2.4. 
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Let  A be a linear subspace of a C*-algebra B and let to b e  an irreducible representa- 

tion of B. Define the set M~ to be all b in the closure of A +A* for which co(b) has the form 

lib ]] U, where U is a uni tary operator. ~//~ consitsts of those elements of (A + A*)- which, in 

a sense, take on their "max imum modulus" in to. Note, too, tha t  M* =M~.  

THEOREM 2.2.7. Let A be a linear subspace o /a  C*-algebra B and let to be an irreducible 

representation o/ B such that M~ generates B as a C*-algebra. Then ~o is a boundary repre- 

sentation/or A.  

Proo/. Let  ~ be any  completely positive extension of ~oiA, say Q = V*xeV, where 7~ is 

a representation of B on a Hilbert  space ~ and V is an operator from the Hilbert  space 

on which w acts to ~, such tha t  [~(B) V~] = ~ .  As in 2.1.2, it suffices to show tha t  r is a 

representation, or what  is the same, tha t  V is unitary. Now V*V=~(e)=og(e)=I, so V 

is isometric, and we need only prove tha t  [V~] = ~ .  

Note  tha t  Q must  equal ~o on the closure of A + A*, since both are bounded self-adjoint 

linear maps. Take z E (A +A*)-.  Then for every ~ E,~, we have 

I1~(~) v ~ -  v ~ ( z ) ~ l l  ~ = II~(z) v~ll ~ - 2 R e  ( v * ~ ( ~ ) v ~ ,  ~ ( z ) ~ )  + II v ~ ( z ) ~ l l  ~ 

= I1~(~) v~ll ~ -  II~(z)~ll :, 

since V'st(z)V=eo(z) and V is isometric. So if zEM+, then I1~(~)~11~=11~11:11~11 ~, hence 

I1~(~) v~ll 2 - I1~(~)~ll 2 ~< 0, and it follows tha t  :re(z) V~ = Vw(z)~ E [V~]. Thus, [V~] is invariant  

under the self-adjoint family of operators u(M~), which generates u(B) as a C*-algebra. 

We conclude tha t  ~=[s t (B)V~]_~ [V~], as required. 

Some examples are noteworthy. Suppose A is a linear subspaee of B such tha t  the 

unitary elements of (A +A*)-  generate B as a C*-algebra; for example, A +A* could be 

dense in B, or A could be the algebra generated by  a semigroup of uni tary  operators which 

contains e and generates B as a C*-algebra. Then by  2.2.7, every irreducible representation 

of B is a boundary representation for A; hence A is admissible and, in fact, the Silov 

boundary of A is the trivial ideal {0}. Thus, making use also of 2.2.5, we can state the 

following. 

COROLLARY 2.2.8. Let A be a subspace o /a  C*-algebra B such that the unitary elements 

in (A + A*)- generate B as a C*-algebra. Then every irreducible representation o / B  is a bound- 

ary representation/or A ,  the Silov boundary ideal/or A is trivial, and every completely iso- 

metric linear map o/ A onto itsel/ which leaves the identity fixed is implemented by a *-auto- 

morphism o/ B. 

We remark tha t  the same conclusion can be drawn from weaker, though less easily 

verified, hypotheses. For convenience, let us call an irreducible representation o~ of B 
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peakin9 for A if M~(_~ (A +A*)-)  generates B as a C*-algebra. Then the conclusion of 

2.2.8 is valid provided only tha t  the intersection of the kernels of all peaking representa- 

tions is trivial. 

2.3. Finite representations o/ operator algebras. This section serves two purposes; it 

contains material  which is preparatory for the characterization of boundary representa- 

tions in 2.4, and we introduce here certain notions and terminology which will be used 

in the entire sequel. 

In  this section and the next,  we shall be interested in subalgebras (rather than  sub- 

spaces) of C*-algebras. Recall first the definition of semi-invariant subspaces. A closed 

subspace ~j~ of a t t i lbert  space ~ is said to be semi-invariant under a subalgebra t4 of 

L(~) (• is assumed to contain the identity) if the map r  = P ~  TI~  is multiplicative on M. 

The definition is due to Sarason [20], who pointed out the following characterization. I f  

is semi-invariant for A, then ~rJ~ o = [M~J~] @ ~)~ is ~4-invariant, so tha t  ~j~ = [A~J~] G ~J~o 

is a nested difference of M-invariant subspaces; conversely if ~ = ~ 1 @  ~J~0 where ~0~0~ ~J~ 

are A-invariant,  then ~ is semi-invariant for M. Thus when M is a self-adjoint algebra the 

semi-invariant subspaces are reducing subspaces. In  general, of course, a semi-invariant 

subspace need not even be invariant.  

Let  A be a subalgebra of a C*-algebra B; A is always assumed to contain the identi ty 

of B. A representation of A is a homomorphism ~ of A into the algebra of operators on some 

Hilbert  space, such tha t  

(i) ? ( e ) = I ,  and 

(ii) II (a)ll Ilall, for all ariA. 

Our reason for imposing the condition (ii) is to make this definition coincide with the usual 

usage of the te rm for C*-algebras. Indeed, if ~ is a representation of A = B, then (i) and (ii) 

together imply tha t  ~ is positive (1.2.8), and thus ~(x*) =q(x)* for all x ri B. In  general, if 

is a representation of A on ~ and ~1~ is a semi-invariant subspace for q(A), then we m a y  

define a new representation ~v 0 of A on ~J~ by  

q%(a) = P~q~(a)]~, ariA. 

Such a ~0 is called a subrepresen~ion of ~. Note that ,  by  the preceding comment  about  

semi-invariant subspaces for .-algebras, this definition too reduces to the usual one in 

case A is self-adjoint. 

Two representations ~x and ~ of A are said to be equivalent if there is a uni tary  operator 

U between their respective Hilbert  spaces such tha t  U~l(a ) =q~2(a) U for all ariA. 
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Definition 2.3.1. Let  A be a subalgebra of a C*-algebra and let ~ be a representation 

of A. ~ is called infinite if it is equivalent to a proper subrepresentation ~0 ~:~; ~ is called 

finite if it is not infinite. 

Some examples are given after  2.3.4. The following description of finite representations 

will be useful. 

PROPOSITIO~ 2.3.2. Let q~ be a representation o /A  on ~. Then q~ is finite if, and only 

i/, /or every isometry V ~L(~) the condition V*q~(a) V =~(a) , /o r  all a~A, implies V is unitary. 

Proo/. Assume, first, tha t  ~ is finite, and let V be an isometry in L(~) such tha t  

V*q~V =q~. Let  P = VV* be the projection on the range of V. We will prove tha t  V is uni tary  

by  showing P = I .  Now V*~fV=~p implies Pq~P= V~V*; hence for a, bE A we have 

Pq~(a)Pq~(b)P= Vq~(a) V*V~(b)V*= Vq~(a)q~(b) V*, because V*V=I.  Thus P ~  is semi- 

invariant  under ~(A). Define the subrepresentation ~o(a)=Pq)(a)IP~, of A on P ~  = V~. 

Then V is a uni tary  map of ~ on V~, and q~o V =Pq)V= VV*q~V = Vqp. As ~ is finite, we have 

~%(a) =~(a),  aEA, and so P = I  follows by  taking a to be the identity. 

Conversely, suppose tha t  ~ is infinite. Then there is a semi-invariant subspace 

for ~(A), ~J~=k~, and an isometric operator V of ~ onto ~ such tha t  P~q~(a)V~= Vq~(a)~ 

for all ~E~.  I f  we regard V as an element of L(~),  then P ~ =  VV*, so the above equation 

is VV*q~V = V~0; multiply on the left by  V* to get V*qJV=q~. V cannot be uni tary because 

V~ =~J~ ~:~, and tha t  completes the proof. 

I f  A = B is sel/-adjoint and q is a representation of A on ~,  then as we have already 

noted, the subrepresentations of ~ correspond to projections in the eommutant  T(A)' 

of ~(A); and a proper subrepresentation of ~ is equivalent to ~ iff there is an isometry in 

~(B) '  with range the indicated semi-invariant subspace. Thus we have the known result 

tha t  a representation ~ of a C*-algebra is finite iff the yon Neumann algebra ~(B)'  is 

finite (a yon Neumann algebra is finite if it contains no non-unitary isometrics). 

We know of no analogous characterization of finite representations of general (non 

self-adjoint) algebras. Consider the following example. Let  A be a subalgebra of a C*- 

algebra B and let ~ be a representation of B on a Hilbert  space ~. Then ~ = g  ]A is a repre- 

sentation of A, and so is every subrepresentation of ~. Note tha t  the subrepresentations 

of ~ m a y  differ greatly from q; for instance, if B is abehan then the operators in ~0(A) are 

normal, while no such thing is true for the images of A under subrepresentations. Never- 

theless, in the special case where A +A* is dense in B, there is an effective method for 

determining when subrepresentations of ~ are finite (2.3.4). 
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LEPTA 2.3.3. Let ~ be an algebra o/operators on a Hilber~ space ~ such that ~ + ~* is 

weakly dense in a yon Neumann algebra ~. Let ~ be a subspace o] ~ and de/ine ~(X)= 

P~XI~ ~L(~), X s Then/or every isometry V eL(~) such that V*~(X) V=~(X), X e A 

there exists an isometry V~ e ~' such that V1 ]~ = V. 

Proof. Let us write the projection on ~ simply as P. Note that  we have V*~(X) V =~(X) 

for all X~  ~, because both sides of the equation are weakly continuous ,-preserving 

linear functions of X, equality was assumed to hold on ~ ,  and ~ + A* is weakly dense in ~. 

Let  ~, ~ and X, Y~ ~. Then since P V =  V we have (XV~, YV~)=(V*Y*XV~,~)= 

(V*PY*XV~, V) = (V*~)(Y*X) V~, ~7) =(q~( Y*X) V~, ~7) = (X~, Y~). Thus we can define an 

isometric linear map V0: [ R~]-+ [ R V~) ~ [ R~] by the formula 

1=1 t=1 

w h e r e  ~1 . . . . .  ~n e ~ ,  X 1 . . . . .  X n e ~ .  

A trivial calculation shows that  V o X = X V  o on [ ~ ] ,  so if we define V1EL(~) by 

VI~= Vo~ for ~ E [ ~ ]  and VI~= ~ for ~ E [ ~ ]  ~, then V 1 is an isometry in ~ ' ,  and clearly 

VI~ = V~ for ~ E 9- That  completes the proof. 

T K E O R ~  2.3.4. Let A be a subaIgebra o] a C*-algebra B such that A + A* is dense in B. 

Let ~ be a finite representation o/ B in L(~), let ~ be a semi-invariant subspace /or 7e(A), 

and let ~(a) =P~ 7e(a)]~ /or aEA. Then cf is a/inite representation o /A  i], and only i/, every 

unitary operator in ~( B)' which leaves ~ invariant is reduced by ~. 

Proo/. Assume first tha t  ~ is finite, and let U be a unitary operator in ~(B)' such that  

U ~  ~j. If ~ does not  reduce U, then V = V/~ is a non-unitary isometry in L(~). Letting 

P stand for the projection on ~,  we have V*=PU*I~ , so that  if a e A  and ~ e ~  then 

V*q~(a) V~ =PU*P~(a) U~ =PU*~(a) U~ =P~(a)~ =~(a)~, using PU*P=PU*. By 2.3.2, 

must be infinite, a contradiction. 

Conversely, assume ~ is infinite. We will show that  there is a unitary operator U Eg(B)" 

such that  U~ is properly contained in ~ (thus ~ does not reduce U). By 2.3.2 there is a 

non-unitary isometry VEL(~) such tha t  V*q~(a)V=~(a), aeA.  Now the norm closure of 

7e(A)+Te(A)*=~(A +A*) is ~(B), so that  the weak operator closure of~(A)§ i s the  

yon Neumann algebra n(B)". By 2.3.3, there is an isometry U E~(B)' such that  U ]~ ~-F. 

Since g(B)'  is a finite yon Neumann algebra (by the remarks following 2.3.2), U must in 

fact be unitary. We have U~ = V~ so U~ is a proper subspacc of ~, and thus the condition 

of the theorem is violated. 
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We can now give some pert inent examples. I t  is well-known (and follows from the dis- 

cussion after 2.3.2) tha t  the subrepresentations of a finite representation of a C*-algebra 

are always finite. Such is not the case for representations of non-self-adjoint algebras, as 

the following examples show. 

Let  T be the unit  circle, let B=C(T) ,  and let A be the closure in C(T) of the poly- 

nomials. Then A is a subalgebra of C(T) for which A +A* is dense in C(T) (i.e., A is a Di- 

richlet algebra). Let  m be Haar  measure on T and let ~([) = "multiplication by  ]", [ C C(T), 

be the usual representation of C(T) on L~(T, m). Since 7e(C(T))' is the finite yon Neumann 

algebra of all multiplications by  L~(T, m) functions, we see tha t  s is a finite representation 

of C(T). 

Example 1: Let ~(/)=Te(/), f o r / E A .  Then r is a representation of A on ~ =L2(T, m), 

and trivially, every uni tary operator in 7e(C(T))' which leaves L2(T, m) invariant  is reduced 

by Z~(T, m). By 2.3.3, ~ is finite. 

Example 2: Let  z be as above, and take ~ = H  2 (H 2 is the closed linear span of {e~n~ 

n >~0}). Then H 2 is invariant,  hence semi-invariant, for 7~(A) so tha t  q~(/)= PH,~(/)]H ~ is a 

subrepresentation of ~ [A on H 2. Now the uni tary operator "multiplication by  e ~e'', com- 

mutes with ~(C(T)) and has H 2 as a non-reducing invariant  subspace. By 2.3.4 we conclude 

tha t  ~0 is an infinite representation of A. Since ~ is a subrepresentation of the one in example 

1, we have here an infinite subrepresentation of a finite representation. 

Example 3: Let ~ be a non-constant inner function in H ~~ (see the discussion pre- 

ceding 1.4.6 for definitions), and let ~ = H~O ~fH 2. I f  z is as before, then ~ is semi-invariant 

under ~(A), so tha t  ~(/) =P�9169 gives a representation of A. We claim tha t  ~ is finite. 

Indeed, by  A.1.3 we have tha t  [~(A)~] =H2; since H 2 is obviously a cyclic subspace 

for g(C(T)) we have tha t  [g(C(T))~] =L2(T, m). Thus by  2.3.4, it suffices to show tha t  if 

U is a uni tary operator in ~(C(T))' such tha t  U ~ c ~ ,  then ~ reduces U. By 1.3.3 we see 

tha t  UH ~_ H ~ and U*~fH~cy~H ~. Now U is muh.iplieation by  a function u EL~176 m) such 

tha t  [u[ = 1 almost everywhere. I t  follows, then, tha t  uH~_ H ~ and fiH~___ H~; in particular 

uEH ~ and ~ E H  2, so tha t  u must  be a constant. Thus U is a scalar, which of course is re- 

duced by  ~. By 2.3.4, ~ is finite. 

There is an analogous result on finiteness for subrepresentations of/ ini te  direct sums 

of z (i.e. projections of shifts of finite multiplicity). I t  is also easy to see tha t  the projec- 

tion of a shift of infinite multiplicity onto one of its semi-invariant (but not invariant) 

subspaces gives rise to a representation which need not be finite. 

Example 4: As a final example, let A be a subalgebra of a C*-algebra B, and let eo 
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be a boundary representation for A. Then eo I A is a finite representation of A. This is proved 

in the following section (2.4.1). 

2.4. A characterization o/ boundary representations. Let  A be a subalgebra of a C*- 

algebra B. I t  is not a t  all clear from the definition, in most examples, which irreducible 

representations of B give rise to boundary representations for A. In  particular, if A is an 

irreducible algebra of operators on some Hilbert  space, when is the identi ty representation 

a boundary representation? What  is required is an intrinsic description of boundary repre- 

sentations in terms of their restrictions to A. We shall obtain three necessary conditions 

which, together, are also sufficient (2.4.5); two are intrinsic, while the third is easily checked 

in specific examples. These results are essential for m a n y  of the applications in Chapter 3. 

LEMMA 2.4.1. Let A be a subalgebra o] a C*-algebra B and let o~ be an irredubible repre- 

sentation o / B .  I /a)  is a boundary representation ]or A,  then ~o I A is finite. 

Proo/. Suppose o) acts on the Hilbert  space ~ and let V be an isometry in L(~) such 

tha t  V*w(a) V =o~(a) for all aEA. Then xEB-~ V*o~(x) V is a completely positive extension 

of eol~, and hence V*w V =co on B, because eo is a boundary representation. Thus V*eo V 

is a representation of the C*-algebra B; it follows tha t  V~(:~0) is a semi-invariant, hence 

reducing, subspace of ~ for ~o(B) (cf. the discussion preceding 2.3.1). Since w(B) is irreducible 

we must  have V~ = ~, i.e., V is unitary.  By  2.3.2 we conclude tha t  eo I ~ is finite, as required. 

We now introduce an extension, to linear subspaces of C*-algebras, of the notion of 

pure completely positive map. 

Definition 2.4.2. Let S be a self-adjoint linear subspace (containing the identity) of 

a C*-algebra B, and let ~0 be a completely positive linear map of S into L(~), for some Hil- 

bert  space ~. ~ is called pure if the only linear maps ~: S ~ L( ~ ) ,  for which both v 2 and 

cp-~p are completely positive, are scalar multiples of ~. 

LE~MA 2.4.3. Let A, B and eo be as in 2.4.1, and suppose eo is a boundary representation 

/or A. Then the restriction o/ eo to the closure o / A  + A* is pure. 

Proo/. Let S = ( A  +A*)-, and let ~ be the space on which eo acts. Let  ~1, q~2ECP( S, ~) 

be such tha t  O)lS=~l +~2- By 1.2.3 there are completely positive linear maps ~t: B ~ L ( ~ )  

such tha t  ~ l s  = ~~ i = 1, 2. In  particular, the linear map x E B--> v21(x ) + yJ2(x) is a completely 

positive extension of colA. Since w is a boundary representation for A we must  have 

~l(X)+y~2(x) =~o(x) for all xEB.  Now o) is an irreducible representation of B, so by  1.4.3 

it is a pure element of CP (B, ~). Thus, there are scalars t~>~0 such tha t  ~ = t ~ w  on B. 

Restricting to S we see qJ~=t~o)ls , and thus m[s is pure. 
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De/inition 2.d.d. Let  A be a subalgebra of a C*-algebra B, and let ~ be an irreducible 

representation of B. Say tha t  A separates ~ if, whenever ~ is an irreducible representa~ 

tion of B such tha t  ~ IA is equivalent to a subrepresentation of rclA, then r~ and ~ are 

equivalent representat ions of B. A is called a separating suba~bra if it separates every 

irreducible representation of B. 

Note tha t  if B =C(X) with X a compact Hausdorff  space, then a subalgebra is se- 

parat ing iff it separates points of X; by the Stone-Weierstrass theorem, this is equivalent 

to the assertion B = C*(A). One noncommutat ive analogue of this assertion is: A is a sepa- 

rating subalgebra of B iff B = C*(A). Neither implication is known to be true in general 

(see, however, [8], and [4] p. 223). 

Let  A be a subalgebra of B, and let w be an irreducible representation of B on a Hilbert  

space ~. I t  is easily seen tha t  A separates co iff the following condition is satisfied:/or every 

irreducible representation ~ o / B  on ~ and every isometry V EL(~, ~), V*g(a) V =o~(a) /or all 

a EA implies ~ and eo are equivalent representations o /B .  In  this form, this definition makes 

sense if A is merely a linear subspace of B. We shall have no need for such a definition 

here, however. 

Some non-commutat ive examples of separating subalgebras are given in Chapter 3. 

Remarks. Let co be an irreducible representation of B which is a boundary representa- 

tion for a subalgebra A of B. We claim: A separates co. Making use of the preceding ob, 

servation, it suffices to show tha t  if g is an irreducible representation of B and V is an 

isometry such tha t  V*~(a) V=eo(a), aEA,  then ~ and ~ are equivalent. But  V*gV is a 

completely positive linear extension of co l~, and since ~o is a boundary representation the 

preceding formula implies V*~(x)V =co(x) for all x E B. Now argue as in the proof of 2.4.1 

to conclude tha t  V is an isometry whose range reduces the (irreducible) G*-algebra z(B); 

therefore V is unitary, and the formula V-lr~V =o~ now shows tha t  g and eo are equivalent 

representations of B. 

We now have the promised characterization of boundary representations. 

THeOReM 2.4.5. Let A be a subalgebra o / a  C*.aIgebra B such that B=C*(A),  and let 

~o be an irreducible representation o/ B. Then eo is a boundary representation/or A i / ,  and 

only i/, the ]oUowing three conditions are saris/led: 

(i) eoiA is a/inite representation o / A  

(ii) the restriction o]eo to (A § A*)- is pure 

(iii) A separates co. 

Proo/: The necessity of the conditions is established in 2.4.1, 2.4.3 and the above 

remark. So assume (i), (ii), and: (iii) are satisfied, Let  g=(q~ECP (B, ~ :  qJIA=eOIA }. We  

must  show tha t  K is a singleton (~o}. Now K is a convex subset of GP (B, ~) which is closed 
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in the BW-topology of CP (B, ~); K is not  empty  (o~EK), and for every ~ E K  we have 

II~l[ = [[~(e)ll = I[~ =1.  Hence by  remark 1.1.2, K is BW-compact .  The Krein-l~Silman 

theorem implies tha t  K is the closed convex hull of its extreme points, and thus we need 

only prove tha t  an extreme poin~ of K must  necessarily be oJ. 

Le t  ~ be an extreme point of K. We claim first tha t  ~ is a pure element of CP (B, ~). 

To see this, choose nonzero elements ~1, ~zECP (B, ~ ) s u c h  tha t  ~l(X)+~2(x)=~(x), x EB. 

Now both ~ and co are self-adjoint bounded linear maps of B, and they agree on A; 

therefore they must  agree on (A +A*)- .  Hence, q~l(b)+~(b)=oJ(b) for all b E(A +A*)- .  

By  (ii), there are scalars t~>~0 such tha t  q~(b)=tto~(b), bE(A+A*) - .  I f  tl=O , then  since 

eEA we have ~l(e) =0,  hence ~1=0,  contrary to the choice of ~1. Thus t l>0 ,  and similarly 

t2>0. By  taking b=e in the preceding equations we also see tha t  tl-l-t~=l. Now put  % =  

t~l~t. Then ~v t EK and tl~v 1 +t~v~ =~.  By extremali ty  of ~ we conclude tha t  ~v 1 =~v 2 = %  thus 

q~l=ttq~. This proves tha t  ~ is pure. 

By  1.1.1 and 1.4.3, there is an irreducible representation ~ of B on a Hilbert  space 

and an operator g EL(~, ~) such tha t  9~ = V*~V. Restricting to A, we have o~(a) = V*~(a) g 

for a E A. Taking a =e we see tha t  I = V* V, so V is an isometry. Because A separates m 

it follows tha t  ~ is equivalent to o), tha t  is, there is a uni tary  operat~r U EL(~, ~)  such tha t  

~ =  U-lmU. The above formula now becomes w(a)=(UV)*~o(a)UV for all aEA.  Now U V 

is an isometry in L(~) and according to (i) O~[A is finite; so by  2.3.2, the preceding implies 

UV is unitary. Hence V = U - i U V  is a uni tary  operator in L(~,  ~). The original equation 

o~lA= V*~VIA now becomes o~(a) = V-ir~(a) V, aEA.  V-lr~V is a representation of B which 

agrees with ~o on A, hence V-~r~V agrees with co on C*(A) =B.  Therefore, ~ =o~ on B, and 

the proof is complete. 

Combining the preceding with 1.2.3., one m a y  prove the following result, which seems 

noteworthy: Let S be a closed sel]-ad]oint linear subspace o] a C*-algebra B, such that e e l .  

Then every pure element o / G P  (S, ~) extends to a pure element o] GP (B, ~). Thus, using 

1.1.1 and 1.4.3, every pure element of GP (S, ~)  has a representation q~(a)= V*~(a)V 

(aeS) where ~ is an irreducible representation of B on a Hilbert  space ~ and VeL(~, ~). 
Note also tha t  essentially no use was made of the fact  tha t  A is an algebra, in proving 

2.4.5, and in fact the theorem is true for linear subspaces as well. One need only give 

definitions which make sense in context. 

Chapter 3. Applications to nonnormal operators 

This chapter contains a number  of applications of the preceding theory to certain 

operators on Hflbert  space. The main results are in sections 3.1, 3.2, 3.5, 3.6, and 3.7. 
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In 3.1 we show tha t  for an arbitrary Hilbert space operator T, spectral points of T 

which are on the boundary of the numerical range of T correspond to one-dimensional 

boundary representations of C*(T) for P(T). In 3.2 we classify certain operators which 

satisfy a polynomial equation p(T)  = 0. Sections 3.3 and 3.4 contain results of a preliminary 

nature for the discussion in 3.6. In 3.5 we determine the boundary representations of 

C*(T) for P(T) where T is the projection of the bilateral shift (of multiplicity 1) onto 

certain of its semi-invariant subspaces. 3.6 contains a classification theorem, and associated 

results, for certain operators on Hilbert space; these results are probably the most sig- 

nificant applications that  we have at the present time. In 3.7, we show how the Volterra 

operator V/(x)=~g[(t)dt ([EL~(O, 1)) can be characterized by  the norms of certain poly- 

nomials in V. 

3.1. Characters o[ C*(T) and sp (T) f/OW(T). Let  T be an operator on a Hilbert space 

~. We prove, in this section, the useful and perhaps surprising fact tha t  points in the spec- 

t rum of T which lie on the boundary of the numerical range of T correspond to characters 

(i.e., complex homomorphisms) of C*(T); moreover, these characters give rise to one- 

dimensional boundary representations for P(T). 

Recall that  the numerical range of T is the set of complex numbers W(T)={(T~, ~): 

~ e~ ,  I1~11 =1}. Note that  Re T>--0 if, and only if, W(T) is contained in the right half- 

plane (Re z ~> 0}; in this event I § T is invertible (because the spectrum sp (T) is contained 

in the closure of W(T) [9]), and in fact ( I - T ) ( I + T )  -1 has norm at  most 1 ([18], pp. 

442-443). The following lemma provides a bit more information. 

L v. ~ M A 3.1.1.17/Re T/> 0, then ( I § T )-1 can be norm.approximated by polynomials in T. 

Proo/. Note that  P(T) is a commutative Banach algebra with identity, and we have 

to show that  1 § T is invertible in P(T). Suppose A E C is such that  T - 2 I  is not invertible 

n P(T);  then we claim that  Re 2/> 0 (this yields the desired conclusion). Since T - 2 I  lies 

in a proper maximal ideal, there is a nontrivial complex homomorphism eo of P(T) such 

that  w ( T ) = l .  We have lice H = l=eo ( I ) ,  and so there is a linear functional ~ on U*(T) 

such tha t  Hell--1 and e=eo on P(T) (by the Hahn-Banach theorem). The conditions 

] l e l l = l = e ( I )  imply that  e is positive ([4], p. 25), hence R e 2 = R e e ( T ) = e ( R e  T)>~0, 

completing the proof. 

TH~.OREM 3.1.2. Let T be an operator on ~ and let 2Esp (T) (I O W ( T). Then there exists 

a character g of G*(T) such that Z(T)=2;  g is a ons.dimensional boundary representation 

/or P(T). 

Proo/. We first make a reduction. Since W(T) is a convex set ([9], p. 110) which con- 

tains 2 on its boundary, there is a. supporting tangent line at  2, i.e. a complex number 
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~ = 0  such that  Re 0dt~<Re ~(T~, ~), for all ~ = ~ ,  II~ll =1. By replacing T with o~(T-gI), 

we may assume ~t=0 and W(T) is contained in the right half plane {Re z>0}.  

Now define a linear functional eo on P(T) as follows. For every polynomial p, we have 

{by the spectral mapping theorem) 

Ip(0)l  <sup {Ip(z ) l :  zesp (T)} = suplsp(p(T)) I < IIp(T)II, 

so there exists a unique bounded linear functional o~ on P(T) such that  o~(p(T)) =p(O) for 

every polynomial p. Clearly eo is multiplicative, co(T)=~ =0,  and II~ll =~(x) = 1. We must 

show, first, tha t  there is a character on C*(T) which extends m, and second, tha t  this char- 

acter is the only positive extension of ~o to C*(T). Since P(T) generates C*(T) as a C*- 

algebra, two characters which agree on P(T) must agree everywhere; thus it suffices to 

show, first, that  ~o has a positive extension to C*(T) and second, tha t  every positive ex- 

tension is a character. 

The first conclusion is immediate from the Hahn-Banach theorem: choose a linear 

functional e on C*(T)such tha t  ~=oJ on P(T)and Ilell = II~ll =1. Thus Ilell = e ( i ) a n d  it 

follows ([4], p. 25) tha t  ~ is positive. 

We claim now that  any such positive extension Q is a character. For this, define the 

operator S=( I -T ) ( I+T)  -1. Then C*(S)=C*(T), IISll ~<1 by the preceding remarks, 

and Lemma 3.1.1 shows that  S6P(T). Since @ is multiplicative on P(T) we have Q(S)= 

(1-@(T)) (1 +Q(T)) - I=I .  A familiar theorem of Gelfand and Segal ([4], p. 32-33) provides 

a representation ~r of C*(S) on a Hilbert space ~ and a unit vector r  such that  Q(X)= 

(~z(X) ~, r for all X 6 C*(S). We will show that  the one-dimensional subspace [~] is inval~ant 

under  ~r(C*(S)); the theorem will follow, because then :r(X) r =~(X) ~ for every X 6 C*(S), 

and hence ~ is multiplicative everywhere. Now we can write 

I I ~ ( s ) c - ~ l l  2 = II~(S)~ll 2 - 2 R e  (~ ( s ) ~ ,  ~) + 1 = IIn(s)~ll ~ - 2 R e  e ( s )  + 1 = II~(S)~ll ~ -  1 ~< o, 

~ince II~(s)ll<HSll<l.  Therefore, 7r(S)~=~. Since e ( s * ) = e ( s ) = l ,  the same argument 

shows :r(S*)~=~. Thus, [~J is invariant under the self-adjoint family of operators {:r(S), 

z~(S*), 1}, and since the norm-closed algebra generated by the latter is ~r(C*(S)), the proof 

is complete. 

As one noteworthy application, let T EL(~), and suppose )t is a point in the spectrum 

~f T such that  I 2 ] : IIT [I- Since sp (T) ___ W ( T ) - _  {I z ] ~< II T II }, A must be a boundary point 

of W(T). Thus, there is a unique character Z of C*(T) such that  z(T)=~. To restate the 

argument,  suppose T is such that  C*(T) has no maximal ideals of codimension 1. Then for 

+very  spectral  va lue  ~, we  m u s t  have  I~l < II T[[; i.e., r(T)< I[ Tll (r(T) denoting the spectral 

radius of T). That  proves: 
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COROLLARY 3.1.3. Let T be a Hilbert sl~.r~e operator such that G*( T) has no characters. 

Then the spectral radius o/ T is less than IIT]]. 

Note that  an operator T is normal iff there are enough characters of C*(T) to separate 

points. In  this case, of course, we have r(/(T))= II/(T)I[ for every bounded Borel function 

/ on sp (T). 3.1.3 shows how thoroughly the latter fails for operators at  the opposite extremo 

from normal operators. 

3.2. Simple algebraic operators. In this section we consider simple algebraic operators, 

tha t  is, operators T for which C*(T) is simple and which satisfy a polynomial equation 

T ( T)=0 .  A natural question is, to what extent  is such an operator determined by its 

minimum polynomial p? The most obvious examples of simple algebraic operators are 

irreducible operators on finite-dimensional spaces; but  even here there is apparently 

little relation between the minimum polynomial of T and, say, G*(T). In  infinite di- 

mensions, the situation is more complicated by  the fact tha t  algebraic operators have no  

particular tendency to generate type I C*-algebras. Consider, for example, an operator 

ToEL(~ ) such that  C*(To) is an infinite-dimensional U H F  algebra [7] (such operators 

exist, by  [28]), and define TeL(Ca |  by the operator matrix 

T =  0 �9 

0 

A laborious but  routine calculation shows that  C*(T) is the algebra Ma| of all 

3 • 3 matrices over C*(T0), which is again a (simple) U H F  algebra. Clearly Ta=O, and 

thus we have a simple algebraic operator for which C*(T) is antiliminal (the preceding is a 

modification of an example due to C. Pearcy). Indeed, this observation shows that  for 

every simple operator To, Ma| has the form C*(T) for some simple algebraic 

operator T. Since a great variety of separable C*-algebras are singly-generated as C*-alge- 

bras, the situation for general simple algebraic operators is about as complicated as it can get. 

I t  may  be somewhat surprising, therefore, tha t  in the presence of one additional 

condition on norms (maximality), it is possible not only to predict the structure of G*(T) 

from the minimum polynomial of T, but  also to classify such operators to unitary equiva- 

lence (3.2.11-3.2.13). 

Let  T be a simple algebraic operator having minimum polynomial p(z)=(z--a1) n a  

(z-a~)n'... (z-ak)n~. To avoid trivialities, we will always assume tha t  T is not a scalar; 

and there is no  essontial  loss if we  also requ  II TII = 1. Sinee each  a, belongs  to  the  spectrum 

of T, we conclude from 3.1.3 that  la,] <1.  Let  ~ be the Blaschke product having p as its 

numerator: 
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[ z - a l ~  n' [ z - a ~  n. 

Note  t h a t  ~ (T)  = 0  and  2(T) # 0  for  every  proper  divisor 2 of ~ (proper means  non-propor-  

tional). A divisor ~0 of ~ is called large if i ts  degree is one less t h a n  the  degree of ~o; these 

are of the  fo rm V,(z) = ( 1 - a , z )  \ z -  a-----T~ ~p(z), for 1 ~< i ~< k. Now if YJ0 is a n y  proper  divisor of 

then  it  follows t h a t  I[~o(T)l[ ~< 1 (because the  closed uni t  disc is a spectral  set  for T); we 

shall call T maximal if there  is a large Blaschke divisor Vo of ~ for which [[Vo(T)H =1 .  

Note  t h a t  this entai ls  H2(T)II = 1 for every  Blaschke divisior 2 of Vo (indeed, [[2(T)[[ ~< 1 

is au tomat ic ,  and  if V0=21;t where 21 i8 a ]~laschke p roduc t  then  we have  1 = I[~0a(T)[[ ~< 

[{2~(T)II. H2(T)]I ~< I[~(T)H). So for example, if the minimum polynomia l  of T is p ( z ) =  

z n, n > l ,  t hen  T is max ima l  iff IITII =IlT I[ . . . . .  IIT'-~ll  =1 .  One exemple  of such a 

T is given b y  the  opera to r  on C~ |  whose ma t r i x  is 

(i ~ 0 T 2 . . .  

0 n-1 

0 

where  T,  EL(~)  and  ltTlll . . . . .  IITn_lll = I IT1T2. . .T~_l t  t = 1 .  

Another  w a y  m a x i m a l i t y  could be defined is to require H2(T)II = 1 for eve ry  proper  

divisor 2 of V, or w h a t  is the  same,  IIwo(T)II = 1 for  every large divisor ~0 0. While this appears  

to be s t ronger  t h a n  the  above  definition, the  results below imply  t h a t  the  two are in fact  

equivalent .  

The  first  few results  provide  some facts  abou t  cer ta in  special max ima l  operators .  

H a, as usual,  denotes  all funct ions in L 2 (of the  uni t  circle) whose negat ive  Four ier  coeffi- 

cients vanish,  and  for  an  inner  funct ion y~, S~ denotes  the  project ion of the  uni lateral  shift  

S+ (i.e., mul t ip l icat ion by  e ~, qua an  opera tor  on H a) onto  H ~ F H  2. I t  is a famil iar  fact  

tha t ,  for every  ~ E (~, [~ [ < 1, the  funct ion ea(e '~ = (1 - [ ~t I~) �89 (1 - ~e'~ -1 is a uni t  e igenveetor  

for S *1 hav ing  eigenvalue ~. 

L~.MMA 3.2.1. Let ~p be an inner/unction and let o~ be a zero o/y~ in the interior o[ the unit 

disc. Then 2e~EH~G~H ~ /or every divisor 2 o/ ~ _ ~  v/(z). 

Proo I. Le t  ~o o be the. inner  funct ion ~ ~o(z), and  let  ,~ be a divisor of ~o o. Then  

 n ,or ~o o = ~ #  for  some inner  funct ion ~, and  hence ~o(z)= ~ 

every  g E H a we have  
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(~e~, ~g)=  (~e~, (S+-  ~I) ( I - -  5r = (e,<, (S+-- o~I) ( I -  ~S+)-llsg) 

= ((s* - ~ I ) e ~ ,  ( I - ~ S §  = o, 

because "multiplication by ~v" is an isometry which commutes with S, ,  and because S* e~ = 

~ea. Thus, vJe~EH2Gy~IH 2, as asserted. 

Note, in particular, that  e~EH2GyJH ~ for every zero ct of v d in the interior of the unit 

disc. 

COgOLLARY 3.2.2. Let yJ be a finite Blaschke product of degree>~2. Then IIS ll =1, 
and S~ is a maximal contraction whose minimum polynomial is the numerator ol y~. 

Proof. I t  is clear that  ~V(S~)=0 (for if / e H ~ |  2, then y~(S+)f=yJ./ey~H ~, so that  

~(S~)f =PyJ(S+)f =0, P denoting the projection of H z on H 2 ~ H 2 ) ;  so if p is the numerator 

of ~ then we have ~o(S~)=0. 

Since ~a is not constant, it must have at  least one zero ~r in the interior of the unit  

( ' - ~  
disc. Let ~o(z)= \ z - a / y ~ ( z ) .  We claim that  llwo(S )ll =1. Indeed, by 3.2.1 we have 

Ilwo(S~)ll~>llwo(S~)e~ll =llPwo'e~ll=llw0"~=ll=l, because Iw01 =1 identically on the unit 

circle and e~ is a unit vector in L ~. 

Note that  the preceding paragraph actually shows that  II o(S )ll = 1 for every large 

divisor Y~o of ~. I t  follows that  q(S~) ~=0 for every polynomial q properly dividingp, so that  

~o is the minimum polynomial of S~. 

All that  remains is to show that  IIS ll = 1. Note that  one inequality is immediate from 

IIS ll = liPS+ I ~ 1 1  ~< IlS+ll = 1. Now if Y~o is constant, then ~ has degree 1, and this con- 

tradicts the hypothesis. So ~vo necessarily has at  least one zero fl inside the unit disc. 

Thus Y~0 can be factored 

Y4 (z) = ( iz_~z)  Y~ ( z ) 

where ~1 is an inner (in fact, Blaschke) function. Now we have [[~pl(S~)][ <1 (because 

the unit disc is a spectral set for S~, see [18], p. 442) and hence 1 =[[yJ0(S~)[[ ~< [[(S~- 

flI) ( I - f lS~)  -1[[. On the other hand, if [[S~][ = r < 1, then the (closed) disc of radius r is a 

spectral set for S~ so that  

[[ (S~ - ' I )  ( 1 -  ~S~)-1[[ ~< sup [ lZ-~z  [ < 1 '  ,~,<r 

contradicting the above inequality. We conclude [[S~[[ ~>1, and the proof is complete. 

LEMMA 3.2.3. Let yJ be a nonconstant inner function. Then 1-~a(O)~a is a cyclic vector for 

S~, in H ~ y ~ H  2, 
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Proo/. Note first tha t  [~(0)1 <1,  by  the maximum modulus principle, so tha t  ( 1 -  

~(0)~) -1 is bounded; in particular, 1 - ~ ( 0 ) v  2 is an outer function. 

Next,  observe tha t  1 - ~ o ( 0 ) y ~ G H ~ H  ~. Indeed, if g~H z then (1-~v(0)% y~g)= 

(1, (~-~v(0))g)=0 since (~-~p(0))g vanishes a t  the origin. Thus, 1 -y(0)y~ is orthogonal to 

~vH ~, and it clearly is in H z. 

Now let P be the projection of H ~ on H~)v/H ~. I f  gqH ~ is such tha t  g• -y~(0)~p) 

for every n~>0, then Pg.s n>~O. Now 1-~(0)~p is cyclic for S+ (since it  is an 

outer function), so tha t  Pg_kH ~. Therefore, Pg=O, or g~y~H ~, and this proves tha t  

H ~ v H  ~ _ [S~(1-y~(0)~): n~>0]. The conclusion follows. 

COROLLARY 3.2.4. I] ~ is a finite Blaschke product and o~ is a zero of % then ea is a 

cyclic vector/or S~. Moreover, i/~0(z)= ( ~ _ ~  - - ~  ~o(z), then H~@~I-I ~ is linearly spanned by 

{q~e~,: q~ is a BlascMc, e divisor o/~'o}- 

Proo]. We prove the second s ta tement  first. Let  ~1 .. . .  , ~ be the zeroes of % repeated 

according to multiplicities. Then clearly there is a polynomial p of degree n such tha t  

ID(S~) = 0  (the numerator  of ~ is one such), and by  3.2.3 S~ has a cyclic vec to r / ;  it follows 

tha t  H~O~/H ~ is spanned by  [, S j  . . . . .  S~-1] so tha t  the dimension of H20yJH ~ is a t  most  n. 

Now by  3.2.1 we have 2e~ E H ~ OyJH 2 for every divisor 2 of YJ0, so it suffices to show tha t  there 

are a t  least n linearly independent elements of the form 2e~, 2 dividing Y~0. This we can do 

as follows. Suppose ~ = ~ .  Then put  21 = 1 and 

~j(z) = ( ~ ) . . .  \ l _~9_ , z  / 

for 1 < ~ < n .  Clearly {2lea ... . .  2nea} is a linearly independent set of functions, and )tj]~0 

by  construction, so the second assertion follows. 

The fact tha t  ea is cyclic is an immediate consequence, for if P denotes the projection 

of H 2 on H~G~H ~, then for 1 < ~ < n  we have, using 3.2.1 again, 2j(S~)ea=P2j(S+)er 

P2jea=~e~, and so [2j(S~)e~: 1 <j-~<n] =H20~jH ~. That  completes the proof. 

COROLLARY 3.2.5. Let ~2 be a nonconstant finite Blaschke product and let YJo be a large 

divisor o] yJ. Then P(S~) is linearly spanned by operators o/the ]orm 2(S~), where ~ is a Blaschke 

divisor o] ~o. 

Proo/. Let  XEP(S~) and let ~ be the zero of ~/~0, inside the unit  disc. By the second 

s ta tement  of 3.2.4, there are divisiors ~1 .. . . .  Jtm of ~o and scalars c 1 . . . . .  c m such tha t  Xe~ = 
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~. cg~e a. Put t ing  X o = ~  c~,~g(S,), t hen  we have  Xe~=Xoea, and  X = X  o now follows f rom 

the first  s t a t e m e n t  of 3.2.4, complet ing the  proof.  

Now let  T be an  algebraic opera tor  on a t t f lber t  space such t h a t  [I T][ = 1, and  the  

spectral  radius  of T is less t h a n  1. Le t  v 2 be  the  finite Blasehke p roduc t  which has  the  

m i n i m u m  polynomial  of T as its numera to r .  I n  the  nex t  two results we prove  t h a t  if T 

is maximal ,  t hen  the  m a p  p(T)~-~p(S~,) (p running over  all polynomials)  is a comple te ly  

cont rac t ive  m a p  of P(T)  on P(Sv). 

L ~ M ~ X  3.2.6. Let T be an algebraic contraction on a Hilbert space ~, such that the spectral 

radius o / T  is less than l ,  and let ~v be the Blaschke product associated with the minimum poly- 

nomial o / T .  Assume there is a unit cyclic vector ~ /or T such that I]~v0(T)~[[ = 1 / o r  some large 

Blaschke divisor ~v o o / %  Then T is unitarily equivalent to S~o. 

Proo]. Let  U be the  min imal  un i t a ry  dilation of T; we can assume U acts  on ~ ~ ~ ,  

and  T~=PU~[~, n>~O, where P is the  project ion of ~ on ~.  First ,  we claim ~(U)~=~(T)~ 

for every  Blaschke divisor ~t of Y~0. Indeed,  since ]21 = 1 on sp (U) ___ ( [z  [ = 1 }, i t  follows 

f rom the  operat ional  calculus for normal  opera tors  t h a t  2(U) is uni ta ry .  Note  also t h a t  

114(T) ~][ = 1. For  ][2(T)~ H ~< H2(T)[[ ~< 1 because the  closed uni t  disc is a spectral  set  for  T, 

and  if # is the  Blaschke p roduc t  sat isfying re=f l i t  t hen  we have  1 =][Vo(T)~eH = 

I]#(T))t(T)~]] ~< [12(T)~]], because H#(T)H ~< 1 (as above).  Now we can wri te  

]]2(U)~-2(T)~[[2 = 1 - 2  Re  (2(U)~, ~ ( T ) ~ ) §  1 = 0, 

because (A(U)~, t(T)~)=(P]t(U)~, t (T )~ )=  (]~(T)~, I (T )~)=  l ,  p roving  the  assertion. 

Now ~(z)/Vo(Z ) has the  fo rm ( z - ~ ) / ( 1 - % z )  for some ~6 C, I~] < 1. Define the  un i t a ry  

opera tor  V on ~ b y  V = ( U - g I ) ( I - ~ c U )  -1. We will define a un i t a ry  m a p p i n g  of [Vn~: 

n = 0, +__ 1, • 2 . . . .  ] on L2(T) (T denot ing the  uni t  circle) as follows. Note  first  t h a t  V~2_ Vm~ 

if m ~:n. Indeed,  if n ~> 1 t hen  

P Vn~po( U ) ~ = P V"-  ly~( U ) ~ = P V"-  IPy~( U ) ~ = P V"- a~( T) ~ = O, 

because (z - ~)/(1 - ~z) y~o(Z) = yJ(z) and  the  m a p  X ~-~ P X  I~ is mni t ip l ica t ive  on P(U). I t  

follows, because ~e (U) is a u n i t a r y  opera to r  commut ing  wi th  V, t h a t  

( V~ ,  ~) = ( V%/o( U) ~ , yJ0(U)~) = ( VnVo(U)~, w0(T)~) = (P V'~po( U)~, y~0(T)~) = 0, 

(note t h a t  we used the  fact  t h a t  ~o(U)~--~0(T)~).  The  conclusion Vn~.l. Vm~ ( n ~ m )  is 

now an  immedia te  consequence of the  above.  On the  o ther  hand,  ff %(e*~ t 
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(1-~e~)  and u(e~)=(eiO-oO(1-~cet~ -1, then a routine calculation shows that  (u'~%: 

n=O, _+1, +2  .. . .  ) is a complete orthonormal set in La(T). Therefore, 

q-oO q - ~  

- - 0 o  - - 0 0  

defines a unitary map of [Vn~: n=O, +1 .... ] on L2(T). If S denotes the bilateral shift on 

L~(T), then the definition of L implies L(U - o~I) (1 - ~ U) -1 = (S - o~1) ( I  - ~r and an- 

other calculation (i.e., solving the equation w = ( z -  x)(1 -~z)  -~ for z) shows that  L U = SL. 

We claim: 

(i) IVan: n>~0]=[V'~ :  n>0] ,  

(ii) L[Vn~e: n>~O]=H~, and 

(iii) L([Vn~: n > 0 ] & ~ ) = w H  s. 

Note that  (i)-(iii), together with L U = S L ,  imply the conclusion of the lemma. To see 

that  it does, note tha t  ~f~=[Vn~: n>~O]O~=[U"~: n>~0]&~ is a U-invariant subspace 

of ~ (since ~ is semi-invariant for U) and [Vn~: n~>0] | ~J~=~, and thus L maps ~ onto 

H2@yjH2; and from this and the equation L U = S L ,  it follows in a routine manner tha t  the 

restriction L 0 of L to ~ is a uni tary map of ~ on H20y~H 2 which intertwines the projection 

of U on ~ (i.e., T) and the projection of S on H~'~v2H 2 (i.e. Sv). That  is what the lemma 

requires. 

For (i), note tha t  V = ( U - o ~ I ) ( I - ~ U )  -1 implies U = ( V + a l ) ( I + ~ V )  -1, so tha t  

[V~: n>~O]=[Un~: n>i0]. Clearly this is contained in [Un~: n~>0] because ~E~; on the 

other hand, since vectors of the form A(T)~ = / (U)~  span ~ (for ~ a divisor of V0, by the first 

paragraph of the proof), we have ~_~ [U"~: n >~0], proving (i). 

For (ii), we have by definition of L that  L[~, V~, Va~ .. . .  ] = [ca, ue=, uaea . . . .  ]. Now S 

and the operator "multiplication by u"  are related in the same way as U and V; hence by 

the preceding paragraph we have [u'~e=: n >10] = [Snea: n >iO]. Since ea is an outer function in 

H a, it is a cyclic vector for S+ and thus [Shed: n >~ 0] = [S~+e=: n >10] = H ~. 

Next, we claim L~  =HZQvH2; (iii) follows from this, (i) and (ii) by taking orthogonal 

complements in [Vn~: n/> 0] and H 2, respectively. Let  ~ be the set of all Blaschke divisors 

of ~0- Now if 26~) then by the first paragraph of the proof we have 2(T)~=I(U)~,  so that  

L~(T)~=LI(U)~=~(S)L~=~(S)e~=~.e,~; 3.2.4 shows tha t  [~t.e~: t6~)]=Ha(~v2H 2, so that  

L maps [,~(T)~: ~t E ~0] onto H a ~ H  a. On the other hand, T and S~ have the same minimum 

polynomial (by the definition of vd), and so p(Sv)~--~p(T) (p ranging over polynomials) is 

an algebra isomorphism of P(S~) on P(T).  Now by 3.2.5 P(S~) is spanned by  (2(S~): 2 E ~0). 

Since [P(T)~]= ~ by  hypothesis, we conclude that  
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L~ =L[2(T)~: 2EO] = [2.e~: 2e~)] =H'Oy~H', 
as required. 

The proof is now complete. 

The next  theorem supplies a key step in the proof of 3.2.11, and seems to be of some 

interest in itself. 

THEOREM 3.2.7. Let T be an algebraic contraction on a Hilbert space, such that the 

spectral radius o] T is less than 1, and let v/be the finite Blaschlce product associated with the 

minimum polynomial o] T. Assume ll~o(T)l] =1 /or some large Blaschhe divisor YJo o / %  

Then the map p( T ) ~"~la( S ~ ) (p ranging over aU polynomials) extends 1o a completely contractive 

homomorphism o /P(T)  on P(S~). 

Proo]. We will construct a representation ~ of C*(T) on a Hilbert space ~, and a unit 

vector ~E~ for which IiyJ0(re(T))~]] =1. Letting ~0=[~,g(T)~,  7e(T)2~ .. . .  ], then clearly 

the map  XEP(T)~-~(X)I~~ is a completely contractive homomorphism of P(T), and b y  

3.2.6 this map is unitarily equivalent to the given homomorphism p(T) ~--~p(S~). Thus the 

theorem will follow. 

is obtained as follows, yJo(T)*y~o(T) is a positive operator of norm 1 in C*(T), so there 

is a state Q of C*(T) such that  Q(yJo(T)*y~o(T)) = 1. Simply let ~ be the canonical representa- 

tion of C*(T) associated with Q and let ~ be the unit vector for which (g(X)~, ~) =~(X), 

X E C*(T). Clearly ~0(~(T)) =~(YJ0(T)), and we have Iiv/0(~(T))~I[2 =Q(y~o(T)*~fo(T)) = 1. That  

completes the proof. 

The following result will not be used in this section, but  is of some interest for the 

questions taken up in section 3.6. 

COROLLARY 3.2.8. Let ~p be a nonconstant finite Blaschlce product. Then every isometric 

representation o/P(Sv) is completely isometric. (Representations are de/ined in 2.3.) 

Proo/. Let ~ be an isometric representation of P(Sv). By 3.6.8, ~ is completely contrac- 

tive. Let  Y~0 be any large divisor of yJ. 3.2.2. and the subsequent remark show that  

[[~~ II = 1. Letting T =~(Sv), it follows that  ]l~0(T)]l = 1, because q is isometric, and we 

conclude from 3.2.7 that  ~-1 is completely contractive. The proof is complete, 

Our next  step is to show that  for operators T as in 3.2.7, the map p(T)~--~p(Su is 

implemented by  a representation of C*(T) (3.2.10). At this point, because we have the 

preceding corollary, it would be possible to prove 3.2.10 using the general results of sections 

3.3 through 3.6. In  this special case, however, it is possible to give a more direct proof 

which, we feel, may  be of some interest in its own right. 

Let  ~ be a Hilbert space. Recall tha t  a conjugation of ~ is a conjugate-linear isometry 
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? of ~ onto itself such tha t  72 = I (i.e., ?-1 =?) .  Let  p4 be a subalgebra of L(~). The existence 

of a conjugation ? of ~ for which ?T?=T*,  for all T E A ,  is an indication of symmet ry  

between A and A*; note, for example, tha t  this implies tha t  if ~ has a cyclic vector then so 

does A*. Note also tha t  the condition ?T?=T*,  T E A ,  implies A is abelian (for S, T E A  

we have T'S* = (ST)* =?ST? =~S~?T? = S'T*). If one requires such a symmetry  condition 

for noneommutat ive algebras, i t  is necessary to incorporate an anti-automorphism T ~-~ ~m 

of ,4 as follows: ? ~ ?  = T*. 

Let  ~ be a representation of a subalgebra A of a C*-algebra B, on a Hilbert  space ~.  

A unit  vector ~ E ~  is called a special vector for ~ if (aEA: II~(a)~ll = IIall} has all of A as 

its closed linear span, and in addition ~ is cyclic for ~(A). The next  result is more general 

than  we shall actually require. 

THEOREM 3.2.9. Let A be a commutative closed subalgebra o/ a (perhaps non.commu- 

tative) C*-algebra B, such that e E A and B = C*( A ). Let q~ be a completely contractive representa- 

tion o / A  on a Hilbert space ~, satis/ying: 

(i) q~ has a special vector, and 

(ii) there exists a coniugation ~ o / ~  such that ?~(a)? =~(a)*, aEA. 

Then rp is implemented by a representation ~ o / B .  Moreover, 7e is the only completely 

positive linear extension o/q~ to B. 

Proo]. Note tha t  by  1.2.8, there is a (unique) completely positive extension of ~ to 

the closure of A +A*, which we denote by  the same symbol 9o. By 1.2.3, there is a t  least 

one completely positive extension of ~ to B. Note, then, tha t  the theorem will follow if 

we prove tha t  every completely positive extension of ~ is a representation; for two repre- 

sentations of B which agree on A must  agree on B = C*(A). 

Choose any  completely positive extension ~1: B ~ L ( ~ )  of ~. By Stinespring's theorem 

(1.1.1), there is a representation co of B on a Hilbert  space ~ and an isometry VEL(~,  ~) 

such tha t  V'co(x) V=~t(x) ,  and [co(B) V~] = ~ .  

l~irst, we claim co(A)V~_~ V~. Let  ~ be a special vector for ~ and  put  S=(aEA:  

]l~(a)~H = IIa]l}. I f  aES, then 

II (a) V (a) ll = II (a) V II  -2Re (V'to(a) II V (a) ll 

= II (a)V II II (a)W = II (a) V II Ilall < 0. 

Thus, co(a) V~ = Vq~(a)~ holds for all a E S. Since A is the closed linear span of S, this identi ty 

in fact holds for all aEA. I t  follows tha t  to(a) V~= Vcp(a)~, aEA, ~E~; indeed, if a, bEA 

then to(a) Vq~(b)~ =co(a)to(b) V~ =co(ab) V~ = Vq(ab)~ = Vq~(a)q~(b)~, and the assertion follows 

from the fact tha t  [~(A)~] = ~ .  The desired property,  co (A)g~_  V~,  is now immediate.  
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Next, we claim that  w(A*) V~_c lz~. Indeed, ~0 [~. is a (completely contractive) repre- 

sentation of A*, and if we can show that  ~01~, has a special vector, then the assertion follows 

from the same argument as in the preceding paragraph. Let  7 be the conjugation described 

in (ii). We claim: 7~ is a special vector for cad*. Indeed, [~f(A*)7~]=[ef(A)*7~ ] = 

[Tq~(A)7~]=7~= ~, because ~ is cyclic for ~(A). Moreover, if beS, then [[q0(b*)7~l[ = 

llr (b) il=ll (b) ll=libli=llb*ll, so t h a t  ( t e A * :  ll ( )r ll=il ll} contains S*; since S* 

spans A* (because S spans A), we see that  7~ is a special vector for q~l~*" As we pointed out 

already, this implies ~o(A*) V~_c V~. 

Thus, V~ is invariant under o~(A) U co(A)*, and hence co(B) V~_c V~. Since [w(B) V~] --- 

~, it follows that  V is unitary, and hence ~01 = V-ix V is a representation. That  completes 

the proof. 

We remark that  if ~0(A) is an irreducible family of operators, then ~ is an irreducible 

representation of B, and hence 3.2.9 implies ~ is a boundary representation for A. 

The decisive step in the proof of 3.2.11 can now be taken. 

COROLLARY 3.2.10. Let T and ~t' be as in 3.2.7. Then there is a representation ~ o/ 

C*( T) such that ~( T) =S~. 

Proo/. Define ~: P(T)-+P(8v) by q~(T(T)) =p(S~), where p is an arbitrary polynomial. 

By 3.2.7, ~v is a completely contractive homomorphism, and we want to show that  ~v is 

implemented by a representation of C*(T). By 3.2.9, it suffices to show that  ~0 has a special 

vector, and that  there is a conjugation 7 of H~QvH2 such that  7S~7 =S~*. 

For the special vector, let g be a zero of V inside the unit disc, and let e~ be as in 3.2.4. 

Let  O be the set of all Blaschke divisors of V0(z) = 1 --az V(z). 3.2.4 shows that  ea 6H~OvH 2 
g--6~ 

and ~.e~eH2| ~ for every ~6D. Thus, if P denotes the projection of H 2 on HgQvH ~, 

we have 

[la(s ) e .  I[ = liRa(S+)e  [[ = l iRa-e ,  li = I1 " il = 1. 

Since [i2(T)]i ~<1 (because the unit disc is a spectral set for T), we see that  {XeP(T): 

]l~(X)eall = ][X]I } contains {I(T): ~6 0 } ,  and the latter spans P(T) by 3.2.5 and the fact 

tha t  ~0 is a vector space isomorphism, e a is cyclic for P(Sv) =qJ(P(T)) by the first sentence 

of 3.2.4. Thus, e a is a special vector for ~0. 

We now define the conjugation 7. First, define 71: L2(T)~L~(T) (T denoting the unit 

circle) by 71/(e~~176176176 feL~(T). Clearly 71 is a conjugate-linear isometryfor  

which y~=l. Moreover, if S denotes the bilateral shift and /6L2(T), then 71S/(e'~ 

e-2~~176176176 Thus, ~,1S71=S*. A routine calculation now shows that  

{/: ] s H ~ Qv/H 2} = zCp(H 2 |  ~) (where z 6L~(T) is the function z(e ~~ = e~~ which is equiva- 
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lent tO the assertion 7 1 ( H ~ H ~ ) : H ~ H  z. Thus, 7=~l[~e~u~ is a conjugation of 

H20~H 2. 

We claim that  ~IP =P~i,  where P is the projection of L~(T) on H Z ~ H  ~. Note first tha t  

the usual polarization argument shows tha t  (~lf, 71g)=(g, f) for all f, gELS(T), and since 

~ = 1  it follows that  (Flf, 9)=(71g, f)" Thus, noting that  P71P=71P (by the preceding 

paragraph), we can write 

(71Pf, g) = (P71Pf, g) = (71Pf, Pg) = (71Pg, Pf) = (PTxPg, f) 

---- trlPa, ]) = {rlf, Pg) = (P71 f, g), 

for all [, g ELZ(T), proving that  P71 =Tx P. 

yS~7 =Sw* now follows, for if ~EH~@~pH ~ then we have 7 S ~  =7xPS71~ =PTxS71~ = 

PS*~S~*~ ,  as required. The proof is complete. 

We can now state the principal result of this section. 

TH~OR~.M 3.2.11. Let T be a simple algebraic operator of norm 1, and ld ~ be the finite 

Blaschlce product associated with the minimum polynomial o~ T. I f  T is maximal, then it is 

unitarily equivalent to an operator of She form 1| S~, where I is the identity operator on some 

Hilbert space. C*( T) is ..isomorphic with M,,  n being the degree of the minimum polynomial 

ofT. 

Proof. By 3.2.10, there is a representation ~r of C*(T) such that  zr(T) ---S~. ker ~r is an 

ideal in C*(T) which is not all of C*(T); therefore ker~r=0 by simplicity. I t  follows tha t  

a=~r -1 is a representation of C*(S~), and of course a(S~)= T. Now S~ is an irreducible 

operator on H~@apH 2 and the latter has dimension n (el. the proof of 3.2.4); therefore 

C*(S~)=L(H~@*pHZ), which is (.-isomorphic with) Mn. Now a familiar variation of a 

classical theorem of Burnside asserts that  every representation of the C*-algebra L(~) 

(for ~ finite dimensional) is equivalent to a multiple of the identity representation. Thus, 

a is equivalent to a representation X G C*(S~)-~ I |  where I is the identity operator on 

some Hilbert space. In particular, T :a (S~)  is equivalent to I |  

We have already observed that  C*(S~) is isomorphic with Mn, and so the h s t  sentence 

of the theorem follows because a is a faithful representation. That completes the proof. 

We remark tha t  a converse of this theorem is obvious, namely, 1| is a maximal 

simple algebraic opera,or of norm I (3.2.2). Moreover, I |  determines uniquely the 

dimension of 1 (if dim I = m ,  then the commuting of C*(I|174 v) is L( ~ ) |  

being the space on which I acts, which is a factor of type 1~). This gives a complete 

classification, to unitary equivalence, of all maximal simple algebraic operators of norm 1 

which have the same minimum polynomial as T. 

In particular, we have: 
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COROLLARY 3.2.12. Two irreducible maximal simple algebraic operators o/norm 1 

are unitarily equivalent i/, and only i/, they have the same minimum polynomial. 

Noting tha t  irreducible operators on finite dimensional spaces are always simple 

and algebraic, we have the following application to matrices which, so far as we can tell, 

is also new. 

COROLLARY 3.2.13. Let S and T be irreducible operators o/norm 1, acting on/inite- 

dimensional spaces ~ and ~, respectively. Suppose S and T are maximal, and have the same 

minimum polynomial. Then dim ~ = dim ~, and S and T are unitarily equivalent. 

3.3. Almost simple operators and the commutator ideal in C*( T). In  this section we define 

a class of operators and C*-algebras and collect some general results for use later on. This 

material  provides a general setting for the problems taken  up in the remainder of chapter 3. 

Because we shall be considering ideals in C*-algebras as separate entities and because 

ideals rarely contain an identity, we shall deviate from our usual assumption about  the 

presence of an identity; in this section (and in this section only), C*-algebras m a y  or m a y  not  

contain an identity. Our terminology for representations, etc., follows [4]. 

Let  B be a C*-algebra, which need not contain an identity. The te rm ideal always 

means closed two-sided ideal; thus, ideals are necessarily self-adjoint. The commutator 

ideal in B is defined as the ideal generated by  all elements of the form x y - y x ,  x, y E B. 

We write this ideal as Comm (B); if B=C*(T) for some operator T on a Hilbert  space, 

then the commutator  ideal is writ ten simply as Comm (T). 

I t  is clear tha t  the quotient B/Comm (B) is commutative.  Conversely, if K is any  ideal 

in B such tha t  B/K is commutative,  then K must  contain Comm (B); hence, Comm (B) 

is the smallest ideal in B having a commutat ive quotient. Comm (B) can be 0 (for B 

commutative) or it can be all of B (for example, when B is simple). There is also a close 

relation between Comm (B) and characters (i.e., nontrivial complex homomorphisms) 

of B: 

PROPOSITION 3.3.1. Comm (B) is the intersection o/the kernels o/all characters o / B  

(i/ B has no characters the intersection is taken as B itsel/). 

Proo/. Suppose first tha t  B has no characters. We claim Comm ( B ) =  B. For if 

Comm (B) # B ,  then B/COmm (B) is a (nonzero) commutat ive C*-algebra, which therefore 

has a t  least one character o~; and thus the composition of eo with the quotient map  of B 

onto B/COmm (B) gives a character of B. Contradiction. 

Assume, then, tha t  B has characters. Every  character must  vanish on Comm (B), 

so tha t  one inclusion is obvious. Conversely, suppose x f iB  is such tha t  g (x )=0  for every 
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character •. Then we claim xEComm (B). I f  Comm ( B ) = B ,  there is nothing to prove, so 

assume Comm (B) =~B. Consider the coset representative 5 for x in B/Comm (B). Since 

the quotient is a (nonzero) commutat ive C*-algebra, there is a character o~ of B/Comm (B) 

such tha t  11511 = Io~(5) I. But  X(z) =eo(~) is a character of B, so by hypothesis, o~(5) =Z(x) =0. 

Thus, 5 = 0  and so xEComm (B), as asserted. 

By  analogy with the commutator  subgroup of a group, one might a t  first expect to 

obtain an entire sequence of ideals by  taking Comm (B), then the commutator  of this sub 

C*-algebra, and so on. In  fact, the process stops after the first step. 

COROLLARY 3.3.2. Comm (Comm (B)) = Comm (B). 

Proo/. By 3.3.1, it suffices to show tha t  Comm (B) has no characters. Suppose it 

does, and let o) be one. Then co extends uniquely to a character eo 1 of B ([4], p. 52). But  then 

we have Comm (B)_  ker col, and hence the restriction of eo 1 to Comm (B) is 0, a contradic- 

tion. 

We shall require another  simple algebraic fact. 

PROPOSITION 3.3.3. Let B be a C*-algebra with identity, and let S be a sel/-adjoint 

subset o / B  such that B is generated, as a C*-algebra, by S and the identity. Then Comm (B) is 

the (closed) ideal generated by ( x y - y x :  x, yES}. 

Proo/. For x, yEB,  write Ix, y] for the commutator  x y - y x .  Let  K be the ideal gene- 

r a t e d  by  (Ix, y]: x, y E S}. Evidently K _  Comm (B), and we need only prove the reverse 

inclusion. 

Define B 0 = (z e B: [z, S ] _  K}. From the identities [x*, y] = - [y*, x]* and [xy, z] = 

x[y, z] § Ix, z]y, and the fact tha t  S =S*, it follows tha t  B 0 is a self-adjoint subalgebra of B. 

Clearly B 0 is norm-closed, and contains S as well as the identi ty e of B ([e, z] = 0  for all 

z E B). Thus, B 0 = B, and we have [B, S]___ K. Taking the adjoint of this condition we see 

tha t  - [S*,  B*]_  K*, or [S, B] c K. The argument  can now be repeated with B in place of 

S to obtain [B, B]_~ K. Since Comm (B) is the smallest ideal containing [B, B], it follows 

tha t  Comm (B)~  K, completing the proof. 

COROLLARY 3.3.4. Let T be an operator on a Hilbert space. Then Comm (T) / s  the ideal 

(in C*(T)) generated by T ' T - T T * .  

Proo/. Simply take S = {T, T*} and note tha t  [S, S] generates the same ideal as 

( T * T - T T * } .  

The "building blocks" for C*-algebras are the primitive ones (i.e., C*-algebras having 

a faithful irreducible representation); the reason is tha t  every C*-algebra is semi-simple, 
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and is therefore a field of primitive C*-algebras over a compact (usually non-Hausdorff) 

space [4]. For the moment, let us call an operator T primitive if C*(T) is a primitive C*- 

algebra. Thus, every irreducible operator is primitive, and it seems too much to expect a 

general classification of these operators in the near future, even with respect to algebraic 

equivalence. 

There is a subclass of primitive operators which we feel is more tractable, and the bulk 

of this chapter is devoted to a study of some of these operators. Recall tha t  a C*-algebra 

B is simple if it has no nontrivial ideals. A simple C*-algebra is automatically primitive 

(indeed, every irreducible representation if faithful, because its kernel is an idealS=B, 

which must then be 0 by simplicity). If  the intersection of all maximal ideals in B is 0 

(i.e., B is strongly semi-simple), then B is a field of simple C*-algebras in a way analogous 

to the structure theory alluded to above [17], but  not all C*-algebras have this property 

(L(~) does not). The algebras that  are of interest here can be described as extensions of 

simple C*-algebras by commutative C*-algebras, where the former need not contain an 

identity. More precisely: 

De/inition 3.3.5. A C*-algebra B is called almost simple if Comm (B) is contained in 

every nonzero ideal of B. An operator T is almost simple if C*(T) has that  property. 

In  this definition, the commutator ideal is allowed to be 0. Thus, a normal operator 

is almost simple; at  the other extreme, a simple operator is almost simple. Here, we shah 

be concerned almost exclusively with nonnormal almost simple operators; a class of examples 

is described in 3.3.7. 

Note that  if B is an almost simple C*-algebra then Comm (B) is a simple C*-algebra 

(the converse is false: consider the direct sum of a simple C*-algebra and a commutative 

C*-algebra). In fact, it is easy to see that  the following two conditions are equivalent to 

almost simplicity, for a noucommutative C*-algebra B: 

(i) Comm (B) is a simple C*-algebra. 

(ii) /or every ideal K in B, K ~ Comm (B) =0 implies K=O. 

For many examples, however, (ii) is rather more difficult to verify than (i). The 

following result provides a more tractable replacement for (ii). 

PROPOSITION 3.3.6. Let B be a noncommutative C*-algebra such that Comm (B) is 

simple. Then B is almost simple i], and only i/, it has a/aith/ul irreducible representation. 

Proo/. Suppose first that  B is almost simple. Then Comm (B) is a C*-algebra (nonzero, 

because B is not commutative), and so there is an irreducible (nonzero) representation 

of Comm (B) on a Hilbert space ~ ([4], p. 41). g extends uniquely to a representation 

13 - 692908 Acta mathematica 123. I m p r l m ~  le 22 J a n v i e r  1970 
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gl  of B ([4], p. 52) on ~. Now ker ~z 1 is an ideal in B, and we want  to conclude tha t  ker~  1 =0.  

But  if ker :~14=0, then Comm (B)_~ ker gl,  since B is almost simple, and this contradicts 

the original choice of :~. Hence, 7Q is a faithful irreducible representation of B. 

Conversely, let ~ be a faithful in'educible representation of B on ~. Let  K be a nonzero 

ideal in B; we must  show K N Comm (B) = C o m m  (B). Let  L be the ideal generated by  

{xy: xEK,  yEComm B}. Then L is contained in both K and Comm (B), and it suffices to 

prove tha t  L 4 0  (for then L =Comm (B), by simplicity of Comm (B)). 

Since B is noncommutat ive and :~ faithful, we have :~(Comm(B))~=0. Thus, 

[:~(Comm (B))~] is a nonzero 7e(B)-invariant subspace, so tha t  [n(Comm ( B ) ) ~ ] = ~ ,  by  

irreducibility of :~. Hence, [:~(L)~] contains :~(K)~, and the lat ter  is not 0 because 

K :#0 and :~ is faithful. Thus, n(L), and therefore L, is not 0. That  completes the proof. 

In  particular, note tha t  a noncommutative almost simple C*-algebra is primitive. We 

can now describe a var iety of almost simple operators. 

COROLLARY 3.3.7. Let T be an irreducible operator on a (necessarily separable) Hilbert 

space ~, o/dimension greater than 1, such that T ' T - T T *  is compact. Then T is almost 

simple. Moreover, Comm (T) is the algebra o/all  compact operators on ~. 

Proo/. Because T is irreducible and dim ~ >--2, T cannot be normal. Moreover, the 

identi ty representation of C*(T) is irreducible. 

Let  LC (~) be the C*-algebra of all compact operators on ~.  Then LC (~) is an ideal in 

L (~), and so 3.3.4 shows tha t  Comm (T) is contained in LC (~). On the other hand, 

Comm (T) is an ideal in the irreducible C*-algebra C*(T) (nonzero because T is non- 

normal), and so ([4], p. 53) Comm (T) is itself irreducible. But  LC (~) contains no proper 

irreducible C*-subalgebras ([4], p. 88), hence, Comm ( T ) = L C  (~). 

Since LC (~) is a simple C*-algebra, we now conclude from 3.3.6 tha t  C*(T) is almost 

simple. 

Thus, every operator on a finite dimensional Hilbert  space is a finite direct sum of 

irreducible almost simple (in fact, simple) operators. For a general operator T = T 1 + i T  s, 

Ti = T*, we have T * T -  TT* =2 i (T  1T 2 -  T~ TI); thus an irreducible operator having com- 

pact  real or imaginary part  is almost simple. The same is true of irreducible operators 

which are "almost  uni tary"  in the sense tha t  both I - T * T  and I - T T *  are compact: 

we consider some of the lat ter  in the following sections. 

We conclude this section with a final note on Comm (T). One might wonder about  the 

structure of Comm (T) for general almost simple operators. 3.3.7 shows tha t  Comm (T) 

can be LC (~2) for a number  of examples. The following result shows that ,  in fact, Comm (T) 
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is LC (~) whenever C*(T) is of type I (for our purposes, a separable C*-algebra B is type I 

if whenever two irreducible representations of B have the same kernel then they are 

equivalent; this definition is equivalent to a number of other natural properties [4]). We 

shall make use of a theorem of A. Rosenberg [29], to the effect that  if a separable C*- 

algebra B has, to within equivalence, only one irreducible representation, then B is .-iso- 

morphic with the algebra of all compact operators on a separable Hilbert space. 

PROPOSITION 3.3.8. Let T be a nonnormal almost simple operator on a H ilbert space, 

such that C*( T) is o/type 1. Then Comm (T) is ,-isomorphic with the algebra o/ all compact 

operators on a separable Hilbert space. 

Proo/. Comm (T) is nonzero, and it is separable because it is contained in the separable 

C*-algebra C*(T). As it has already been pointed out, Comm (T) is simple; hence any two 

irreducible representations of Comm (T) have the same kernel, namely 0. Also, Comm (T) 

is type I, because it is a nontrivial ideal in a type I C*-algebra (this follows, for example, 

from the fact that  a separable type I C*-algebra is postliminal [4], p. 168, p. 88). Thus, all 

irreducible representations of Comm (T) are equivalent. The Rosenberg theorem cited 

above now yields desired conclusion. 

Note that  the essential ingredient in the preceding is a proof of the (probably known) 

fact tha t  a separable, simple, type I C*-algebra is LC (~), where ~ is separable. 

Although most of the examples of almost simple operators in the following sections 

do generate type I C*-algebras, we shall not make that  an a priori assumption in stating 

results. 

Finally, we point out tha t  the representations of certain almost simple C*-algebras 

are determined in the following section. 

3.4. The structure o/ C*(Sv). In  sections 3.5-3.7 we shall require certain information 

about the C*-algebra generated by the projection of the bilateral shift onto one of its semi- 

invariant subspaces. We need to know that  such a C*-algebra is almost simple and type I,  

the purpose of which is to give a description of its representation theory. The present 

section is devoted to this discussion. 

I t  is relevant, perhaps, to po in t  out tha t  a description is given in [3] of the C*-algebra 

generated by an isometry. While the problems of this section (as well as our methods) 

are different from those of [3], it is of interest to note certain similarities in some of the 

results; e.g., compare 3.4.2 with [3]. 

Our terminology here will follow [11]. Let  a denote normalized Lebesgue measure on 

the unit circle T. Let  z(e ~~ =e ~~ and let L~ be the operator multiplication by z in LZ(T, dr 
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Let  H 2 denote all functions in L ~ whose negative Fourier coefficients vanish, and let ~ be 

an inner function ( i .e . ,  ~ E H  s and ]~] = 1 almost everywhere). 

Let  ~ =H~G~2H 2 and let S~ be the projection of L~ on ~. Since ~ takes on (scalar) 

values of modulus 1 almost everywhere, it follows from 1.3.5 that  S~ is irreducible. We 

shall show that  I -  S~ S* and * I - S ~  S~ are compact; it will follow then from 3.3.7 and the 

subsequent remarks that  S~ is almost simple and Comm (S~) is the algebra LC (~) of 

all compact operators on ~ (to avoid trivial exceptions, we assume ~ is such that  H20~/H 2 

has dimension greater than 1). We begin with a routine formula. 

LEMMA 3.4.1. Let TEL(~) ,  /et T = U H  be the polar decomposition of T (where H =  

( T 'T )  t and U is a partial isometry with initial and final s~ces  respectively [T*~] and [T~]), 

and let P be the projection on the nullspace o] T. Then 

I - T*T = P + U*(I - TT*) U. 

Proof. Simply note that  I - P  is the projection on [T*~]. Thus I - P  = U'U, and we 

have 
I - P - U * ( I - T T * )  U = U*TT*U = U*UHaU*U = U*UT*TU*U = T ' T ,  

from which the formula is evident. 

Note that  the ranges of the operators P and U * ( I - T T * ) U  are orthogonal; hence 

I - T * T  is compact (resp. has finite rank) if, and only if, I - T T *  is compact (resp. has 

finite rank) and the nullspace of T is finite dimensional. 

THEOREM 3.4.2. I - S ~ S ~  and * I - S ~ S ~  are both o] ]inite rank; S~ is almost simple, 

and Comm (S~) =LG (~). 

Proo]. We only need to point out that  I - S ~ S ~  has finite rank and S~ has finite 

dimensional nullspace; the remaining assertions follow from the preceding remarks and 

3.3.7. 

Note first that  I - S ~ S *  has rank 1. Indeed, the rank is at  least 1 because S~ is not an 

isometry (for example, the powers of S~ tend strongly to 0). Let  P be the projection of 

L 2 on H ~, and let S =PH,Lz ]x'. Then I 8 -  SS* is the projection on the one-dimensional space 

of constant functions, ~ is invariant under S*, and of course S~ =P~ S ]~. Thus, using 

P~SP~ =P~ S we can write 

S v S$ = P$ SP~ S* ]~ = P~ SS* [~ = P~ (I 8 - (18 - SS*)) [~ = I~ - P~ (18 - SS*) ]~ 

and thus I ~ - S ~ S *  =P@(IH~--SS*)I~ has rank at  most 1. 

Now let ] belong to the nullspace of Sv. Then in particular ]EH2; and P�9 or 
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zf6~pH 2, and hence z~/6H 2. On the other hand, /.l_v2H '~ implies ~p/6H~• ~, so tha t  

z~/E H 2 N H 2. I t  follows that  / is a constant multiple of ~v2, and we conclude that  the null- 

space of S~ is of dimension at  most 1. That  completes the proof. 

We shall now find the characters of C*(Sv). First, extend ~ analytically to the interior 

of the unit disc D = { I z I < 1 }, so that  the radial limits of the extension agree almost every- 

where on the unit circle T = { I z I = 1 } with the original function. Let  Z~ be the "zero set" 

of yJ; i.e., Z~ consists of the zeroes of yJ inside D, along with all points 2 on T for which v 2 

cannot be continued analytically from D to 2. I t  is known tha t  Z~ is the spectrum of S~ 

([10], p. 74; note that  it is the spectrum of S*, rather than S~, tha t  is described there). 

Let  T ~ T be the canonical quotient map of C*(S~) onto C*(S~)/Comm (Sv). Since the 

quotient is the abelian C*-algebra generated by ~v and the identity, there is an obvious 

homeomorphism between the maximal ideal space of C*(S~)/Comm (S~) and sp ( ~ ) .  

At the same time, there is a natural bijeetive correspondence between characters of C*(Sw) 

and characters of C*(Sv)/Comm (Sv) (cf. 3.3.1); thus the characters of C*(Sv) correspond 

one-to-one with points in the spectrum of ~ .  Of course, we have yet  to find the charac- 

ters (or equivalently, sp (~v))" 

Note first tha t  if yJ is a finite Blaschke product then ~ =H2Q~H ~ is clearly finite-di- 

mensional; if ~ is not a finite Blaschke product then ~ is infinite-dimensional. The latter is 

easily seen by making use of the structure theory for inner functions; for example, yJ has an 

infinite linearly ordered set of nonproportional divisors, and these correspond to an in- 

finite chain of distinct subspaces of ~. We omit the details. 

TH~.OR~M 3.4.3. (i) I /  y~ is a finite Blaschke product, then ~ is /inite-dimeusional, 

C*(Sv) has no characters, and in/act Comm (S~)= C*(S~)=L(~). 

(if) 1/yJ is not a/inite Blaschke product, then/or every point 2 in Z~ N T there is a unique 

character X~ o/C*(Sv, ) /or which Za(Sv) =2. 2~--+X~ is a bijective correspondence between Zv, N T 

and characters o/C*(Sv). C*(Sv)/Comm (S~) is canonically .-isomorphic with the continuous 

/unctions on Z~ N T. 

Proo]. (i) follows from the fact that  S~ is an irreducible operator on a finite dimensional 

space; for then C*(Sv) =L(~)  and the latter is known to have no characters, and now 3.3.1 

shows that  Comm (Sv) must also equal L(~). 

Suppose now tha t  yJ is not a finite Blaschke product. I t  follows that  Zv must have at  

least one point in common with T. Let  2 be such a point. Then ]~t I = 1 = IIs~{I , and by the 

preceding remarks 2 also belongs to the spectrum of S~. 3.1.2 shows that  there is a unique 

character Za of C*(S~) such that  Xa (Sv) =2. Now let g be any character of  C*(S~); we must 
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show tha t  it =g(S~) belongs to Z~ N T. Clearly )tEsp (S~)=Z~ (for if (S~- i t )  - 1=  T were to 

exist, then T would have to belong to C*(S~) and hence 1 =z(T(S~ -2)) =)~(T) (:~(S~) -•) =0,  

an absurdity), and it suffices to show tha t  I)tl = 1. But  X vanishes on Comm (S~)=LC (~), 

and so by  3.4.2 we have 0 =Z(I * - S ~  S~) = 1 - Ix(S~) I ~, as required. 

The last sentence follows from the remarks preceding the theorem. 

We turn now to more general representations of C*(Sv). The following decomposition 

procedure will be useful. Let  B be a C*-algebra with identity, and let K be an ideal in B. 

Let  ~u and q be representations of K and B/K, respectively, on ~ and ~ (note tha t  K need 

not possess an identity; a representation of K is defined as a . -homomorphism of K into 

L(~) for which [~(K)~] =~) .  We can manufacture a representation of B out of/~ and 

in the following way. Let  z ~-~$ be the quotient map of B on B/K, and let/2 be the unique 

extension of # to a representation of B on ~ ([4], p. 52). Define a representation xe of B 

on ~ |  as follows: 

~(x) = #(x) |  ~ B .  

The following lemma shows tha t  this process allows one to reduce the representation theory 

of B to tha t  of K and B/K. Note first tha t  if g is a representation of K such tha t  ~(K) =0,  

then there is already a representation ~ of B/K such tha t  7e(x) =q(&), x E B. So we assume, in 

the following, tha t  g(K) #0.  

LEMMA 3.4.4. For every representation ~ o~ B such that ~(K) =~0, there are representa- 

tions # and a o / K  and B/K, respectively, such that xe(x) =/~(x)| xEB. 

Proo]. Define ~0 = [~(K)~].  Then ~0 is a nonzero reducing subspace for ~(B). Define 

a representation tu of K on ~0 by  ~u(z) =~(z)I~. , zEK. 

Now ~(K) vanishes on ~ ,  so tha t  the subrepresentation ~l(x) =xe(x) I~ annihilates K. 

Thus, there is a representation a of B/K such tha t  ~l(x)=~(~), for xEB. The required 

decomposition ~(x)=fz(x)|  now follows easily from ([4], p. 52). 

I f  B is of the form C*(T) for some operator T, then a representation ~ of G*(T) is 

completely determined by  the operator ~(T). I t  is convenient to specify representations 

of C*(T) in this way, by simply giving their values a t  T. 

Now let T be an irreducible operator on a separable Hilbert  space of dimension greater 

than  1, such tha t  T ' T - T T *  is compact. We can describe the representations of C*(T) 

as follows. Suppose first tha t  C*(T) has no characters. Then by  3.3.1, C*(T)=Comm (T), 

and  by  3.3.7 we see tha t  C*(T) must  be the algebra of all compact operators. In  particular, 

the identi ty is compact and so the underlying space is finite-dimensional; hence C*(T) 

is ~-isomorphie with a (full) matr ix  algebra. A familiar theorem of Burnside asserts tha t  
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every representation of C*(T) is a multiple of the identi ty representation. Hence every 

representation is equivalent to one defined by  ~(T) = I |  T, where I is the identi ty operator 

on some Hilbert  space. 

Assume, now, tha t  C*(T) has characters. Note first tha t  there are still representations 

of the form g(T) = I |  T, where I is as above. As a second example, let ~" be the image of 

T in the quotient C*(T)/Comm (T), and let N be a normal operator on some Hilbert  space 

such tha t  sp (N)__ sp (~'). Since both N and T are normal, we have by  spectral theory tha t  

{{p(N)l I < IIp(T)ll for every polynomial p in z and ~. Thus, there is a representation ~ of 

C*(T)/Comm (T) such tha t  a ( T ) = Z ;  and we obtain a representation g of C*(T) by taking 

~(x) =a(~), xeC*(T). 

We claim, now, tha t  every representation of C*(T) is equivalent to one or the other of 

these two types, or a direct sum of both. By  3.4.4, it suffices to show tha t  every repre- 

sentation of Comm (T) is equivalent to a multiple of the identi ty representation, and for 

every representation a of C*(T)/Comm (T) the normal operator N=q(T) has its spectrum 

contained in sp (~'). But  the second follows from the familiar fact tha t  representations 

shrink spectra, and the first follows from 3.3.7 and the fact tha t  every representation of 

LC (~) (for ~ separable) is equivalent to a multiple of the identi ty representation [29]. 

Applying this to Sv, we have: 

THEOREM 3.4.5. I] yJ is a /inite Blaschke product then every representation o/C*(Sv) 

is equivalent to one de/ined by 7e(Sv) = I | Sv, with I the identity operator on some Hilbert space. 

I /  yJ is not a/inite BlaschIce product then/or every unitary operator N such that sp (N) _~ 

Zv N T, there is a representation 7~ o/ C*(Sv) such that g(Sv)=N. Every representation ol 

C*(Sv) is either o/this/orm, or is equivalent to a multiple o/the identity representation (~(Sv) = 

I | or is a direct sum o/these two. 

Proo/. We need only note tha t  Z~ N T is the spectrum of the image ~v of Sv in C*(Sv,)[ 

Comm (Sv), by  3.4.3 and the discussion preceding it. The rest follows from 3.4.3 and the 

preceding discussion. 

C o R O L LAR Y 3.4.6. I t  ~ is a/inite Blaschke product then every irreducible representation 

o/ C* (S~) is equivalent to the identity representation. 

I] y~ is not a finite Blaschke product, then the irreducible representations of C*(S~) are, 

to within unitary equivalence: 

(i) the characters corresponding to points in Z~ N T (distinct points giving rise to distinct 

characters) 

(ii) the identity representation. 
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3.5. Boundary rel~resentations /or P(S~). Let S~fL(H~@vJH 2) be as in the preceding 

section. The question taken up in this section is, which irreducible representations of 

C*(S~) are boundary representations for the algebra P(S~) of all norm limits of poly- 

nomials in S~ ? 

According to 3.4.5, the irreducible representations of C*(S~) are characters correspond- 

ing to points in Z~ N T (which are absent when VJ is a finite Blaschke product), and the 

identity representation (up to equivalence, of course). By 3.1.2, the characters are all 

one-dimensional boundary representations for P(S~). So the question reduces to this: 

is the identity representation a boundary representation for P(S~)? As we will see, the 

answer is sometimes yes, and sometimes no. 

We begin with a general lemma. Let A be an algebra of operators on a Hilbert space 

~, containing the identity, such that  A +A* is norm-dense in C*(M). Let ~ be a semi- 

invariant subspace for M such that  [C*(A)~] = ~. Define a (completely positive) linear map 

q~: L(K)-+L(~) by 
q~(X)=P$X[@, XfL(~) .  

The restriction of ~ to A is multiplicative, because ~ is semi-invariant, hence :7 = {A E j4: 

~(A) =0} is a norm-closed two-sided ideal in A. We write id for the identity map of the 

norm-closure of ~(A) +~(A)*. 

LEMMA 3.5.1. Let IX be a linear map o/the norm closure o/q~(A) +~(A)* into L(~) such 

that both i x and id-ix  are completely positive. Then there is an operator TfiL(~) with the pro- 

perties 

(i) O < T < I ,  TfiC*(A}' 

(ii) T[Y~]___ [A~] |  

(iii) ixoq~(X) =q~(TX), /or all X e A + A*. 

Proo]. Since A + A* is norm-dense in C*(A), q~(C*(A)) is contained in the norm-closure 

of g(A) +g(A)*. So we can define a linear map iX1: C*(A)-+L(~) by 

ix,(x) ---ixo~(X), x ec*(A). 

Both iXl and ~0 -iX1 are completely positive maps of the C*-algebra C*(A), so by 1.4.2 there 

is an operator TeC*(A)', 04 T<~I, such that iXI(X)=~(TX)=P�9 XfC*(A). (i) and 

(iii) are immediate, and we need consider only (ii). 

Note first that q~(T~1)=O. Indeed, if Aft:/ then by definition of ~(A)=0, hence 

iXo~(A) =0 and thus q~(TA) =0, as required. Next, note that  T[:7@] is orthogonal to [A*@]. 

For if ~, ~7 f ~,  A f :7 and B f A, then 
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(TA~, B*~) = (BTA~, ~) = (TBA~, ~) = (qJ(TBA)~, ~) = O, 

by the preceding, because BA E Y. But since J4 + ~4" is dense in C*(~4) and ~ is cyclic for 

C*(j4), it follows (as in the proof of 1.3.3) tha t  [~4"~]• Therefore (ii) is valid' 

and that  completes the proof. 

As we shall see, this lemma is useful only when y is a "large" enough subset of A; 

indeed, if Y =0  then (ii) is vacuous. On the other hand, note tha t  [Y~] is always contained 

in [~4~] (~ ,  and if equality happens to hold then (ii) becomes the requirement tha t  T 

leave the subspace [J4~] |  invariant. 

The next  lemma is known, and is only a minor variation of a construction in [11]. 

Let  A denote the disc algebra, i.e., all continuous functions on the unit circle whose negative 

Fourier coefficients vanish. 

L~MMA 3.5.2. Let K be a closed set o/Lebesgue measure zero in the unit circle. Then 

there exists a uni/ormly bounded sequence/n E A such that each ]~ vanishes precisely on K and 

/n-~l uni/ormly on compact subsets o / T ~ K .  

Proo/. We shall merely indicate how the proof of Fatou's theorem on p. 80 of [11] 

can be modified to prove this lemma. Let  h be the function constructed there, and put  

/~ = e (l/~)h. Then []~ I ~< e-1/~ ~ 1, and it is clear that /~  EA and tends to 1 uniformly on com- 

pact subsets of T ~ K  (we are indebted to D. E. Sarason for pointing out essentially this 

proof). 

We can now state the main result of this section. 

THEOREM 3.5.3. Let yJ be an inner ]unction such that Zv, fi T has Lebesgue measure zero. 

Then the identity representation o] C*(Sv) is a boundary representation/or P(Sv). 

Proo/. We shall make use of the criteria of Theorem 2.4.5. I t  suffices to show that  

the following three conditions are satisfied: 

(i) P(Sv) separates the identity representation o] C*(S~) (cf. 2.4.4), 

(ii) idlp(s~) is a finite representation o/P(S~) (cf. 2.3.1), and 

(iii) the restriction o/id to the (norm) closure o/P(S~) + P(Sv,)* is pure (cf. 2.4.2). 

(i) is immediate from 3.4.5. Indeed, if H~Oy~H ~ is one-dimensional, then ~ is a single 

simple Blaschke factor. By 3.4.5 id is the only irreducible representation of C* (Sv), and the 

separation property is trivial. Otherwise, the irreducible representations of C*(S,) which 

are not equivalent to id are all one-dimensional {3.4.5 again), and since dim (HZGy~H ~) > 1, 

id cannot be a subrepresentation of one of these. 

(ii) follows from example 3 in section 2.3. 
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We now establish (iii). Let  # be a linear map of the closure of P(S~)+P(Sv)* into 

L ( H ~ p H  2) such that  both # and 6 / - #  are completely positive (on the closure of P(S~) + 

P(Sv,)* ). We must prove that  # is a scalar multiple of 6/. In 3.5.1, take ~ =L~(T, m) (m is 

Lebesgue measure), take A to be the algebra of all multiplications L r by functions [tiA, 

and let ~ =H2| ~. Since A +~/ i s  norm-dense in C(T), it follows that  A + ,4* is dense in 

C*(,4) (the latter consists of all multiplications by functions in C(T)) and that  ~ is cyclic 

for C*(A) (A.I.1 and A.1.3). Since polynomials in e t~ are dense in A, polynomials in L~ 

are dense in ,4; thus P~,4 ]~ is a dense subalgebra of P(Sv, ). By 3.5.1, ~u has a representation 

Ia(P~XI~)=P~TX]o for Xi l ,4+,4* ,  where T is a positive operator in the commutant 

of {Lt: /tiC(T)} such that  T[3~]~_ [ ,4~]O~,  where y = { Z t i , 4 : P ~ Z ] ~ = 0  }. Now {LI: 
]tiC(T)} is weakly dense in the multiphcation algebra {Lf ]ilL~(T, m)} (because C(T) is 

weak*-dense in L~~ and the latter is well-known to be a maximal abelian von Neumann 

algebra. Thus, there is a nonnegative function hilL~176 m) such that  T = L  n. We will com- 

plete the proof by showing that  h is constant. 

We claim [:/~] = [ ,4~]O~ =v2H ~. Let  A 0 be all functions in A which vanish on Z~ N T. 

Then yJA 0 is a closed ideal in A ([ll],  pp. 68-69, p. 84), and note tha t  y contains all multi- 

plications by  functions in ~vA 0. First, we show that  [:/~] contains ~oH ~. For, if / ,  is the 

sequence constructed in 3.5.2 (vanishing on Z~ N T) and g is in A, then Y~g]n belongs to 

~vA 0 and tends boundedly and almost everywhere to y~ on T. An application of the domi- 

nated convergence theorem shows that  L~0r, tends to L~g in the weak operator topology; 

hence the weak closure of y contains {L~g: gilA}. I t  follows that  [:/~] contains v2[,4~] , 

which is wH ~ by A.1.3. On the other hand, [ ,4~] |  =wH z (A.1.3), and by the remarks 

following 3.5.1 we know that  [~/~]--[ ,4~]O~.  Putt ing all of this together we obtain 

wH~___[Y~]___[,4~]Q~=yJH ~, and the claim is established. 

The condition Ln[Y~] _ [,4~] O ~ now becomes hwH ~ ~ ~oH 2, or hH ~ ~_ H 2. Applying h 

to the constant function 1 t i l l  ~ gives h t i l l  z, and since h is real-valued, we conclude that  h is 

constant. That  completes the proof. 

The argument in this proof is not reversible, and one might wonder if in fact the 

theorem is valid for arbitrary inner functions ~. The answer is no; we shall indicate how the 

results of the next  section imply that  if ~0 is an inner function such that  Z~ contains the 

entire unit circle, then the identi ty representation is not a boundary representation for 

P(S~). 

Note first tha t  it is easy to come by such inner functions. For example, let {~t,} be a 

countable dense subset of T, and take for ~ the Blaschke product having a simple zero at  

each point ~ n = ( 1 - n - s ) 2 .  (cf. [11], p. 64; the condition ~ ( 1 - ] $ . ] ) < o o  guarantees its 

existence): Clearly every point of T is a cluster point of {~}, and Z~ ~ T follows ([11], p. 68). 
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To obtain a singular example, let /x be the (singular) measure which assigns mass 2 -n to 

each point Xn and mass 0 to T~{2x, ~ ... .  }, and let ~ be the cotTesponding singular function 

([11], pp. 68-69). 

Now fix an inner function ~v such tha t  Z~ contains T, and let A be the disc algebra: as 

before, to be regarded as a subalgebra of C(T). By  3.6.3, the m a p p i n g / E A  ~--~/(S~,)is a 

completely isometric representation of A on P(Sv) , and the same theorem shows tha t  the 

identi ty representation of C*(Sv) is not a boundary representation for P(Sv). This proves 

the following: 

TH~OR]~M 3.5.4. I /  ~ is an inner /unction such that Z~ contains T, then the identity 

representation o/ C*(Sv) is not a boundary representation/or P(Sv). 

The question of whether or not id is a boundary representation for P(Sv) in the inter- 

mediate cases (Zv fl T of positive measure but  different from T) remains unresolved.(1) 

3.6. Representations o~ the disc algebra. In  the preceding section, it was shown tha t  for 

certain inner functions yJ, the identi ty representation of C*(Sv) is a boundary representation 

for P(Sv). We will show in this section how tha t  fact leads to a complete classification 

of certain almost simple contractions which possess "minimum functions", the lat ter  being 

an infinite-dimensional analogue of the minimum polynomial of a finite dimensional 

operator (3.6.12). In  a sense, these results generalize those of section 3.2. 

I t  will be convenient, a t  times, to identify contractions with representations of the 

disc algebra A (recall tha t  A consists of all continuous functions on the unit circle T whose 

negative Fourier coefficients vanish), in the following way. Let  ~o be a representation of A 

in L(~) (i.e., ~0 is a contractive homomorphism of A into L(~) for which ~ (1 )= I ) ,  and let 

zEA be the function z(e'~ '~ Let T=~0(z); then []T[] ~< [[z]] =1,  so tha t  T is a contrac- 

tion. Conversely, if we start  with any  contraction T in L(~), then because the unit disc is 

a spectral set for T ([18], p. 441), we have for any  polynomial p: 

II p(T)II -< sup I I = sup Iv(k)/. 
Iz[<l ~.~T 

Since polynomials are norm-dense in A, there is a unique representation ~0~ of A which 

extends the map p ~->p(T). We sometimes wr i te / (T)  in place of ~0r(/), fo r /EA.  Thus, repre- 

sentations of A correspond bijectively with Hilbert  space contractions. Clearly, then, one 

does not expect to classify general representations of A, at  least in the forseeable future. 

We shall concentrate, instead, on those corresponding to almost simple operators T which 

fit well into the structure of A, in an appropriate sense. 

(1) Added in proof Nov.  16, 1969. B y  using the methods of Theorem 1 of [30], we have settled 

this question in the affirmative. 
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We begin with a description of the isometric representations of A. I t  is desireable to 

state this material for more general function algebras. Recall tha t  a closed subalgebra 

A of C(X) (X being a compact Hausdorff space) is called a Dirichlet algebra if 1 EA and 

the linear space A + J  is norm-dense in C(X) (the latter is equivalent to requiring tha t  the 

real parts of functions in A be dense in the set of real-valued continuous functions on X). 

PROPOSITIO~ 3.6.1. Let A be a Dirichlet algebra in C(X). Then every representation 

(resp. isometric representation) of A is completely contractive (resp. completely isometric). 

Proof. Let  ~ be a representation of A in L(~). By 1.2.8, there is a unique positive linear 

extension ~01 of ~ to the closure of A + ~ ,  i.e., C(X). But a positive linear map of C(X) 

must be completely positive [23], therefore ~1 is completely contractive (1.2.10), thus ~ is 

completely contractive. 

Suppose ~ is isometric. By the preceding paragraph, we need only note tha t  ~-x 

is completely contractive, which follows directly from 1.2.11. 

I t  would be of considerable interest to know if 3.6.1 is true for general function algebras. 

Appendix A.2 suggests tha t  the answer may be no. 

Because the disc algebra is a Dirichlet algebra in C(T), it follows that  every contrac- 

tion T gives rise to a completely contractive representation; moreover, if IIp(T)]l = 

suplr IP(~)I for every polynomial p, then the representation is in fact completely iso- 

metric (also, see 3.6.3). 

In  the next  result, we assume that  the compact Hausdorff space X contains at  least 

two points. 

PROPOSITION 3.6.2. Let A be a closed subcdgebra of C(X), which contains 1 and sepa- 

rates points. Let q~ be a completely isometric representation of A such that q~(A ) is an irreducible 

/amily of operators. Then the identity representation of C*(qD(A ) ) /ails to be a boundary repre- 

sentation /or qJ(A). 

Proof. Assume that  /d is a boundary representation for ~0(A). By 2.1.2, there is a 

boundary representation eo of C(X), for A, such that  co(f)=~0(f), lEA.  Now the irreducible 

representations of C(X) correspond to points of X, and thus co has the form co(f)=f(p)I,  

where p EX and I is the identi ty operator for the space ~ on which ~0(A) acts (note tha t  

is therefore one-dimensional). So for /EA we have qJ(f)=f(p)I, and thus []/][ = [/(p)] 

because ~0 is isometric. But  A separates points of X, and it is therefore evident tha t  X = {p} 

is a singleton, contrary to our initial assumption. 

We can apply these results to the disc algebra as follows. 

THEOREM 3:6.3. Let T be a contraction on a Hilbert space. Then T gives rise to a com, 
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pletely isometric representation o/the disc algebra q, and only q, sp ( T) contains the unit 

circle. For such a T, the identity representation o/C*(T) is never a boundary representation/or 

P(T). 

Proo/. Let  T be a contraction such tha t  sp (T) contains T. By the spectral mapping 

theorem we have, for every polynomial p, 

sup I p( )I < sup I p(r = r(p(T)) < II p(T)II, 
I~.1= 1 ~ esp(T) 

while of coupe IIP(T) II  sup, ,-i IP( )I, Thus, p  p(T) extends to an isometric representa- 

tion ~ of the disc algebra A. Since A is a Diriehlet algebra in C(T), 3.6.1 shows tha t  ~ is 

completely isometric. Conversely, let T be a contraction such tha t  lip(T)II = sup]~lffii [~O(~)l 

for every polynomial p; then we claim every point t E T is in sp (T). Indeed, the equation 

shows tha t  Ip(2)] ~Hp(T)I] for every polynomial p, so tha t  there is a complex homo- 

morphism o) of P(T) such tha t  co(T)=i .  Thus, t is in the spectrum of T relative to the 

Banaeh algebra P(T). But since ]tl  = ]l T]] = 1, t must  be a boundary point of the relative 

spectrum of T, and is therefore also a spectral value of T relative to the larger Banach 

algebra C*(T) ([17], p. 33). This implies ~tfisp (T), and the first sentence of the theorem is 

proved. 

The second sentence is immediate from 3.6.2. That  completes the proof. 

A familiar example of a contraction T whose spectrum includes the unit circle is given 

by  any  non-unitary isometry. More interesting is an example of the form T = S~, where 

V is an inner function whose "zero set" Z v includes the full unit  circle (the discussion follow- 

ing 3.5.3 contains examples). As we have observed already, following 3.4.2, sp (Sv )=Z  v. 

In  the remainder of this section, we consider contractions T for which the map / E A v-~/(T) 

has nontrivial kernel; throughout the discussion, A will denote the disc algebra, qua a sub- 

algebra of C(T). 

For such a T let J =  { /EA: / (T)  =0}. Then J is a nonzero closed ideal in A, analogous 

to the principal ideal generated by  the minimum polynomial of a matrix. Indeed, there 

exists a closed set K of Lebesgue measure zero in T and an inner function V for which 

Z v N T _  K, such tha t  J = vAg where A ~ = {/E A: / (K)  = 0} ([11 ], p. 85). This correspondence 

between ideals and pairs (K, ~v) is bijeetive provided one identifies proportional inner 

functions. We shall call J the order of T, and V will be called the minimum/unction of T. 

I t  is worthwhile to look at  the case of a finite-dimensional contraction T in more 

detail. A known decomposition expresses T as a direct sum U(~ T o where U is uni tary 

and T O is completely nonunitary (while one of the summands may  be absent, we suppose 

for the sake of illustration tha t  both are present). Let  sp (U)=  {a 1 ... . .  az} and sp (To) = 
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{b 1 . . . .  ,bz} , and suppose p ( z ) = ( z - b l )  n' ... (z-bz)  nz is the minimum polynomial of To; 

then of course (z-a1)  ... (z-ak)p(z)  is the minimum polynomial of T. We claim that  

[bjl <1 for every i- Indeed, if ]bjl =1,  then by 3.1.2, there exists a character ~ of C*(To) 

(the latter regarded as a family of operators on the subspace ~0 corresponding to the 

summand To) such that  z~(T0) =bj; a character is a pure state, so it has a pure extension to 

L(~o), and since ~0 is finite dimensional it follows that  g is a vector state ~(x) = (x~, ~), 

~E~o. Thus [~] reduces To, and To~=bj~, contradicting the fact that  T o is completely 

nonunitary. 

Now let ~p be the finite Blasehke product which has p as its numerator and let K = 

{al, as ..... ak}. An easy calculation, which we leave to the reader, shows that  the kernel 

J of the map /E A ~-~/(T) is none other than the ideal ~oAK. Note that  here the intersection 

Zv N T is empty. Thus, the minimum function of T corresponds to the "nonunitary" 

factor of the minimum polynomial of T. 

Returning now to the general discussion, we wish to define an analogue of completely 

isometric representations for representations that  have nontrivial kernels. Let T be a 

contraction on ~ and let ~0(/)=/(T), /EA .  Suppose ker ~ ~=0. Then ~0 induces a canonical 

homomorphism ~b of the quotient A/ker ~0 into L(~) in the usual way: ~b(]) =~(/), /denot ing  

the coset determined b y / .  Clearly [[q0(/)[[ = [[~(/+ g)[[ for every g E ker ~ and it follows that  

~b is contractive because T was. Now for an integer n > 1, form the Banach algebra A | 

of all n • n matrices over A, endowed with the norm inherited from C(T)| As usual, 

we obtain a homomorphism ~ :  A | 1 7 4  contractive because ~0 is completely 

contractive (3.6.1), whose kernel is ker ~v| In  a similar way, then, each ~0, induces a 

contractive representation ~b n of A |  cf| into L ( ~ ) |  

Definition 3.6.4. ~ (resp. T) is called a maximal representation (resp. maximal operator) 

if each r is isometric. 

The term maximal refers to the fact that  the norm of ~( / ) ,  for e v e r y / E A |  n and 

every n >~ 1, is as large as possible. Moreover, using 3.6.7 below and the results of section 

3.2, it is easy to see that  this term is in harmony with the preceding usage in 3.2. 

I t  is not obvious that  maximal operators exist. However, 3.6.6 below shows that  if 

is any inner function for which Z v N T has measure zero, then S v is a maximal operator 

which has ~ as its minimum function. We first require a lemma which, for n = 1, is closely 

related to Lemma 2.1 of [22]. In  its proof, we shall make use of a routine fact from the lore 

of integration theory, which we now state without proof. Let (juij) and (a~j) be n • n matrices 

of (complex) Borel measures on T, and let ~u and a be the corresponding linear functionals 

on C(T)| 
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= (t,r c< )| If each singular with respect to  aeh then +all  = II ll + IMI. 

We write _~ for the  representa t ive  of F EA | in the  quot ient  a lgebra A | 

~vAK | M~, and  ~ for H 2 0  ~vH z. We regard L ( ~ ) |  M= as act ing on the  Hi lber t  space ~ | C n, 

and  for F=(/ij)EAQM=, F(Sw) will denote  the  opera tor  ma t r ix  (]tj(S~))EL(~)| 

L]~MMA 3.6.5. Assume Z~ ~ T = K  has Lebesgue measure zero. Let Q be a linear junctional 

o/norm 1 on the Banach space A|174 Then there exists a linear/unctional 

on C(T)| and there are vectors ~ ,  ~v in ~ |  n, 1 < ~ < n ,  all o] which saris/y: 

(i) II lI < 1, and ]a(F)l ~< ]]a[[ sup [IF(A)][ /or all F e  C(T)| (i.e., a lives on K), 
A E K  

n 

(iii) Q(F) = ~ (F(S~) ~., ~ )  + a(Y), [or all F E A | M. .  

Proo/. The funct ional  FEA| has norm 1, so the  H a h n - B a n a c h  theorem 

provides a l inear funct ional  ~1 on C(T) |  of norm 1, such t h a t  ~I(F) = ~(z~) for F EA |  

T e r m - b y - t e r m  appl icat ion of the  Riesz-Markov theorem yields a ma t r ix  (v~j) of measures  

on T such t h a t  ~l(F)=~.j~/~jdzj~, for F=(/~) in C(T) |  Now define new measures  

/ ~  and  a~ by  # ~ ( E ) = z ~ ( E ~ K ) ,  a~(E)=v~(E ~ K), E g T .  Then  ~ = / ~ + a ~ ,  all the  

/ ~ ' s  are singular relat ive to all the a~/s, and  if we define the  corresponding l inear functionals  

/~ and  (~, then  we have  ~h=/~+a .  The  remarks  preceding the  L e m m a  assert  t h a t  I[/~]l + 

IM[ = I]~[I = 1, thus  I[qll ~< 1. B y  definition, g lives on K,  so p rope r ty  (i) is satisfied. 

I t  remains  to find the  representa t ion  (iii) for/~.  Now since bo th  q and  ~1 annihi la te  

y~AK| so does /~, and  it follows t h a t  ~f/d#~=O for every  ]~A~, 1 <~i, ]<.n. Choose 

a bounded  sequence / ~ A K  such t h a t / ~ - ~ 1  on T ~ K  (3.5.2). Then  [n-~l  i .e .  ([/z~ I), and  

b y  the  bounded  convergence theorem we have  for every  g ~A, ~ g d / ~  =lim~ ~vg/~dl~ =0. 

I t  follows f rom the F. and  M. Riesz theorem t h a t  there  are funct ions h ~ H  1 (the space 

of H ~ funct ions h for which ~hdm=O, m denot ing normal ized Lebesgue measure  on T) 

such t h a t  d/z~=Cfh~dm, 1<~i, ]<~n. Thus, for F=(/~)~C(T)|  we have  / ~ ( F ) =  

~.~ ~Cp/~h~dm= ~v~Tr (FH)dm, where H =  (h~) and  Tr  denotes  the  canonical t race on Mn. 

Making use of a famil iar  formula,  we conclude ~Tr  ((H'H)+)dm = lieu [I = 1 - IlaH. B y  ([22], p. 

198), there  are n • n matr ices  X = (x~) and  Y = (y~), bo th  of whose entries are funct ions 

in H ~, such t h a t  H = X Y, Y* Y = (H*H)i, and  X*X = Y Y*. Note  t h a t  since the  entr ies  of 

s  are also in H ~, we can even assume t h a t  ~y~dm = 0  (just factor  5H in the  above  way,  
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then multiply through by  z so as to absorb it in the factor Y). The preceding formula for p 

now becomes 

the inner product being relative to the Hilbert  space / ) (T ,  din). Now if P is the projection 

of L 2 on ~,  then it follows exactly as on p. 182 of [22] tha t  

We define ~v and ~ as follows. Regarding elements of ~ | as column vectors (of height 

n) with coordinates in ~,  let ~ be the ~th column of the matrix (Px~) and let ~ be the 

transpose of the ~th row of ( P ~ ) .  The desired r e p r e s e n t a t i o n / a ( F ) = ~ ( F ( S ~ ) ~ ,  ~ )  

follows. As for the norm condition (ii), we have 

The argument  for DII~,II~ ~ x-II ~ll is similar. That  completes the proof. 

THEOREM 3.6.6. Let V be an inner/unction such that Zv N T = K  has Lebesgue measure 

zero. Then ~: /EA ~--~/(S~) is a maximal representation o / A  whose kernel is v/A K. 

Proo/. We first identify the kernel of ~. I t  is easy to see tha t  vAK annihilates S~ 

(indeed, if /6AK then /(Lz) maps H2Gv/H ~ into v/H ~, which is orthogonal to H 2 0 v H  ~, 

and /(S~)=PH, e~H,/(Lz)IH, e~H,=O follows). In  particular, k e r ~  is a closed nonzero ideal 

in A, and thus has the form v1AK1 where K 1 is a closed set in T of Lebesgue measure zero 

and V1 is an inner function for which Z~, N T~_K 1. The preceding also shows tha t  

VAK~_VIAK,, thus VI divides %o and KI~_K. Note, next  tha t  V divides V1 (the conclusion 

ker q~=VAK follows, because then V and V1 are proportional, and so ZvNT=Z~, N T~_ 

K 1 __ K =Z~ n T). To see that ,  choose a bounded sequence/ ,  6AK, such tha t /n  -~ 1 on T ~ K  1 

(by 3.5.2). Then (yh/,)(Sv)=O for all n (because vA/nEker ~), and hence L~, fH2~y~H ~ 

is orthogonal to H~| 2. Since yh/ ,H 2~_ H ~, it follows tha t  V1/ , .H~OvH2gvH 2 and thus 

V1/~H2~_vH 2. Hence, VV1/, must  belong to H %  and s ince/ , -~1 in the weak*-topology of 

L ~, we obtain v ~  1 E H ~ and therefore ~ divides V,. 

I t  remains to show tha t  ~ is maximal. By 3.6.1, q~,: A |  |  is contractive, 

for every n ~> 1, and thus by  definition of the quotient norm, ~,  is also contractive. To see 
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that  I1r >1 ]l~ll, choose a function FEA| for which 11~11 =1; we must show that  

I1r =11~.(~)11 ~>1. ~ y  the Hahn-Banaeh theorem, there is a linear functional ~ on 

A|174 such that  l id = I~(~*)I =1. Using 3.6.5, we can write 

e(k) = ~ (~.(~) ~,, v,) + q(l~), 

where a, ~., and ~. are as described there. Note first, that  if 2EK, then IlF(~)ll < II~=(F)II. 
Indeed, by 3.1.2, there is a character Z of C*(Sv) such that  z(S~)=~t. Hence the (scalar- 

valued) map ZEC*(Sv)~--~z(Z) is completely contractive, and we have that  [I(z(Z,j))]] < 

H(Z,j)][ for every n•  matrix (Z,j)EC*(Sv)| In  particular, if F=(/~j)eA| 

then ][ F(2)]] = ]] (i~'~(/tj))[[ ~< H @(/~))]] = ][~-(F)H, as asserted. I t  then follows that  

I ~(~) I ~ II ~II sup II ~(~)II < I1 ~ II II ~n(F)II. 
~leK 

On the other hand, an elementary application of the Schwarz inequality, along with the 

conditions ~[[~][s~ 1-Hail  and ~][~,[[s~< I -Hai l  , shows that  ]~.~@n(F)~,W~)[ ~< 

II~=(F)II. (1 -II~ll). Hence, 10(_~)1 ~< [[~=(F)ll(1 -II~ll)+ II~ll II~,(F)II = II~J)H, and 1 ~< 

]]q.(F)]] follows because ]~(_~)] = I. That completes the proof. 

If Co, C 1 . . . . .  Crn are elements of M~, then p(z) =~jC~z ~ can be regarded as an n • n 

matrix-valued polynomial. If  TEL(~), then we define 

p(T) = 5 0~ | TJ, 
I 

regarded as an operator on Cn| When we say a statement holds for all matrix-valued 

polynomials in T, we mean it to hold for every Mn-valued polynomial, for every n = 1, 2 . . . . .  

The following corollary provides another characterization of maximal operators with non- 

zero order. 

COROLLARY 3.6.7. Let T be a contraction on a Hilbert space, and suppose {lEA: 

/(T) =0} has the/orm yAK, where K =Z v N T. Then T is maximal i/, and only i/, [[p(T)[[ = 

HP(Sv) ]] /or every matrix-valued polynomial p. 

Proo/. Let p be an M~-valued polynomial, and define the polynomials p~j to be the 

entries of p: i,e., p =(p~j). Then [[p(T)[[ ~ [Ip(Sv)[[ simply means ][ (p~j(T)) [] = ]] (po(S~)) [[, 

and thus the condition is equivalent to the requirement that/(S,p) t..-~/(T) (for [EA) define 

a completely isometric representation of P(Sv) onto P(T). The corollary now follows from 

3.6.6. 

14 - 692908 Acta mathemat@a 123. I m p r / m 6  13 23 Junv io r  1970 
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Remark. Note tha t  the inequality I[p(T)]] <<. ]]p(S~)][ in 3.6.7 is automatic. Indeed, the 

representation q0: /EA ~-~/(T) is completely contractive (3.6.1), and thus for every M n- 

valued polynomial p we have 

[]p(T)]]=]]q~(p)]]= in! ]]q~,(p+ $')]]4 in! ]]p+ F]]=]]p(S~)[[, 
FE ker ~ | $'~ ker cp | M~, 

the last equality by 3.6.6. Therefore, T is maximal if! 

(i) ]]p(T)]] =]]p(S~)]] /or every scalar-valued p, and 

(ii) ]]p(T)[J >~ ]]p(S~)]] /or every matrix valued p. 

I t  is possible tha t  condition (ii) is redundant; put  differently, it  may be that  every iso- 

metric representation of P(Sv, ) is completely isometric. Indeed, 3.2.8 shows that  this is in 

fact true when y~ is a finite Blaschke product. We do not know the answer for more general 

inner functions ~ (for which Z~ N T has measure zero), and that  is an interesting unsolved 

problem in this theory. For example, see section 3.7. 

We point out, however, tha t  the above argument has proved: 

PI~OPOSITIO~ 3.6.8. Every contractive representation of P ( S ~ ) is completely contractive. 

While the above proof only works when Z~ N T has measure zero, 3.6.8 is actually 

true for arbitrary inner functions. We omit the proof since the result is not needed in the 

sequel. Note, however, that  since 3.6.8 is false for the general contraction in place of S~ 

(see A.3.6), it is possible tha t  the answer to the above question is no. 

Suppose ~oA K is the order of a contraction T. The next  three results take care of the 

occasionally bothersome case where K is properly larger than Z v n T. 

A theorem of W. Rudin [19] implies that  if K is a closed set of measure zero in T, 

then A/A~  is canonically isometrically isomorphic with C(K). We shall require the following 

somewhat more general fact. 

L~MMA 3.6.9. Let Ko~_K be closed sets o/Lebesgue measure zero in T and let ~fl be an 

inner/unction such that ZvN T~_K o (y~ may be constant and K o may be empty). Then the 

homomorphism q): /EyJA~o~-~/]KEC(K ) has kernel y~AK, and canonically i n d u ~  an isometriv 

isomorphism o! wA~./~AK onto the closed ideal {/eC(K): /(K0) =0} in C(K). 

Proo/. q~ is clearly a norm-depressing algebra homomorphism, it maps into I = {[ E C(K): 

/(Ko) =0}, and for / EyJAKo we have / [  K =0  if!/Ev2A ~. This identifies ker ~, and the induced 

map is a norm-depressing homomorphism of y~AK~ ~ into I.  We will complete the proof 

by showing that ,  for e v e r y / E I ,  there is an /1Ev2A~, such that  ]]/1][ = H/H an d /1 ]K =] .  

Choose /GI  and define a function g on K by g(2) =~(~t)/(2) (g is taken as zero on K0). Since 



SUBALGEBRAS OF C*-ALG:EBRAS 213 

~0 is continuous and of modulus 1 on T ~ Z ~  and [ is continuous and vanishes on K o___Z v N T, 

it  follows that  g E C(K) and I g(2) I = 1[(2) [ for all 2 E K. Since K is of measure zero, a theorem 

of Rudin [19] provides a function gl~A such that  ]lglH = Hgl = H/I] and gl ]K=g. Of course, 

gl vanishes on K so that  ~VgxE ~pAK. Taking ]1=~9gl, we have the desired conclusions 

/t(~)= [~(,~)[~/(,~)=[(2), for 2~K,  and ][[~[[ = [[[[[. 

Note that  the theorem of Rudin mentioned above is the case where F = 1 and K 0 is 

empty. 

L ] ~ M ~  3.6.10. Let K be a closed set o/measure zero in T, and let T be a contraction whose 

order is A~. Then T is unitary and sp (T) =K. 

Proo/. Since the map /EA ~-~/(T) has kernel AK, we obtain a contractive homomorphism 

]EA/A~-~ / (T)  (] denoting the eoset representative o f /EA) .  By 3.6.9 (or, for that  matter,  

by Rudin's theorem above), there is a contractive homomorphism a of C(K) defined by 

a(/IK ) =/(T), for every ]EA. Note that  q(1) is the identity operator. So because C(K) is a 

C*-algebra, it follows that  a is a representation (i.e., ,-preserving), by 1.2.8. Putt ing 

z(2) =2  for 2e K, then zEC(K) and is of modulus 1; thus T=a(z) is unitary. 

Now sp (z) is the range of the function z, namely K, and so sp ( T ) _  K because repre- 

sentations shrink spectra. On the other hand, if ]EC(K) and / vanishes on sp (T), then 

a(/)=/(a(z)) = / (T)=0  by the operational calculus. By Rudin's theorem (or 3.6.9), there 

is an/1  eA such t h a t / l  l r=[.  Thus, / I (T)  =a(hl~. ) =a(/)=0, and so h eA~ by definition of 

the order of T. H e n c e / = / I [ K = 0  and we conclude that  sp ( T ) = K ,  completing the proof. 

The next  result provides the decomposition alluded to in the discussion preceding 

3.6.9. In  the proof, we shall make use of the following fact about ideals in the disc algebra. 

Let  K 1 and K s be closed sets of measure zero in T and let v21 and yJ~ be inner functions such 

that  ZvN T___Kf. Then ~plA~,~_~f2A~, if, and only if, ~ divides ~1 and K ~ _ K  r I t  is 

immediate from this that  for two arbitrary ideals yJtAa, and yJ~AE, we have yJtA~, (/ 

~ A ~ ,  =~AK, where K = K  1 t) K s and yJ is the least common multiple of F1 and ~o 2 (for the 

existence of the latter, see chapter 6 of [11]). 

PROPOSITIO~ 3.6.11. Let T be a contraction on a Hilbert space ~ which has order 

v)A~, where K is a closed set o] Lebesgue measure zero in T and v 2 is an inner/unction/or 

which Z v N T~_K. Let Ko=Z v n T and Jo=V~AK,. Then we have: 

(i) Jo( T) is a closed sel/-adioint subalgebra o / P ( T ) N  P( T)*, ~0=[J0(T)~]  reduces T, 

and the projection on ~o belongs to the weak closure o/J0(T), 

(ii) T I~~ is a unitary operator whose spectrum is the closure o / K ~ K o ,  

(iii) T I~ has order Jo. 
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Proo/. Let I={/EC(K): / (K0)=0 }. Then I is a closed ideal in C(K) and is a com- 

muta t ive  C*-algebra (perhaps with no identity). We first define a homomorphism of I 

into L(G ) in the following way. 

The map /GJo~-~/(T ) is a contractive homomorphism of the Banach algebra Jo, 

having kernel J .  Thus it induces canonically a contractive homomorphism of the quotient 

Jo/J into L(G ). By  3.6.9, the lat ter  may  be regarded as a homomorphism of I ;  more 

precisely, a(/l~)=/(T ) (/EJo) defines a contractive homomorphism of I .  Since I is an 

abelian C*-algebra, a is necessarily self-adjoint, hence a( I )  is closed ([4], p. 18). Now 

I = J 0 ]  ~, and hence the ahelian C*-algebra a( I )  is none other than  Jo(T). I t  follows tha t  

Jo(T)~_P(T) NP(T)* and G0 reduces T; the projection on G0 is in the weak closure of 

Jo(T) by yon Neumann 's  density theorem ([5], pp. 43-44). 

Let  T 1 = T I~o" To prove (ii), it suffices to show tha t  T 1 has order A(K\K,)-, by  3.6.10. 

But  for every [ EA we have/(T1)  = 0  i f f / (T)  go(T) G = (0} iff [Jo~_ ~AK, because ~0AK is the 

order of T. Now if [(K"~.Ko) =0 then [Jo vanishes on K so tha t  [JoC_yzA~:; hence/(T1) =0. 

Conversely, if/Jo~_~vAK then choose 2 in K ~ K  0 and find gEJ o so tha t  g(2)=~0 ([11], p. 

80). Then /g is in ~vAK, by  the last sentence, and in particular /(~t)g(2)=0. Therefore, 

/(2) = 0  and this proves / =  0 on K ~ K  o. 

Consider now T 2 = T I~,  and let J~ be the order of T 2. Since T = T 1| T~ we have 

/(T) =/(T1) | = 0 if, and only if,/(T1) = ](T~) = 0. So the order of T is the intersection 

of the orders of T 1 and Ts; or, if we put  E = ( K ~ K 0 ) - ,  then ~vA ~ = J2 n As. Consider first the 

degenerate case J~ = A. Then vAK= Ae and in particular ~v is constant. Hence K 0 is empty,  

Jo=A, and we have Go=[A(T)G ] =G- This shows tha t  G~=0  so trivially T~ has order A. 

Thus, we can assume J~.4A; hence J~ is of the usual form ~v~A~. By the remarks 

preceding this theorem we conclude from the equation yJAK = J s  N As tha t  ~v2 and v 2 are 

proportional and K s U E = K (note tha t  the least common multiple of ~v~ and 1 is ~vs). This 

shows in particular tha t  J2 is contained in ~vAK~ =J0- To see, conversely, tha t  J0 annihilates 

Ts, note that ,  by  definition of G0, G~ is the intersection of the nullspaces of all operators 

/(T)*, /eJo. So i f / e J o  then because Go • reduces T we have /(T~)*=/(T)*]$~ which is 

zero by  the preceding comment.  Hence, / (T2) =0 and the proof is now complete. 

The next  theorem, which is the principal result of this section, allows us to give a 

complete classification (to uni tary equivalence) of all almost simple maximal contractions 

which have nonzero order. I t  is significant that ,  while the conclusion of the theorem 

implies tha t  such operators generate type I C*-algebras, no such condition is imposed 

a priori. In  the proof, we shall make use of results from sections 2.1, 3.3, 3.4, and 3.5. 
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THEOREM 3.6.12. Let T be a nonscalar contraction with nonzero order, say (lEA: 

/( T) =0 3 =yJAK, where K is a closed set o/ Lebesque measure zero in T and y~ is an inner/unc- 

tion/or which Zv n T~_K. 

Then T is maximal and almost simple i/, and only i/, it is equivalent to one o/the/ollowing 

I |  v or U~)(I| where I is the identity operator on some Hilbert space and U is a 

unitary operator/or which sp (U)_Zv  n T. Moreover, under these conditions we necessarily 

have Zv N T =K, and v 2 cannot be constant. 

Remark. Note that  the unitary operator U is quite different from the unitary summand 

of Proposition 3.6.11; indeed, the last sentence shows that  the summand of 3.6.11 cannot 

appear. 

Proo/. Suppose first that  T has the form UG (IQSv) as above. Define a representation 

# of C*(S~) by #(Sv)= UO(I|  (3.4.5). Then # has the form/~=cr |174 where id 

is the identity representation and a is the representation defined by a(Sv) = U, and hence 

~u is faithful. Since #(Sv)= T we have #(C*(Sv))=C*(T), so that  ~u is a ,-isomorphism of 

C*(Sv) on C*(T). Since C*(Sv) is almost simple, so is C*(T), and therefore T. Moreover, 

a ,-isomorphism is completely isometric, so by 3.6.7 we conclude that  T is maximal. 

If  T has the form 1| then X E C * ( S v ) ~ I |  defines a ,-isomorphism between 

C*(Sv) and C*(T) which carries S~ to T, and we can repeat the above argument to arrive 

at  the same conclusions. 

Turning now to the more interesting implication, let T be an almost simple contraction 

satisfying the stated conditions. First, we claim that  K = Z v  fl T. Assume not. We will 

produce a nonzero ideal y in C*(T) such that  y fl Comm (T)=0 ,  contradicting almost 

simplicity. Let ~ 0 ( ~  be the decomposition of the underlying space described in 3.6.11, 

and put T 1= T[�9 and T 2 = T[�9 Then T =  T10 T 2 and T 1 is unitary having ( /C~Zv)-  

as its spectrum. In  particular, ~040 .  Since T 1 is normal we have Comm (T) ___ 0OComm (T2). 

Now the map XEC*(T)~->X [~ is a representation, and its kernel Y is an ideal in C*(T). 

Clearly Y___L(~0)| so the desired conclusion will follow if we show that  Y # 0. But the 

projection E on ~0|  is nonzero, and is a weak limit of operators X in P(T)NP(T)* 

satisfying E X  = X, by 3.6.11 (i). In  particular, there exists X E P(T) such that  X = EX=~O. 

Since E commutes with T we have X = E X  =XE,  hence X E Y, and the claim is now 

established. 

We may now apply 3.6.7 to conclude that  the map p(T) ~-~p(Sv). (p ranging over all 

scalar polynomials) extends to a completely isometric representation of P(T) on P(S~). 

3.5.3 shows that  the identity representation of C*(Sv) is a boundary representation for 

P(S~), and so by 2.1.2 there is a representation eo of C*(T) such that  o)(T)=id (Sv)=Sv. 
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We claim: to is faithful. For if not, then ker to is a nonzero ideal in C*(T) which, by  

almost simplicity, must  contain Comm (T). In  particular, S$ S~ - SvS* = co(T* T - TT*) = O, 

and so S~ is normal. Since S~ is also irreducible we can only infer tha t  H2Gv2H ~ is one- 

dimensional, and therefore v 2 is a single simple Blaschke factor ~ ( z ) = ( z - a ) ( 1 - ~ z )  -x for 

some g, [ ~ I < 1. This implies K =Z~ f3 T is empty,  and so the order of T is simply ~0A. 

In  particular, y~(T)=0, which implies T = ~I ,  contradicting an original hypothesis. 

Hence, 7e=r -1 is a well-defined representation of C*(S~), for which zr(S~)= T. By 

3.4.5, T must  have the form I |  U Q ( I |  or U, where U and I are as described. 

The third contingency cannot occur because an almost simple uni tary operator must  

clearly be a scalar, which has been ruled out by  hypothesis. 

I t  only remains to show tha t  if T is almost simple (and nonscalar), then ~ is not a 

constant. But  if ~v=l, then the order of T is A~./-f K is empty  then T = 0  i sa  scalar; and 

otherwise, by 3.6.10, T is unitary, and again, almost simplicity implies T is a scalar. That  

completes the proof. 

We remark tha t  this theorem allows one to classify all such T to equivalence. The 

details are, briefly, as follows. Suppose T = I |  where I is the identi ty on an n-dimen- 

sional Hilbert space ~ (n being an arbi t rary cardinal ~> 1). Then note tha t  T determines n 

(the commutant  of C*(T) is L ( ~ ) |  which is a factor of type I , ) .  I f  T =  U | 1 7 4  

then T determines U, or equivalently, T determines the projection 0 | 1 7 4  on the 

second coordinate space (Comm (T) = 0 | (1|  Comm (Sv)), hence 0 | (1|  1) is the projec- 

tion on the range of Comm (T)). Thus, these operators T are completely classified to equiva- 

lence by  triples consisting of (a) a cardinal n >~ 1, (b) an inner function yJ for which Z~ 0 T 

has Lebesgue measure zero (proportional functions being identified), and (c) a (unitary) 

equivalence class of unitary operators U for which sp (U)_  Zv N T. I t  is understood tha t  

the third component (c) m a y  be absent. 

The following consequence of theorem 3.6.12 is noteworthy. 

COROLLAI~y 3.6.13. Let T 1 and T 2 be irreducible operators, each acting on a Hilbert 

space o/ dimension greater than one, such that both commutators T* T t -  T~ T~ are compact. 

Suppose T 1 and T 2 are maximal, and have nonzero orders. Then T 1 and T 2 are equivalent if, 

and only if, their minimum/unct ions  are proportional. 

Proo]. First, consider T 1EL(~I). The order of T1 is nonzero, and therefore has the usual 

form ~olA~I; in particular, T 1 has a minimum function. By 3.3.7, T 1 is almost simple. So 

theorem 3.6.12, together with irreducibility, shows tha t  T 1 is equivalent to either a one- 

dimensional uni tary operator U or to S~,. The former cannot occur by  hypothesis, hence 

T 1 is equivalent to Svl. Similarly, T 2 is equivalent to Sv,, where v22 is the minimum function 
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of T~. But  S~, and Sv, are equivalent if, and only if, v21 and yJ~ are proportional (the less 

trivial implication follows after  comparing their respective orders), and the proof is com- 

plete. 

We remark tha t  3.6.13 remains valid when the hypothesis T* T~-T~T~ compact is 

replaced with the weaker condition: the commutator  ideal in C*(T~) is a minimal ideal 

(cf. 3.3.6). 

One might ask if 3.6.13 holds for maximal  operators having order 0 (i.e., operators 

Ti for which / 6 A  ~->/(T,) is a completely isometric representation of A). The answer is no. 

For example, choose ~1 and ~v~ to be (nonproportional) inner functions such tha t  Zv~ 

contains T, for i = 1 ,  2, and let T~ =Sv.  Then T 1 and T 2 satisfy the conditions of the first 

sentence of 3.6.13, both are maximal  (3.6.3), yet  they are not unitarily equivalent. One 

way to see this is to extend the mappings /EA~/(T~) to H ~176 in the canonical way (for 

example, see [22], p. 179). Then note tha t  ~(T~) = 0  for an inner function y~ iff ~ divides yJ. 

Since Y~l and yJ~ are not proportional, we must  have either ~oI(T~) 4 0  or ~fl~(T1) 4=0; because 

yJI(T1) =~v~(T~)=0, it then follows tha t  T 1 cannot be equivalent to T 2. The details are left 

to the reader. The reason the proof of 3.6.13 does not work for these operators is explained 

by  the second s ta tement  of 3.6.3. 

3.7. A characterization o/the Volterra operator. We shall indicate how the results of 

the preceding section can be applied to give a characterization of the Volterra operator V, 

defined on the Hilbert  space L2(0, 1) by  

V/(x)= /(t)dt, xE(O, 1),/EL2(O, 1). 

V is known to be an irreducible, compact, quasinilpotent operator for which Re V ~>0 

and {{ VII <1 [9]. Recall tha t  if n is a positive integer, p(z)=Co§247247 k is an 

Mn-valued polynomial, and T is a Hilbert space operator, then p(T) is defined as Co| 1 +  

CI| T-4-...+Ck| k. We shall prove the following: 

TH]~OR]nM 3.7.1. Let T be an irreducible operator on a Hilbert space ~ such that 

T ' T - T T *  is compact and {{p(T){l = Ilp(7){I/or every matrix-valued polynomial p. Then T 

is unitarily equivalent to V. 

First, we recall some facts about  certain transforms of Hilbert  space operators. Let  X 

be an operator on a Hilbert  space for which - 1  C sp (X), and put  Y = ( I - X ) ( I + X )  -1. 

I f  Re X ~>0, then II YH -<< 1 (for example, see [18], p. 442). A calculation shows tha t  Re Y =  

( I + X * ) - I ( I - X * X ) ( I + X )  -1, so tha t  ][Xl{ <1 implies Re Y>~0. Hence, if {{X{{ ~<1 and 
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Re X~>0, then the same is true of Y. N o w / ( z ) = ( 1 - z ) ( 1  +z) -1 never takes on the value 

- 1  in the (finite) complex plane, and it follows from the spectral mapping theorem tha t  

- 1 ~ sp (Y); since (1 -/(z)) (1 +/(z)) -1 =z, we see tha t  ( I -  Y) (I  + y)-I  =X. According to 

3.1.1, if Re X~>0 then YeP(X) ,  and by  the above remarks, if IIXII ~<1 then X e P ( Y )  by 

the same lemma. We conclude: i] X is a contraction/or which Re X >~O, then the same is 

true o/ Y and moreover, P(X)=P(  Y). 

We now take up the proof of 3.7.1. Note first tha t  the space ~ on which T acts is of 

dimension I%; indeed T satisfies no nontrivial polynomial equation p(T)=O because V 

does not, so tha t  dim ~ ~>1r and dim ~ ~<~0 follows because C*(T) is a separable subalgebra 

of L(~) which has a cychc vector. 

By  hypothesis, the map p(V) ~-~p(T), defined for all polynomials p, extends uniquely 

to a completely isometric isomorphism ~ of P(V) on P(T). We have II Tll = II vii < 1, and 

Re T=Re~0(V)~>0 because Re V~>0, by  1.2.8. Define V I = ( I - V ) ( I + V )  -1 and TI= 

( I - T ) ( I + T )  -1. By the preceding remarks, P(V1)=P(V ), P( T1) = P( T), and of course 

~(V1)  = T 1. Note also tha t  T 1 is irreducible (C*(T1)=C*(T)) and T*T 1 -  T 1 T*I is compact 

(Comm (T1)=Comm (T)=LC(~) ,  by 3.3.7). 

Now as it is pointed out in [21], V1 is unitarily equivalent to S v where ~ is the inner 

function ~p(z) = exp (z + 1) (z - 1)-1, I z I < 1 (note tha t  we have slightly restated the result of 

[21]). Therefore V 1 and T 1 have the same minimum function % both are maximal  (because 

S v is by  3.6.6), and hence 3.6.13 shows tha t  V 1 and T 1 are equivalent. I t  follows tha t  V 

and T are equivalent, and tha t  completes the proof. 

I t  is not known if 3.7.1 is valid when the norm condition [[p(T)[[ = [[p(V)[[ is assumed 

to hold only for scalar-valued polynomials p. By the above proof and 3.6.8, the scalar 

condition implies [[p(T)[[ ~< liP(V)[ I for all matrix-valued p, but  the opposite inequality 

is in doubt. 

Note tha t  3.7.1 is valid when V is replaced with Sv, where y~ is an inner function for 

which Z~ N T has measure zero: tha t  is what  the last few lines of the proof showed. But  

the theorem becomes false with other substitutions. For example, if T 1 and T~ are irreduc- 

ible contractions each of whose spectrum contains the unit circle, such tha t  each commuta-  

tor T$ T~ - T~ T~* is compact, then p(T1) ~..~p(T~) (p running over the polynomials) is com- 

pletely isometric (3.6.3), but T 1 and T 2 surely do not have to be equivalent (el. the discus- 

sion following 3.6.13). The second sentence of 3.6.3 points to where the proof of 3.7.1 

breaks down: the identi ty representation of C*(Tt) is not a boundary representation for 

P(T~), i= l ,  2. 
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Appendix 

A.1. Semi.invariant 8ubspaces. Let A be an algebra of operators on a Hilbert space ~, 

which contains the identity, and let ~ _ ~  ~ be a nested pair of ~4-invariant subspaces 

in ~. Then ~ = ~j~ ~ ~ 1  is a semi-invariant subspace for ~ (cf. the discussion preceding 

1.3.3). While ~flj~ and ~j~ are not uniquely determined by ~ (as obvious examples will show), 

there is a canonical nested pair of A-invariant subspaces ~ _ c  ~ such that  ~ = ~ @  ~ ,  

namely ~ = [ ~ ]  and ~ = [A~]@~ (see [20]). In applications, one needs to know when a 

given pair ~flJ~, ~j~ is canonical; equivalently, when is ~)~. the smallest ,~-invariant subspace 

containing ~? The present section is devoted to a discussion of this point, for a special 

class of algebras A. 

In the following, A will be a subalgebra of L(~), which contains the identity of ~,  

will denote the yon Neumann algebra generated by .,4, and ~ 1  and ~J~ will be a nested 

pair of ~-invariant subspaces, as above. 

T H ~ O R ~  A.I.1. Assume that .,~+ A* is weakly dense in ~, [ ~ J ~ ]  = ~ ,  and let ~ =  

~)J~J~.  Then the/ollowing are equivalent: 

(i) [A~] = ~ ,  
(ii) [R~]=~ ,  
(iii) the only projection E~ ~' ]or which E~J~_~J~ 1 ks E =0. 

Proo/. That (i) implies (if) is clear from the hypothesis [ R ~ ]  = ~. 

We claim that  (if) implies (iii). Indeed, if E is a projection in R' such that  E~;j~2c_~J~, 

then in particular we have E~___ ~0~ c ~z, or E ~  • ~. Because E is a projection, it follows 

that  E ~  =0, or ~___ (ER)'. Using (if)we have R = [R~]-c [R(E~)~]___ (ER)',  and therefore 

E ~  =0, as required. 

Assume, now, that  (iii) is satisfied; we must show that  [A~] =~J~2. Note first that  

[A~]~_ ~J~. Consider the restriction A [~  of A to the invariant subspaee ~ ,  and let 

EoeL(~2) be the projection of ~fJ~2 on ~J~@[A~]. We claim that E 0 commutes with A]~, 

or, what is the same, ~ J ~  [A~] is invariant under both A [~, and (A I~,)*" I t  is clear that  

(A ]~,)* leaves ~J~@[A~] invariant, since the latter is the complement of an A[~,-in- 

variant subspace. The other assertion is simply ~4(~J~@[A~])_~ ~J~2@[A~], and this will 

follow if we prove that  ~J~@[A~] =~rJ~l fi [ ~ ] ~  (for the right side is an intersection of 

~-invariant subspaces). Now ~J~=~|  and [ ~ ] = ~ |  so that  we have 

~J~ @ [A~] = ~J~x(~ ([~4~] @ ~) = ~ I1 ([A~] (~ ~) . .  Because ~)~1 is an ~4-invariant subspace 

orthogonal to ~, we have ~J~_k [~4"~]; it follows that  the right side of the above equation 

is unchanged if we intersect it with [A*~] ~, i.e., ~[~@[A~] =~J~ ~ ( [ A ~ ] ~ )  z fi [A*~] • 
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But since A + A* is dense in R we have [A*~] (~ ([A~] e ~ ) =  [ ~ ]  (see the proof of 1.a.3), 

hence ( [A~]O~)  ~ r [A*~] • = [ ~ ] •  and the required formula ~J~O[A~] =~J~x N [ ~ ] •  

follows. 

One makes use of the commuting projection E0 as follows. Letting P be the projec- 

tion of ~ on ~J~, then because ~ + A* is dense in ~ we see that  E 0 commutes with P ~  ]~,. 

Since [ ~ j ~ ]  = ~ ,  one can apply 1.3.1 (taking the V of 1.3.1 as the inclusion map of ~ in 

~) to infer the existence of a projection E E ~ '  such that  E ]~, = Eo. Thus, E~J~ = E0~j~ ~ = 

~ Q [ ~ 4 ~ J = ~ N [ R ~ ] ~ I  . By (iii) we conclude E = 0 ,  hence ~ a ~ [ A ~ ] = 0 .  This 

means that  ~J~ = [A~], and the proof is complete. 

COROL~,ARy A.1.2. Let ,.4 be a subalqebra o/ L(~), containing the identity, such $hat 

A § A* is wea]dy dense in avon Neumann a~ebra ~, let ~J~ be an A-invariant subspace such 

that [~;j~] = ~, and le~ O be the yon ~eumann algebra { T E ~' : T~i~ ~_ ~)J~, T*~J~_~ ~J~}. 

Then/or every unitary operator U E}~', U~J~ is an ,,4-invariant subspa~. I /  U~I)~_~ 

and ~ is the semi-invariant subspace ~ )  U~)J~, then [ , ~ ]  = ~J~ i/, and only i/, the only pro~ec. 

tion EGO/or  which U E e O  is E=O. 

Proo/. I t  is obvious tha t  U~J~ is an ~4-invariant subspace. 

Assume V~J~ ~ ~j~. Note that  [A~] = ~J~ iff [A~0] = V-l~I~ where ~0 = U-I~ = V - l ~  Q ~ .  

Now since [~U-I~J~] = U - I [ R ~ ]  = U - I ~ = ~ ,  we can apply A.I.1 to the A-invariant sub- 

spaces ~I~1 =~rj~ and ~J~2= U-I~J~ to conclude that  [~4~] = ~  iff the only projection EE ~ '  

such that  E U - I ~ _  ~J~ is E =0. Note, however, tha t  this condition is equivalent to E E O 

and UEEO. Indeed, E~J~_~J~ follows from EU-I~J~_~JJ~ because U-I~J~ is larger than 

~I~ (thus EEO),  and along with EU-I~J~_~ we have UE~J~cU~J~i~ (thus UEEO).  

The converse is apparent. That  completes the proof. 

We are now ready to give an application to shifts of arbi trary multiplicity. Let  ~ be 

a separable Hilbert space and let U be an inner function with values in L(~) (see the 

discussion preceding 1.3.4 for definitions and notation). We will say U is completely non- 

constant if the only ~ E ~ for which the vector-valued function z ~-~ U(z)~ is constant (inside 

the unit disc) is ~ =0.  Taking ~ =L2(T, a; ~), ~J~ = / ~ ,  and ~ as the algebra of all multiplica- 

tions by scalar-valued polynomials in e *~ in the notation of A.1.2, we see that  O is the von 

Neumann algebra of all multiplications by constant L(~)-valued functions on T, thus we 

conclude from A.1.2: 

COROLLARy A.1.3. [ A ( / ~ O  UH~)] = / ~  i/, and only i], U is completely nonconstant. 

We remark that  A.1.3 seems closely related to a result on p. 43 of [26], and may be a 

consequence of the latter. 
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A.2. A positive linear map with no positive extension. Le t  T be the  uni t  circle, and  

define z fi C(T) b y  z(e ~~ = e g~ 0 ~< 0 < 2zt. Le t  S be the  three-dimensional  self-adjoint  subspace 

of C(T) spanned  b y  1, z, and  ~. We will give an  example  of a posit ive l inear m a p  of S 

in to  L(~)  which has no posit ive l inear extension to (the c o m m u t a t i v e  C*-algebra) C(T). 

Rega rd  the  C*-algebra M 2 of all complex 2 • 2 matr ices  as the  r ing of all bounded  

opera tors  on a two-dimensional  Hi lber t  space. Define a l inear m a p  ~: S ~ M ~  by: 

a 

a, b, e 6 G. Clearly q0 is well-defined linear, and  takes  1 to the  ident i ty .  

Now the self-adjoint  e lements  of S can be pu t  in the  form t l  + �89 + r)~,)=tl + R e  (bz), 

with t real and  b a rb i t ra ry ,  and  such an e lement  is posi t ive iff t ~> I b I" ~0 takes  tl  + Re  (bz) 

to  the  ma t r ix  

which, in turn,  is posit ive iff t ~> I bl (a self-adjoint 2 • 2 ma t r ix  is posit ive iff its t race  and  

de te rminan t  are bo th  nonnegat ive) .  Thus,  ~ is an  order i somorphism and  in part icular ,  it is 

positive. 

Now since a posit ive linear m a p  of a c o m m u t a t i v e  C*-algebra is necessari ly comple te ly  

posit ive (see [23]) and  the  norm of a comple te ly  posit ive m a p  is achieved a t  the  iden t i ty  

(1.2.10), it follows t h a t  if ~ were posi t ively ex tendable  then  ]]~]1 = H~v(1)H = ][IH = 1. Bu t  z 

is of norm 1, while 

and  t h a t  proves  ~ has no posit ive l inear extension to C(T). 

A.3. A contractive representation need not be completely contractive. I n  this a p p e n d i x  

we show b y  example  t h a t  a contract ive  representa t ion  of a subalgebra  of a C*-algebra 

need not  be comple te ly  contract ive,  even when  the  subalgebra  is commuta t ive .  Indeed,  

we shall give examples  of (finite-dimensional) opera tors  X and  Y such t h a t  IIp(X)[[ = 

]IP(Y)]] for every  (scalar-valued) polynomial  p,  bu t  p(X)~-> p (Y)  is not  comple te ly  con- 

t ract ive.  

We r emark  t h a t  it does not  seem easy  to come by  such examples ,  even with respect  to 

the  s trongest  s t a t emen t  of the  first sentence.  Our own experience with the  examples  we 

tr ied init ial ly was t h a t  when  it was possible to  make  a decision a t  all, cont rac t ive  repre-  

senta t ions  tu rned  out  to be complete ly  contract ive.  The  problem was finally solved b y  

mak ing  use of a general  result  (Theorem A.3.5) which allowed us to sidestep the  more  
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involved calculations. Though A.3.6 is a negative result, it is an  important  one for the 

theory, and it would be interesting to have a simpler class of counter-examples. Along these 

lines, it is not known if a contractive representation of a function algebra must  be com- 

pletely contractive; we conjecture no (the answer is yes, however, for Dirichlet algebras, 

by  3.6.1). 

The example is described as follows. Let  ~ be a three-dimensional Hilbert  space, and 

realize L(~) as the algebra M a of all 3 • 3 matrices over 13, relative to a fixed orthonormal 

base for ~. Let  2 and to be any  two complex numbers such tha t  2 is not real and Ir I = 

(1 + I~[~) �89 Define S, T E L ( ~ ) b y  

(i i) (i 0)o S =  0 , T =  1 , 

0 - 2  

and let A be the three-dimensional subspacc of L(,~) spanned by  S, T, and the identi ty 

(it follows from A.3.1 tha t  A is a singly-generated subalgebra of L(~)). Let  X t denote the 

transpose of a matrix XEL(~) .  Thus, the m a p ~ :  X E A ~ - ~ X t E L ( ~ )  defines an identi ty 

preserving homomorphism of A into L(.~); since Vxtll = ]]xII for every matr ix  Z (a self- 

adjoint anti-automorphism of M 3 is necessarily isometric), it follows tha t  ~ is an isometric 

representation of A in L(~). We will show tha t  T is not completely contractive. 

The first four lemmas represent computations, and we shall merely outline their proof. 

LEMMA A.3.1. A is a singly-generated subalgebra o /L(~) .  

Proo/. Note first tha t  S T  = T S  = S 2 = 0 and T ~ = T - ~oS. Then if X = S + T, for example, 

it follows tha t  A =P(X).  

Lv.MMA A.3.2. C*(A)=L(~) .  

Proo/. By the double commutant  theorem, one need only prove tha t  the only self- 

adjoint matrices tha t  commute with both S and T are scalars. This calculation shows, in 

fact, tha t  {S, T} is irreducible provided merely tha t  both w and 2 are nonzero. 

L~MMA A.3.3. J4 +A* is linearly spanned by its unitary elements. 

Proo[. First, show tha t  aS*+bT is uni tary  when ]al = Ibl =(1 + 121~) -�89 Thus, the 

span of the unitaries contains (1 + ]2 Is) - �89 (S* + T) and (1 + ]212)-t(S * - T), and therefore it 

contains S* and T. Since the span of the unitaries in A + A* is a self-adjoint subspaee 

which contains the identity, the lemma follows. 

LEMMA A.3.4. There is no unitary matrix U such that U S = S t U  and UT=T~U.  

Proo/. This is a laborious calculation. Assuming the existence of such a U, one uses 

the fact  tha t  the row vectors of U form an orthonormal set to arrive at  the conclusion 

Ir = l1 + ~ 1 ( 1 +  121~) -j. Now by  the choice of to we have leol =(1 + 1212) ~, hence the 
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above implies I1 +2 ~] =1 + 121 ~, from which we conclude 22= ]2l 2 (i.e., 2 is real), contra- 

dicting the choice of 2. 

Note that  the preceding lemma, together with the proof of A.3.1, shows that  S +  T 

is not unitarily equivalent to its transpose. 

We now state a general result. 

THV, OREM A.3.5. Let S be a sel/-ad]oint linear subspace o / a  C*.algebra B, containing 

the identity o / B ,  such that B=C*(S). Let ~ be a Hilbert space and let 99 be an identity-pre- 

serving completely positive linear map o / S  into L(~) such that the closed linear span o/{a E S: 

IlaH =1, ~o(a) is unitary} is all o /S .  Then q~ is implemented by a representation o /B .  

Proo/. Making use of 1.2.3 and 1.1.1, we see that  there is a representation re of B on 

a Hilbert space ~ and a bounded linear map V: ~-~K such that  q~(a)= V're(a)V, aES, 

and Ire(B) V~] = ~ .  Since ~(e) = I ,  it follows that  V ' V = 1 ,  i.e., V is an isometry. 

We claim: V~ = ~ (the theorem follows, for then V is unitary and the representation 

V-lreV implements ~0). Since [re(B) V~] = ~, it suffices to show that  V~ is invariant under 

re(S) (for then V~ is invariant under the norm-closed algebra generated by  re(S), namely 

re(B)). Let  M = { a e S :  [la[I =1,  q(a) is unitary}. Then for h e M  and ~ e ~  we have 

]Ire(a) V~ - Vq~(a)~ll 2= Ilre(a) v~lI 2 - 2 R e  (re(a) V~, Vq~(a)~) + ]] V~0(a)~H~ 

= Hre(a) V~]] 2 -  ]]~0(a)~][ ~ = ]Ire(a) V~H ~ -  ][~[]~ < I]~H 2 -  ]]~]]~ = o, 

because (re(a) V~,Vq~(a)~)=(V're(a) V~, cf(a)~)= ]]~0(a)~*]]* = I[ V~(a)~H* and ~(a) is unitary. 

Thus, re(a) V= Vcf(a) for every aEM, and since M spans S this equation persists for aES. 

In  particular, r e ( S ) V ~ = V q ~ ( S ) ~  V~, and the proof is complete. 

We now state the main result, for the isometric representation ~0 of A defined above. 

T ~ O R E M  A.3.6. cf is not a completely contractive representation o/ ..4. 

Proo/. Consider the self-adjoint linear map ~1: X E A + A* ~ X t E M a. Note that  ~1 is 

the unique self-adjoint linear extension of ~9 to ~ + ~*. 

Assume, now, that  ~0 is completely contractive. By 1.2.8, ~01 is a completely positive 

linear map of ~4 + A*. Now by A.3.3, ~4 + A* is linearly spanned by its unitary elements; 

and since the transpose of a uni tary matrix is unitary, it follows that  {X 6 A + A*: ]IX H = 1, 

~I(X) unitary} spans ~4 + A*. By A.3.2, we have C*(A) = M a. Hence Theorem A.3.5 applies, 

so there is a .-homomorphism re: Ma-->M a such that  re(X)=T(X) for X ~ ~ .  

Because M a is simple re must be faithful, and an obvious dimension argument shows 

that  re(Ma) = Ma; thus re is a .-automorphism of M a. I t  is well-known that  a .-automorphism 

of L(~) is unitarily implemented, and we conclude that  there is a unitary matrix U 6 M  a 

such that  ~0(X) = UXU -1 for all XEA.  But  we now have an absurdity, by A.3.4, and thus 

~0 could not have been completely contractive. 
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