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I n t r o d u c t i o n  

This  p a p e r  concerns  funct ion t heo ry  and  o p e r a t o r  t heo ry  re la t ive  to  the  uni t  bal l  in 

complex  d-space  C d, d = 1 , 2 , . . . .  A d -con t rac t ion  is a d - tup le  (TI , . . . ,Td)  of m u t u a l l y  

c o m m u t i n g  ope ra to r s  ac t ing  on a c o m m o n  Hi lbe r t  space  H sa t i s fy ing 

IT1~1 +.. .  +Td ~d II 2 ~< I1~1112+---+ II~d II 2, 

for every ~1, ...,~dCH. This  inequa l i ty  s imply  means  t h a t  the  "row ope ra to r "  defined 

by  the  d- tuple ,  viewed as an  o p e r a t o r  from the  di rec t  sum of d copies of H to H ,  is a 

con t rac t ion .  I t  is essent ia l  t h a t  the  componen t  ope ra to r s  c ommute  wi th  one another .  

This research was supported by NSF Grant DMS-9500291 
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We show that  there exist d-contractions which are not polynomially bounded in the 

sense that  there is no constant K satisfying 

I I f ( r l ,  ..., Td)II ~< g s u p { l f ( z t ,  . . . ,  Zd)l: Iz112+.. .+lzd[ 2 <~ 1} 

for every polynomial f .  In fact, we single out a particular d-contraction (S1, ..., Sd) (called 

the d-shift) which is not polynomially bounded but which gives rise to the appropriate  

version of von Neumann 's  inequality with constant 1: for every d-contraction (T1 .... , Td) 
one has 

II/(T1, ..., Zd)l[ ~< I I / (Sl ,  ..-, Sd)ll 

for every polynomial f .  Indeed the indicated homomorphism of commutat ive operator 

algebras is completely contractive. 

The d-shift acts naturally on a space of holomorphic functions defined on the open 

unit ball Bd C_ C d, which we call H 2. This space is a natural  generalization of the familiar 

Hardy space of the unit disk, but it differs from other "H2"-spaces in several ways. For 

example, unlike the space H2(OBd) associated with normalized surface area on the sphere 

or the space H2(Bd) associated with volume measure over the interior, H 2 is not asso- 

ciated with any measure on C d. Consequently, the associated multiplication operators  

(the component operators of the d-shift) do not form a subnormal d-tuple. Indeed, since 

the naive form of von Neumann 's  inequality described above fails, no effective model 

theory in dimension d~>2 could be based on subnormal operators. Thus by giving up the 

requirement of subnormali ty for models, one gains a theory in which models not only 

exist in all dimensions but are unique as well. 

In the first part  of this paper  we work out the basic theory of H 2 and its associated 

multiplier algebra, and we show that  the H2-norm is the largest Hilbert norm on the 

space of polynomials which is appropriate  for the operator  theory of d-contractions. 

In Part  II  we emphasize the role of "A-morphisms ' .  These are completely positive 

linear maps of the d-dimensional counterpart  of the Toeplitz C*-algebra which bear a par- 

ticular relation to the d-shift. Every d-contraction corresponds to a unique A-morphism, 

and on that  observation we base a model theory for d-contractions which provides an 

appropriate  generalization of the Sz.-Nagy Foias theory of contractions [43] to arbi trary 

dimension d~> 1 (see w In w we introduce a sequence of numerical invariants En(S), 
n=1 ,2 , . . . ,  for arbi trary operator  spaces $.  We show tha t  the d-dimensional operator  

space Sd generated by the d-shift is maximal in the sense tha t  En(Sd)>-En(S) for every 

n~>l and for every d-dimensional operator  space S consisting of mutually commuting 

operators. More significantly, we show that  when d~2, Sd is characterized by this max- 

imality property. Tha t  characterization fails for single operators (i.e., one-dimensional 
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operator  spaces). We may conclude that ,  perhaps contrary to one's function-theoretic 

intuition, t he re  is more uniqueness in dimension d~> 2 than  there is in dimension one. 

Since this paper  is a logical sequel to [3], [4], and so many  years have passed since the 

publication of its two predecessors, it seems appropriate  to comment on its relationship 

to them. On the one hand, we have come to the opinion that  the program proposed 

in [4, Chapter  1] for carrying out dilation theory in higher dimensions must be modi- 

fied. Tha t  program gives necessary and sufficient conditions for finding normal dilations 

in multivariable operator theory. However, the results below provide two reasons why 

normal dilations are inappropriate for commutat ive sets of operators associated with the 

unit ball Bd. First, they may not exist (a d-contraction need not have a normal dilation 

with spectrum in OBd, cf. Remark  3.13) and second, when they do exist they are not 

unique (there can be many normal dilations of a given d-contraction which have the 

stated properties but which are not unitarily equivalent to each other). 

On the other hand, the results of this paper  also demonstrate  tha t  other aspects of 

the program of [3], [4] are well-suited for multivariable operator theory. For example, 

we will see tha t  boundary representations, the noncommutat ive counterparts  of Choquet 

boundary points in the commutat ive theory of function spaces, play an important  role 

in the operator theory of Bd. Boundary representations serve to explain the notable 

fact that  in higher dimensions there is more uniqueness than there is in dimension one 

(eft Theorem 7.7 and its corollary), and they provide concrete information about  the 

absence of inner functions for the d-shift (eft Proposit ion 8.13). 

We were encouraged to return to these problems by recent results in the theory 

of E0-semigroups. There is a dilation theory by which, start ing with a semigroup of 

completely positive maps of B(H), one obtains an E0-semigroup as its "minimal dilation" 

[14], [6], [7], [8], [9], [10]. In its simplest form, this dilation theory starts  with a normal 

completely positive map P: B(H)~B(H) satisfying P ( 1 ) = I ,  and constructs from it a 

unique endomorphism of 13(K) where K is a Hilbert space containing H.  When one 

looks closely at this procedure one sees that  there should be a corresponding dilation 

theory for sets of operators such as d-contractions. 

We have reported on some of these results in a conference at the Fields institute 

in Waterloo in early 1995. Tha t  lecture concerned the dilation theory of semigroups of 

completely positive maps, A-morphisms and the issue of uniqueness. However, at that  

t ime we had not yet reached a definitive formulation of the application to operator  theory. 

There is a large literature relating to von Neumann 's  inequality and dilation theory 

for sets of operators, and no a t tempt  has been made to compile a comprehensive list of 

references here. More references can be found in [26], [27]. Finally, I want to thank Rafil 

Curto for bringing me back up to date on the literature of multivariable operator  theory. 
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P a r t  I. F u n c t i o n  t h e o r y  

1. B a s i c  p r o p e r t i e s  o f  H 2 

Throughout  this paper  we will be concerned with function theory and operator theory 

as it relates to the unit ball Bd in complex d-dimensional space C d, d - - l ,  2, ..., 

B d  = { z = ( z l  , z2 ,  . . . ,  Zd)  �9 c d :  Ilzll < 1}, 

where Ilzll denotes the norm associated with the usual inner product in C d, 

Ilzll 2 = Iza 12+Lz21~ + . . . + l z d l  ~. 

In dimension d = l  there is a familiar Hardy space which can be defined in several 

ways. We begin by reiterating one of the definitions of H 2 in a form that  we will generalize 

verbat im to higher dimensions. Let • be the algebra of all holomorphic polynomials f 

in a single complex variable z. Every f E P  has a finite Taylor series expansion 

f ( z )  = ao + a l  z+. . .  +anz  n 

and we may define the norm IlfH of such a polynomial as the /2 -norm of its sequence of 

Taylor coefficients, 

II fll 2 = la ~ 12 + la 112 +. . .  + la n 12. (1.1) 

The norm Ilfll is of course associated with an inner product on 9 ,  and the completion of 

P in this norm is the Hardy space H 2. It  is well known that  the elements of H 2 can be 

realized concretely as analytic functions 

f :  {Izl < 1 } - .  c 

which obey certain growth conditions near the boundary of the unit disk. 

Now consider the case of dimension d >  1. P will denote the algebra of all complex 

holomorphic polynomials f in the variable z =  (zl, z2, ..., Zd). Every such polynomial f 

has a unique expansion into a finite series 

f ( z )  -= f o ( z ) +  f l ( z ) + . . . +  fn(Z) (1.2) 

where fk is a homogeneous polynomial of degree k. We refer to (1.2) as the Taylor series 

of f .  

Definition 1.3. Let V be a complex vector space. By a Hilbert seminorm on V we 

mean a seminorm which derives from a positive semidefinite inner product  ( - , . )  on V 

by way of 

Ilxll=(x,x) 112, xeV.  
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We will define a Hilbert seminorm on P by imitating formula (1.1), where ak is 

replaced with fk. To make tha t  precise we must view the expansion (1.2) in a somewhat 

more formal way. The space E = C  d is a d-dimensional vector space having a distinguished 

inner product 

(Z, W) = Z1%~ 1 J-Z2W 2 -}-...-}-Zd?~ d. 

For each n = l ,  2, ... we write E n for the symmetric  tensor product  of n copies of E.  E ~ is 

defined as the one-dimensional vector space C with its usual inner product. For n~>2, 

E n is the subspace of the full tensor product E | consisting of all vectors fixed under 

the natural  representation of the permutat ion group Sn, 

En ={(cE| 

U~ denoting the isomorphism of E | defined on elementary tensors by 

U ~ r ( Z I @ Z 2 @ . . . @ Z n ) = Z ~ r - I ( I ) @ Z z r - I ( 2 ) @ . . . @ Z ~ r  l (n ) ,  Z l ~ E .  

For a fixed vector z E E  we will use the notation 

Z n = Z | E E n 

for the n-fold tensor product of copies of z ( z~  ~ is defined as the complex number 1). 

E n is linearly spanned by the set { z n : z ~ E } ,  n = 0 ,  1, 2, .... 

Now every homogeneous polynomial g: E--~C of degree k determines a unique linear 

functional t) on E k by 

z c E  

(the uniqueness of ~0 follows from the fact that  E k is spanned by { z k : z E E } ) ,  and thus 

the Taylor series (1.2) can be writ ten in the form 

n 

f(z)=}2h(zk), 
k=O 

where fk is a uniquely determined linear functional on E k for each k=0 ,  1, ..., n. Finally, 

if we bring in the inner product on E then E (resp. E | becomes a d-dimensional (resp. 

d<dimensional)  complex Hilbert space. Thus the subspace EkC_E | is also a finite- 

dimensional Hilbert space in a natural  way. Making use of the Riesz lemma, we find tha t  

there is a unique vector ~k E Ek such that  
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and finally the Taylor series for f takes the form 

f ( z )  = ~ (z k, ~k), Z E E. (1.4) 

k = 0  

We define a Hilbert  seminorm on P as 

1[ f II 2 : I1~o II ~ + II~l II ~ + . . .  + ll~n it s, (1.5)  

The seminorm II" I! is obviously a norm on P in tha t  IIfll =0 ~ f = o .  

Definition 1.6. H~ is defined as the Hilbert  space obtained by complet ing P in the 

norm (1.5). 

W h e n  there is no possibility of confusion concerning the dimension we will abbrevia te  

Hd 2 with the simpler H 2. We first point  out  tha t  the elements of H 2 can be identified 

with the elements of the symmetr ic  Fock space over E,  

~+ (E) : E~ (gEI | | , 

the  sum on the right denot ing the infinite direct sum of Hilbert  spaces. 

PROPOSITION 1.7. For every f 6 7  :) let J f  be the element of ~+(E) defined by 

Jf = (r r ), 

where ~o, ~1, ... is the sequence of Taylor coefficients defined in (1.4), continued so that 

~k=0  for k>n.  Then J extends uniquely to an anti-unitary operator mapping H 2 onto 

m+(E). 

Proof. The argument  is perfect ly s traightforward,  once one realizes tha t  J is not  

linear but  anti-linear. [] 

We can also identify the elements of H 2 in more concrete terms as analyt ic  functions 

defined on the ball Bd: 

PROPOSITION 1.8. Every element of H 2 can be realized as an analytic function in 

Bd having a power series expansion of the form 

O 0  

f ( z ) = ~ ( z  k,~k) Z=(Zl,.. . ,Zd) eBd 
k : 0  

where the H2-norm of f is given by IIf[[~:~-~.k [[~k[12<oo. Such functions f satisfy a 

growth condition of the form 

I[f[[ If(z)l~< ~ ,  ZeBd. 
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Proof. Because of Proposition 1.7 the elements of H 2 can be identified with the 

formal power series having the form 

O ~  

k f(z) -- ~ (z , {k), (1.9) 

k- -0  

where the sequence {k c E  k satisfies 

~ II~kll 2 - - I I f lP  < e c .  (1.10) 
k = 0  

Because of (1.10) the series in (1.9) is easily seen to converge in Bd and satisfies the 

stated growth condition. 

In more detail, since the norm of a vector in E k of the form z k, zCE, satisfies 

we find that 

IIz ~ II 2 = (z ~, z ~) = (z, z) ~ = I Iz lP ~, 

I<zk, ~k>l ~ Ilzkll'll~kll ~ Ilzll~ I1~11, 

and hence for all zCE satisfying Ilzll <1 we have 

I(zk, ~k)l ~< Ilzll 2k~1/2 II~kll~) ]/2 = (1-Ilzll2)-l/~llfll, 
k = 0  = = 

as asserted. [] 

We will make frequent use of the following family of functions in H 2. For every 

XEBd define Ux: Bd---*C by 

ux(z)=(1-<z,x>) -1, Ilzll <1. (1.11) 

us(z) is clearly analytic in z and co-analytic in x. The useful properties of the set 

of functions {ux: xEBd} are summarized in the following proposition, which gives the 

precise sense in which H 2 is characterized in abstract  terms by the positive-definite 

reproducing kernel k: B d  X B d - - + C  , 

k ( x , y )  = (1-  (x, y)) -1. 
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PROPOSITION 1.12. 

(u~, u~) = ( 1 -  (y, x)) -~.  

H 2 is spanned by {ux:xEBd}, and for every f E H  2 we have 

f (z)=(f ,  Uz), zcB~. 

ux belongs to H 2 for every XE Bd, and these functions satisfy 

(1.13) 

(1.14) 

Moreover, if K is any Hilbert space spanned by a subset of its elements {vx : XCBd} 

which satisfy 

(vx,v~)=(1-(y,x)) -1, x, yeBd, 

then there is a unique unitary operator W: H2---*K such that Wuz=vx,  xEt~d. 

Proof. The proof is straightforward. For example, to see that  us belongs to H 2 we 

simply examine its Taylor series 
OO 

ux(z) = (1 - <z, ~>)-I  = ~ <z, ~> k. 
k = 0  

Noting that  (z, X)k=(z k, Xk)Ek we can write 
OC 

u~(z) = E<zL~k>Ek. 
k = 0  

This shows that  the sequence of Taylor coefficients of u~ is 

Ju~ = (1, x, x 2, ...) e ~'+ (E). 

Hence u~ belongs to H 2 and we have 

(at, uy) = (Juy, Ju~:).r+(E) = E (Y' z}k = (1-- (y, x}) -1. 

k=O 

Formula (1.13) follows. 

Similarly, a direct application of Proposition 1.7 establishes (1.14). From the latter it 

follows that  {us : xEBd} spans H 2. Indeed, if f is any function in H 2 which is orthogonal 

to every ux then 

f ( z ) = ( f ,  uz)=O for e v e r y z C B d ,  

and hence f = 0 .  

Finally, the second paragraph is obvious from the fact that  for every finite subset 

Xl, ...,XnCBd and cl, ...,cnCC we have 

]]c~n~ +. . .+c~U~o H ~ = IIc~v~ +...+e~v~o I?, 

which is apparent after expanding both sides and comparing inner products. [] 

The HU-norm is invariant under the natural action of the unitary group of C a, as 

summarized by 



S U B A L G E B R A S  O F  C * - A L G E B R A S  III: M U L T I V A R I A B L E  O P E R A T O R  T H E O R Y  167 

COROLLARY. Let V be a unitary operator on the Hilbert space E : C  d. Then there 

is a unique unitary operator F(V)cI3(H 2) satisfying 

F(Y)ux=uvx ,  xeBd .  (1.15) 

F is a strongly continuous unitary representation of /g(C d) on H 2 whose action on 

functions is given by 

F(V)f(z)  = f ( V - l z ) ,  ZEBd, f e l l  2. (1.16) 

Proof. Fix VCD/(cd).  For any x, yEBd we have 

(uvx, Uvu} = ( 1 -  (Vy, Vx)) 1 = ( 1 -  (y, x)) -1 = (u~, Uv). 

I t  follows from Proposition 1.12 that  there is a unique unitary operator  F ( V ) E B ( H  2) 

satisfying (1.15). It  is clear from (1.15) that  r(vlV )=r(vl)r(v ), and strong continuity 

follows from the fact that  

(F(V)u~, Uy) = (uw,  uu) = ( 1 -  (y, Vx} ) -1 

is continuous in V for fixed x, yEBd, together with the fact that  H u is spanned by 

{Uz: zCBd}. 

Finally, from (1.14) we see tha t  for every f c H  2 and every ZEBd, 

f ( v - l z )  : (f, Uv-lz} : (f, F(V-1)uz )  = (f,  F(V)*uz) 

= ( r ( v ) f ,  Uz) = (r(v) f ) (z) ,  

proving (1.16). [] 

2. M u l t i p l i e r s  a n d  t h e  d - d i m e n s i o n a l  sh i f t  

By a multiplier of H 2 we mean a complex-valued function f :  Bd-+C with the proper ty  

f . H  2 C_ H 2. 

The set of multipliers is a complex algebra of functions defined on the ball Bd which 

contains the constant functions, and since H :  itself contains the constant function 1 it 

follows that  every multiplier must belong to H :. In particular, multipliers are analytic 

functions on Bd. 

Definition 2.1. The algebra of all multipliers is denoted M .  H ~ will denote the 

Banach algebra of all bounded analytic functions f :  Bd---~C with norm 

[[fHo~-- sup If(z)[. 
IPzll<l 

The following result implies that  2td_CH ~ and the inclusion map of A/i in H ~ 

becomes a contraction after one endows A/[ with its natural  norm. 
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PROPOSITION 2.2. Every lEAd defines a unique bounded operator Mf  o n  H 2 by 

way of 

M s : g C H  2 ---~ f - g E H  2. 

The natural norm in All, 

satisfies 

II f i lm = sup{ II/'gll: g c H 2, Ilgll ~ 1}, 

IIfllM = IIMzlI, 

the right side denoting the operator norm in 13(H2), and we have 

Ilfll~ <~ [I/IIM, f e M .  

Pro@ Fix fE3 , t .  Notice first that  i fg  is an arbi trary function in H 2 then by (1.16) 

we have 

(Mfg, uz) = (f 'g,  uz) = f(z)g(z).  (2.3) 

A straightforward application of the closed graph theorem (which we omit) now shows 

tha t  the operator M I is bounded. 

It is clear that  IlfllM=llMfl[. We claim now that  for each XCBd one has 

M ; u .  = / ( x ) u . .  (2.4) 

Indeed, since H 2 is spanned by {uy:y~Bd} it is enough to show that  

(M~u~,uy}=f(x)(ux,uy) ,  yeBd .  

For fixed y the left side is 

( u x , f ' U y ) = ( f u y , u ~ )  

By (1.16) the lat ter  is 

f ( z )uv(x  ) = f ( x ) ( 1 - ( x ,  y ) ) - I  = f ( x ) ( 1 -  (y, x)) -1 = f(x)(u~, uy), 

and (2.4) follows. 

Finally, (2.4) implies that  for every xEBa we have 

if(x)l_ IIM~u~l~ <~ IIMffll = IlMf II = I l f l l~ ,  
Ilu~ll 

as required. [] 
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We turn now to the definition of the d-dimensional analogue of the unilateral shift. 

Let el, e2, ..., ed be an orthonormal basis for E = C  d, and define Zl, z2, ..., zdEP  by 

Zk(~)=(~,ek), x c C  d. 

Such a d-tuple of linear functionals will be called a system of coordinate functions. If  

Zl ,~ z2 ,t ..., Zd, is another system of coordinate functions then there is a unique unitary 

operator  V c  B( C d) satisfying 

z~k (x )=zk (V- l x ) ,  l <~ k<<. d, x c C  d. (2.5) 

PROPOSITION 2.6. Let Zl,Z2,. . . ,z  d be a system of coordinate functions for C d. 

Then for every complex number a and polynomials f l ,  f2,-.., f d C P  we have 

I la. l  + z l f l  + . . .+  zdAtl 2 <. tal2 + l l f l l l 2  +. . .+ l l fd l l  ~, 

II' II denoting the norm in H 2. 

Pro@ We claim first that  each zk is a multiplier. Indeed, if f c H  2 has Taylor series 

o o  

f(x) = ~ (zn, ~ )  
n = O  

with ~ n  II~nll~=llfll 2 < ~  then we have 

Now 

Do 

z k ( x ) f ( x )  : E (x, ek)(x n, ~n). (2,7) 
n = 0  

(x, ek)(x n, ~n) = (x n+l, ek O ~ ) .  

So if ek'~n denotes the projection of the vector ek |  n to the subspace E n+t 

then (2.7) becomes 
o o  

n + l  Zk(X)f(x ) = ~ (X , ek'~n). 
n = 0  

Since 

n = 0  

it follows that  z k f c H  2 and in fact 

(x~ DO 

Ilek"~nll 2 ~< ~ II~nll 2=  IIfll 2 
n : 0  

Ilzkfll ~ Ilfll, f c  H2. 
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Thus each multiplication operator Mzk is a contraction in B(H2). 

Hilbert space 

K = C|174174 " 

d t imes  

and the operator T: K--+H 2 defined by 

Consider the 

T(a, f l ,  ..., fd) = a" l + z l f l  +.. .+ Zafd. 

The assertion of Proposition 2.6 is that  [[T]] ~<1. In fact, we show that  the adjoint of T, 

T*: H2-+K,  is an isometry. A routine computation implies that  for all f E H  2 we have 

T* f  = ((f ,  1), S ; f ,  ..., S } f )  C K, 

where we have written Sk for the multiplication operator M~k, k = l ,  ..., d. Hence T T * r  

B (H 2) is given by 

TT* = Eo+ S1S ~ +.. .+ SdS~, 

where E0 is the projection on the one-dimensional space of all constant functions in H 2. 

We establish the key assertion as a lemma for future reference. 

LEMMA 2.8. Let zl, . . . ,Zd be a system of coordinate functions for C d, and let 

Sk=Mzk,  k = l ,  2, ...,d. Let Eo be the projection onto the one-dimensional space of con- 

stant functions in H 2. Then 

E o + S l S ;  +... SeS~ = 1. 

Proof. Since H 2 is spanned by {uz: zEBd}  it is enough to show that  for all x, yEBd 

we have 
d 

(Eoux, uy)+ ~ (SkS~u~, uy) = (Ux, uv). (2.9) 
k = l  

Since each Sk is a multiplication operator, formula (2.4) implies that  

S;u  = zk(x)u  = (ek,x)u , 

for x r Thus we can write 

d d d 

k : I  k = ]  k : l  

= (y, *>(u,, uy> = <y, x } (1 -  (y, x>) -1. 
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On the other hand, noting that  u0 = 1 and [[u0 [t = 1, the projection E0 is given by E0 ( f ) =  

(f, u0)u0, f c H  2. Hence 

(Eoux, uy) = (u~, uo)(uo, uy) : 1 

because (ux, u o ) = ( 1 -  (x, 0)) - 1 = 1  for every XEBd. It  follows that  

d 

<Eo~,  u y ) + ~  (S~S;~, uy) = 1+ <y, x > ( 1 -  (y, x>) -1 : ( 1 -  (y, x>) ' : <u~, u~), 
k--1 

as asserted. [] 

Tha t  completes the proof of Proposition 2.6. [] 

Definition 2.10. Let zl , . . . ,Zd be a system of coordinate functions for C d and let 

Sk = M~k , k= 1, 2,..., d. The d-tuple of operators  

= (&,  s2, ..., sd) 

is called the d-dimensional shift or, briefly, the d-shift. 

Remarks. The component  operators $1,..., Sd of the d-shift are mutually commuting 

contractions in B ( H  2) which satisfy 

SI S~ +... + SdS  ~ = l - E 0  

where E0 is the projection onto the space of constant functions in H 2. In particular, we 

conclude from Proposition 2.6 that  for any f l ,  ..., f d E H  2, 

HSIII+.. .+Sdfdll  2 <~ Ilfltt2+...+llfdll a. 

Notice too that  if we replace z~, ..., Zd with a different set of coordinate functions 

C d zl, ..., z~ for then then the operators ($1, . . . ,  Sd) change to a new d-shift (S~, ..., S~). 

More However, this change is not significant by virtue of the relation between zk and z k- 

precisely, letting V be the unitary operator defined on C d by (2.5), one finds that  

F(V)S~F(V) - I=S '~ ,  k =  1,2, . . . ,d,  

that  is, (S{,..., S'd) and ($1,..., Sd) are unitarily equivalent by way of a natural unitary 

automorphism of H 2. In this sense we may speak of the d-shift acting on H~. In 

particular, we may conclude that  each component  operator  Si is unitarily equivalent to 

every other one Sj, l<<.j<.d. 
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Finally, if f is any polynomial in ;o then we may express Mf  as a polynomial in the 

operators S1, ..., Sd as follows. We find a polynomial function g(wl, ..., Wd) of d complex 

variables with the property that f is the composite function of g with the coordinate 

functions Zl, ..., Zd, 

f(x)=g(zl(x),...,zd(x)), 

Once this is done the multiplication operator Mf  becomes the corresponding polynomial 

in the operators $1, ..., Sd: 

M I = g(Sl,..., Sa). 

We emphasize that in the higher-dimensional cases d~>2, the operator norm JJMfl I 

can be larger than the sup norm I]fll~ (see w below). On the other hand, in all dimen- 

sions the spectral radius r (Mi)  of any polynomial multiplication operator satisfies 

r(Mf)  : sup If(z)l. (2.11) 
zEBd 

In the following result we establish the formula (2.11). That  follows from a straightfor- 

ward application of the Gelfand theory of commutative Banach algebras and we merely 

sketch the details. 

PROPOSITION 2.12. Let A be the norm-closed subalgebra of B(H  2) generated by the 

multiplication operators Mf  , fOP .  

Every element of A is a multiplication operator Mf  for some rE34  which extends 

continuously to the closed ball Bd, and there is a natural homeomorphism of the closed 

unit ball onto the space (r(A) of all complex homorphisms of A, xHw~, defined by 

w ~ ( M f ) = f ( x ) ,  IIxl l~l. 

For every such f E 34 one has 

lira ]]M~]]l/~= sup If(x)]. 

Proof. Since the mapping fE3d~-~MfEI3(H 2) is an isometric representation of the 

multiplier algebra on H 2 which carries the unit of 3d to that  of B(H2), it is enough to 

work within 34 itself. That  is, we may consider A to be the closure in 34 of the algebra 

of polynomials, and basically we need to identify its maximal ideal space. 

Because of the inequality [[f[[~<<.llflIM of Proposition 2.2, we can assert that  for 

every polynomial f and every x E e d  satisfying ]]xll ~ 1 we have 

If(x)] ~ sup Jf(z)J = JJf]]~ ~ Ilf l l~.  
zEBa 
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It  follows that  there is a unique complex homomorphism cox of ~4 satisfying 

cox(f)=f(x), f e P .  

For all gC,A we now have a natural  continuous extension ~ of g to the closed unit ball 

by setting 

~0(x) =cox(g), Ilxll ~< 1. 

x~cox is a one-to-one continuous map of the closed ball in C d onto its range in a(A). 

To see that  it is surjective, let co be an arbi t rary element of a(A). Then for every yEC d 

we may consider the linear functional 

9(z) = (z, y), z �9 c ~. 

The map y~-@ is an antilinear mapping of C d onto the space of linear functions in P,  

and we claim that  11911M ~< Ilyll. Indeed, assuming tha t  y r  the linear function 

u(x )  - 9 ( x )  _ (x,  y)  

Ilyll Ilyll 

is part  of a system of coordinates for C d. Proposition 2.6 implies Ilu112~4 ~< 1, and hence 

11911~4 ~< IlY]]. Thus, Y~-~co(9) defines an antilinear functional on C d satisfying 

1~(9)1 < tlgllM < Ilyll, y e c  d. 

It  follows that  there is a unique vector x in the unit ball of C d such that  

co(9)=(x,~), y c c  d. 

Thus, co(f)=cox(f)  on every linear functional f .  Since both co and cox are continuous 

unital homomorphisms of A, since P is the algebra generated by the linear functions and 

the constants, and since P is dense in .4, it follows tha t  co=cox, and the claim is proved. 

Thus we have identified the maximal  ideal space of .A with the closed unit ball in C d. 

From the elementary theory of commutat ive Banach algebras we deduce that  for every 

f in A, 

n 1 /n  
nlim IIf Ilz4 = r ( f ) = s u p { l c o ( f ) l : c o e a ( A ) } = s u p { l f ( x ) l : l l x l l ~ < l } = l l f l l ~ ,  

completing the proof of Proposit ion 2.12. [] 

The realization of the &shift as a d-tuple of multiplication operators on the function 

space H 2 is not always convenient for making computations.  We require the following 

realization of ($1, ..., Sa) as "creation" operators on the symmetric  Fock space 5V+(E). 
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PROPOSITION 2.13. Let el, ... ed be an orthonormal basis for a Hilbert space E of 

dimension d. Define operators A1,...,Ad on Jr+(E) by 

A 4= c 

where e~  denotes the projection of el| to the symmetric subspace Jr+(E). Let 

Zl, ..., Zd be the system of orthogonal coordinates z~(x)=(x, eil, l <.i<.d. Then there is a 

unique unitary operator W: H2--~-+(E)  such that W ( 1 ) = I  and 

W(zil...z~n)=eil...ei,,,  n~>l,  ik E {1, 2, ..., d}. (2.14) 

In particular, the d-tuple of operators (A1, ..., Ad) is unitarily equivalent to the d-shift. 

Proof. For every xCE satisfying Ilxll < 1 define an element v~E~+(E) by 

Vx  = 1 0 x O x 2 G x 3 0  . . . .  

It is obvious that  IIv~l12=(1 - Ilxl12) -1 and, more generally, 

(Vx,Vy) = ( 1 - ( x , y ) )  -1, Ilxll, Ilyll < 1. 

~ + ( E )  is spanned by the set {vx: Ilxll<l}. 

Let {u~: Ilxll<l} be the set of functions in H 2 defined in (1.11), and let * be the 

unique conjugation of E defined by e*=ei,  that  is, 

Then we have 

(al el +... + ad ed)* : al el +... + Ctd ed. 

(u~, uy) = ( 1 -  (y, x)) -1 = ( 1 -  (x*, y . ) ) - I  = (vx*, vy. ) 

for all x ,y  in the open unit ball of E. By Proposition 1.12 there is a unique unitary 

operator W: H 2 - - ~ + ( E )  such that  W(ux)=v~. ,  Ilxll <1. 

We have W ( 1 ) : W ( u o ) : v o : l .  Choose xC E  satifying Ilxll~<l and let f~ denote 

the linear functional on E defined by f ~ ( z ) : ( z , x ) .  We have Ilf~llH24l and in fact 

IlfnllH24l for every n=0 ,  1,2, .... Hence for every 0~<r<l  and every zEBd we have 

urx(z) : (1 - <z, rx)) -1 : E rn(z' x>n : E rnf~(z)  C H 2. 
n~O n : O  

Similarly, 

n = O  
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Setting W(u~x) equal to v ~ .  and comparing coefficients of r n we obtain 

w ( I 2 )  = (x*F 

for every n = 0 ,  1, .... It  follows that  

w(fxlfx ...A ) = xax * 

for every xl ,  x2, ..., xn E E. Indeed, setting 

L(Xl, x2, ..., Xn) = W(fx l  f~2 "'" fx~), 

R ( x l ,  x 2 ,  . . . ,  X n )  * �9 �9 z X l X 2  ... X n  

(2.15) 

for Xl, x2, ... , x n E E ,  w e  see tha t  both  L and R are symmetric  n-antilinear mappings which 

agree when xl=x2 . . . . .  X n E B  d. Hence L = R  and (2.15) follows. We obtain (2.14) by 

taking Xk=eik in (2.15). 

(2.14) obviously implies WS~=A~W for i=l ,  ..., d, so that  the d-tuples ($1, ..., Sd) 

and (A1, ..., Ad) are unitarily equivalent. [] 

3. v o n  N e u m a n n ' s  i n e q u a l i t y  a n d  t h e  s u p  n o r m  

Definition 3.1. A d-contraction is a d-tuple of operators T=(T1 ,  ..., Td) acting on a com- 

mon Hilbert space H which commute with each other and satisfy 

IlTl l +. , .  + Zd dll 2 ll lll2+...+ll dll 2 

for every {1, . . . , {dcH.  

Remark 3.2. We make frequent use of the following observation. For operators 

T1, ..., Td on a common Hilbert space H,  the following are equivalent: 

(1) IlTl{l+...+Td~dll2<~ll~lH2+...+ll~dll 2 for all ~1, ...,~dCH. 

(2) T1T;+...+TdT~<~I. 

To see this let d.H denote the direct sum of d copies of H,  and let T6B(d .H,  H) be 

the operator defined by T((I , - . . ,  (d)=Tl(1 +...+Td~d. A simple computat ion shows that  

the adjoint T*: H--*d.H is given by 

T*(  : (T~(, ..., T~().  

Thus TT* is the operator in B(H) given by TT*=T1T{+. . .+TdT ~. The equivalence of 

(1) and (2) follows. 
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Notice that the d-shift S=(S1 , . . . , Sd)  acting on H~ is a d-contraction. Perhaps 

the most natural generalization of von Neumann's inequality for d-dimensional operator 

theory would make the following assertion. Let T =  (T1, ..., Td) be a d-contraction and let 

f = f ( z l ,  ..., Zd) be a polynomial in d complex variables zl, ..., Zd. Then 

Ilf(Tl,.. . ,Td)ll <<. sup If(z~,...,Zd)l. 
Ilzll~<l 

In this section we show that  this inequality fails rather spectacularly for the d-shift, in 

that  there is no constant K for which 

IIf(S1,---, Sd)ll ~< K sup If(z1,... ,  Zd)l 
flzll<~l 

holds for all polynomials f .  It follows that  the multiplier algebra Ad is a proper sub- 

algebra of H ~ .  Indeed, we exhibit continuous functions 

f :  { z e e d :  Ilzll ~< 1} ~ C 

which are analytic in the interior of the unit ball and which do not belong to f14. 

We will establish the appropriate version of von Neumann's inequality for dimension 

d~>2 in w 

THEOREM 3.3. Assume d>~2. Let co, Cl, ... be a sequence of complex numbers having 

the properties 

(i) ~n~=0 Icnl=l,  

(ii) ~n~=o ICnl2n(d-1) /2=-oo ,  

and define a function f ( z l , . . . , za )  for Izll2+...+lZdl2<.l as 

o o  

C n  . " n 
: ( z l , .  . ,  = ( z l z 2  . . .  z d )  , (3.3) 

r t = 0  

where s denotes the sup norm 

s = sup IZlZ2 ... Zdl--- ~/~1 z . (3.4) 
Izll2+...+lzdl~<~l y e t -  

Then the power series (3.3) converges uniformly over the closed unit ball to a func- 

tion f satisfying I l f r l~< l .  The restriction of f to Bd does not belong to H 2. Letting 

fO, f l ,  f 2 , . . ,  be the sequence of Taylor polynomials 

N 
Cn Z n 

fN(Zl,  ..., Zd) =- E • (ZlZ2 ... d) , 
n : O  
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then we have IIfNIIoo<~l for  every N while 

lira IIIN(Sl, ..., Sd)ll = g l ~  II /NII~ = ~ "  
N - - + o o  

(3.5) 

Remarks .  It  is clear that  the function f belongs to the "ball algebra", that  is, the 

closure in the sup norm I]" It~ of the algebra of polynomials. On the other hand, f does 

not belong to the multiplier algebra Ad, and in particular the inclusion Ad C~H ~ is proper. 

Note too that  it is a simple mat te r  to give explicit examples of sequences Co, el, ... 

satisfying conditions (i) and (ii). For example, let S be any infinite subset of the non- 

negative integers which is sparse enough so tha t  

1 
E n(d_l)/~ < Oo. 
n E S  

If we set cn= 1 / n  (d-D/4 if n E S  and cn=O otherwise, then we obviously have (ii) because 

S is infinite, and (i) can also be achieved after multiplying the sequence by a suitable 

positive constant. 

Proof. The formula (3.4) for the sup norm, 

s = d -a/2,  

follows from the elementary fact that  

1 [2 
(Izal21z212 ---Iz~12) lid ~ ~ (Iz~ +lz212 +. .+lzdl2), 

with equality if and only if I zl I = I z21 . . . . .  I zd I" 

Let p be the homogeneous polynomial p(z l ,  ..., Zd)=ZlZ2 ... Zd. Then for every n =  

0, 1, 2, ... we have 

IIp"ll~ = Ilpll• = d-nd/2 = sn. 

It  follows that  the power series (3.3), 

o o  

E ~n B(Zl' "'"Zd)n' 
n:O 

converges uniformly over the unit ball to f .  Thus it remains to establish the condition 

(3.5). 

Now for any polynomial g in the d complex variables zt, ..., Zd we have 

IIg(Sl, ..., Sd)ll /> IIg(Sl, ..., Sd) IIIH2 = IlgllH~. 
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Thus it suffices to show that  the sequence of Taylor polynomials f0, f l ,  f2, ... defined by 

the partial  sums of the series diverges in the H2-norm, tha t  is, 

Ilpnll~/~ (3.6) 
sup I l f g l l ~  = ~ Icnl 2 ilpnll~ = c o .  

N n = 0  

In order to establish (3.6) we will show that  there is a positive constant A such that  

lip ~ I1~/~/> Ad-ndn(d-1)/2, (3.7) 

for all n = l ,  2, .... In view of the fact that  ilpnll2=d -'~d and the series ~-~n lenl 2n(d-1)/2 

diverges, (3.6) will follow. 

The estimate (3.7) is based on the following computation.  Since the result is a 

s ta tement  about certain norms in the symmetric  Fock space over C d, it is likely that  

the result of Lemma 3.8 can be found in the literature. Since we are not aware of an 

appropriate  reference and since the est imate (3.7) depends essentially on these formulas, 

we have provided the details. 

LEMMA 3.8. Let el,e2, ..., ed be an orthonormal basis for E = C  d. Then for every 

d-tuple of nonnegative integers k = ( k l ,  ..., kd) we have 

ekl ~k2 ~kd 112 kl! k2! ... kd! 

where Ikl =kl  +k2+.. .+kd. 

Remark. Regarding notation, we have writ ten ~k~ ~k2 ke for the projection of the ~1 ~2 "'" e d  

vector 

1 ~ e 2  ~ ' " ~ d  E E | 

to the symmetric  subspace E Ikl C E | 

Proof. For y l , . . . , y p c E = C  d we use the notation YlY2...Yp for the projection of 

yl@y2| | to the symmetric  subspace E p. Fixing aCE and p ) l  we have 

an associated "creation operator" A: E p-I---~E p defined by 

A ( x l z 2  ...Xp--1) =ax lx2 . . . xp -1 ,  x c E .  

We claim first that  for p~>l the adjoint A*: EP--*E p-1 is given by 

1 p 
A* (ylY2 ... yp) -- ~ ~ (Yk, a /y i - - - s  

k 1 

(3.9) 
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where ~ means that  the term Yk is missing from the symmetric tensor product. Indeed, 

if 4 denotes the right side of (3.9) then for every x C E  we have 

l ~ ( y l , x )  ( y k - l , x ) ( y k , a ) ( y k + l  x)  (yp, X) ( r  x = "'" , ... 

k = l  

= (yl|174174174174174 

Since 

p - 1  ( a |  p -  1 + x | 1 7 4  2 +. . .  + x p - 1  |  ) = a x  p-1  C E p, 

the right side of the preceding formula becomes 

(Yl|  a x  p-1 ) = (YlY2 ... Yp, a x  p - l )  = (A* (y ly2  ... yp) ,  x P - 1 ) .  

(3.9) now follows because E p-1 is spanned by vectors of the form x p - l ,  x c E .  

To prove Lemma 3.8 we proceed by induction on the total degree Ikl. The formula 

is obvious for Ikl=0. Assuming that  Ikl~>l and that  the formula has been established 

for total degree Ikl -1  then we may assume (after relabelling the basis vectors el, . . . ,  ed 

if necessary) that  k l ~  1. 

Taking a = e l  in (3.9) and noting that  (el, e l ) - -1  and (el, e j ) = 0  if j = 2 ,  ..., d, we find 

that  
* kl  k2 kd ]gl k l - - 1  k2 ekd 

A (e I e 2 ...e d ) =  ~ e  I e2 "'" d ,  

and hence 

""ed , e l  "" d = ed ),~1 ~2 ...Ca / = ~  ~1 "2 ""Cd li " 

The required formula now follows from the induction hypothesis. [] 

Setting k l = k 2  . . . . .  k d = n  in Lemma 3.8, we obtain 

2 ( n ! )  d 

] ] ( e l e 2  "'" edFIIE   - (rid)!" 

The right side is easily estimated using Stirling's formula 

n! ~ v / ~ n  '~+1/2 e - n ,  

and after obvious cancellations we find that  

(nd)'(n')d "~ ( ~ )  l/2d-nd?'t(d-1)/2" 
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In order to deduce (3.7) from the latter,  choose an o r thonormal  basis el, e2, ..., ed 

for C d so tha t  

Zk(X)=(x, ek}, k=l ,2 , . . . , d .  

Then  

II(ZlZ2 n 2 = IIEod ...zd) I1~ rl(ele2...e~)n 2 

and (3.7) follows after choosing A to be a positive number  appropr ia te ly  smaller t han  

~ / d .  Tha t  completes the proof  of Theorem 3.3. [] 

Remark 3.10. We recall tha t  a d-tuple of commut ing  operators  T=(T1 ,T2 , . . . ,Td )  

on a Hilbert space H is said to be subnormal if there is a commut ing  d-tuple of normal  

operators  N = ( N 1 ,  N2, ..., Nd) on a larger Hilbert space K~_H such tha t  

Tk=Nkru ,  k = 1,2, ..., d. 

The  one-dimensional unilateral  shift can be extended to a uni ta ry  opera tor  on a larger 

space. T h a t  s i tuat ion is unique to dimension 1, as we have 

COROLLARY 1. For every d>~2 the d-shift is not subnormal. 

Proof. In Proposi t ion  2.12 we identified the maximal  ideal space of the unital  Banach 

algebra generated by the d-shift with the closed unit  ball in C d. In particular,  for every 

polynomial  f the spectral  radius of f(S1,... ,  Sd) is given by 

r(f(ocl ,  ..., Sd)) = sup [ f (z l ,  ..., Zd)l. 
[Zl [2+...+[Zd[2~l 

If  the &shift  were subnormal  then f(S1, ..., Sd) would be a subnormal  opera tor  for every 

polynomial  f ,  and hence its norm would equal its spectral  radius [22, Problem 162], 

contradict ing Theorem 3.3. [] 

The  two most  common  Hilbert  spaces associated with the unit  ball Bd arise from 

measures. These are the spaces H 2 (OBd) associated with normalized surface measure on 

the bounda ry  of Bd and the space H2(Bd) associated with normalized volume measure 

on Bd [37]. It is reasonable to ask if the space H 2 can be associated with some mea- 

sure on C d. The  answer is no because tha t  would imply tha t  the &shift  is subnormal ,  

contradict ing Corol lary 1. The  details are as follows. 

COROLLARY 2. There is no positive measure # on C d, d~ 2, with the property that 

Ilf l l~ = f c ~  If(z)12 d~(z) 

for every polynomial f .  

Proof. Suppose tha t  such a measure # did exist. # must  be a probabi l i ty  measure 

because [[IlIH: =1 ,  and it must  have finite moments  of all orders. 
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We claim that  # must have compact support.  Indeed, if f is any linear functional 

on C d of the form f (x)  = (x, e) where e is a unit vector of C d then by Lemma 3.8 we have 

n 2 n 2 
= lie IIE  I I f  IIH 2 = 1 

for every n = l ,  2, .... Hence 

/ c  If(z)l 2n d#(z) = 1. 
d 

Taking 2nth roots we find that  the function f has norm 1 when it is considered an element 

in the space LP(C d, p) for p=2 ,  4, 6, .... Letting X be the closed support  of the measure 

# we find that  

sup I / ( z ) l =  lim Ifl2nd# =1 .  
z G X n ----* o o  el 

This proves that  for every z E X  and e in the unit ball of C d we have 

I(z,e)l ~<1, 

and thus X must be contained in the closed unit ball of C d. 

Now we simply view the d-shift as a d-tuple of multiplication operators in the space 

L2(#). Here, Sk is multiplication by zk acting on the closure (in L2(#)) of the space of 

polynomials. This d-tuple ($1, ..., Sd) is obviously subnormal,  contradicting Corollary 1 

above. [] 

Remark 3.11. In the conventional approach to dilation theory one seeks normal 

dilations for operators or sets of operators. Theorem 3.3 implies tha t  this approach is 

inappropriate for &contractions and the unit ball of C d in dimension greater than one. 

Indeed, if (N1, ..., Nd) is a d-tuple of mutual ly commuting normal operators whose joint 

spectrum is contained in the closed unit ball of C a, then for every polynomial f c P  we 

have 

IIf(N1,...,Nd)II <~ sup If(z)l.  
Z C B d  

Since Theorem 3.3 implies that  there are polynomials f for which the inequality 

I[f(Sz,---, Sd)ll <~ sup ]f(z)l 
z E B d  

fails, one cannot obtain such operators f(S1, ..., Sd) by compressing f(N1, ..., Nd) to any 

subspace. Thus the d-shift cannot be dilated to a normal d-tuple having its spectrum in 

the closed unit ball. 
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4. M a x i m a l i t y  o f  t h e  H 2 - n o r m  

The  purpose  of this section is to  show t h a t  in every dimension d = l ,  2, ... the  HU-norm 

is dis t inguished a m o n g  all Hi lber t  seminorms  defined on the  space 7) of polynomials  by 

being the  largest Hilber t  s eminorm which is appropr ia t e  for ope ra to r  theory  on the  uni t  

ball of C d. As a consequence,  we show tha t  the  funct ion space H 2 is conta ined in every 

o ther  Hi lber t  space of analyt ic  functions on the  open unit  ball which has these na tu ra l  

propert ies .  

Definition 4.1. Let  zl, ..., Zd be a sys tem of coordinate  functions on C d. A Hilber t  

s eminorm [[-[[ defined on the  space P of all polynomials  is said to be contract ive  if for 

every a E C and every f l , . . . ,  fd ET) we have 

[lal+zl f l  +...+Zdfdll 2 ~ lal2+ Ilf1112 + . . . +  II fdll ~. 

Remarks. Propos i t ion  2.6 asserts  tha t  the H2-norm is a contractive norm on P. 

Prom Propos i t ion  4.2 below it follows t h a t  the  Hi lber t  norms  defined on 7) by bo th  

H2(Bd) and H2(OBd) are contract ive  norms.  

I t  is a s imple exercise to show tha t  if a Hi lber t  seminorm [[. ]] is contract ive  relat ive 

to one sys tem of coordinates  Zl, ...,Zd then  it is cont rac t ive  relative to every sys tem of 

coordinates .  Thus  the definition of cont rac t ive  seminorm depends  only on the  s t ruc ture  

of C d as a d-dimensional  Hi lber t  space. 

Notice too t ha t  if [[. [[ is any  contract ive  seminorm then  for any sys tem of coordinate  

functions z l , . . . ,  Zd the  mul t ip l ica t ion opera to r s  (Mzl,.. . ,  Mz~) give rise to  a d-contract ion 

act ing on the  Hi lber t  space ob ta ined  by comple t ing  7) in this seminorm.  Indeed,  we have 

the  following somewha t  more  concrete  charac ter iza t ion  of contract ive  Hi lber t  seminorms.  

PROPOSITION 4.2. Let ][. [[ be an arbitrary Hilbert seminorm on ~P, let H be the 

inner product space defined by [[. [[, and let 7)0 be the maximal ideal in ~P consisting of 

all polynomials f such that f ( 0 ) = 0 .  Then ]]. is a contractive seminorm if and only if 

the following two conditions are satisfied: 

(1) 15_7) 0 in the space H,  and 

(2) for some system of coordinate functions zl, . . . ,  Zd the multiplication operators 

(Mzl, ...,Mz~) define a d-contraction on H. 

Proof. Once one notes t ha t  the  mos t  general  e lement  of 7)o is a sum of the  form 

Zlf l+. . .+Zdfd with  f l ,  .--, fd E~,  the  a rgumen t  is s t ra ightforward.  [] 

We collect the  following observat ion,  which asser ts  t ha t  condit ion (2) alone is enough 

in the  presence of minimal  symmet ry .  
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COROLLARY. For every )~ in the circle group { z e C :  N = I }  and every fE79 set 

f~ ( z )=f (Az ) ,  z c C  d. Let I1" II be a Hilbert seminorm on 79 which satisfies Hf~ll=llfll for 

every fc79 and every )% such that for some system of coordinate functions zl, ..., Zd, the 

multiplication operators Mzl,... ,M~d give rise to a d-contraction acting on the Hilbert 

space H obtained from I1" II. 

Then II "11 is a contractive seminorm. 

Proof. We show that  the symmetry  hypothesis implies condition (1) of Proposi- 

tion 4.2. For every A in the unit circle we can define a unitary operator  U~ uniquely on 

H by setting 

U~,f = f ~,, f E 79. 

I t  is obvious tha t  U is a unitary representation of the circle group on H.  Moreover, if f 

is a homogeneous polynomial of degree n = 0 ,  1, ... then we have 

U~f = A~f 

for all A. Thus for the inner product  ( . , .  ) associated with H" [[ we have 

(f,  1) = (U~f , U~ I ) = As(f ,  1), 

so tha t  if n~>l then (f,  1)=0.  It  follows that  1-i-790, as required. [] 

Following is the main result of this section. 

THEOREM 4.3. Let N" II be any contractive Hilbert seminorm on 7 9. Then for every 

fc79 we have 

tJfll <<. kNfLl 2 

where k=lll l l .  In particular, the H2-norm is the largest contractive Hilbert seminorm 

which assigns norm 1 to the constant polynomial f = l .  

In particular, we see that  the Hilbert norms arising from the "Hardy" space H2(OBd) 

and the "Bergman" space H2(Bd) are both dominated by I1" IIH2. Indeed, we have the 

following inclusions of the corresponding Hilbert spaces of analytic functions in the open 

ball Bd: 

H 2 C H2(OBd) C_ H2(Bd), 

where both inclusion maps are compact  operators of norm 1. Since we do not require the 

lat ter  assertion, we omit the proof. However, note that  of these three function spaces, 

H 2 is the only one that  does not contain H ~ ,  and it is the only one of the three for 

which the d-contraction defined by the multiplication operators (Mzl, ..., Mza) fails to be 

subnormal.  
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Remark 4.4. Every  d-contract ion (T1, ..., Td) in B(H)  gives rise to a normal  com- 

pletely posi t ive m a p  P on B(H)  by way of 

P ( A ) = T 1 A T ~ + . . . + T d A T ~ ,  A e B ( H ) .  

Because of R e m a r k  3.2 we have P(1)=TIT~+. . .+TdT~<~I ,  and in fact the sequence 

A n = P ~ ( 1 )  is decreasing: Ao=I>~AI>~A2>~...>~O. Thus  

Ao~ = lim Pn(1) 
n - - *  o G  

exists  as a limit in the  s t rong  ope ra to r  topology and satisfies 0~<A~ ~< 1. A d-contrac t ion  

T = ( T 1 ,  ...,Td) is called pure if A ~ = 0 .  Notice t ha t  if the  row norm of T is less t h a n  1, 

i.e., TIT~+.. .+TaT~<~rl  for some 0 < r < l ,  then  IlPll=llP(1)ll<~r<l, and hence T is a 

pure  d-contract ion.  

For the proof  of Theo rem 4.3 we require an opera tor - theore t ic  result  which relates  

closely to the mate r ia l  of w Gelu Popescu  has pointed out  t ha t  the  ope ra to r  L is re la ted 

to  his Poisson kernel opera to r  K~ of [35, w when r = l .  For completeness ,  we include a 

proof. 

THEOREM 4.5. Let (T1, ..., Td) be a d-contraction on a Hilbert space H,  and define 

the operator 

A = ( 1 - T 1 T { - . . . - T d T $ )  1/2 

and the subspace K =  A H.  Let E be a d-dimensional Hilbert space and let 

.r+(E) =C|174 

be the symmetric Fock space over E.  

Then for every orthonormal basis el , . . . ,  ed for E there is a unique bounded operator 

L:JZ+(E)|  satisfying L ( I |  and 

L ( %  ei~ ... ei. | = Til Ti= ... Ti.  A {  

for every i l ,  ..., in @ { 1, 2, ..., d}, n =  1, 2 , . . . .  In general we have {{L{{ <~ 1, and if (T1, ..., Td) 

is a pure d-tuple, then L is a co-isometry: L L * = I H .  

Proof. If  there  is a bounded  opera to r  L sat isfying the s ta ted  condit ion then  it is 

obviously unique because  ~ +  (E)  is spanned  by the set of vectors  

{ 1, ei~, eia eia, ei4 eis e~s,... : ik C { 1, 2, ..., d}, k = 1, 2,... }. 
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We define L by exhibiting its adjoint, that  is, we will exhibit an operator 

A: H ~ ~-(E) | K, 

9C(E) denoting the full Fock space over E,  and we will show that  [[AI[ ~< 1 and 

(L(r ~) = (r A0?)) (4.6) 

for r of the form 1@~ or ei~ei~ ...ei~| for ~EK.  At that  point we can define L to be 

the adjoint of P+A, P+ denoting the projection of S '(E) onto its subspace 9r+(E). 

For every ~/cH, we define A~/ as a sequence of vectors (~0,r162 where CnE 

E| is defined by 

d 

�9 o, %1 ~ 

i l , . . . , i~ l 

for n ~ l  and @=I@A~/. Notice that  since T{,...,~r2 commute, r actually belongs to 

the symmetric subspace En@K. We claim first that  

• IKnll 2 ~ Ibll 2, 
n=0  

so that  in fact A maps into 5C(E)@K and is a contraction. Indeed, we have 

d d 

11r ~ IIATL...T, ,,2 ... ~,,,  = ~ <T,~...T~a2T*n T;I., .>. 
i l , . . . , i n = l  i l , . . . , i n = l  

Let P(A)=T1AT{ +...+TdAT~ be the completely positive map of Remark 4.4. Noting 

that  A 2 = 1 - P ( 1 )  we find that  

and hence 

d 

E Til""Ti,~A2T* T*=pn(1-P(1))=Pn(1)-pn+I(1) 
Zn """ %1 

i l , . . . , i n = l  

lien II 2 = ( P n  (1)Th ? ] ) -  ( p n + l  (1)7/ ,  ~) .  

The series II Coil 2 + I I r I I 2 + . . .  therefore telescopes and we are left with 

~-~ IK~ II ~= II~ll~-<A~, ~> < II~ll% (4.7) 
n : 0  

where Aoo is the positive contraction Aoo =limn-~oo Pn(1)  of Remark 4.4. 
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We now verify (4.6) for ( of the form ( = e j ~ . . . e j , |  for n~>l, j l ,  ...,j,~E{1, 2, ...,d} 

and { C K.  We have 

(ej~... e jnQ{ ,A~)=-  

d 

E (ejl "'* ejn| ei l~"' |174 "'" T;I~) 
il}...}in=l 

d 

: E <ejl|174174174 
il,...,in:l 

--- ({, AT;~ ... Tj*~ ~) = (Tj~ ... Tj A { ,  ~) = (L( ( ) ,  ~). 

For ( = 1 |  with { E K  we have 

(1| A~?) = (1| l |  = ({, AW) = (A{, ~), 

as required. If (T1, ...,Td) is a pure d-tuple, then it is clear from (4.7) that  A is an 

isometry, and hence L is a co-isometry. [] 

Proof of Theorem 4.3. Let H be the Hilbert space obtained by completing P in the 

seminorm II" II. Choose an orthonormal basis el, ..., ed for E = C  d and let zl, ..., Zd be the 

corresponding system of coordinate functions zi (x )=  (x, e~), i=1,  ..., d. 

Since II" II is a contractive Hilbert seminorm the multiplication operators 

Tk = Mzk , k = l , . . . , d ,  

define a d-contraction (T1, ..., Td) in 13(H). Set 

/ d \ 1 /2  

k= l  // 

let K = A H  be the closed range of A, and let L : s 1 7 4  be the contraction 

defined in Theorem 4.5 by the conditions L ( 1 Q { ) = A {  and, for n = l ,  2, ..., 

L(eil  ... ei~ |  = Til ... T inA{ ,  (4.8) 

~CK, il,  ..., in E{1, 2, ..., d}. 

The constant polynomial 1EP  is represented by a vector v in H.  We claim that  

A v = v .  Indeed, since II" ]] is a contractive seminorm, condition (1) of Proposition 4.2 

implies that  

v l T 1 H + T 2 H + . . . + T d H ,  
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and hence T s  for k = l ,  ..., d. It  follows tha t  

d 

IIAvll~ = (A%, v ) =  I lvl12-y2 liT;vii2= Ilvll ~, 
k = l  

and hence Av = v  because 0 ~< A ~< 1. 

In particular, v = A v E A H = K .  Taking ~ = v  in (4.8) we obtain 

L(ei l  ... ein |  = r i l  ... Tiny.  

Since v is the representative of 1 in H ,  Til ... Tiny is the representative of the polynomial 

Zil ... zin in H,  and we have 

L ( %  ... e i ,  Qv)  = Zil ... z i n c  H.  

By Propostion 2.13 there is a unitary operator  W: H 2--.9t-+ (E) which carries 1 to 1 

and carries zil ... zi~C H 2 to ei~ ... ei~C.T+ ( E) .  Hence 

L ( W ( z i l  ... z i~ ) |  = zi~.., zin. 

By taking linear combinations we find that  for every polynomial fc79,  

L ( W f |  = f 

where f on the left is considered an element of H 2 and f on the right is considered an 

element of H.  Since IILH ~<1 and W is unitary, we immediately deduce tha t  

I I I I I H  ~< I lWfQv l l  = I I I I I H  z" IlVllH �9 

Theorem 4.3 follows after noting tha t  IlvllH = IIIlIH- [] 

Remarks .  In particular, the H2-norm is the largest Uilbert seminorm I1 II on the 

space 7 9 of all polynomials which is contractive and is normalized so that  Iil11= 1. 

We will make use of the following extremal  property of the H2-norm below. 

THEOREM 4.9. Let  I1" II be a contractive Hilbert seminorTn on 79 sat is fying II l l l=l  

and let Zl, ...,Zd be a sy s t em of  orthogonal coordinate func t ions  f o r  E = C  d. 

every n = l , 2 ,  ... we have 

d ( n + d - 1 ) !  (4.10) 
]lZilZi2""Zinll2~" n! ( d - l ) !  ' 

il,...,in=l 

Then f o r  
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with equality holding if and only if I l f l l= l l f l lH~ for every polynomial f of degree at 

most n. 

Pro@ Let {el , . . . ,  ed} be an o r thonorma l  basis for a d-dimensional  Hi lber t  space E .  

We consider the  project ion PnCB(E | of the full tensor  p roduc t  onto its s y m m e t r i c  

subspace  E n. Since II-II is a contract ive  seminorm,  T h e o r e m  4.3 implies t ha t  for all 

il, ..., in we have 

Ilzi~ . . .  z i n  II ~< I1~il ... ~ .  IIH~ = IlPn(e~l|174 

and hence 
d d 

ll=,=---z~.il2~ < ~ IJP=(~|174 ~. 
i l , . . . , i n = l  i x , . . . , i n  ~ ] 

Since {ei 1 | | e/= : 1 ~< i l ,  ..., in 4 d} is an ort  honormal  basis for E | the  t e r m  on the  right 

is t r a c e ( P n ) = d i m ( E n ) ,  and (4.10) follows from the c o m p u t a t i o n  of the  dimension of E n 

in (1.5) .  

Let  ~ denote  the  subspace  of H 2 consist ing of homogeneous  polynomials  of de- 

gree n, and  let Qn be the  projec t ion  of H 2 on Pn.  The  preceding observat ions  imply  

t h a t  if A is any opera to r  o n  H 2 which is suppor t ed  in Pn  in the  sense t ha t  A=QnAQ~ 

t hen  the  t race  of A is given by 

d 

t r a c e ( A ) =  E (Azil"zi'~'zil""zi'~}H2" (4.11) 

i l , . . . , i n - - 1  

Now fix n and  suppose  equal i ty  holds in (4.10). Since I1 II is a cont rac t ive  Hi lber t  

s eminorm sat isfying Iil11=1, T h e o r e m  4.3 implies t ha t  tlfll~llfllH2 for every fC'P, and 

hence there  is a unique ope ra to r  HEB(H 2) sat isfying 

( f , g )=(Hf ,  g)H2, f, g E P ,  

Consider ing the  compress ion QnHQ~ of H to Pn  we see f rom and one has 0 ~< H ~< 1. 

(4.11) t h a t  

trace(Q~HQ~) = d i m ( E  n) = t race (Qn) .  

Since Q~-Q~HQn >>.0 and the t race  is faithful, we conclude t ha t  Q~HQn = Q~, and since 

H is a posit ive cont rac t ion  it follows tha t  H f = f  for every f c P n .  

We claim tha t  H f = f  for every fcT)k  and every k = 0 ,  1, . . . ,n.  To see tha t ,  choose a 

l inear funct ional  z C ~  sat isfying IlZllu2 =1 .  Since I1" I[ is a contract ive  seminorm we have 

IIz 'fl l  ~< Ilfll for every f e P ,  and in par t icu lar  we have IIz~l] = Ilzn-kzkjl < I Izk l l .  Thus  

(Hz k, zk)H 2 = IIzkll 2 ~> Ilznll 2 = Ilznl122. 

Since the H 2 - n o r m  of any power  of z is 1 and 0~<H~<I, it follows tha t  Hzk=z  k. Since 

every polynomia l  of  degree a t  mos t  n is a linear combina t ion  of monomia l s  of  the  form 

z k with z as above and  k = 0 ,  1, ..., n, the  proof  of T h e o r e m  4.9 is complete .  [] 
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Part II. Operator theory 

5. The Toeplitz C*-algebra 

Let S=(S1, ..., Sd) be the d-shift. 

Definition 5.1. The Toeplitz C*-algebra is the C*-algebra Td generated by the op- 

erators $11 ..., Sd. 

Remarks. Notice that  we have not included the identity operator  as one of the 

generators of Td, so that  Td is by definition the norm-closed linear span of the set of 

finite products of the form TIT2 ... T,~, n = l ,  2, ..., where 

�9 { S l ,  ..., Sd, S t ,  ..., 

Nevertheless, (5.5) below implies that  Td contains an invertible positive operator  

(dl + N)(I + N) -1 = S~ SI-t-... ~-S~tSd, 

and hence 1ETd. Thus Td is the C*-algebra generated by all multiplication operators 

MfeB(H2), fc7 ~. 

If one starts  with the Hilbert space H2(OBd) rather than H 2 then there is a natural  

Toeplitz C*-algebra 

TOBd = C * { M / :  f E  P}  C B(H2(OBd)), 

and similarly there is a Toeplitz C*-algebra TB~ on the Bergman space 

TBd = C * { M / :  f E P }  C B(H2(Bd)), 

see [16]. In fact, it is not hard to show tha t  the three C*-algebras Td, TOB~ and :rB d 

are unitarily equivalent. In that  sense, the C*-algebra Td is not new. However, we are 

concerned with the relationship between the d-shift and its enveloping C*-algebra Td, 

and here there are some essential differences. 

For example, in the classical case of H2(OBd) one can s tar t  with a continuous 

complex-valued function fcC(OBd) and define a Toeplitz operator Tf  on H2(OBd) by 

compressing the operator of multiplication by f (acting on L2(OBd)) to the subspace 

H2(OBd). In our case, however, continuous symbols do not give rise to Toeplitz opera- 

tors. Indeed, we have seen tha t  there are continuous functions f on the closed unit ball 

which are uniform limits of holomorphic polynomials, but which do not belong to H 2. 

For such an f the "Toeplitz" operator T/  is not defined. Thus we have taken some care 

to develop the properties of Td that  we require. 
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Let N be the number operator acting on H 2, defined as the generator of the one- 

parameter  unitary group 

['(eitlE) -~e itg, t E R ,  

F being the representation of the unitary group of E on H 2 defined in the remarks 

following Definition 2.10. N obviously has discrete spectrum {0, 1, 2, ...} and the n th  

eigenspace of N is the space P ,  of homogeneous polynomials of degree n, 

P n = { ~ c H 2 : g ~ = n ~ } ,  n = 0 ,  1 ,2 , . . . .  

( I + N )  -1 is a compact  operator,  and it is a fact that  for every real number p > 0 ,  

t r a c e ( l + N ) - P < o c  r p>d.  (5.2) 

Since N is unitarily equivalent to the Bosonie number operator,  the assertion (5.2) is 

probably known. We lack an appropriate  reference, however, and have included a proof 

of (5.2) in Appendix A for the reader 's  convenience. 

The following result exhibits the commutat ion relations satisfied by the d-shift. 

PROPOSITION 5.3. Suppose that d=2,  3, ... and let ($1, ..., Sd )  be the d-shift. Then 

for all i , j = l ,  ...,d we have 

and 

S'~ Sj - S jS~  = (I + N ) - I ( S q l -  SjS~) (5.4) 

S~S 1 +... +S~S d = (dl  + N )  ( I + N )  -1 . (5.5) 

In particular, IIS{SI+...§ The commutators S*S j -S jS*  belong to every 

Schatten class s 2) for p>d, but they do not belong to /:d(H2). 

Remark. It  follows that  if A, B are operators belonging to the unital *-algebra gen- 

erated by $1, ..., Sd, then A B - B A E s  2) for every p>d, and hence any product  of at 

least d +  1 such commutators  belongs to the trace class. 

Proof. To establish these formulas it is more convenient to work with the d-shift in 

its realization on 9C+(E) described in Proposition 2.13. Thus, we pick an orthonormal 

basis et, ..., ed for a d-dimensional Hilbert space E and set 

Si~=ei~, l <~ i <~ d, 

for ~CJ:+(E)=C@E| .... The number operator  N acts as follows on En: 

N ~ = n ~ ,  ~ E E  ' ~ , n = 0 , 1 , 2 , . . . .  
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We first establish (5.4). It sumces to verify that the operators on both sides of (5.4) 

agree on every finite-dimensional space E '~, n=0 ,  1, 2, .... For n = 0  and A cC  we have 

S[Sjt=tS[ej=6~jl,  while SjS*I=O. Hence (5.4) holds on C. For n~>l and ~ c E  ~ of 

the form ~=y~ we see from formula (3.9) that  

while 

~i j  n It  , 
s2&~=s2(~iy ~) = h-~v +;-~i-~y,~j>~iy'~-~ 

&s2( : <y, ~j)s~ ~-' : (y, ej> e{y ~-~. 

Hence 

1 (Sij~-SjS[~). 

The latter holds for all ~CE ~ because E n is spanned by {y~: yEE}, and (5.4) follows. 

Formula (5.5) follows from (5.4). Indeed, for ~ c E  ~ we have 

1 n . 

By the remarks following (2.10) we have 

(5.6) 

E0 denoting the projection on C. Summing the previous formula on i we obtain 

d d n n+d ~ n n+d ~, 

i--1 

and (5.5) follows. 

Now suppose p>d. Because of (5.2) the operator ( I + N )  -1 belongs to s since s 

is an ideal, (5.4) implies that  S * S j - - ~ . ~ j S [ E ~ .  p for all i,j. 

Finally, we claim that  no self-commutator IS*, Si]=S[Si-SiS[ belongs to s In- 

deed, since the operators S1, ..., Sd are unitarily equivalent to each other (by the remarks 

following Definition 2.10), we see that  if one [S[, Si] belongs to s then they all do, and 

in that  case we would have 
d 

IS;, <] ~ c ~ 
i = l  

By (5.5) and (5.6) the left side of this formula is 

d d 

E S * S i - E  SiS; = (d l+N)( I+N)- I  - (1 -Eo)  = Eo+(d- 1 ) ( I + N )  -1. 
i=1  i--1 
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Since ( I + N )  -1 ~s by (5.2), we have a contradiction and the proof of Proposition 5.3 

is complete. [] 

The d-shift and the canonical commutation relations. The d-shift is closely related to 

the creation operators (C1, ..., Cd) associated with the canonical commutat ion relations 

for d degrees of freedom. Indeed, one can think of S=(S1 ,  ..., Sd) as the partial  isometry 

occurring in the polar decomposition of C=(C1, ..., Cd) in the following way. Choose an 

orthonormal basis el,  ..., ed for a d-dimensional Hilbert space E.  For k = l ,  ..., d, Ck is 

defined on the dense subspace of ~-+(E) spanned by E n, n=O, 1, ..., as 

Ck~ = v z h - ~  eke,  ~ e E  ~ 

(see [40]). The Ck are of course unbounded operators, and they satisfy the complex form 

of the canonical commutat ion relations 

C~Cj=CiCi ,  C ; C i - C i C ; = ~ j l  , l <~ i , j  <~ d. 

One finds that  the row operator 

C = (C1, ..., Cd): ~+(E)|174 ~+(E) 
d t imes  

is related to the number operator N by C C * = N ,  and in fact the polar decomposition of 

C takes the form 

~ = N l / 2 ~  ' 

where S=(S1 ,  ..., Sd) is the d-shift; i.e., Ck=N1/2Sk,  k = l ,  ..., d. 

We have seen that  the d-shift is not a subnormal d-tuple. The following result asserts 

that ,  at  least, the individual operators Sk, k= 1, ..., d, are hyponormal.  Indeed, any linear 

combination of $1, ..., Sa is a hyponormal  operator.  

COROLLARY. For every k :  1, ..., d we have S~S k >>. SkS ~. 

Proof. Proposit ion 5.3 implies that  

S ; S  k - SkS; = (I  § N ) - I ( 1 - S k S ; ) .  

Since IISkll~<l, both  factors on the right are positive operators. Let En be the n th  

spectral projection of N,  n = 0 ,  1,... .  Since SkE,~ = En+l Sk it follows that  SkS ~ commutes 

with E,~. Thus ( I + N )  -1 commutes with 1-SkS~, and the assertion follows. [] 

Of course in dimension d =  1, the commuta tor  S ' S - S S *  is a rank-one operator  and 

therefore belongs to every Schatten class s p>~ 1. 
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THEOREM 5.7. Td contains the algebra 1r of all compact operators o n  H 2, and we 

have an exact sequence of C*-algebras 

o --~ lc ~ ~ - L  C(OBd) --~ 0 

where 1r is the unital , -homomorphism defined by 

~ ( s k )  = zk, 

zk being the k-th coordinate function z k ( x ) = ( x ,  ek), xEOBd.  

Letting .4 be the commutative algebra of polynomials in the operators S1, ..., Sa we 

have 

Td = span AA*.  (5.8) 

Proof. Let E0 be the one-dimensional projection onto the space of constants in H 2. 

By the remark following Definition 2.10 we have 

Eo = 1 - S 1 S'~ - . . .  - S d S~ E span AA*.  

Thus for any polynomials f ,  g, the the rank-one operator 

f |  (~ ,g} f  

can be expressed as 

f |  = M s E o M  ~ c span AA*. 

It follows that  the norm closure of span JL4* contains the algebra K: of all compact 

operators. 

By Proposition 5.3, the quotient Td /~  is a commutative C*-algebra which is gener- 

ated by commuting normal elements Zk=Tr(Sk), k = l ,  ..., d, satisfying 

Z1Z 1 + . . . + Z d Z  a = 1. 

Because Td is commutative modulo /(2 and since spWfiAA* contains E,  it follows that  

span.A.A* is closed under multiplication, and (5.8) follows. 

Let X be the joint spectrum of the commutative normal d-tuple (Z1, ..., Zd) that  

generates Td//C. X is a nonvoid subset of the sphere OBd, and we claim that  X = O B d .  

Indeed, since the unitary group/A(E) acts transitively on OBa it suffices to show that  for 

every unitary (d x d)-matrix u =  (uij), there is a *-automorphism 0u of Td/]C such that  

d 

j = l  
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For that ,  consider the unitary operator  U acting on E by 

d 

Uei=~-~ujiej. 
j = l  

Then F(U) is a unitary operator  on H 2 for which 

d 

r(u)s,r(u)* = Z  J sJ, 
j = l  

and hence 0u is obtained by promoting the spatial automorphism T~-*F(U)TF(U)* of 

T~ to the quotient Td/K. 

The identification of Td/tC with C(OBd) asserted by ~r(Si)=zi, i=l,...,d, is now 

obvious. [] 

6. d - c o n t r a c t i o n s  a n d  , A - m o r p h i s m s  

The purpose of this section is to make some observations about  the role of A-morphisms 

in function theory and operator theory. 

Definition 6.1. Let `4 be a subalgebra of a unital C*-algebra B which contains the 

unit of B. An `4-morphism is a completely positive linear map  r B--~B(H) of B into the 

operators on a Hilbert space H such tha t  r  and 

r  AC.4, XeB. 

`4-morphisms arose natural ly in our work on the dilation theory of completely pos- 

itive maps and semigroups [7], [8], [9]. J im Agler has pointed out tha t  they are related 

to his notion of hereditary polynomials and hereditary isomorphisms (for example, see 

[1, T h e o r e m  1.5]). Indeed, if B denotes the C*-algebra generated by a single operator  

T and the identity, then one can show that  a completely positive map o f /~  which is a 

hereditary isomorphism on the space of hereditary polynomials in T is an `4-morphism 

relative to the algebra .4 of all polynomials in the adjoint T*. 

In general the restriction of an .4-morphism to .4 is a completely contractive rep- 

resentation of the subalgebra .4 on H.  Theorem 4.5 implies that  every d-contraction 

acting on a Hilbert space H gives rise to a contraction L: Jz+(cd)| which inter- 

twines the action of the d-shift and T. L is often a co-isometry, and that  implies the 

following assertion about  .4-morphisms. 
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THEOREM 6.2. Let ,4 be the subalgebra of the Toeplitz C*-algebra rid consisting of 

all polynomials in the d-shift ($1, ..., Sd). Then for every d-contraction (T1, ..., Td) acting 

on a Hilbert space H there is a unique .A-morphism 

r --~ B( H) 

such that r =Tk,  k = l ,  ..., d. 

Conversely, every A-morphism r Td--~B(H) gives rise to a d-contraction ( T1,..., Td) 

on H by way of Tk=r k = l ,  ...,d. 

Proof. The uniqueness assertion is immediate from (5.8), since an .A-morphism is 

uniquely determined on the closed linear span of the set of products {AB*:A, BC.A}. 

For existence, we first show that  every pure d-contraction T=(T1, . . . ,  Td) defines an 

J t-morphism as asserted in Theorem 6.2. For that ,  let 

A = (1--T1T ~ -...--TdT~t)I/2, 

let K =  A H  be the closed range of A and let .7"+ (E) be the symmetric  Fock space over 

E = C  d. Choose an orthonormal basis el, ..., ed for E.  Theorem 4.5 asserts that  there is 

a unique bounded operator L: Yr+(E)QK--~H satisfying L ( I |  for ~EK,  and 

L(eil ei2 ... ei, | = Til Ti~ ... Ti~A~ (6.3) 

for n = l , 2 , . . . ,  il,i2,...,i~C{1,...,d}, ~EK; moreover, since (TI,...,Td) is a pure d-con- 

traction, L is a co-isometry. 

We may consider that  the d-shift ($1, ..., Sd) is defined on ~-+(E) by 

Sk~=ek~, k = l , . . . , d .  

(6.3) implies tha t  

L(f(S1,..., Sd)@IK) = f(T1,..., Td)L (6.4) 

for every polynomial f in d variables. Let r Td--~B(H) be the completely positive map 

r 1 7 4  Xe~d .  

Since L* is an isometry we have r  (6.4) implies that  for every XETd we have 

r  ..., Sd)X) = f(T1, ..., Td)r 

and hence r is an A-morphism having the required properties. 
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The general case is deduced from this by a simple device. Let T =  (T1,..., Td) be any 

d-contraction, choose a number r so that 0 < r <  1, and set 

~ = ( rT1,  ..., rTa ) .  

The row norm of the d-tuple T~ is at most r. Hence T~ is a pure d-contraction (see 

Remark 4.4). By what was just proved there is an A-morphism 0n: Td-~B(H) satisfying 

@ ( S k ) = r T k ,  k =  l , . . . ,d.  

We have 

~)~( f ( S1, ..., Sa) g( S~, ..., Sa)*) = f (rT1, ..., rrd) g(rT1, ..., rTa)* 

for polynomials f ,  g. Since operators of the form f (S1,  ..., Sd)g(St ,  ..., Sd)* span Td and 

since the family of maps qS~, 0 < r <  1, is uniformly bounded, it follows that  0~ converges 

point-norm to an A-morphism ~b as rT1, and ~5(Sk)=Ta for all k. 

It remains only to show that for every A-morphism r  the operators 

Tk=0(S~) define a d-contraction. To see that,  write 

TkT; : 4 ( & ) O ( & ) *  : 4 ( G S ~ ) .  

d d 

k=lETkT~=r ~<r  

Then 

So by Remark 3.2, (T1,..., Td) is a d-contraction. [] 

Remarks. We have already pointed out that  in general, an A-morphism must be a 

completely contractive representation of ,4. Conversely, if A is the polynomial algebra 

in Td and r A--*B(H) is a representation which is d-contractive in the sense that  its 

natural promotion to (d x d)-matrices over A is a contraction, then after noting that  the 

operator matrix 

sx sd, 
0 0 ... 
: : �9 M a ( ~ )  

0 0 ... 

A =  

satisfies HAII2=IIAA*JJ=IIS1S~+...+SdS3JJ=I, we find that  the image of A under the 

promotion of q5 is a contraction, and hence Tk =qS(Sk), k = l ,  ..., d, defines a d-contraction. 

Thus, we may conclude 



SUBALGEBRAS OF C*-ALGEBRAS III: MULTIVARIABLE OPERATOR THEORY 197 

COROLLARY 1. Let d = 1 , 2 , . . . .  Every d-contractive representation 0 of the poly- 

nomial algebra A C i d  is completely contractive, and can be extended uniquely to an ,4- 

morphism 

r :Yd --* B(H) .  

We have already seen tha t  the un i ta ry  group /4d of C d acts natura l ly  on Td as a 

group of *-automorhisms by way of 

Ou(X)=V(U)XV(V)* ,  X c ~ ,  UeUI.  

As a s t ra ightforward applicat ion of Theorem 6.2 we show tha t  the definition of 0 can be 

extended to all contract ions in B ( C  d) so as to obtain  a semigroup of A-morphisms  act ing 

o n  ~d- 

COROLLARY 2. Let ACTd be the algebra of all polynomials in $1, ..., Sd. For every 

contraction A acting on C d there is a unique A-morphism OA: T d - + B ( H  2) satisfying 

OA(Mf) = MfoA* (6.5) 

for every linear functional f on C d, A* denoting the adjoint of AEB(cd) .  

Proof. Considering the polar decomposi t ion of A, we may find a pair of or thonormal  

i for C g and numbers  Ak in the unit  interval such tha t  bases ul, ..., Ud and Ull, ..., u d 

Auk = ~ku~, k = 1, ..., d. 

Let  zl,  ..., Zd and z~, ..., z d~ be the corresponding systems of or thogonal  coordinate  func- 

t ions 

z (x) = (x, uk), 

! ! 

zk(x)  = (x, 

I The linear functionals zk, z k are related by 

zkoA* = Akz~, k = 1, ..., d. (6.6) 

Thus  if we realize the d-shift (S1,...,Sd) as Sk=Mzk and if we set Tk=;~kMz'k, then  

(T1, ..., Td) is a d-contract ion and Theorem 6.2 implies tha t  there is a unique A-morph i sm 

OA: Td--~B(H 2) such tha t  OA(Sk)=Tk for every k. After not ing tha t  0A satisfies (6.5) 

because of  (6.6) above, the proof  is complete.  [] 

From (6.5) together  with the uniqueness assertion of Theorem 6.2 it follows tha t  

for two contract ions A, BEB(C  d) we have OAB=OAOOB. It  is routine to verify tha t  
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OA(7-d)C_Td, tha t  for every fixed XCTd the function A~OA(X)  moves continuously in 

the norm of 2ra, and that  OA agrees with the previous definition when A is unitary. 

Uniqueness of representing measures. Representing measures for points in the inte- 

rior of the unit ball in C a are notoriously nonunique in dimension d~>2. Indeed, for every 

t = ( t l ,  ..., td)�9 there is an uncountable family of probabili ty measures #~ supported 

in the boundary OBd such that  # ~ •  for c~r and 

~ B f(r162 f � 9  

see [37, p. 186]. The following result asserts that  one can recover uniqueness by replacing 

measures on 0Ba with states on the Toeplitz C*-algebra which define A-morphisms.  

COROLLARY 3. Assume that t=(t l , . . . , td)EC a satisfies Itllz+...+ltdl2<l and let 

5'=($1,  ..., Sd) be the d-shift. Then there is a unique state r of Td satisfying 

r = f( t)g(t) ,  f,  g �9 7 ). (6.7) 

r is the (pure) vector state 

O(A)=(1-UtU2)(Aut, ut), ACT-d, 

where u t (x )=(1-  (x, {))-1 is the H2-function defined in (1.11). 

Proof. We may consider that  {=(tl,...,td) is a d-contraction acting on the one- 

dimensional Hilbert space C. Theorem 6.2 implies that  there is a unique state 0: Td--+C 

satisfying (6.7), and it remains only to identify O. From (2.4) we have 

(M/M;ui ,  ui> = (M;u~, M;ui) = f({)O({)ItuiH 2 = (1 -Ut]12)-lf({)O({),  

as asserted. [] 

In this section we 

( S 1 ,  .-., Sd), 

7. T h e  d - sh i f t  as  a n  o p e r a t o r  s p a c e  

consider the operator space 8dCB(H 2) generated by the d-shift 

Sd = {alS1 +...+adSd : al,..., ad r C}. 

By a commutat ive operator space we mean a linear subspace SCB(H)  whose operators 

mutual ly commute with one another. We introduce a sequence of numerical invariants for 

arbi t rary operator spaces, and for dimension d~> 2 we show that  among all d-dimensional 
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commuta t ive  opera tor  spaces, 84 is distinguished by the fact tha t  its sequence of numer-  

ical invariants is maximal  (Theorem 7.7). 

Given an a rb i t ra ry  opera tor  space 8C_B(H), let T = ( T 1 , T 2 , . . . )  be an infinite se- 

quence of operators  in 8 such tha t  all but  a finite number  of terms are 0. We write 

seq(8) for the set of all such sequences. Every  such sequence has a "row norm" and a 

"column norm",  depending on whether  one thinks of the sequence as defining an opera tor  

in 13(H ~, H) or in B(H,H~).  These two norms are familiar and easily computed ,  

[[Tllrow = E TkT~ 1/2, 

k 

�9 1 /2  

IITIIcol -- ~ T; Tk �9 
k 

Given two sequences T, T ' E  seq(8),  we can form a produc t  sequence (TiT;: i, j=  1, 2, ...) 

which we may  consider an element of seq(B(H)) ,  if we wish, by relabelling the double 

sequence as a single sequence. Though  for the computa t ions  below it will be more 

convenient to allow the index set to vary in the  obvious way. In particular,  every TC 

seq(8) can be raised to  the n t h  power to  obta in  TnEseq(B(H)), n = l ,  2, .... For each 

n = l ,  2, ... we define En(8)r [0, +oc] as 

En(8) = sup{ lIT n lifo, : T e  seq(8),  IlTllrow ~< 1}. 

In the most  explicit terms, we have 

E n ( 8 ) = s u p  E Z*,'"T*nTi,~"" :T ieS '  * <.1 , 
i l , . . . , in=l i = 1  

the sup being taken over finitely nonzero sequences Ti r  

Definition 7.1. J~l ( 8 ) ,  E 2 ( 8 ) ,  ... is called the energy sequence of the opera tor  space 8 .  

If  8 is the one-dimensional space spanned by a single opera tor  T of norm 1, then 

the energy sequence degenerates to E~(S)--IITnll 2, n - - l ,  2,.... In  general, En(8) 1/2 is 

the norm of the homogeneous polynomial  T H T  ~, considered as a map  of row sequences 

in 8 to column sequences in B(H). 

Remarks. We have defined the energy sequence in e lementary terms. It  is useful, 

however, to  relate it to  completely positive maps. Fixing an opera tor  space 8 ,  notice tha t  

every sequence T E s e q ( 8 )  gives rise to a normal  completely positive map  PT on B(H) as 

the sum of the finite series 

P,~( A ) = T1AT: + T2AT~ + .... (7.2) 
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Let cp(S) denote the set of all completely positive maps of the form (7.2). The norm of 

P =  PT is given by 

I IPl l  = I IP (1 ) I I  = II:Yllrow. 

Now any map PEcp(,S) of the form (7.2) has an adjoint P,  which is defined as the 

completely positive map satisfying 

trace(P(A)B) = trace(AP,(B)) 

for all finite-rank operators A, B. One finds that if PEcp(S)  is given by the finitely 

nonzero sequence T then P,  Ecp(S*) is given by the sequence of adjoints 

P,(A) = T~ ATI + T~ AT2 + .... (7.a) 

Of course P, being a normal linear map of B(H), is the adjoint of a bounded linear 

map P.  acting on the predual of B(H), and the map of (7.3) is simply this preadjoint 

extended from the trace class operators to all of B(H) (note that  we use the fact that  the 

sequence T is finitely nonzero here, since in general a bounded linear map of the trace 

class operators can be unbounded relative to the operator norm, and thus not extendable 

up to 13(H)). 

In any case, we find that  if PEcp(S)  has the form P=PT for TEseq(S)  then 

lIP.I] : lIP. (1)]] = 115P]]col. 

Thus the definition of En (S) can be restated as 

E~(S) = sup{ ll P,~ [[ : PEep(S) ,  IlPl[ ~< 1}. (7.4) 

The following result implies that  for a finite-dimensional operator space $ the terms of 

the energy sequence are all finite, and if ,S is commutative then they grow no faster than 

En(S)=O(nd-1) ,  where d is the dimension of ,S. 

PROPOSITION 7.5. Let $ be an operator space of finite dimension d. Then 

En(S) <. d n, 

and if S is also commutative then 

d ( d + l )  ... ( d - t -n - l )  _ (n - t -d - l ) !  

n! n! ( d - l ) !  
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Pro@ Let P c c p ( S )  satisfy IlPll ~<1, and let d be the dimension of S. It  is clear tha t  

the metric operator space [8] of P is a subspace of S, and in particular there is a linearly 

independent set of r ~< d elements T1, ..., T~ in S such that  

P(A)=T1AT{+...+T~AT* , AeB(H) .  

Since IIPH=IIP(1)II=IITITf§247 it follows that  IITkLI~<I for every k = l , . . . , r ,  

and hence 

IIP.II = IIT{TI +...+T/TrlI <. r <. d. 

Thus ]]P.~ ]] < d  n for every n =  1, 2, .... From (7.4) we conclude that  En (S)~< d n. 

In fact, the preceding argument shows that  if Q is a normal completely positive map 

of B(H) whose metric operator space is r-dimensional and which satisfies ]]QH < 1, then 

we have IIQ.II~<r. 

We apply this to Q=Pn as follows. By [8], the metric operator space $~ of P~ is a 

subspace of 

span{LiL2 ... L,~ : Li E S}. 

Assuming S to be commutative,  the latter is naturally isomorphic to a quotient of the 

n-fold symmetric tensor product  of vector spaces S ~. Since 

d i m S n _  ( n + d -  1)! 
n! ( d - l ) !  

(see formula (A.5) of Appendix A), and since IIPnll ~< 1, we find that  

( n + d - 1 ) !  
]]p.~ ]] = ]] ( p n ) .  ]] ~< dim s ~< 

n! ( d -  1)! " 

The required est imate follows from the observation (7.4). [] 

Remark. The asserted growth rate of the binomial coefficients of Proposition 7.5 is 

well known, and the precise asymptot ic  relation is reiterated in formula (A.6). 

Throughout  the remainder of this section we will be concerned with finite-dimen- 

sional commutat ive operator spaces. 

Definition 7.6. A commutat ive operator space S of finite dimension d is said to be 

maximal if for every n = l ,  2, ... we have 

En(S ) -  ( n §  
n! ( d - l ) !  " 

Remarks. It  is obvious tha t  the row norm of any sequence of normal operators is 

the same as its column norm. It  follows that  if S is a space of mutually commuting 
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normal operators, then E,~(s  for every n. Similarly, it can be shown that  if S is a 

finite-dimensional space of commuting quasinilpotent operators,  then 

lim En(s  = 0. 
n ~ ( x 3  

(Following the suggestion of a referee, we have included a proof in Appendix B.) Thus 

the maximal spaces are rather  far removed from both of these types. 

It  is also true (though less obvious) that  if 8 is a commutat ive operator space of 

dimension d for which 

E~(S) - (n+d-1)~ 
~ ! ( d - 1 ) !  

for some particular value of n~>2, then 

( k + d - 1 ) !  

Ek(S) - k! ( d -  1)! 

for every k = l ,  2, . . . ,n.  Thus for operator  spaces which are not maximal,  once the se- 

quence of numbers E~(,S) departs  from the sequence of maximum possible values, it 

never returns. We omit the proof of the latter assertion since it is not required in the 

sequel. 

THEOREM 7.7. For every d = l ,  2, ... the operator space Sd of the d-shift is maximal. 

Conversely, if d )  2 and if S is a d-dimensional commutative operator space which 

is maximal, then there is a representation 7r of the unital C*-algebra C* ($) generated by 

S on H 2 such that 7r(S)=Sd. In particular, the Toeplitz C*-algebra Td is isomorphic to 

a quotient of C*(S). 

Before giving the proof of Theorem 7.7, we deduce from it the following character- 

ization of Sd as a space of essentially normal operators (by that  we mean a commuting 

family of operators in B(H) whose image in the Calkin algebra consists of normal ele- 

ments). We remark that  both the corollary and the essential part  of Theorem 7.7 are 

false in dimension one. 

COROLLARY. Assume d>~2. Up to unitary equivalence, the space Sd spanned by 

the d-shift is the only d-dimensional irreducible commutative operator space consisting 

of essentially norTnal operators, which is maximal in the sense of Definition 7.6. 

Proof of corollary. Suppose that  S acts on a Hilbert space H, and let /(2 denote 

the algebra of all compact  operators on H.  Let ~r: C* (S)--+13(H 2) be the representation 

of Theorem 7.7. The operators in S cannot be normal because Sa=Tr(S) contains no 

normal operators. Since [S*, S] C K:A C* (S) and since C* ( $ ) i s  irreducible, it follows that  
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C*(S) contains ]C. 7r(/E) cannot be {0} because that  would imply that 7r($)=Sd consists 

of normal operators. 

Thus ~ is an irreducible representation of C* (8) which is nonzero on/U, and hence 

7r must be unitarily equivalent to the identity representation of C*(S). In particular, 

S is unitarily equivalent to S d.  [] 

Proof of Theorem 7.7. The proof of Theorem 7.7 will occupy the remainder of this 

section. Let ($1, ..., Sd) be the d-shift, let Sd=span{S1, ..., Sd} be its associated operator 

space, and define PCcp($d) by 

P(A) = S1AS~ +...+SdAS~. 

By the remark following Definition 2.10 we have P ( 1 ) = I - E 0 ,  and hence ]lPll =1. Thus 

to show that Sd is maximal it suffices to show that  for each n~>l, the operator pn(1)  

satisfies 
( n + d - 1 ) !  (7.8) 

Ilr2ll = I IF : (1 ) I I -  n! ( d - l ) !  

While (7.8) can be deduced directly from Theorem 4.9, we actually require somewhat 

more information about the operators P.~(1) and their eigenvalue distributions. 

LEMMA 7.9. Let N=El+2E2+3E3+.. .  be the number operator acting on H 2, and 

for every n = l ,  2, ... let gn: [0, c c ) ~ R  be the bounded continuous function 

f l  x + k + d - 1  
gn(x) = x+k  

k = l  

Then 

P~ ( 1 ) = g n ( N  ~ ) :  E g n ( k ) E k .  
k = 0  

The eigenvalue sequence {gn(O)~gn(1)~...} of r .n(1) i8 decreasing and we have 

( n + d - 1 ) !  
IIp.n(1)l[ =gn(0)  -- n! ( d - l ) !  " 

If  d>~2 then the eigenvalue sequence is strictly decreasing, gn(O)>gn(1)> .... 

Proof of Lemma 7.9. The assertions follow from a direct computation, which can be 

organized as follows. By Proposition 5.3 we have 

P . (1)  -- gl(N),  (7.10) 

where N is the number operator and gl is the function of a real variable defined by 

x+d 
g l ( X ) - x + l ,  x~>0. 
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More generally, if g is any bounded continuous function defined on [0, oc), then we have 

P.(g(N))  -- ~(N),  (7.11) 

where 
x+ d  

~ ( x ) = g ( x + l )  x + l ,  x>~O. 

Indeed, (7.11) follows from the fact that  if Ek denotes the kth spectral projection of N,  

O(2 

N = E kEk, 
k = l  

then Ek is the projection on the subspace of homogeneous polynomials of degree k in H 2, 

and thus for each i=l ,  ..., d we have the commutat ion formulas S*Eo=O, and S~Ek= 

Ek_IS* for k~>l. It follows that  P . ( E 0 ) = 0  and P.(Ek)=Ek_IP, (1)  for k = l , 2 ,  ..., and 

thus 
o c  

P. (g(N)) = E g(k)P. (E~) = ~(N). 
k = l  

After iterating (7.11) we find that  P.~(1)=g~(N) where 

g~(z) = g l ( x ) g l ( x + l ) . . . g l ( x + n - 1 ) =  f i  
x + k + d - 1  

x+ k  
k = l  

Since each gn is a monotone decreasing function we conclude that  

d(d+ 1) ... ( d + n -  1) 
rrp:(1)rl = g (0) = n !  ' 

and (7.8) follows. It  is clear from the recurrence formula for gn+l in terms of g~ that  

when d~>2, gn(X) is a strictly decreasing function of x. [] 

COROLLARY. Let w be a state of the Toeplitz algebra Td, d>/2, such that for some 

n>~ l we have 

pn = n _ W( . (1)) liP: (1)11 ( n + d - 1 ) !  
n! ( d - l ) !  ' 

Then w is the ground state w ( X ) = ( X v ,  v), v denoting the constant function v=l .  

Proof. Fix n. By Lemma 7.9 we have 

P,n (1) = AoEo +)~IE1 + ... , 

where /~0>,~1~...>0 and A0--llP.' ( )[I- Thus P.n(1) has the form 

pn (1 )  = A0(E0+K),  
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where K is a positive operator satisfying K=(1-Eo)K(1 -Eo)  and []K]]=A1/Ao<I. 

Since w(pn(1))=A0 we have 

w(Eo)+w(K)= l. 

If w(E0)< l  then we would have 

w(K) <. IIKllw(1-Eo) = IIKL[(1-w(Eo)) < 1-w(Eo), 

contradicting the preceding equation. Hence w(E0) = 1 and w must be the ground state. [] 

In particular, Lemma 7.9 implies that  Sd is maximal among all d-dimensional com- 

mutative operator spaces. 

In order to prove the converse assertion of Theorem 7.7, we recall one or two facts 

from the theory of boundary representations (see [3, 2.1.2 and 2.2.2]). By a unital 

operator space we mean a pair SC_B consisting of a linear subspace S of a unital C*- 

algebra B, which contains the unit of B and generates/3 as a C*-algebra, /3=C* (S). An 

irreducible representation 7r:/3---+/3(H) is said to be a boundary representation for S if 

7r Is has a unique completely positive linear extension to /3 ,  namely lr itself. Boundary 

representations are the noncommutative counterpart  of points in the Choquet boundary 

of a function space ScC(X) .  Their key property is their functoriality; if $1C/31 and 

$2C_/32 are unital operator spaces and r $1---*$2 is a completely isometric linear map 

satisfying r  and r  then for every boundary representation ~r2:/32---§ 

for $2 there is a unique boundary representation 7rl:/31---*/3(H) for $1 which satisfies 

7c2 (r TeS1.  (7.12) 

LEMMA 7.13. For d>~2, the identity representation of the Toeplitz algebra Td is a 

boundary representation for the ( d + 1)-dimensional space span{ 1, $1, ..., Sd }. 

Proof. By [4, Theorem 2.1.1] it is enough to show that  the Calkin map is not isomet- 

ric when promoted to the space Md| of (d x d)-matrices over S. Consider the operator 

ACMd| defined by 

S1 0 

$2 0 
: : 

0 

A =  

Then []A*AII=IISFSl+...+S~SdlI=d by Proposition 5.3. Hence IIAll=x/~. On the other 

hand, by Theorem 5.7 the Calkin map carries Sk to the kth coordinate function Zk(X)= 
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{x, ek}, xCOBd. Hence the image of A under the promoted Calkin map is the matrix of 

functions on OBd defined by 

Y(x) = [ zl(.) o ... ! )  

z2(x)i O: ... . 

\zd(z) 0 ... 

Clearly sup{ IIF(x)II:x c OBd} = 1 < x/d = II All, as required. [ ]  

Lemma 7.13 implies that in dimension d~>2, the d-shift S=(S1,  ..., Sd) can be dilated 

to another d-contraction T in only a trivial way as a direct summand Tk=Sk| where 

(Z1,..., Zd) is some d-contraction. 

LEMMA 7.14. Suppose d>>.2, let (T1,...,Td) be a d-contraction acting on a Hilbert 

space H, and let KC_H be a subspace of H such that the compressed d-tuple 

(PKTI[K, ...,PKTd[K) 

is unitarily equivalent to the d-shift. Then PK commutes with {T1, ..., Td}. 

Proof. By hypothesis, there is an isometry U:H~--~H such that  UH~=K and 

U*TkU=Sk, k=l , . . . ,d .  By Theorem 6.2, there is an .A-morphism r  such 

that  r  k = l ,  ..., d. Define a completely positive map r Td--~B(H~) by r  

U*r We have ~b(1)=l,  and 9(Sk)=U*TkU=Sk,  k = l , . . . , d .  Lemma 7.13 implies 

that  r must be the identity map of "ira. 

In particular, r 1 6 2 1 6 2  for all X, YETd. Multiplying the latter equation 

on left and right by U and U* respectively, we obtain 

P K r  = PKO(X)PKO(Y)PK, X, Y c 7-4. (7.15) 

Taking X = Y *  in (7.15) and making use of the Schwarz inequality for completely positive 

maps we have 

((1 - PK ) r PK )* (1 -- PK ) r Y ) PK = PK r r PK -- PK r Y )* PK r  ) PK 

<~ PKr162162  = O, 

and hence (1--PK)r Thus K is an invariant subspace for the self-adjoint 

family of operators r and hence PKCr ..., Td}'. [] 
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LEMMA 7.16. Let SC_B(H) be a commutative operator space of finite dimension 

d>~2, and suppose that S is maximal. Then there is a state ~ of the unital C*-algebra 

C*(S) generated by S, and a d-contraction T=(T1,  ...,Td), TIES, such that 

~(g(T)* f (T) ) = ( f  , g} H2 

for all polynomials f, gEP. 

Proof of Lemma 7.16. The set of all d-contractions (TI,...,Td) whose component 

operators belong to S can be regarded as a compact subset of the Cartesian product of 

d copies of the unit ball of $, and of course the state space of C* (S) is weak*-compact. 

Thus, after a routine compactness argument (which we omit), the proof of Lemma 7.16 

reduces to establishing the following assertion: for every n = l ,  2, ... there is a pair (& T) 

consisting of a state Q of C* (S) and a d-contraction T =  (T1,  . . . ,  Td) whose components 

belong to S such that  

t)(g(:Y)* f (T ) )  -- (f, g}H2 (7.17) 

for all polynomials f,  gE'P of degree ~<n. 

To prove the latter, since En($)=(n+d-1)! /n! (d-1) !  we may find a completely 

positive map P c c p ( $ )  such that  IIPii ~<1 and 

( n + d - 1 ) !  (7.18) 
11/=2(1)11-- n! ( d - l ) !  

(note that  the supremum of (7.4) is achieved here because the space { P c c p ( S ) :  iiPII ~< 1} 

is compact). Considering that  the metric operator space of P is a subspace of S [8] we 

can find a (linearly independent) set T1, ..., T~E8 such that  

P(A)=T1AT~§ , ACI3(H). 

By appending TT+I . . . . .  Td=O to the sequence if necessary, we can assume that  r=d. 

Because 

LIPB] = LLP(1)I ]  = IBTIT:+...+TdT~t[ <<. 1, 

T=(T1, ..., Td) is a d-contraction for which (7.18) holds. 

Let Q be any state of C* (S) satisfying 

( n + d - 1 ) !  
Q(P:(1)) = I I P : ( 1 ) i ] -  n! ( 4 - 1 ) !  ' 

and consider the positive semidefinite inner product defined on P by 

<f, g> = Q(g(T)* f (T) ). (7.19) 
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One sees (after consideration of the GNS construction for the state O) that  since T is a 

d-contraction, the Hilbert seminorm Ilfll2=o(f(T)*f(:?)) satisfies 

ffZlA + . . . +  Zdfdtl 2 I l f l l t2+-- .+ l i fd l l  2 

for all polynomials f l , . . . ,  fa E T'. 

provided that  

By Proposit ion 4.2, I1" II will be a contractive seminorm 

1 • z l P + . . . + Z d P  

in its associated inner product  space; or equivalently, that  

o ( T k f ( T ) ) = O ,  k = l , . . . , d ,  f e P .  

Since 0 is a state, the latter will follow if we establish 

O(TkT;) = O, k = 1, ..., d. (7.20) 

To prove 7.20, let r Td-~B(H)  be an .A-morhpism satisfying r  k = l ,  ..., d 

(see Theorem 6.2), and let w be the state of Td defined by w=oor We claim that  w is 

the ground state of Td. Indeed, for every n-tuple of integers 1~ i l ,  . . . , i n~d  we have by 

the Schwarz inequality 

r  1 ...S*,~Si,~...Sil) ~ r . . .S i l )*r  Ti,~...Ti~ , 

and hence 

w(S* 1 ... S* S~n... S~1) >1 o(T;~ ...T;, T~,~ ... T~).  

Summing over all such n-tuples we obtain 

d 

E w(Si*~'"S* S~,~'"Sil )>~O(P*~(1))- ( n + d - 1 ) !  
n! (d-  1)! 

i i , . . . , in=l 

The corollary of Lemma 7.9 implies that  w must be the ground state of :Yd. In particular, 

for each k = 1, ..., d we have 

e(TkT; )  = O(r162 = O(r ) = w(SkS;)  = ]1S;1112 = O, 

and (7.20) follows. 

It is clear tha t  the Hilbert seminorm of (7.19) is normalized so that  111112=0(1)=1; 

so by Theorem 4.3 we have llflI<~llftIH2 for every f E P .  Theorem 4.9 now implies that  

(7.17) is satisfied, and the proof is complete. [] 
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To complete the proof of Theorem 7.7, we find a d-contraction T= (T1,..., Td) and a 

state 0 of C* (S) satisfying the conditions of Lemma 7.16. The set of operators {T1, ..., Td } 

must be linearly independent; indeed, for every polynomial f r  we have 

o(f (T1, ..., Td)* f (T~, ..., Td) ) = Ilfll~/~ r  

and hence f(T1, ..., Td)•0. It follows that  span{T1, ..., Td}=S. 

The GNS construction provides a nondegenerate representation a of C*(S) on a 

Hilbert space K and a unit vector ~ C K such that  o(X)= (a (X)~, ~), X C C* (S). The key 

property of e implies that  we can define an isometry U: H2--*K on polynomials by 

Uf=cr(f(T1,...,Ta))~, f c 7  ~, 

and we have USk=o-(Tk)U for every k = l ,  ...,d. Thus the range UH~ of U is invariant 

under each a(Tk), and the restriction of the d-contraction (a(T1), ..., a(Td)) to UH~ is 

unitarily equivalent to the d-shift. By Lemma 7.14, the projection UU* must commute 

with a(Tk), k= 1, ..., d, and hence with the unital C*-algebra a(C* (S)) these operators 

generate. 

We obtain a representation 7r: C*(S)--+B(H~) by setting 7r(X)=U*a(X)U. Since 

7c(Tk)=U*o(Tk)U=Sk for each k, it follows that  7r(S)=Sd. [] 

8. Various applicat ions 

In this section we give several applications of the preceding results to function theory 

and multivariable operator theory. These are a version of von Neumann's inequality for 

arbitrary d-contractions, a model theory for d-contractions based on the d-shift, a discus- 

sion of the absence of inner functions in the multiplier algebra of the d-shift, and some 

remarks concerning C*-envelopes. 

We point out that  Popescu has established versions of von Neumann's inequality 

for noncommutative d-tuples of operators [30], [32], [34], [35]. Here, on the other hand, 

we are concerned with d-contractions. The version of von Neumann's inequality that  is 

appropriate for d-contractions is the following. 

THEOREM 8.1. Let T=(T1, . . . ,  Td) be an arbitrary d-contraction acting on a Hilbert 

space H. Then for every polynomial f in d complex variables we have 

IIf(T~, ..., T~)II ~ Ilfll.~, 

IIf[[.M being the norm of f in the multiplier algebra Ad of H 2. 
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More generally, let ($1, ..., Sd) be the d-shift and let AC_Td be the algebra of all 

polynomials in $1, ..., Sd. Then the map f(S1, ..., Sd)~--~ f(T1, ...,Td) defines a completely 

contractive representation of .d. 

Proof. The assertions are immediate consequences of Theorem 6.2, once one observes 

tha t  IlfllM = IIf(S1, ---, Sd)[l" [] 

~hrning now to models, we first recall some of the literature of dilation theory 

in d dimensions. There are a number of positive results concerning noncommutat ive 

models for noncommuting d-tuples which satisfy the conditions of Remark  3.2. The first 

results along these lines are due to Frazho [21] for pairs of operators. Prazho's results 

were generalized by Bunce [15] to d-tuples. Popescu has clarified that  work by showing 

tha t  such a d-tuple can often be obtained by compressing a certain natural  d-tuple of 

isometrics acting on the full Fock space 5c(C d) over C d (the left creation operators) to 

a co-invariant subspace of 9c(cd),  and he has worked out a functional calculus for tha t  

situation [28], [29], [30], [31]. We also point out some recent work of Davidson and Pi t ts  

[18], [19], relating to the operator  algebra generated by the left creation operators on the 

full Fock space. 

There is relatively little in the literature of operator theory, however, that  relates 

to uniqueness of dilations in higher dimensions (however, see [11]). Indeed, normal 

dilations for &contractions, when they exist, are almost never unique. On the other 

hand, recent results in the theory of semigroups of completely positive maps do include 

uniqueness. Generalizing work of Parathasarathy,  B . V . R .  Bhat [14] has shown that  

a unital semigroup of completely positive maps of a von Neumann algebra M can be 

dilated uniquely to an E0-semigroup acting on a larger von Neumann algebra N which 

contains M as a hereditary subalgebra. A similar (and simpler) result holds for single 

unital completely positive maps: there is a unique dilation to a unital endomorphism 

acting on a larger von Neumann algebra as above. In the case where M=13(H), the 

latter dilation theorem is closely related to the Bunee-Frazho theory of d-tuples by way 

of the metric operator space associated with a normal completely postive map of B(H) 

[8], [9]. SeLegue [42] has succeeded in unifying these results. 

In the following discussion, we reformulate Theorem 6.2 as a concrete assertion 

about  d-contractions which parallels some of the principal assertions of the Sz.-Nagy 

Folds model theory of 1-contractions [43]. Much of Theorem 8.5 follows directly from 

Theorem 6.2 and standard lore on the representation theory of C*-algebras. For com- 

pleteness, we have given a full sketch of the argument.  

We recall some elementary facts about  the representation theory of C*-algebras 

such as Td. Let 7r: Ta~B(H)  be a nondegenerate *-representation of Td on a separable 
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Hilbert space H.  Because of the exact sequence of Theorem 5.7, s tandard results about  

the representations of the C*-algebra of compact operators imply that  7r decomposes 

into a direct sum 7c1| where 7Cl is a multiple of n = 0 ,  1, 2, ..., ee copies of the identity 

representation of Td and 7r2 is a representation which annihilates /(2. 7rl and 7r2 are 

disjoint as representations of Td. This decomposition is unique in the sense tha t  if 7r~ is 

another multiple of n ~ copies of the identity representation of Td and ~r~ annihilates h2, 

and if ~ i 7r1| 2 is unitarily equivalent to ~rl| then n / = n  and 7r~ is unitarily equivalent 

to 7r2 [5]. 

We will make use of these observations in a form tha t  relates more directly to 

operator theory. 

Definition 8.2. Let d = l ,  2, .... By a spherical operator  (of dimension d) we mean 

a d-tuple (Z1, ..., Zd) of commuting normal operators acting on a common Hilbert space 

such that  

Z~ZI + . . . + Z ~ Z d =  I. 

Spherical operators are the higher-dimensional counterparts  of unitary operators. 

For every spherical operator (Z1, ..., Zd) acting on H there is a unique unital *-represen- 

tat ion 7r: C(OBct)---~I3(H) which carries the d-tuple of canonical coordinate functions to 

(Z],. . . ,  Zd). This relation between d-dimensional spherical operators and nondegenerate 

representations of C(OBd) is bijective. 

If T=(T1,  ...,Td) is an arbi trary d-tuple of operators acting on a common Hilbert 

space H and n is a nonnegative integer or +co  we will write n .T=(n .T1 ,  ... ,n.Td) for 

the d-tuple of operators acting on the direct sum of n copies of H defined by 

n ' T k = T k G T k |  

n t imes  

where for n = 0  the left side is interpreted as the nil operator,  that  is, no operator at all. 

The direct sum of two d-tuples of operators is defined in the obvious way as a d-tuple 

acting on the direct sum of Hilbert spaces. The preceding remarks are summarized as 

follows. 

PROPOSITION 8.3. Let (n, Z)  be a pair consisting of an integer n = 0 ,  1, 2, ..., oc and 

a spherical operator Z = ( Z 1 , . . . , Z d )  (which may be the nil d-tuple when n~>l). Then 

there is a unique nondegenerate representation 7r of Td satisfying 

7c(Sk)=n.Sk |  k = l , . . . , d .  

Every nondegenerate representation of Ta on a separable Hilbert space arises in this way, 

and if (n ~, Z ~) is another such pair giving rise to a representation ~r ~, then 7r ~ is unitarily 

equivalent to 7r if and only if n~=n and Z ~ is unitarily equivalent to Z.  



212 w. ARVESON 

Remarks. Of course, if Z is the nil d-tuple then its corresponding summand in the 

definition of ~r is absent. Let S C B ( H )  be a set of operators acting on a Hilbert space H. 

A subspace K C H  is said to be co-invariant under S if S * K C K .  K is co-invariant if and 

only if its orthogonal complement is invariant, S K  i C K • A co-invariant subspace K is 

called full if H is spanned by {T~: ~EK} where T ranges over the C*-algebra generated 

by S. The following are equivalent for any co-invariant subace K: 

(8.4.1) K is full. 

(8.4.2) H is the smallest reducing subspace for S which contains K.  

(8.4.3) For every operator T in the commutant of SUS* we have 

T K = { 0 }  ~ T = 0 .  

Let .A be the algebra generated by S and the identity. We will often have a situation 

in which the C*-algebra generated by A is spanned by the set of products A.A*, and in 

that  case the following criterion can be added to the preceding list. 

(8.4.4) H is the smallest invariant subspace for $ which contains K.  

Indeed, since C*(A) is spanned by .AA* we have 

span C* (A) K = ~ A.A* K = span A K ,  

and hence (8.4.1) and (8.4.4) are equivalent. 

Since the d-shift is a d-contraction, any d-tuple (T1, ..., Td) of the form 

Tk =n.SkeZk 

described in Proposition 8.3 is a d-contraction. If K is any co-invariant subspace for 

{T1, ..., Td} then the d-tuple (T~, ..., T~) obtained by compressing to K,  

T~ = PKTk[K, 

is also a d-contraction. Indeed, for each k = l ,  ..., d we have 

T~T~* = PKTkPKT;  FK <- PKTkT;  [K, 

and therefore ~ k  T[~T[~*<~ 1. The following implies that  d-tuples obtained from this con- 

struction are the most general d-contractions. 

THEOREM 8.5. Let d = l ,  2, ..., let T=(T1,  ...,Td) be a d-contraction acting on a sep- 

arable Hilbert space and let S =  ($1,..., Sd) be the d-shift. Then there is a triple (n, Z, K)  

consisting of an integer n=0 ,  1, 2, ..., co, a spherical operator Z, and a full co-invariant 

subspace K for the operator 

n . S |  
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such that T is unitarily equivalent to the compression of n . S |  to K. 

Let T'=(T~,...,T~) be another d-contraction associated with another such triple 

(n~,Z~,K~). If T and T ~ are unitarily equivalent then n~=n, and there are unitary 

operators VEB(n .H 2) and W:Hz---*H 2, such that for k = l , . . . , d  we have 

v s k  = s k v ,  w z k  = z 'kw,  

and which relate K to K r by way of ( V |  r. 

Finally, the integer n is the rank of the defect operator 

1 -TIT ~ -...-TATS, 

and Z is the nil spherical operator if and only if T is a pure d-contraction. 

Remark 8.6. Notice that  the situation of (8.4.4) prevails in this case, and we may 

conclude tha t  for the triple (n, 2 ,  K)  associated with T by Theorem 8.5, the Hilbert 

space H on which n.S@Z acts is generated as 

ffI =spa-ff { f ( n . S l @ Z 1 ,  ..., n . S d e Z d ) ~  : ~ E / s  f E  P},  

:P denoting the set of all polynomials in d complex variables. 

Before giving the proof of Theorem 8.5 we want to emphasize the following general 

observation which asserts that ,  under certain conditions, a unitary operator  which inter- 

twines two representations of a subalgebra A of a C*-algebra B can be extended to a 

unitary operator which intertwines *-representations of B. 

We recall a general theorem of Stinespring, which asserts tha t  every completely 

positive map 

r B - ~ B ( H )  

defined on a unital C*-algebra B can be represented in the form r where 

~r is a representation of B on another Hilbert space H~, and VEB(H,H~).  The pair 

(V, It) is called minimal if 

H~ = s ~ f f  [7c(x)~ : x c B ,  ~EH]. 

One can always arrange that  (V, zr) is minimal by cutting down to a suitable subrepre- 

sentation of 7c. 

LEMMA 8.6. Let B be a C*-algebra and let A be a (perhaps non-self-adjoint) sub- 

algebra of B such that 

B = s--pwgllll AA*. (8.7) 
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For k = l ,  2 let Ck: B--~ B( Hk ) be A-morphisms, and let U: HI --~ H2 be a unitary operator 

such that 

Ur162 aEA. 

Let (Vk,~rk) be a minimal Stinespring pair for Ck, Ck(x)=V~rk(x)Vk, xEB.  Then 

there is a unique unitary operator W: H~ 1 --*H~ 2 such that 

(i) WTq(x)=rc2(x)W, xCB, and 

(ii) WVI=V2U. 

Proof. Since both r and r are .4-morphisms, the hypothesis on U implies that 

Ur = r (ab*) U for all a, b E.4. Hence (8.7) implies that  Ur = r (x) U for every 

xEB.  The rest now follows from standard uniqueness assertions about minimal com- 

pletely positive dilations of completely positive maps of C*-algebras [3]. [] 

Remark. There are many examples of subalgebras A of C*-algebras B that  satisfy 

(8.7) besides the algebra .4 of polynomials in the Toeplitz algebra Td. Indeed, if .4 is any 

algebra of operators on a Hilbert space which satisfies 

.4*.4 c A+ A* 

then the linear span of AA* is closed under multiplication, and hence the norm-closed lin- 

ear span of A`4* is a C*-algebra. Such examples arise in the theory of E0-semigroups [6], 

and in the Cuntz C*-algebras On, n=2, ..., c~. 

Proof of Theorem 8.5. Suppose that  the operators Tk act on a Hilbert space H.  Let 

.4 be the algebra of all polynomials in the d-shift S=(S1,  ..., Sa). By Theorem 6.3 there 

is an .4-morphism 

O: B(H)  

such that  r for k = l ,  ...,d. Let 

be a minimal Stinespring representation of r We have 

= 1, 

and hence V is an isometry. 

We claim that  VH is co-invariant under ~(`4), 

~(`4)* VH C VH. (8.8) 
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Indeed, if ACJt  and P denotes the projection P=VV* then for every XCTd we have 

PTr(A) PTc(X) V = Vr162 = Vr  = PTr(AX) V = Pro(A)re(X)V, 

and hence the operator  Prc(A)P-PTc(A) vanishes on 

span [7r(X)~ : X E  Td, ~ E H] = Hr .  

Thus 7c(A)*P=Prc(A)*P, and (8.8) follows. 

Because of minimality of (V, 7r) it follows that  the subspace K=VHC_H~ is a full 

co-invariant subspace for the operator algebra lr(A). 

Proposition 8.3 shows that  if we replace 7r with a unitarily equivalent representation 

and adjust V accordingly then we may assume that  there is an integer n = 0 ,  1, 2, ..., oo 

and a (perhaps nil) spherical operator Z= (Z1, ..., Za) such that  H,~ =n .H 2 |  2 and 

7c(Sk)=n.Sk| k=  l,...,d. 

That  proves the first paragraph of Theorem 8.5. 

The second paragraph follows after a straightforward application of Lemma 8.6, 

once one notes that  if we are given two triples (n, Z, K)  and (n ~, 2 ~, K~), and we define 

representations 7r and ~r ~ of Td by 

7"(( Sk ) : rL. Sk @ Z k = 0-1 ( Sk ) @0.2( Sk ), 

~ '(Sk)  = n ' . S k e Z ' k  ' = 0.~(s~)e0.~(s~), 

I Thus, is disjoint from a~, while 0.k is quasi-equivalent to 0.k" then 0.1 is disjoint from 0.2, 0.1 

any unitary operator W which intertwines the representations 7r and 7d must decompose 

into a direct sum W =  W1 | W2 where W1 intertwines 0.1 and 0.~, and W2 intertwines 0.2 

and 0.~. 

To prove the third paragraph,  choose an integer n = 0 ,  1, 2, ..., 0% let Z =  (Z1, ..., Za) 

be a spherical operator whose component  operators act on a Hilbert space L, and let 

K C n . H 2 ~ L  be a full co-invariant subspace for the operator  

n.S@Z, 

where S=(S1 ,  ..., Sd) is the d-shift. Define T=(T1 ,  ..., Td) by 

Tj =PK(n.Sj|  

j = l ,  ..., d. We have to identify the multiplicity n and the existence of the spherical 

summand Z in terms of T. 
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Let PKEB(n.H2| denote the projection on K.  Since K is co-invariant under 

n.S| we have 

Pg(n 'S j  |  = PK(n.S~ | = TjPK 

for every j = l ,  ..., d, and hence 

TjTj  = PK(n.SjS~ eZr . (8.9) 

By the remarks following Definition 2.10 we may sum on j to obtain 

d 

E TjT} = Pg(n" (1 - -E0) |  1L)[K = 1K -Pg(n.Eo| 
j = l  

where EoCB(H 2) denotes the one-dimensional projection onto the constants. 

From (8.10) we find tha t  the defect operator  D has the form 

(8.10) 

D = 1K-TIT{-. . . -TdT~ = PK(n.Eo| (8.11) 

Now for any positive operator B we have B { = 0  if and only if {B{, {}=0. Thus the 

relation (8.11) between the positive operators D and n .E0 |  implies tha t  their kernels 

are related by 

{ ~ E K :  D ~ = 0 }  = { ~ E K :  ( n - E 0 e 0 ) ~ = 0 } ,  

and hence 

rank D = dim((n-Eo |  

The dimension of the space N=(n.Eo| is easily seen to be n. Indeed, notice tha t  

if AcB(H 2) is a polynomial in the operators $1, ..., Sd then we have EoA=EoAEo= 

{A1, 1}E0, and hence EoA is a scalar multiple of E0. Similarly, if BcB(n.H2| is a 

polynomial in the operators n.SI@Z1, ..., n'Sd| then (n.Eo@O)B is a scalar multiple 

of (n.Eo@O), and hence for all such B we have 

(n.Eo@O)BK C_N. 

Because K is a full co-invariant subspace, (8.4.4) implies tha t  n.H2| is spanned by 

vectors of the form B~, with B as above and ~EK.  It  follows tha t  

(n.Eo@O)(n.H2| C N, 

and therefore N is the range of the n-dimensional projection n .E0|  Hence dim N=n. 
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Finally, we consider the case in which T is a pure d-contraction. Let Q and P be 

the completely positive maps on B ( H  2) and B(K) given respectively by 

P(A)=S1AS;+. . .+SdAS ~, AeB(H2),  

Q(B)=T1BT~+...+TdBT~, BEB(K) .  

Formula (8.9) implies that  Q(1K)=PK(n'P(1H~)| Similarly, using co-invariance 

of K repeatedly as in (8.9) we have 

Tj l .  . T J 2 . . . T ; 1  = PK(n'(Sjl...Sj S2 . S ; I ) |  . 

for every j l ,  ..., j r  C {1,..., d}. After summing on j l ,  ..., j r  we obtain 

Qr(1K)=PK(n'pr(1H~)| r =  1 ,2 , . . . .  

Since Pr(1H2)$0 as r -~oc ,  we have 

lim Qr(1K)=PK(O| 
T ~ O O  

We conclude tha t  T is a pure d-tuple if and only if O|177 that  is, KC_n.H2| 

Noting that  n .H2 |  is a reducing subspace for the operator  n .SQZ  we see from 

(8.4.2) that  

n.H2|174 

and therefore L={0}.  But a spherical d-tuple cannot be the zero d-tuple except when it 

is the nil d-tuple, and thus we have proved tha t  T is a pure &contraction if and only if 

2 is nil. [] 

The two extreme cases of Theorem 8.5 in which n = 0  and n = l  are noteworthy. From 

the case n = 0  we deduce the following result of Athavale [11], which was established by 

entirely different methods. 

COROLLARY 1. Let T1, ..., Td be a set of commuting operators on a Hilbert space H 

such that T~TI+...+T~Td=I. Then (T1, ...,Td) is a subnormal d-tuple. 

Proof. Let A k =T~. (A1,..., Ad) is a &contraction for which 

n = r ank(1 -A~A~ -...--AdA*d) = O. 

Theorem 8.5 implies that  there is a spherical operator Z= (ZI,..., Zd) acting on a Hilbert 

space H_DH such that  Z ~ H c H  and Ak is the compression of Zk to H,  k = l , . . . , d .  
T _ _ A *  r ] ,  i" Hence k - - ~ k - - Z J k / H  for every k, so tha t  (Z~, ..., Z~) is a normal d-tuple which extends 

(T1, ..., Td) to a larger Hilbert space. [] 

Prom the case n =  1 we have the following description of all d-contractions that  can 

be obtained by compressing the d-shift to a co-invariant subspace. 
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COROLLARY 2. Every nonzero co-invariant subspace K C H  2 for the d-shift S =  

($1, ..., Sd) is full, and the compression of S to K,  

T k = P K S k [ K ,  k = 1,...,d, 

defines a pure d-contraction T=(T1 ,  ..., Td) for which 

r a n k ( l - T 1 T I * - . . . - T d T ~ )  = 1. (8.12) 

I f  K ~ is another co-invariant subspace for S which gives rise to ~t, then T and T ~ are 

unitarily equivalent if and only if K = K  t. 

Every pure d-contraction (T1, . . . ,T d) satisfying (8.12) is unitarily equivalent to one 

obtained by compressing ($1, ..., Sd) to a co-invariant subspaee of H 2. 

Proof. Let { 0 } r  2 be a a co-invariant subspace for the set of operators 

{$1, ..., Sd}. Since Td is an irreducible C*-algebra it follows that  K satisfies condition 

(8.4.2), hence it is full. Let Tj be the compression of Sj to K,  j = l ,  ..., d. The canonical 

triple associated with T=(T1, . . . ,  Td) is therefore (1, nil, K) ,  and the third paragraph of 

Theorem 8.5 implies tha t  T is a pure d-contraction satisfying (8.12). 

If K ~ is another co-invariant subspace of H 2 giving rise to a d-contraction T~ which 

is unitarily equivalent to T then Theorem 8.5 implies that  there is a unitary operator  

V which commutes with S={S1 , . . . , Sd}  such that  V K = K  ~. Because V is unitary it 

must commute with S* as well, and hence with the Toeplitz algebra :Yd. The latter is 

irreducible, hence V must be a scalar multiple of the identity operator,  hence K~=K.  

Finally, if T=(T1,  ...,Td) is any pure d-contraction then Theorem 8.5 implies that  

the spherical summand 2 of its dilation must be the nil d-tuple, and if in addition 

r a n k ( 1 - T i T  ~ - . . . - T d T ~ )  = 1, 

then the canonical triple associated with T is (1, nil, K)  for some subspace K of H 2 which 

is co-invariant under the d-shift. [] 

Lemma 7.13 asserts that  the identity representation of the Toeplitz C*-algebra is 

a boundary representation for the unital operator space generated by the d-shift. This 

fact has a number of significant consequences, and we conclude with a brief discussion 

of two of them. Rudin posed the following function-theoretic problem in the sixties: Do 

there exist nonconstant inner functions in H ~ (Bd) [37]? This problem was finally solved 

(affirmatively) in 1982 by B.A. Aleksandrov [38]. The following proposition implies 

that  the answer to the analogue of Rudin 's  question for the multiplier algebra A/I is the 

opposite: there are no nontrivial isometries in B ( H  2) which commute with {$1, ..., Sd} 

when d~>2. Indeed, we have the following more general assertion. 
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PROPOSITION 8.13. Let T1, T2, ... be a finite or infinite sequence of operators on H~, 

d>~2, which commute with the d-shift and which satisfy 

T~TI+T~T2+ . . . .  1. (8.14) 

Then each Tj is a scalar multiple of the identity operator. 

Proof. Consider the completely positive linear map r defined on B(H  2) by 

r = T~ATI + T~ AT2 + .. . .  

The sum converges strongly for every operator A because by (8.14) we have 

]]Tl~]]2+[[T2~[]2+ . . . .  H~[[ 2 <cx~, ~ e H  2. 

Moreover, since each Tk commutes with each Sj we have T ~ S j T k = T ~ T k S  j, and thus 

from (8.14) we conclude that r  for every A in S- - span{ i ,  $1, ..., Sd}. Since the 

identity representation of Td is a boundary representation for 3 it follows that  r  

for every A in the Toeplitz C*-algebra Td. 

Let n be the number of operators in the sequence T1,T2, ... and let V be the linear 

map of H 2 to n . H  2 defined by 

V~ = (Tx~, T2~, ...). 

Because of (8.14), V is an isometry. Letting 7r be the representation of B(H 2) on n . H  2 

defined by 

7r(A) = A e A |  , 

we find that  (V, 7r) is a Stinespring pair for r 

~(A) = Y*Tr(A)V, 

Since 

A E I3( H2). 

( V A -  ~r(A) V)* ( V A -  7r(A) V)  = A* r A -  r  A* r + r = 0, 

we conclude that  VA-Tr (A)V=O.  By examining the components of this operator equa- 

tion one sees that  T k A = A T k  for every k and every ACTd. Since Td is an irreducible 

C*-algebra it follows that  each Tk must be a scalar multiple of the identity operator. [] 

Finally, we offer a few remarks about C*-envelopes, that  is to say, noncommutative 

Silov boundaries (see the discussion preceding Lemma 7.13). 
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THEOREM 8.15. The 7beplitz algebra Td is the C*-envelope of the commutative 

algebra ,4 of all polynomials in the d-shift ($1, ..., Sd). Moreover, every irreducible rep- 

resentation of Td is a boundary representation for .4. 

Proof. Lemma 7.13 implies that the intersection of the kernels of all boundary rep- 

resentations for .4 is {0}, and the first assertion follows. 

The irreducible representations of Td are easily identified using Proposition 8.3. 

In addition to the identity representation (and other members of its unitary equiva- 

lence class) there are the one-dimensional representations corresponding to points of the 

boundary OBd. One may verify directly that the latter are boundary representations. [] 

Remarks. Td is generated as a C*-algebra by two other natural abelian subalgebras, 

namely the algebra of all multiplications by polynomials in the Hardy space of the bound- 

ary H2(OBd), or by the corresponding algebra acting on the Bergman space H2(Bd) of 

the interior. However, in both of the latter cases the C*-envelopes are not Td but rather 

its commutative quotient C*-algebra 

~/~c = C(OBd). 

Appendix  A. Trace est imates  

Fix d= l ,  2, ..., let E d be a d-dimensional Hilbert space, and let 

.T+(Ed) = C|174 ... 

be the symmetric Foek space over Ea. The number operator is the unbounded self-adjoint 

diagonal operator N satisfying N~=n~, ~EE~, n=0, 1,.... Let Pn be the projection 

on E~. Then for every p>0, ( I + N )  -p is a positive compact operator, 

OQ 

( I+N) -P  = E ( n + I ) - P P n ,  
n - - 0  

whose trace is given by 

~ d i m  (A.1) E~ 
trace(1 +N)-P  = (n+l)P" 

n ~ 0  

Thus (1+ N)-1 belongs to the Schatten class s (~+ (E d)) if and only if the infinite series 

(A.1) converges. In this appendix we show that that is the case if and only if p>d. 

Notice that the function of a complex variable defined for Re z>d by 

~d(Z) = t race( l+N)-Z 
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is a d-dimensional variant of the Riemann zeta function, since for d =  1 we have dim E~ = 1 

for all n and hence 
f i l  

~ l ( Z )  : n- ~ 

We calculate the generating function for the coefficients dim E~. 

LEMMA A.2. The numbers an,d=dim E~ are the coefficients of the series expansion 

o o  

( l - z )  -d  = ~ an,d zn, Izl < 1. 

n : 0  

Proof. Note that  the numbers an,d satisfy the recurrence relation 

an,d+l=ao,d+al,n+...+an,d, n = 0 , 1 , . . . ,  d = 1 , 2 , . . . .  (A.3) 

Indeed, if we choose a basis el, ..., ed for En then the set of symmetric  products 

{eil ei2.., ein : 1 <~ il 4.. .  <~ in ~ d} 

forms a basis for the vector space E~, and hence an,d is the cardinality of the set 

Sn,d= {(il, . . . , in)e{1,.. . ,d}n: 1 ~ i l  ~ ... ~ in  ~d} .  

Since S~,d+l decomposes into a disjoint union 

Sn,d+l  = U {(il, ..., in) E Sn ,d+l  : ik < d, ik+l . . . . .  in = d + l } ,  
k=O 

and since the kth set on the right has the same cardinality ak,d as ~k,d,  (A.3) follows. 

From (A.3) we find tha t  an,d+l--an-l,d+l :an,d. THus if we let fd be the formal 

power series 
o ~  

fd(z) : E an'dzn (A.4) 
n=O 

then fd+l (z) -- Zfd+l (Z) = fd (Z), and hence 

fd+l(Z)-  fd(z). 
1 - - z  

Lemma A.2 follows after noting that  f l (Z )= l+z+z2+ . . . .  ( l - z )  -1. [] 

Remark. Notice that  the power series of Lemma A.2 converges absolutely to the 

generating function ( l - z )  -d throughout the open unit disk Izl <1. 
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By evaluating successive derivatives of the generating function at the origin, we find 

that  
dim E~ = ( n+d-1 ) (n+d-2 ) . . . d  ( n + d - 1 ) !  (A.5) 

n! n! ( d - l ) !  

A straightforward application of Stirling's formula [36, p. 194] 

N! ~ v ' ~  NN+I/2e-N 

leads to 

and hence 

( n + d - 1 ) !  1 
1__/~~i~n+lj-d+l n! -- ( d - l ) ! '  

( n + l ) d  1 
dim E~ N ( d -  I)! 

We now prove the assertion of (5.2). 

THEOREM. For p>O we have t r a c e ( l + N ) - V < c ~  if and only if p>d. 

Proof. By (A.6), the infinite series 

(A.6) 

oo dim E~ 
t r a c e ( l + N ) - P  = E (n+  1)P 

n ~ 0  

converges if and only if the series 

n=0 (n§ 

converges; i.e., if and only if p>d. [] 

Appendix B. Quasinilpotent operator spaces 

In this appendix we prove that  if ,9 is a finite-dimensional operator space generated by 

commuting quasinilpotent operators then the energy sequence is itself quasinilpotent in 

the sense that  

limo En(S)Un =0. (B.1) 

In particular, for such an operator space we must have limn-,oo En(S)=O. 

We first show that if S is an arbitrary operator space of finite dimension d, then 

the energy sequence can be defined in terms of d-tuples (rather than arbitrarily long 

sequences in seq(S)). Indeed, for every n=l, 2, ... we claim that  

E,~($) = sup [[T~[[2ol (B.2) 
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where the sup on the right is taken over all d-tuples T = ( T t ,  ..., Td) with components in 

8 which satisfy ]lTIIrow~<l. In view of the description of En(8) in terms of completely 

positive maps (see 7.4), the formula (B.2) is an immediate consequence of the following 

observation. We remark that  the relationship between completely positive maps of B(H) 

and the theory of operator spaces is developed more fully in [8]. 

LEMMA B.3. Let S be a finite-dimensional operator space, let T1, T2, ... Tmc8  be a 

finite sequence of elements of $ and let r be the completely positive map of 13(H) defined 

by r X) = T1X T~ +... + Tm X T*. Then there is a linearly independent set T~ , ..., T~ in ,S , 

r ~ d i m ( 8 ) ,  such that 

r 1 6 3  XeB(H) .  
k = l  

Proof. Let m.H denote the direct sum of m copies of the underlying Hilbert space H,  

and define an operator VC/3(H, re.H) by 

V~ = (T~* ~, T ~ ,  ..., T*~). 

If #(X)=X|174  is the natural representation of B(H) on m.H, then we have 

r  =V*#(X)V,  XeB(H) .  

Let 7r be the subrepresentation of # defined by restricting it to the invariant subspace 

K = [#(X){ : X E  B(H),  ~ C H]. 

Then r  V*Tr(X)V is a minimal Stinespring representation of the completely positive 

map r 

7r is a normal representation of B(H), and therefore the projection onto K can be 

decomposed into an orthogonal sum 

PK = EI + E2+... 

of minimal projections Ej  in the commutant of #(B(H)). For each j let Uj: H--~K be 

an isometry satisfying UjUf=Ej and UjX=#(X)Uj for XeB(H).  

{/-71, U2, ...} is of course a linearly independent set of operators. Set T~=V*Uj. We 

claim that  {T{, T~, ...} is a linearly independent set of operators in S for which 

r XeB(H) .  

Indeed, since UjX=#(X)Uj for all XeB(H),  Uj must have the form 

U j ~ =  1 2 
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for some sequence of scalars 1 2 T,_V-, ~k T r (Aj,Aj,. . .) .  Hence j--Z_,k Aj k~S.  To see that  the {Tj} 

are linearly independent, choose cl, ..., cs c C  such that  elT(+...+csT~=O. Then for every 

~ E H  and every X E B ( H )  we have 

J J J J 

By taking the inner product with a vector of the form V~ for ~ C H we find that  ( ~  c s U s) 

is orthogonal to all vectors in m.  H of the form ~-(X*)V~. Since the latter vectors span K 

and since ( ~  csUj)  ~ belongs to K ,  it follows t h a t  E s  c s U s : O  , and hence cl . . . . .  c~=0. 

In particular, there are at most d=d im(S)  elements in the set {T~, T~, ...}. Finally, 

E Ts = E V* UkXU~V = E Y*Tr(X)EkY = Y*Tr(X)Y = r  
k k k 

because ~ k  Ek=PK and P K V = V .  [] 

Turning now to the proof of (B.1), let A1, ..., Ad be a linearly independent commuting 

set of quasinilpotent operators and consider the operator space 

S = {alAl+.. .+adAd : al,..., ad C C}. 

Formula (B.2) implies that ,  in order to est imate En(S) ,  we may confine at tention to 

sequences T1, ..., Td ES of length d which satisfy 

d 

E TkT; ~< 1, (B.4) 
k = l  

and for such a sequence we must find appropriate  estimates of the norms 

d 

E T* * ... ~l...Ti Ti, ...Ti~ , n = l , 2 ,  , 

il~...,in:l 

independently of the particular choice of T1, ..., Td satisfying (B.4). 

This is done as follows. Since A1, ..., Ad are linearly independent, we can define a 

positive constant K by 

K=sup{lal]+...+]adl : IlalAl+...+adAdH <~ 1}. 

Choose a sequence T1, ..., Td E,S satisfying (B.4). Then there is a (d x d)-matr ix  (ais) such 

that  
d 

Ti = E aij A s . 
j = l  



S U B A L G E B R A S  O F  C * - A L G E B R A S  III: M U L T I V A R I A B L E  O P E R A T O R  T H E O R Y  225 

Since T1, ..., Td satisfy (B.4) we have 

IITill 2 = IITJ~* II ~ IIT1T{+.. .+TdT~II <~ 1 

for every i = 1 ,  2, ..., d, and hence 

d 

~-~laijl<<.K, i = 1, 2, . . . ,d.  
j = l  

I t  follows tha t  for every i, j we have 

d 

[[TiTjl[ <" E [aipl.lajql.llApAq[[ <~ K 2 max  [[ApAq[[, 
l<~p,q<~d 

p , q = l  

and similar ly for every choice of  i l ,  i2, -.., i s  E { 1, 2,.. . ,  d} we have 

IITil ... T~,~ II ~< K s  m a x  [[Aj, ... AN, ̀ II = g ~ n ,  
l ~ j l , . . . , j n  <~ d 

where 

C~ n :  max  IIAj~...Aj~II 
l <~jl , . . . , jn <~ d 

is the  largest  no rm of any n-fold p roduc t  of e lements  drawn from {A1, ..., Ad}.  Thus  for 

every n = l ,  2, ... we have 

d d 

E T* T* T T "til "'" i~ i~ "'" ~ i  1 < E I]T'il "'" T/n  II ~ 
i l , . . . , i n = l  i l , . . . , i n = l  

d 

E T12n 2 --n r z 2 n  2 
lX ee n : a -Ix C~ n , 

i l , . . . , i n :  l 

which implies the  following uppe r  bound  on the  energy sequence: 

(dK2V~a2 E, ( ,S )~<,  , n, n = l , 2 , . . . .  (B.5) 

Note  t ha t  we have not used c o m m u t a t i v i t y  in establ ishing (B.5). 

To comple te  the proof  we es t imate  an  as follows. Choose r  For every j l ,  ...,jnC 

{1, 2, ..., d} we use c o m m u t a t i v i t y  to wri te  Ajl  ... Ajn in the  form 

Aj~ ... Aj~ = Am. . .  A pd 

where Pl ,  ...,Pd are nonnegat ive  integers s u m m i n g  to n. Since each of the  opera tors  Aj 

is quasini lpotent  there  is a cons tant  C > 0  (depending on e) such t ha t  
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for every p=O, 1, 2, ... and every j = l ,  2, ..., d. Hence 

We may  conclude tha t  

[[Apl ... A dPd [[ ~< c d  em +... + pd = c d  e ,~. 

OL n = l <xjlm,...~n <<. d []Ajl ... A j ,  [[ ~< c d  e ~ 

for every n = l ,  2, .... Prom (B.5) it follows tha t  

En(8)  ~ c2d(e2dK2) n, 

The preceding inequali ty implies t ha t  

n = l , 2 , . . . .  

lim sup E , ( S )  Wn <. e2dK 2, 
n ----~ o o  

and since ~ is arbri t rar i ly  small, (B.1) follows. 
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