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Introduction

This paper concerns function theory and operator theory relative to the unit ball in
complex d-space C%, d=1,2,.... A d-contraction is a d-tuple (T1,...,74) of mutually
commuting operators acting on a common Hilbert space H satisfying

Ti&a e+ Tabal® < & [P+ [1€all?,

for every &1,...,£4€H. This inequality simply means that the “row operator” defined
by the d-tuple, viewed as an operator from the direct sum of d copies of H to H, is a

contraction. It is essential that the component operators commute with one another.

This research was supported by NSF Grant DMS-9500291
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We show that there exist d-contractions which are not polynomially bounded in the
sense that there is no constant K satisfying

£ Ty, o, T < K sup{|f{z1, -, 2a)| : |zl|2—|—..‘—{»|zd|2 <1}

for every polynomial f. In fact, we single out a particular d-contraction (S, ..., Sq) (called
the d-shift) which is not polynomially bounded but which gives rise to the appropriate
version of von Neumann’s inequality with constant 1: for every d-contraction (71, ..., )
one has

1A (Te, - T < U F(Shs -, Sa)l

for every polynomial f. Indeed the indicated homomorphism of commutative operator
algebras is completely contractive.

The d-shift acts naturally on a space of holomorphic functions defined on the open
unit ball B4CC®, which we call H2. This space is a natural generalization of the familiar
Hardy space of the unit disk, but it differs from other “H?”-spaces in several ways. For
example, unlike the space H2(9By) associated with normalized surface area on the sphere
or the space H2(By) associated with volume measure over the interior, H 2 is not asso-
ciated with any measure on C¢. Consequently, the associated multiplication operators
(the component operators of the d-shift) do not form a subnormal d-tuple. Indeed, since
the naive form of von Neumann’s inequality described above fails, no effective model
theory in dimension d>2 could be based on subnormal operators. Thus by giving up the
requirement of subnormality for models, one gains a theory in which models not only
exist in all dimensions but are unique as well.

In the first part of this paper we work out the basic theory of H? and its associated
multiplier algebra, and we show that the H%-norm is the largest Hilbert norm on the
space of polynomials which is appropriate for the operator theory of d-contractions.

In Part IT we emphasize the role of “A-morphisms”. These are completely positive
linear maps of the d-dimensional counterpart of the Toeplitz C*-algebra which bear a par-
ticular relation to the d-shift. Every d-contraction corresponds to a unique A-morphism,
and on that observation we base a model theory for d-contractions which provides an
appropriate generalization of the Sz.-Nagy-Foias theory of contractions [43] to arbitrary
dimension d>1 (see §8). In §7 we introduce a sequence of numerical invariants E,(S),
n=1,2, ..., for arbitrary operator spaces S. We show that the d-dimensional operator
space Sy generated by the d-shift is maximal in the sense that F,,(S;) = E,(S) for every
nz1 and for every d-dimensional operator space S consisting of mutually commuting
operators. More significantly, we show that when d>2, Sy is characterized by this max-
imality property. That characterization fails for single operators (i.e., one-dimensional
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operator spaces). We may conclude that, perhaps contrary to one’s function-theoretic
intuition, there is more uniqueness in dimension d>>2 than there is in dimension one.

Since this paper is a logical sequel to [3], [4], and so many years have passed since the
publication of its two predecessors, it seems appropriate to comment on its relationship
to them. On the one hand, we have come to the opinion that the program proposed
in [4, Chapter 1] for carrying out dilation theory in higher dimensions must be modi-
fied. That program gives necessary and sufficient conditions for finding normal dilations
in multivariable operator theory. However, the results below provide two reasons why
normal dilations are inappropriate for commutative sets of operators associated with the
unit ball By. First, they may not exist (a d-contraction need not have a normal dilation
with spectrum in 0By, cf. Remark 3.13) and second, when they do exist they are not
unique (there can be many normal dilations of a given d-contraction which have the
stated properties but which are not unitarily equivalent to each other).

On the other hand, the results of this paper also demonstrate that other aspects of
the program of [3], [4] are well-suited for multivariable operator theory. For example,
we will see that boundary representations, the noncommutative counterparts of Choquet
boundary points in the commutative theory of function spaces, play an important role
in the operator theory of B;. Boundary representations serve to explain the notable
fact that in higher dimensions there is more uniqueness than there is in dimension one
(cf. Theorem 7.7 and its corollary), and they provide concrete information about the
absence of inner functions for the d-shift (cf. Proposition 8.13).

We were encouraged to return to these problems by recent results in the theory
of Ep-semigroups. There is a dilation theory by which, starting with a semigroup of
completely positive maps of B(H), one obtains an Ey-semigroup as its “minimal dilation”
(14], [6], {7], [8], [9], [10]. In its simplest form, this dilation theory starts with a normal
completely positive map P: B(H)—B(H) satisfying P(1)=1, and constructs from it a
unique endomorphism of B(K) where K is a Hilbert space containing . When one
looks closely at this procedure one sees that there should be a corresponding dilation
theory for sets of operators such as d-contractions.

We have reported on some of these results in a conference at the Fields institute
in Waterloo in early 1995. That lecture concerned the dilation theory of semigroups of
completely positive maps, A-morphisms and the issue of uniqueness. However, at that
time we had not yet reached a definitive formulation of the application to operator theory.

There is a large literature relating to von Neumann’s inequality and dilation theory
for sets of operators, and no attempt has been made to compile a comprehensive list of
references here. More references can be found in (26}, [27]. Finally, I want to thank Rauil

Curto for bringing me back up to date on the literature of multivariable operator theory.
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Part I. Function theory
1. Basic properties of H?

Throughout this paper we will be concerned with function theory and operator theory
as it relates to the unit ball By in complex d-dimensional space C¢, d=1,2, ...,

Bd = {Z = (217 22y -y zd) € Cd : ”Z” < 1}7
where ||z|| denotes the norm associated with the usual inner product in C¢,
1201 = 212+ |z2]* +.. +2al.

In dimension d=1 there is a familiar Hardy space which can be defined in several
ways. We begin by reiterating one of the definitions of H? in a form that we will generalize
verbatim to higher dimensions. Let P be the algebra of all holomorphic polynomials f

in a single complex variable z. Every f€P has a finite Taylor series expansion
f(2)=ag+arz+...+ap2"

and we may define the norm | f]| of such a polynomial as the {?-norm of its sequence of
Taylor coefficients,
1A1% = laol* +la1 [* +-..+lan[*. (1.1)

The norm || f]| is of course associated with an inner product on P, and the completion of
P in this norm is the Hardy space H2. It is well known that the elements of H? can be

realized concretely as analytic functions
fAlzl<1}=C

which obey certain growth conditions near the boundary of the unit disk.
Now consider the case of dimension d>1. P will denote the algebra of all complex
holomorphic polynomials f in the variable z=(z1, 22, ..., z4). Every such polynomial f

has a unique expansion into a finite series

f(2)=fo(2)+ fr(2)+...+ fu(2) (1.2)

where fi is a homogeneous polynomial of degree k. We refer to (1.2) as the Taylor series
of f.

Definition 1.3. Let V be a complex vector space. By a Hilbert seminorm on V' we
mean a seminorm which derives from a positive semidefinite inner product (-,-) on V'
by way of

vz rev.

]| =z, z)
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We will define a Hilbert seminorm on P by imitating formula (1.1), where aj is
replaced with fi. To make that precise we must view the expansion (1.2) in a somewhat
more formal way. The space E=C? is a d-dimensional vector space having a distinguished

inner product

<Z, w) =21W1+22Wa+...+24W4g.

For each n=1,2, ... we write E” for the symmetric tensor product of n copies of E. E? is
defined as the one-dimensional vector space C with its usual inner product. For n>2,
E™ is the subspace of the full tensor product E®" consisting of all vectors fixed under
the natural representation of the permutation group S,,

E"={(cE®": U, t=¢, €S, },
U, denoting the isomorphism of E®" defined on elementary tensors by
Ur(21022R...82n) = Zr-1(1)@Zr-1(2)®-.®2p-1(n), 21EE.
For a fixed vector z€ F we will use the notation
2" =28"c B

for the n-fold tensor product of copies of z (:°€ E® is defined as the complex number 1).
E™ is linearly spanned by the set {z™:z€e E}, n=0,1,2, ....

Now every homogeneous polynomial g: E— C of degree k determines a unique linear
functional § on E* by

g(z):f}(zk)v z€E

(the uniqueness of § follows from the fact that E* is spanned by {z*:2€ E}), and thus
the Taylor series (1.2) can be written in the form

f(z) :ka(zk), 2€E,
k=0

where f is a uniquely determined linear functional on E* for each k=0, 1,...,n. Finally,
if we bring in the inner product on E then E (resp. E®*) becomes a d-dimensional (resp.
d*-dimensional) complex Hilbert space. Thus the subspace E¥CE®* is also a finite-
dimensional Hilbert space in a natural way. Making use of the Riesz lemma, we find that
there is a unique vector &, € E* such that

fk(zk):<zk7£k>v z€E,
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and finally the Taylor series for f takes the form

n

f(2)=) (*.&), z€E. (1.4)

k=0

We define a Hilbert seminorm on P as

112 = 1€l + 1€ 1>+ + 1€ 1. (1.5)
The seminorm ||- || is obviously a norm on P in that || f||=0 = f=0.

Definition 1.6. HZ is defined as the Hilbert space obtained by completing P in the
norm (1.5).

When there is no possibility of confusion concerning the dimension we will abbreviate
H? with the simpler H2. We first point out that the elements of H? can be identified

with the elements of the symmetric Fock space over E,
F(E)=E°0E'cFE%®...,
the sum on the right denoting the infinite direct sum of Hilbert spaces.

PROPOSITION 1.7. For every feP let Jf be the element of F(FE) defined by

Jf: (§0a€1? )7

where &,&1, ... is the sequence of Taylor coefficients defined in (1.4), continued so that
&,=0 for k>n. Then J extends uniquely to an anti-unitary operator mapping H? onto
F(E).

Proof. The argument is perfectly straightforward, once one realizes that J is not

linear but anti-linear. g

We can also identify the elements of H? in more concrete terms as analytic functions
defined on the ball By:

PROPOSITION 1.8. Every element of H? can be realized as an analytic function in
By having a power series expansion of the form

[e ¢}

f(2)=) (* &) 2=(21,..,24) € By
k=0

where the H?-norm of f is given by || fI?=3_, llEx|I> <co. Such functions f satisfy a

growth condition of the form
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Proof. Because of Proposition 1.7 the elements of H? can be identified with the
formal power series having the form

Z 7§k (19)
k=0
where the sequence ¢, € E* satisfies
D lEl> =1£1? < oo (1.10)

k=0

Because of (1.10) the series in (1.9) is easily seen to converge in B; and satisfies the
stated growth condition.

In more detail, since the norm of a vector in E* of the form z*, 2€ E, satisfies
12512 = (2%, 2%) = (2, 2)* = || 2||*¥,
we find that
(2%, € < I12%01- gkl < Nl=l1* IEx ],
and hence for all z€ E satisfying ||z|| <1 we have
0o 1/2
(] (Z =17 (Z ||§k||2) N2,
k=0
as asserted. O

We will make frequent use of the following family of functions in H2. For every
x € By define u,: B4—C by

ua(z) = (1~ (z,a)) ™", Izl <1. (111)

u,(2) is clearly analytic in z and co-analytic in z. The useful properties of the set
of functions {u,:x€ By} are summarized in the following proposition, which gives the
precise sense in which H? is characterized in abstract terms by the positive-definite
reproducing kernel k: By x B;—C,

k(z,y) = (1—(z,9)) "
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PROPOSITION 1.12. u, belongs to H? for every € By, and these functions satisfy

(ua, uy) = (1—(y, )7 (1.13)
H? is spanned by {u,:x€ By}, and for every f€ H? we have
f(z):<f1uz>7 ZEBd' (114)

Moreover, if K is any Hilbert space spanned by a subset of its elements {v,:x€B;}
which satisfy
(vz,vy) = (1-(y,2))™", =z,y€Bq,
then there is a unique unitary operator W: H>* > K such that Wu,=v,, x€Bj,.

Proof. The proof is straightforward. For example, to see that u, belongs to H? we

simply examine its Taylor series

ue(2) =(1—{(z,2)) ™! =Z(z, z)*,

k=0
Noting that (z,z)%=(z*, 2*) g« we can write
[e 0]
uz(2)=> (z*,2%)px.
k=0

This shows that the sequence of Taylor coefficients of u, is
Juy =(1,z,2%,...) e F1.(E).

Hence u, belongs to H? and we have

o0

(uzv uy) = <Juy’ Ju2>f+(E) = Z <y7 "L'>k = (1_ <y’ w))—l'
k=0

Formula (1.13) follows.

Similarly, a direct application of Proposition 1.7 establishes (1.14). From the latter it
follows that {u,:z€ By} spans H2. Indeed, if f is any function in H? which is orthogonal
to every u, then

Ff(2)={(f,u,)=0 for every z€ By,

and hence f=0.
Finally, the second paragraph is obvious from the fact that for every finite subset
T1y...,Zn€By and ¢y, ..., ¢, €EC we have

le1tiz, + .- Fentig, |2 = [le1vz, +...4cats, ||,
which is apparent after expanding both sides and comparing inner products. 0

The H?-norm is invariant under the natural action of the unitary group of C¢, as

summarized by
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COROLLARY. Let V be a unitary operator on the Hilbert space E=C®. Then there

is a unique unitary operator T'(V)€B(H?) satisfying
I'(V)u, =uvs, x€By. (1.15)
' is a strongly continuous unitary representation of U(C?) on H? whose action on

functions is given by
P(V)f(z)=f(V'z), z€By feH”. (1.16)
Proof. Fix VeU(C?). For any z,y€ B, we have
(wva,uyvy) = (1= (Vy, Va) ™ = (1~ (y,2) 7" = (uz, uy)-

It follows from Proposition 1.12 that there is a unique unitary operator I'(V) € B(H?)
satisfying (1.15). It is clear from (1.15) that I'(V1V2)=I'(V1)I'(V;), and strong continuity
follows from the fact that

(T(V)ug, uy> = (uvy, uy) = (1-(y, Vx>)_1
is continuous in V for fixed z,y€ By, together with the fact that H? is spanned by
{uz : ZGBd}.
Finally, from (1.14) we see that for every f€ H? and every z€ By,
FVT) = (fuy-1.) = (f,D(V ) u) = (£, (V) u.)
=({CV)f,uz) =T (V)f)(2),
proving (1.16). O

2. Multipliers and the d-dimensional shift

By a multiplier of H? we mean a complex-valued function f: B4— C with the property
f-H?*CH?.

The set of multipliers is a complex algebra of functions defined on the ball B4 which

contains the constant functions, and since H? itself contains the constant function 1 it

follows that every multiplier must belong to H?. In particular, multipliers are analytic
functions on By.

Definition 2.1. The algebra of all multipliers is denoted M. H® will denote the
Banach algebra of all bounded analytic functions f: By— C with norm

[fllco = sup |f(2)I.

=l <1

The following result implies that MCH>, and the inclusion map of M in H*>

becomes a contraction after one endows M with its natural norm.
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PROPOSITION 2.2. Every feM defines a unique bounded operator My on H? by
way of
M;:geH? - f-ge H?.

The naturael norm in M,

I fllam=sup{||f-gll: g€ H?, llgll <1},

satisfies
W Fllae = 11 Mel

the right side denoting the operator norm in B(H?), and we have

[flloe <Hflim,  fEM.

Proof. Fix fe€M. Notice first that if g is an arbitrary function in H? then by (1.16)

we have
(Mfg:uz>=<f'g’uz>:f(z)g(z)' (2'3)

A straightforward application of the closed graph theorem (which we omit) now shows
that the operator M; is bounded.
It is clear that || f||se=|Mf||. We claim now that for each z€ B, one has

Miu, = flx)u,. (2.4)
Indeed, since H? is spanned by {uy:y€ By} it is enough to show that
(M}‘uz,uy):f_(z)(ux,uy% y € By.

For fixed y the left side is
<uza f'uy> = (f'uyy uz)
By (1.16) the latter is

F@)uy(z) = f(2) 1= (z,9) " = f2) A~ (1, 2)) 7" = f(2)(us, uy),

and (2.4) follows.
Finally, (2.4) implies that for every € By we have

| MFu |
(gl

|f(z) = SIMEN =M =11 f s

as required. 0
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We turn now to the definition of the d-dimensional analogue of the unilateral shift.
Let ey, €3, ..., eq be an orthonormal basis for F=C?, and define z1, 23, ..., 24 €P by

2(2) =(z,ex), z€C

Such a d-tuple of linear functionals will be called a system of coordinate functions. If
21, 2h, .., 2 is another system of coordinate functions then there is a unique unitary
operator VEB(C?) satisfying

Z(x) =2 (V7 z), 1<k<d, zeCq (2.5)

PROPOSITION 2.6. Let z1,2p,...,2q4 be a system of coordinate functions for C%.
Then for every complex number a and polynomials fi, fa, ..., f4€P we have

la- 1420 fi ..t za fall® <laf? + [ o2+ [ fall?,

|- || denoting the norm in H2.

Proof. We claim first that each z; is a multiplier. Indeed, if f€ H? has Taylor series

o

f@)=3" (=" &)

n=0
with Y~ |l€.]1?=||f||* < oo then we have

o0

Zk(m)f(m) :Z <xvek><xna§n>- (2'7)

n=0
Now
(:C, €k><xna §n> = (xn+1 ’ ek®§n>-

So if eg-&, denotes the projection of the vector e, ®¢, € EQE™ to the subspace Em*!
then (2.7) becomes

2(z) f(2) =Y (2™ ex-En).

n=0

Since - -
S lleral?< S lleall? = 112
n=0 n=0

it follows that 2 f€ H? and in fact

lzefI<IFIl, feH?.
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Thus each multiplication operator M,, is a contraction in B(H?). Consider the
Hilbert space
K=CoH’®..0H?
R e

d times

and the operator T: K — H? defined by

T(a, f17 ceey fd) :a-1+z1fl+...+zdfd.

The assertion of Proposition 2.6 is that ||T'||<1. In fact, we show that the adjoint of T,
T*:H?— K, is an isometry. A routine computation implies that for all f€H? we have

T*f= ((fv 1>’S;f7’S;f) €K,

where we have written Sy for the multiplication operator M,,, k=1, ....,d. Hence TT*¢€
B(H?) is given by
TT" = Eq+S5;5]+...+5,55,

where Fj is the projection on the one-dimensional space of all constant functions in H?2.

We establish the key assertion as a lemma for future reference.

LEMMA 2.8. Let zj,...,2q be a system of coordinate functions for C%, and let
Se=M,,, k=1,2,...,d. Let Ey be the projection onto the one-dimensional space of con-

stant functions in H2. Then

E0+SIS;+---SdS; = 1

Proof. Since H? is spanned by {u,:z€ By} it is enough to show that for all z,y€ By
we have

d
(Eoug, uy) +Z (SESpuz, Uy) = (Uszg, Uy). (2.9)
k=1
Since each Sy is a multiplication operator, formula (2.4) implies that
Sitty = 2k (T) Uy = (€k, T) Uy,

for x€ B;. Thus we can write

d d
Z(SkS;uz,uy Z (Skug, Spiy) Z<6k’ Z) (Y, e ) (Uz, Uy)
k=1 k=1 k=1

(Y, @) (U, uy) = (g, 2) (1 - (y,2))
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On the other hand, noting that uo=1 and [uo}|=1, the projection Ey is given by Eq(f)=
(f,uo)uo, f€H?. Hence

(Fotg, ty) = (Ug, up) (U0, Uy) =1

because (u,,uo)=(1—{z,0)) =1 for every z€ By. It follows that

d
(Fotg, ty) +Z SpSiug,uy) =1+, ) (1—(y,2)) ' =(1—(y, 7)) " = (ug, uy),
k=1

as asserted. ]
That completes the proof of Proposition 2.6. O

Definition 2.10. Let z,..., 24 be a system of coordinate functions for C¢ and let
Sk=M,,, k=1,2,...,d. The d-tuple of operators

§: (51752) ceey Sd)

is called the d-dimensional shift or, briefly, the d-shift.

Remarks. The component operators 51, ..., Sy of the d-shift are mutually commuting
contractions in B(H?) which satisfy

Slsik—l--'l'st; =1-FE,

where Ey is the projection onto the space of constant functions in H?. In particular, we
conclude from Proposition 2.6 that for any fi, ..., fs3€ H?,

IS1f1+ 4 Safall® < | flP 4+ fal®.

Notice too that if we replace zi,..., zg with a different set of coordinate functions
2}, ..., 2} for C¢ then then the operators (S, ..., S4) change to a new d-shift (51, ...,.5}).
However, this change is not significant by virtue of the relation between z; and z;,. More
precisely, letting V' be the unitary operator defined on C? by (2.5), one finds that

T(WV)S (V) =8}, k=1,2,..4d,

that is, (S7,...,55) and (S1,...,Sq) are unitarily equivalent by way of a natural unitary
automorphism of H?. In this sense we may speak of the d-shift acting on H2. In
particular, we may conclude that each component operator S; is unitarily equivalent to
every other one §;, 1<j<d.



172 W. ARVESON

Finally, if f is any polynomial in P then we may express M, as a polynomial in the
operators S, ..., S as follows. We find a polynomial function g(ws, ..., wq) of d complex
variables with the property that f is the composite function of g with the coordinate
functions z1, ..., 24,

f(zy=g(z1(x), ..., za(x)), z€Bg.

Once this is done the multiplication operator My becomes the corresponding polynomial
in the operators Sy, ..., S4:
Mf =g(51, ceny Sd)

We emphasize that in the higher-dimensional cases d>>2, the operator norm || M|
can be larger than the sup norm || f|| (see §3 below). On the other hand, in all dimen-
sions the spectral radius r{My) of any polynomial multiplication operator satisfies

r(My) = sup |f(2)|. (2.11)

z€By

In the following result we establish the formula (2.11). That follows from a straightfor-
ward application of the Gelfand theory of commutative Banach algebras and we merely
sketch the details.

PROPOSITION 2.12. Let A be the norm-closed subalgebra of B(H?) generated by the
multiplication operators My, fe€P.

Every element of A is a multiplication operator My for some fEM which extends
continuously to the closed ball By, and there is a natural homeomorphism of the closed
unit ball onto the space o(A) of all complex homorphisms of A, z—wz, defined by

we(Ms)=f(z), =zl <1

For every such feM one has

Hm || M}/ = sup |f(z)|.
n—00 lzl<1

Proof. Since the mapping f€ M M;€B(H?) is an isometric representation of the
multiplier algebra on H? which carries the unit of M to that of B(H?), it is enough to
work within M itself. That is, we may consider A to be the closure in M of the algebra
of polynomials, and basically we need to identify its maximal ideal space.

Because of the inequality | f|loo <||fllam of Proposition 2.2, we can assert that for
every polynomial f and every x€C, satisfying ||z||<1 we have

|f(@)] < sup [£(2)] =] flloo < I/ | 01-
zEByg
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It follows that there is a unique complex homomorphism w, of A satisfying

we(f)=f(z), feP.
For all ge. A we now have a natural continuous extension § of g to the closed unit ball
by setting

9(z)=w:(g), Izl <1.

T wsy IS a one-to-one continuous map of the closed ball in C¢ onto its range in o(A).
To see that it is surjective, let w be an arbitrary element of ¢(A). Then for every yeC?
we may consider the linear functional

j(z)=(2,y), 2€C%

The map y+— 7 is an antilinear mapping of C? onto the space of linear functions in P,
and we claim that ||§||m<||y|l. Indeed, assuming that y#0, the linear function

~lwll Tl

is part of a system of coordinates for C%. Proposition 2.6 implies ||u|[s<1, and hence

()~ 9@) _ (@)

ll9llm <||ly)l. Thus, y—w(§) defines an antilinear functional on C? satisfying

w@ | <lglm <y, yeC?

It follows that there is a unique vector z in the unit ball of C¢ such that
w(@) =(z,y), yeC

Thus, w(f)=w;(f) on every linear functional f. Since both w and w, are continuous
unital homomorphisms of 4, since P is the algebra generated by the linear functions and
the constants, and since P is dense in A, it follows that w=w,, and the claim is proved.

Thus we have identified the maximal ideal space of A with the closed unit ball in C¢.

From the elementary theory of commutative Banach algebras we deduce that for every

fin A,

Jim LM =r(f) =sup{lw(f)]: we (A} =sup{| ()] : llz]| <1} = | flloo,
completing the proof of Proposition 2.12. a

The realization of the d-shift as a d-tuple of multiplication operators on the function
space H? is not always convenient for making computations. We require the following

realization of (S, ..., S4) as “creation” operators on the symmetric Fock space 7 (E).
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PROPOSITION 2.13. Let eq,...eq be an orthonormal basis for a Hilbert space E of
dimension d. Define operators Ay, ...,Aq on F(E) by

Aigzeig’ §€f+(E),

where e;£ denotes the projection of e;QRE€F(E) to the symmetric subspace Fy(F). Let
21, ..., 2q be the system of orthogonal coordinates z;(z)={(x,e;), 1<i<d. Then there is a
unique unitary operator W: H2—F, (E) such that W(1)=1 and

Wz, .o2i,) =646, n=l,i€{l,2,..,d}. (2.14)
In particular, the d-tuple of operators (Ay, ..., Aq) is unitarily equivalent to the d-shift.
Proof. For every z€E satisfying |z{| <1 define an element v, € F(E) by
Vg = 1ozoz’er’e... .

It is obvious that ||v;||?=(1~||z||?)! and, more generally,

(vz,v) =(1={z, )", 2l Iyl < 1.

F+(F) is spanned by the set {v;:|z]<1}.
Let {uz:|z||<1} be the set of functions in H? defined in (1.11), and let * be the
unique conjugation of F defined by e} =e;, that is,

(a161+...+aded)* =aie1+...+ageq.
Then we have
(uz,uy) = (1= (y,2)) 7 = (1—{g",y")) 7" = (vo~, vy+)

for all z,y in the open unit ball of E. By Proposition 1.12 there is a unique unitary
operator W: H%2— F, (E) such that W (ug)=v,-, |z]|<1.

We have W(1)=W (ug)=vo=1. Choose z€E satifying ||z||<1 and let f, denote
the linear functional on E defined by f.(z)=(z,z). We have | fz||z=<1 and in fact

[|f2] ;2 <1 for every n=0,1,2,.... Hence for every 0<r<1 and every z€ By we have
x 0
Urg(2) = (1—(z,72)) "' = Z r*{z,z)" = Z rfr(z) € H?.
n=0 n=0
Similarly,

Urge = 3 17(2")" € F (E).
n=0
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Setting W (u,;) equal to v,.,- and comparing coefficients of ™ we obtain
W(fs)=@=")"
for every n=0,1,.... It follows that

W(ferfzs - fz,) =2125 ... 25, (2.15)

for every z1,xa,...,z, € E. Indeed, setting

L(CE17.’£2, ,.'L'n) :W(fl‘l f:ZIQ fzn))

* %k *
R(z1,22, .., Ty ) = 2725 ... Ty

for z1, g, ..., x, € E, we see that both L and R are symmetric n-antilinear mappings which
agree when z,=z2=...=2,€By. Hence L=R and (2.15) follows. We obtain (2.14) by
taking zx=e;, in (2.15).

(2.14) obviously implies WS;=A;W for i=1,...,d, so that the d-tuples (Si, ..., Sq)
and (44, ..., Ag) are unitarily equivalent. O

3. von Neumann’s inequality and the sup norm

Definition 3.1. A d-contraction is a d-tuple of operators T=(T1, ..., Ty) acting on a com-
mon Hilbert space H which commute with each other and satisfy

IT2ér++ Takall® < & ll®+ .+ [1€all?

for every &, ..., 4€ H.

Remark 3.2. We make frequent use of the following observation. For operators
Ti,...,Tg on a common Hilbert space H, the following are equivalent:

(1) |T1&+- A+ Tabal2< & )12+ 4 ||€a])? for all &, ..., E4€ H.

(2) 'TF+..+T,T;<1.

To see this let d-H denote the direct sum of d copies of H, and let T€B(d-H, H) be
the operator defined by T(&y, ...,Eq)=T1&1 +...+Ty€4. A simple computation shows that
the adjoint T*: H—d-H is given by

TE=(T7¢, ..., T36).

Thus TT* is the operator in B(H) given by TT*=T,T; +...+T,T;. The equivalence of
(1) and (2) follows.
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Notice that the d-shift S=(S,...,Sy) acting on HZ is a d-contraction. Perhaps
the most natural generalization of von Neumann’s inequality for d-dimensional operator
theory would make the following assertion. Let T=(T1, ..., T4) be a d-contraction and let
f=f(z1,...,24) be a polynomial in d complex variables z1, ..., zy. Then

(1, ... Tl < sup |f(z1,..., za)l-
lzli<1
In this section we show that this inequality fails rather spectacularly for the d-shift, in
that there is no constant K for which

1£(S1, -, Sa)| <K sup |f(z1, ..., 2a)]
llzll<1
holds for all polynomials f. It follows that the multiplier algebra M is a proper sub-
algebra of H*>°. Indeed, we exhibit continuous functions

f:{zeC%: ||z <1} = C

which are analytic in the interior of the unit ball and which do not belong to M.

We will establish the appropriate version of von Neumann’s inequality for dimension
d>2in §8.

THEOREM 3.3. Assume d>2. Let cg,c1, ... be a sequence of complex numbers having
the properties

() Xnioleal=1,

(i) oo leal?ntt /2 =00,

and define a function f(z1,...,zq) for |z1)%+...+|24?°<1 as

o0
c
f(ZIw--uZd):Z;%(ZIZZ---Zd)n, (33)
n=0
where s denotes the sup norm
1
§= sup |z122 .. 24l =4/ =3 - (3.4)
|27+l zal><1 d

Then the power series (3.3) conmverges uniformly over the closed unit ball to a func-
tion f satisfying ||flloo <1. The restriction of f to By does not belong to H?. Letting
fos f1, fa, ... be the sequence of Taylor polynomials

N
&

fN(Zl, ceey Zd) = Z S—Z (2122 Zd)n,

n=0
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then we have ||fx|loo <1 for every N while

Jim (St Sa)ll = Jim vl =oo. (35)

Remarks. 1t is clear that the function f belongs to the “ball algebra”, that is, the
closure in the sup norm |||l of the algebra of polynomials. On the other hand, f does
not belong to the multiplier algebra M, and in particular the inclusion M C H* is proper.

Note too that it is a simple matter to give explicit examples of sequences cg, ¢y, ...
satisfying conditions (i) and (ii). For example, let S be any infinite subset of the non-

negative integers which is sparse enough so that

1
Z a-nya <%

nes

If we set ¢, =1/n{4"D/% if nc S and ¢, =0 otherwise, then we obviously have (ii) because
S is infinite, and (i) can also be achieved after multiplying the sequence by a suitable
positive constant.

Proof. The formula (3.4) for the sup norm,

s=d~4?,
follows from the elementary fact that
1
(2122l o 122l < S (1 P22 o 2al),
d

with equality if and only if |z;|=|z2|=...=|z4].
Let p be the homogeneous polynomial p(zy,...,24)=2122... 24. Then for every n=
0,1,2,... we have

1™ oo = lIpll5, = d ™"/ = 5™

It follows that the power series (3.3),

> C
Z _np(zly "'7Zd)n7

converges uniformly over the unit ball to f. Thus it remains to establish the condition
(3.5).

Now for any polynomial g in the d complex variables 21, ..., 24 we have

llg(S1, -, Sa)ll = g(Sy, -, Sa) Ul 2 = |9l -



178 W. ARVESON

Thus it suffices to show that the sequence of Taylor polynomials fg, f1, f2, ... defined by
the partial sums of the series diverges in the H2-norm, that is,

o0

Ip™||2

sup [fn 12z =Y lenl? ” n“’f =00, (3.6)
N n=0 Pll%

In order to establish (3.6) we will show that there is a positive constant A such that
lp™ 2 > Ad ™m0, (37)

for all n=1,2,.... In view of the fact that |[p*||2, =d~"¢ and the series 3" |c,|?n{d~1/2
diverges, (3.6) will follow.

The estimate (3.7) is based on the following computation. Since the result is a
statement about certain norms in the symmetric Fock space over C¢, it is likely that
the result of Lemma 3.8 can be found in the literature. Since we are not aware of an
appropriate reference and since the estimate (3.7) depends essentially on these formulas,
we have provided the details.

LEMMA 3.8. Let e1,es,...,eq be an orthonormal basis for E=C®. Then for every

d-tuple of nonnegative integers k=(ky,...,kq) we have

kil kol ... ka!
K[!

ki _k k
Helle22...eddH2E|k[ =

where |k|=k1 +ky+...+kq.

Remark. Regarding notation, we have written e’fle’;"" esd for the projection of the

vector
e?h@eg@kz@...@e?kd c E®k

to the symmetric subspace E'¥lC E®Ik!,

Proof. For yl,...,ypeE:Cd we use the notation y;ys ...y, for the projection of
NRY2R...QY, € E®P to the symmetric subspace EP. Fixing a€F and p>1 we have
an associated “creation operator” A: EP~!— EP defined by

A(.’El.’rg....'Epvl):a(El.’Eg....’Ep_l, reFE.

We claim first that for p>1 the adjoint A*: EP— EP~1 is given by

1 _
A" (Y192 - yp) =52(yk,a>y1---yk---yp (3.9)
k=1
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where ¢y, means that the term yy is missing from the symmetric tensor product. Indeed,
if ¢ denotes the right side of (3.9) then for every z€ E we have

1 P
(¢, 2?1 __Z (Y1, 2) oo (Yk=1, Z) Yk, O) (Yk+1+ L) - (Up> T)
pk:l
=(1®..0Yp, p~ (a®2P ' +zRa®2P * +...+2P " ®a)).

Since
p Ha®zP ' 4 r®a®2P 2+, 42P  ®a) = axP ™! € EP,

the right side of the preceding formula becomes

(11®...0Yp, ax? ") = (Y192 ... Yp, az¥ ) = (A" (12 - Yp), 27 1)

(3.9) now follows because EP~! is spanned by vectors of the form zP~!, z€E.

To prove Lemma 3.8 we proceed by induction on the total degree |k|. The formula
is obvious for {k|=0. Assuming that |k|>1 and that the formula has been established
for total degree [k[—1 then we may assume (after relabelling the basis vectors e, ..., eq
if necessary) that ki >1.

Taking a=e; in (3.9) and noting that (e1,e1)=1 and (e1,e;)=0if j=2,...,d, we find
that

k
* k 1 k-1 k k
A*(ehrekz d"’)—*lkI ey’ Text. ey,
and hence
k
k ka K * kay _k1—1_k k 1 ki—1_k kg2
(e1"...ez% e’ e > (A" (e £ egt) et e’ dd>:m”ell ey” .. eq’ ||
The required formula now follows from the induction hypothesis. a
Setting ky=ka=...=kg=n in Lemma 3.8, we obtain

n|2 .
l(ei€z ... €q)" |5ne = _(nd)!'
The right side is easily estimated using Stirling’s formula
V22 e,

and after obvious cancellations we find that

_ 1/2
(nh)? (2mit /d—ndn(d—l)/Z_
(nd)! d
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In order to deduce (3.7) from the latter, choose an orthonormal basis e, e, ..., eq
for C? so that
z(z)=(z,er), k=12,...,d
Then
(2122 - 2a) |32 = [l (€162 . €)" | ma

and (3.7) follows after choosing A to be a positive number appropriately smaller than
v/2m9=1/d. That completes the proof of Theorem 3.3. O

Remark 3.10. We recall that a d-tuple of commuting operators T=(Ty, 73, ..., T4)
on a Hilbert space H is said to be subnormal if there is a commuting d-tuple of normal
operators N=(Ny, Na, ..., Ng) on a larger Hilbert space K O H such that

Ty = Nilg, k=1,2,....d.

The one-dimensional unilateral shift can be extended to a unitary operator on a larger

space. That situation is unique to dimension 1, as we have
COROLLARY 1. For every d>2 the d-shift is not subnormal.

Proof. In Proposition 2.12 we identified the maximal ideal space of the unital Banach
algebra generated by the d-shift with the closed unit ball in C?. In particular, for every
polynomial f the spectral radius of f(Si,..., Sq) is given by

r(f(S1,...,S4)) = sup [f (215 ey za)}-
lz12+...+]za|?<1
If the d-shift were subnormal then f(Si, ..., Sq) would be a subnormal operator for every
polynomial f, and hence its norm would equal its spectral radius [22, Problem 162],
contradicting Theorem 3.3. O

The two most common Hilbert spaces associated with the unit ball B, arise from
measures. These are the spaces H?(0B,) associated with normalized surface measure on
the boundary of B, and the space H2(B,) associated with normalized volume measure
on Bg [37]. It is reasonable to ask if the space H? can be associated with some mea-
sure on C%. The answer is no because that would imply that the d-shift is subnormal,

contradicting Corollary 1. The details are as follows.

COROLLARY 2. There is no positive measure p on C%, d>2, with the property that

11 = [ 1P duce)

for every polynomial f.

Proof. Suppose that such a measure p did exist. p must be a probability measure
because ||1||g2=1, and it must have finite moments of all orders.
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We claim that p must have compact support. Indeed, if f is any linear functional
on C¢ of the form f(x)=(z,e) where e is a unit vector of C? then by Lemma 3.8 we have

1F™ 12 = lle™ |5 =1

for every n=1,2,.... Hence
| @ duta =1,
Cd

Taking 2nth roots we find that the function f has norm 1 when it is considered an element
in the space LP(C?, u) for p=2,4,6, .... Letting X be the closed support of the measure
w we find that

1/2n
sup 7)1 = Jim ([ 1rPran) <1
z€X n—0\ JCd

This proves that for every z€ X and e in the unit ball of C? we have
[(z,€)| <1,

and thus X must be contained in the closed unit ball of C¢.

Now we simply view the d-shift as a d-tuple of multiplication operators in the space
L?(p). Here, Sy is multiplication by zj acting on the closure (in L?(u)) of the space of
polynomials. This d-tuple (51, ..., Sg) is obviously subnormal, contradicting Corollary 1
above. |

Remark 3.11. In the conventional approach to dilation theory one seeks normal
dilations for operators or sets of operators. Theorem 3.3 implies that this approach is
inappropriate for d-contractions and the unit ball of C? in dimension greater than one.
Indeed, if (N, ..., Ng) is a d-tuple of mutually commuting normal operators whose joint
spectrum is contained in the closed unit ball of C?, then for every polynomial f€P we
have

1f (N1, ..., Na)|| < sup | f(z)].
zE€By

Since Theorem 3.3 implies that there are polynomials f for which the inequality

1£(S1, -, Sa)ll < sup [f(2)]

zE€Byg

fails, one cannot obtain such operators f(S1, ..., S3) by compressing f(N1, ..., Ng) to any
subspace. Thus the d-shift cannot be dilated to a normal d-tuple having its spectrum in
the closed unit ball.
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4. Maximality of the H2-norm

The purpose of this section is to show that in every dimension d=1,2,... the H%-norm
is distinguished among all Hilbert seminorms defined on the space P of polynomials by
being the largest Hilbert seminorm which is appropriate for operator theory on the unit
ball of C%. As a consequence, we show that the function space H? is contained in every
other Hilbert space of analytic functions on the open unit ball which has these natural
properties.

Definition 4.1. Let z1, ..., zq be a system of coordinate functions on C?. A Hilbert
seminorm ||-|| defined on the space P of all polynomials is said to be contractive if for
every a€C and every fi,..., f4€P we have

lal+21 fi+.+2afal® < lal+ I A2+ fall*-

Remarks. Proposition 2.6 asserts that the H?-norm is a contractive norm on P.
From Proposition 4.2 below it follows that the Hilbert norms defined on P by both
H?(B4) and H?(0By) are contractive norms.

It is a simple exercise to show that if a Hilbert seminorm || - || is contractive relative
to one system of coordinates z1, ..., zg then it is contractive relative to every system of
coordinates. Thus the definition of contractive seminorm depends only on the structure
of C% as a d-dimensional Hilbert space.

Notice too that if ||-|| is any contractive seminorm then for any system of coordinate
functions 2z, ..., zg the multiplication operators (My,, ..., M,) give rise to a d-contraction
acting on the Hilbert space obtained by completing P in this seminorm. Indeed, we have
the following somewhat more concrete characterization of contractive Hilbert seminorms.

PROPOSITION 4.2. Let ||-|| be an arbitrary Hilbert seminorm on P, let H be the
inner product space defined by ||-||, and let Py be the mazimal ideal in P consisting of
all polynomials f such that f(0)=0. Then |-|| is a contractive seminorm if and only if

the following two conditions are satisfied:

(1) 1LPy in the space H, and

(2) for some system of coordinate functions zi,...,zq the multiplication operators
(M,,...,M,,) define a d-contraction on H.

Proof. Once one notes that the most general element of Py is a sum of the form
z1fi+...+zafq with f1,..., f1€P, the argument is straightforward. O

We collect the following observation, which asserts that condition (2) alone is enough

in the presence of minimal symmetry.
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COROLLARY. For every A in the circle group {z€C:|z|=1} and every feP set
ir(z)=Ff(z), ze€C2. Let ||-|| be a Hilbert seminorm on P which satisfies || fol|=|f for
every fEP and every A, such that for some system of coordinate functions z1, ..., 24, the
multiplication operators M,,,...,M,, give rise to a d-contraction acting on the Hilbert
space H obtained from | -|.

Then || -{| is a contractive seminorm.

Proof. We show that the symmetry hypothesis implies condition (1) of Proposi-
tion 4.2. For every A in the unit circle we can define a unitary operator U, uniquely on
H by setting

Uxf=fr feP.

It is obvious that U is a unitary representation of the circle group on H. Moreover, if f

is a homogeneous polynomial of degree n=0, 1, ... then we have
Unf=X"f
for all A. Thus for the inner product (-, -) associated with || - || we have

<fa 1) = <U>\f7 U/\1> = )‘n<f7 1)7
so that if n21 then (f, 1)=0. It follows that 1 1Py, as required. |

Following is the main result of this section.

THEOREM 4.3. Let ||-|| be any contractive Hilbert seminorm on P. Then for every
fEP we have

I < KNSz

where k=||1||. In particular, the H?-norm is the largest contractive Hilbert seminorm
which assigns norm 1 to the constant polynomial f=1.

In particular, we see that the Hilbert norms arising from the “Hardy” space H?(0Bg)
and the “Bergman” space H?(Bg) are both dominated by ||| zz. Indeed, we have the
following inclusions of the corresponding Hilbert spaces of analytic functions in the open
ball By:

H?C H?(0By) C H*(By),

where both inclusion maps are compact operators of norm 1. Since we do not require the
latter assertion, we omit the proof. However, note that of these three function spaces,
H? is the only one that does not contain H*, and it is the only one of the three for
which the d-contraction defined by the multiplication operators (M,,, ..., M,,) fails to be

subnormal.
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Remark 4.4. Every d-contraction (T3, ...,Tq) in B(H) gives rise to a normal com-
pletely positive map P on B(H) by way of

P(A)=T AT +..+T,AT;, A€B(H).

Because of Remark 3.2 we have P(1)=T\T7 +...+T,T;<1, and in fact the sequence
A, =P"(1) is decreasing: Ag=1>A;>A45>...20. Thus

Ao = lim P™(1)

n—ooxd

exists as a limit in the strong operator topology and satisfies 0< A <1. A d-contraction
T=(T, ..., T4) is called pure if Ao =0. Notice that if the row norm of T is less than 1,
e, T\Ty+..4T,T; <rl for some 0<r<1, then ||P||=|P(1)||<r<1, and hence T is a

pure d-contraction.

For the proof of Theorem 4.3 we require an operator-theoretic result which relates
closely to the material of §6. Gelu Popescu has pointed out that the operator L is related
to his Poisson kernel operator K, of [35, §8], when r=1. For completeness, we include a
proof.

THEOREM 4.5. Let (T1,...,T4) be a d-contraction on a Hilbert space H, and define
the operator

A=1-T\T; —..—T,T;)"/?

and the subspace K=AH. Let E be a d-dimensional Hilbert space and let
F(E)=CoE®F%*®...

be the symmetric Fock space over E.

Then for every orthonormal basis ey, ...,eq for E there is a unique bounded operator
L:FL(E)Y® K—H satisfying L{1Q&)=A¢£ and

Le;, e;,...6;, =T, T;,...T; A&

for every i1,...,in,€{1,2,...,d}, n=1,2,.... In general we have |L|| <1, and if (T4, ...,T4)
is a pure d-tuple, then L is a co-isometry: LL*=1y.

Proof. If there is a bounded operator L satisfying the stated condition then it is
obviously unique because F (FE) is spanned by the set of vectors

{l,eil,eizeis, €iy€i5Chgy 0n ! 1% € {1, 2, ...,d}, k=1,2, }
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We define L by exhibiting its adjoint, that is, we will exhibit an operator
A:H— F(E)QK,
F(E) denoting the full Fock space over E, and we will show that ||A||<1 and

(L(C)JI) = (CaA(n» (4'6)

for ¢ of the form 1®€ or e; e, ...€;, ®E for (€ K. At that point we can define L to be
the adjoint of Py A, P, denoting the projection of F(F) onto its subspace F(E).

For every n€H, we define An as a sequence of vectors ({p, (1,2, ...) where (,€
E®"QK is defined by

d
o= Y. €,®..®e, ®AT} ... T}

i1y enyin=1

for n>1 and (o=1®An. Notice that since T7,...,T; commute, {, actually belongs to
the symmetric subspace E"® K. We claim first that

oo
D1l < linl?,
n=0

so that in fact A maps into F(E)®K and is a contraction. Indeed, we have

d d
IGall®= > NAT . TimlP = 3" (T T AT, . Thn, ).

i1y in=1 iyeenyin=1

Let P(A)=T1 ATy +...+T4 AT} be the completely positive map of Remark 4.4. Noting
that A2=1—P(1) we find that

d
> T, T, AT LTE = PM(1-P(1)) = P™(1) - P™1(1),

’Ll,.‘.,'in=1

and hence
1Gall? = (P™(1)n, ) — (P™1(1)m, m).

The series ||(g||2+||C1]|>+... therefore telescopes and we are left with

> Gall® = lIm1® = (Asom, m) < 1ml1?, (4.7)
n=0

where Ay is the positive contraction Ao, =lim,_,., P*(1) of Remark 4.4.
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We now verify (4.6) for ¢ of the form {=ej, ...e;, ®& for n>1, ji, ..., jn€{1,2,...,d}
and € K. We have

d

(€, - €, ®E, An) = Z (€, €, BE €, ®...0¢e;, QAT ... Tyn)
cin=1
d

1152300

Z <6j1®"'®ejn,ei1®"'®ein><£5ATi:'“111'*17]>

11,...,1’,1:1

= (&, AT} ... Thm) = (Tj, ... T, A&, m) = (L(C), m)-
For (=1®¢ with £€ K we have

<1®€’ Aﬂ) = <1®§7 1®ATI) = (57 ATI) = (Afﬂl),

as required. If (71,...,Ty) is a pure d-tuple, then it is clear from (4.7) that A is an
isometry, and hence L is a co-isometry. O

Proof of Theorem 4.3. Let H be the Hilbert space obtained by completing P in the
seminorm || -||. Choose an orthonormal basis e, ..., e4 for E=C¢ and let z1, ..., zg be the
corresponding system of coordinate functions z;(z)=(z,e;), i=1,...,d.

Since ||- || is a contractive Hilbert seminorm the multiplication operators
Te=M,,, k=1,..d

define a d-contraction (77, ..., Ty) in B(H). Set

/2

d 1
A= (1-2 TkT,;*) ,
k=1

let K=AH be the closed range of A, and let L: F.(E)® K—H be the contraction
defined in Theorem 4.5 by the conditions L(1®£)=A¢f and, for n=1,2, ...,

Le;,...€;,®8)=T;, ... T;, A&, (4.8)

EeK, iy,...,in€{l,2,...,d}.

The constant polynomial 1P is represented by a vector v in H. We claim that
Av=v. Indeed, since ||-|| is a contractive seminorm, condition (1) of Proposition 4.2
implies that

vI1TYH+ToH+...+T4H,
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and hence T;v=0 for k=1, ...,d. It follows that

d
1Av]12 = (A%, 0) = [v]® =D | TEl® = v]1%,
k=1

and hence Av=v because 0<ALK1.
In particular, v=Ave AH=K. Taking £=v in (4.8) we obtain

Lie;, ...e;, @v)=T,;,...T; v.

Since v is the representative of 1in H, T;, ... T; v is the representative of the polynomial

Ziy . %, in H, and we have
Le;, ...e;,®v) =2, ... 2, € H.

By Propostion 2.13 there is a unitary operator W: H?2— ¥, (E) which carries 1 to 1
and carries z;, ... z;, €H? to e;, ... €;, € F (E). Hence

LW (ziy... 2:, )QU) =24, .. Zi,, -
By taking linear combinations we find that for every polynomial f&P,
L(Wfeu)=f

where f on the left is considered an element of H? and f on the right is considered an
element of H. Since ||L||<1 and W is unitary, we immediately deduce that

Iflla <IWfovll=fllg=-llvla

Theorem 4.3 follows after noting that ||v|| g =|1||x. O

Remarks. In particular, the H2-norm is the largest Hilbert seminorm ||-|| on the
space P of all polynomials which is contractive and is normalized so that ||1]|=1.

We will make use of the following extremal property of the H2-norm below.

THEOREM 4.9. Let ||-|| be a contractive Hilbert seminorm on P satisfying ||1]j=1
and let z1,...,zq be a system of orthogonal coordinate functions for E=C¢. Then for

every n=1,2, ... we have

d
n+d—1)!
5 Banem < S (4.10)

i1, eenyin=1
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with equality holding if and only if ||fll=||f|lg2 for every polynomial f of degree at
most n.

Proof. Let {e1, ..., e4} be an orthonormal basis for a d-dimensional Hilbert space E.
We consider the projection P,eB(E®") of the full tensor product onto its symmetric
subspace E™. Since ||-|| is a contractive seminorm, Theorem 4.3 implies that for all

91, ..., in, We have
llzi, - 2i, || < Nl2iy oo 20, |2 = 1 Po(€4, @ ®es, )|

and hence
d d

Yo lznez, <Y 1Palen®...®e:,)]2

i1, eeyin=1 i1, yin=1
Since {e;,®...Q¢€;,:1<4, ..., i, <d} is an orthonormal basis for E®™ the term on the right
is trace(P,)=dim(E™), and (4.10) follows from the computation of the dimension of E™
in (A.5).

Let P, denote the subspace of H? consisting of homogeneous polynomials of de-
gree n, and let @, be the projection of H% on P,. The preceding observations imply
that if A is any operator on H? which is supported in P, in the sense that A=Q,AQ,
then the trace of A is given by

d
trace(A) = Z (Azi, o 2i, Ziy oo Zi Y H2- (4.11)
i1yeensin=1
Now fix n and suppose equality holds in (4.10). Since ||| is a contractive Hilbert

seminorm satisfying ||1]|=1, Theorem 4.3 implies that || f||<||f| g2 for every feP, and
hence there is a unique operator HeB(H?) satisfying

(fLo)=(Hf,g)uz, [ g€P,
and one has 0<H 1. Considering the compression @Q,HQ, of H to P, we see from
(4.11) that
trace(QnHQ,) =dim(E™) =trace(Q@n).

Since @, —Q, HQ.,, >0 and the trace is faithful, we conclude that Q,, HQ, =Q,., and since
H is a positive contraction it follows that Hf=f for every feP,.

We claim that Hf=f for every feP, and every k=0, 1,...,n. To see that, choose a
linear functional z€P satisfying ||z||z2=1. Since || || is a contractive seminorm we have

llz- FIL||fIl for every f€P, and in particular we have |z2"||=||z""*2%| <||2*||. Thus
(Hz" 2P o = 1252 2 12712 = |27 e
Since the H%-norm of any power of z is 1 and 0K H K1, it follows that Hz*=2z. Since

every polynomial of degree at most n is a linear combination of monomials of the form

2* with z as above and k=0, 1, ..., n, the proof of Theorem 4.9 is complete. O
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Part II. Operator theory
5. The Toeplitz C*-algebra
Let S=(S1,...,S4) be the d-shift.

Definition 3.1. The Toeplitz C*-algebra is the C*-algebra 7; generated by the op-
erators S, ..., Sq.

Remarks. Notice that we have not included the identity operator as one of the
generators of 73, so that 7; is by definition the norm-closed linear span of the set of
finite products of the form 7175 ... T;,, n=1,2, ..., where

T, €{5,...,9 57,..., S5}
Nevertheless, (5.5) below implies that 7; contains an invertible positive operator
(d14+N)(14N)" = S28, 4.4+ 555,

and hence 1€7;. Thus 7; is the C*-algebra generated by all multiplication operators
M;eB(H?), feP.

If one starts with the Hilbert space H?(0By) rather than H? then there is a natural
Toeplitz C*-algebra
Top, = C*{M;: fe P} C B(H*(dBy)),

and similarly there is a Toeplitz C*-algebra 7z, on the Bergman space
Tp, = C*{M;: fe P} C B(H?*(Ba)),

see [16]. In fact, it is not hard to show that the three C*-algebras 7y, Top, and 7Tp,
are unitarily equivalent. In that sense, the C*-algebra 7; is not new. However, we are
concerned with the relationship between the d-shift and its enveloping C*-algebra 7y,
and here there are some essential differences.

For example, in the classical case of H?(9By) one can start with a continuous
complex-valued function f€C(0Bg) and define a Toeplitz operator Ty on H2(dB,) by
compressing the operator of multiplication by f (acting on L%(8By)) to the subspace
H?(8By). In our case, however, continuous symbols do not give rise to Toeplitz opera-
tors. Indeed, we have seen that there are continuous functions f on the closed unit ball
which are uniform limits of holomorphic polynomials, but which do not belong to H2.
For such an f the “Toeplitz” operator T} is not defined. Thus we have taken some care
to develop the properties of 7; that we require.
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Let N be the number operator acting on H?, defined as the generator of the one-
parameter unitary group
F(eitlE) =N teR,

' being the representation of the unitary group of E on H? defined in the remarks
following Definition 2.10. N obviously has discrete spectrum {0,1,2,...} and the nth
eigenspace of N is the space P,, of homogeneous polynomials of degree n,

P,={6cH?: NéE=nf}, n=0,1,2,....
(1+N)~! is a compact operator, and it is a fact that for every real number p>0,
trace(1+N)P<oo & p>d. (5.2)

Since N is unitarily equivalent to the Bosonic number operator, the assertion (5.2) is
probably known. We lack an appropriate reference, however, and have included a proof
of (5.2) in Appendix A for the reader’s convenience.

The following result exhibits the commutation relations satisfied by the d-shift.

PROPOSITION 5.3. Suppose that d=2,3, ... and let (S1,...,S4) be the d-shift. Then
for all i,j=1,...,d we have
S;8;=8;8; =(1+N)"'(6:;51-5;57) (54)
and
518, +...+858,=(d1+N)(1+N)~1. (5.5)

In particular, ||STS,+..4+5;5,l=d. The commutators S;S;—5;S; belong to every
Schatten class LP(H?) for p>d, but they do not belong to L4(H?).

Remark. 1t follows that if A, B are operators belonging to the unital *-algebra gen-
erated by Si, ..., S4, then AB— BA€ LP(H?) for every p>d, and hence any product of at
least d+1 such commutators belongs to the trace class.

Proof. To establish these formulas it is more convenient to work with the d-shift in
its realization on F, (E) described in Proposition 2.13. Thus, we pick an orthonormal
basis €1, ..., e4 for a d-dimensional Hilbert space E and set

Sz-f:eiﬁ, 1<’l<d,
for £€ F(E)=C®E®E?®.... The number operator N acts as follows on E™:

NfE=ng, £€E™" n=0,1,2,...
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We first establish (5.4). It suffices to verify that the operators on both sides of (5.4)
agree on every finite-dimensional space E™, n=0,1,2,.... For n=0 and A€C we have
Sy SiA=ASre;=6;;A, while §;S;A=0. Hence (5.4) holds on C. For n>1 and {€E™ of
the form £=y™ we see from formula (3.9) that

6is n
S*S S* Y ¥ 7 Ve, n—1
£=5](ey") = iV T ey

while

n—1

5 (yaej> Y <yaej>ezy

Hence

S}, 5,576 = — (3,6 ~5;579)

The latter holds for all £€ E™ because E™ is spanned by {y":y€E}, and (5.4) follows.
Formula (5.5) follows from (5.4). Indeed, for £€ E™ we have

xoe_ Lt e T oo
SIS = erToSSiE

By the remarks following (2.10) we have
S187+...+8,8;=1—FEy, (5.6)
Ey denoting the projection on C. Summing the previous formula on ¢ we obtain

d
oo d +d n _n+d
;Sisif—m G (= Fof) = s By =

3

and (5.5) follows.

Now suppose p>d. Because of (5.2) the operator {1+N)~! belongs to L?; since LP
is an ideal, (5.4) implies that S7S;—S5;S5F€L? for all 4, j.

Finally, we claim that no self-commutator [S}, S;]=S57S;~S,S; belongs to £%. In-
deed, since the operators S1, ..., Sy are unitarily equivalent to each other (by the remarks
following Definition 2.10), we see that if one [S}, S;] belongs to £ then they all do, and
in that case we would have J

> Isr, 8] et

i=1

y (5.5) and (5.6) the left side of this formula is

ZS*S ZS S =(d14+N)(1+N)"'—(1—FEy) = Eo+(d—1)(1+N) !
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Since (1+N)~1¢ L% by (5.2), we have a contradiction and the proof of Proposition 5.3
is complete. : O

The d-shift and the canonical commutation relations. The d-shift is closely related to
the creation operators (Ci, ..., Cy) associated with the canonical commutation relations
for d degrees of freedom. Indeed, one can think of S=(S4, ..., Sq) as the partial isometry
occurring in the polar decomposition of C=(C1, ..., Cy) in the following way. Choose an
orthonormal basis eq,...,eq for a d-dimensional Hilbert space E. For k=1,...,d, Cy is
defined on the dense subspace of F, (F) spanned by E™, n=0,1, ..., as

Cré=Vntlepl, E€E"

(see [40]). The Cy are of course unbounded operators, and they satisfy the complex form

of the canonical commutation relations
CiCj':CjCi, C;Cj_CjC;:‘Sijly lgzngd

One finds that the row operator

C= (Ch ...,Cd)2 .7:+(E)@@]:+(E) —>.7:_|_(E)

/

~
d times

is related to the number operator N by CC*=N, and in fact the polar decomposition of
C takes the form

C=N'?3
where S=(S1, ..., Sy) is the d-shift; i.e., Cx=N/2S;, k=1, ...,d.

We have seen that the d-shift is not a subnormal d-tuple. The following result asserts
that, at least, the individual operators Si, k=1, ..., d, are hyponormal. Indeed, any linear
combination of S, ...,54 is a hyponormal operator.

CoOROLLARY. For every k=1, ...,d we have S;5,25,5}.

Proof. Proposition 5.3 implies that
S:S,— 8,8 =(1+N)"*(1-5,5;)-

Since ||Sk||<1, both factors on the right are positive operators. Let E, be the nth
spectral projection of N, n=0, 1, .... Since S Ep=FEn1S} it follows that 5, 5} commutes
with E,. Thus (1+N)~! commutes with 1—S, S, and the assertion follows. a

Of course in dimension d=1, the commutator S*S—S5S* is a rank-one operator and

therefore belongs to every Schatten class L7, p>1.
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THEOREM 5.7. Ty contains the algebra K of all compact operators on H?, and we

have an exact sequence of C*-algebras
0 —K—T;-5C(0By) —0
where m 1s the unital *-homomorphism defined by
w(Sk) = 2k,

2 being the k-th coordinate function zgx(z)=(z,ex), x€0B,.
Letting A be the commutative algebra of polynomials in the operators Sy, ...,Sq we
have
T,=5pan AA". (5.8)

Proof. Let Ey be the one-dimensional projection onto the space of constants in H2.
By the remark following Definition 2.10 we have

Eg=1-5,57—...—5;5; €span AA4".
Thus for any polynomials f, g, the the rank-one operator

f®g:§— (5 9)f

can be expressed as
f®F=MpE;M, €span AA".

It follows that the norm closure of span.AA* contains the algebra K of all compact
operators.

By Proposition 5.3, the quotient 7;/K is a commutative C*-algebra which is gener-
ated by commuting normal elements Z,=7(Sx), k=1, ..., d, satisfying

Z]_Zik‘*_'.“‘l*ZdZ; == 1

Because 7; is commutative modulo X and since span.AA* contains K, it follows that
span AA* is closed under multiplication, and (5.8} follows.

Let X be the joint spectrum of the commutative normal d-tuple (Z1,..., Z4) that
generates Ty/K. X is a nonvoid subset of the sphere By, and we claim that X=08B,.
Indeed, since the unitary group U(E) acts transitively on 0By it suffices to show that for
every unitary (dxd)-matrix u=(us;), there is a *-automorphism 6,, of 73/K such that

d
QU(ZZ) = Z ﬂjiZj.
=1
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For that, consider the unitary operator U acting on E by

d
Ue; = _;- Uji€5.
=1

Then I'(U) is a unitary operator on H? for which

d
NU)STU) =) u;S;,

j=1

and hence 0, is obtained by promoting the spatial automorphism 7'—T'(U)TT(U)* of
T4 to the quotient 74/K.

The identification of 73/K with C(8By) asserted by 7(S;)=z;, i=1,...,d, is now
obvious. O

6. d-contractions and .A-morphisms

The purpose of this section is to make some observations about the role of A-morphisms
in function theory and operator theory.

Definition 6.1. Let A be a subalgebra of a unital C*-algebra B which contains the
unit of B. An A-morphism is a completely positive linear map ¢: B—B(H) of B into the
operators on a Hilbert space H such that ¢(1)=1 and

H(AX)=d(A)$(X), AcA XeB.

A-morphisms arose naturally in our work on the dilation theory of completely pos-
itive maps and semigroups [7], [8], [9]. Jim Agler has pointed out that they are related
to his notion of hereditary polynomials and hereditary isomorphisms (for example, see
[1, Theorern 1.5]). Indeed, if B denotes the C*-algebra generated by a single operator
T and the identity, then one can show that a completely positive map of B which is a
hereditary isomorphism on the space of hereditary polynomials in T is an .A-morphism
relative to the algebra A of all polynomials in the adjoint T™.

In general the restriction of an A-morphism to .4 is a completely contractive rep-
resentation of the subalgebra A on H. Theorem 4.5 implies that every d-contraction T
acting on a Hilbert space H gives rise to a contraction L: 7, (C?)® K — H which inter-
twines the action of the d-shift and T. L is often a co-isometry, and that implies the

following assertion about .A-morphisms.
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THEOREM 6.2. Let A be the subalgebra of the Toeplitz C*-algebra Ty consisting of
all polynomials in the d-shift (51, ...,S4). Then for every d-contraction (T4, ...,T4) acting
on a Hilbert space H there is a unique A-morphism

¢: 13— B(H)

such that ¢(Si)=Tk, k=1, ...,d.
Conversely, every A-morphism ¢: Tg— B(H) gives rise to a d-contraction (T4, ..., Ty)
on H by way of Tr=¢(Sk), k=1, ...,d.

Proof. The uniqueness assertion is immediate from (5.8), since an A-morphism is
uniquely determined on the closed linear span of the set of products {AB*: A, BE A}.

For existence, we first show that every pure d-contraction T:(T 1y--5 Tq) defines an
A-morphism as asserted in Theorem 6.2. For that, let

A=1-T\T7 —..-T,T))Y?,

let K=AH be the closed range of A and let F,(E) be the symmetric Fock space over
E=C¢. Choose an orthonormal basis ej, ...,eq for E. Theorem 4.5 asserts that there is
a unique bounded operator L: F (E)® K — H satisfying L(1Q£)=A¢ for £€ K, and

L(ei, €iy...€;, Q) =T, T;, ... T; A& (6.3)

for n=1,2,..., 41,12, ...,in €{1,...,d}, £€K; moreover, since (T1,...,T4) is a pure d-con-
traction, L is a co-isometry.
We may consider that the d-shift (S, ..., S4) is defined on F, (F) by

Skfzekga k:]-’ad

(6.3) implies that
L(F(S1, - S)®1k) = F(Tyy s Ta) L (6.4

for every polynomial f in d variables. Let ¢: 73— B(H) be the completely positive map
d(X)=L(X®1k)L*, XeT,.
Since L* is an isometry we have ¢(1)=1p. (6.4) implies that for every X €7, we have
o(f(S1, -, 84) X) = f(T1, ..., Ta) §(X),

and hence ¢ is an A-morphism having the required properties.
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The general case is deduced from this by a simple device. Let T=(T3, ..., Ty) be any
d-contraction, choose a number r so that 0<r<1, and set

Tr = (?‘Tl, cery TTd).

The row norm of the d-tuple 7T, is at most 7. Hence 7T, is a pure d-contraction (see
Remark 4.4). By what was just proved there is an .A-morphism ¢,: 73— B(H) satisfying

¢r(Sk) =rTx, k=1,....d.

We have
<25r(f(5’1, ceey Sd)g(Sl, cany Sd)*) = f(TTl, vany TTd)g(’{'Tl, aeey T'Td)*

for polynomials f,g. Since operators of the form f(Sy, ..., Sq)g(S1, ..., Sq¢)* span 7y and
since the family of maps ¢,, 0<r<1, is uniformly bounded, it follows that ¢, converges
point-norm to an A-morphism ¢ as r11, and ¢(Sx)=T} for all k.

It remains only to show that for every A-morphism ¢: 73— B(H), the operators
T =¢(S%) define a d-contraction. To see that, write

T, Ti = ¢(Se)d(Sk)" = ¢(5: 53)-

Then
d d
Y T =¢(Zsksz) <o(1)=1.
k=1 k=1
So by Remark 3.2, (11, ..., Ty) is a d-contraction. O

Remarks. We have already pointed out that in general, an A-morphism must be a
completely contractive representation of A. Conversely, if A is the polynomial algebra
in 7y and ¢: A—B(H) is a representation which is d-contractive in the sense that its
natural promotion to (dx d)-matrices over A is a contraction, then after noting that the
operator matrix

S1 Sy ... Sa
0 0 .. 0

A= : : : € Ma(74)
0o 0 ... 0

satisfles ||Al|?=|AA*||=||S,S;+...+5,;S;]]=1, we find that the image of A under the
promotion of ¢ is a contraction, and hence T, =¢(Sk), k=1, ..., d, defines a d-contraction.
Thus, we may conclude
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COROLLARY 1. Let d=1,2,.... Ewvery d-conitractive representation ¢ of the poly-
nomial algebra ACTy is completely contractive, and can be extended uniquely to an A-
morphism

¢: Ty — B(H).

We have already seen that the unitary group Uy of C? acts naturally on 7; as a
group of x-automorhisms by way of

0y(X) =T(U)XT(U)*, XeTy, Ucly.

As a straightforward application of Theorem 6.2 we show that the definition of & can be
extended to all contractions in B(C?) so as to obtain a semigroup of .A-morphisms acting
on 7.

COROLLARY 2. Let ACT, be the algebra of all polynomials in Sy, ...,S4. For every
contraction A acting on C? there is a unique A-morphism 04:Tyg—B(H?) satisfying

0a(Ms) = M;, o (6.5)

for every linear functional f on C%, A* denoting the adjoint of AcB(C?).

Proof. Considering the polar decomposition of A, we may find a pair of orthonormal

bases w1, ..., uq and u}, ..., u}; for C% and numbers ) in the unit interval such that
Auk:/\ku;, k=1,...,d.

Let z1,...,2q and 21, ..., 2}, be the corresponding systems of orthogonal coordinate func-
tions

The linear functionals 2, 2, are related by
ko A* =Agzp, k=1,...,d. (6.6)

Thus if we realize the d-shift (Si,...,S4) as Sy,=M,, and if we set Tp=MAM,;, then
(T1,...,T4) is a d-contraction and Theorem 6.2 implies that there is a unique .A-morphism
* 04: T;—B(H?) such that 04(Skx)=T} for every k. After noting that 6,4 satisfies (6.5)
because of (6.6} above, the proof is complete. O

From (6.5) together with the uniqueness assertion of Theorem 6.2 it follows that
for two contractions A, BEB(C?) we have O4p=04°0p. It is routine to verify that
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04(74)C Ty, that for every fixed X €7; the function Ar604(X) moves continuously in
the norm of 73, and that 64 agrees with the previous definition when A is unitary.

Uniqueness of representing measures. Representing measures for points in the inte-
rior of the unit ball in C? are notoriously nonunique in dimension d>>2. Indeed, for every
t=(t1,...,14) € By there is an uncountable family of probability measures p, supported
in the boundary 0By such that po 1 ps for a#3 and

f(C) dﬂ'a(g) = f(t_)7 fep,

0By

see [37, p. 186]. The following result asserts that one can recover uniqueness by replacing
measures on 8By with states on the Toeplitz C*-algebra which define A-morphisms.

COROLLARY 3. Assume that t=(t1,...,tq)€C? satisfies [t1)°+...4[ta|?<1 and let
S=(S1,...,54) be the d-shift. Then there is a unique state ¢ of Ty satisfying

o(f(S)g(S))=f®)g(t), [f.geP. (6.7)
¢ is the (pure) vector state
¢(A) = (1~ [It]*){Aus, up), A€Ty,

where ui(z)=(1—(z,t))"! is the H*-function defined in (1.11).

Proof. We may consider that £=(t;,...,t4) is a d-contraction acting on the one-
dimensional Hilbert space C. Theorem 6.2 implies that there is a unique state ¢: 7,—C
satisfying (6.7), and it remains only to identify ¢. From (2.4) we have

(M Mguz, ug) = (Mg uz, Mjug) = F(E)(E) lugl® = (1= [1F1*) 7" £(£)g(0),

as asserted. 1

7. The d-shift as an operator space

In this section we consider the operator space Sy;CB(H?) generated by the d-shift

(51,...,54),
Sg= {a151+...+ade 1a1,...,04 € C}

By a commutative operator space we mean a linear subspace SCB(H) whose operators
mutually commute with one another. We introduce a sequence of numerical invariants for

arbitrary operator spaces, and for dimension d>2 we show that among all d-dimensional
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commutative operator spaces, Sy is distinguished by the fact that its sequence of numer-
ical invariants is maximal (Theorem 7.7).

Given an arbitrary operator space SCB(H), let T=(T},T,...) be an infinite se-
quence of operators in & such that all but a finite number of terms are 0. We write
seq(S) for the set of all such sequences. Every such sequence has a “row norm” and a
“column norm”, depending on whether one thinks of the sequence as defining an operator
in B(H*, H) or in B(H, H*®). These two norms are familiar and easily computed,

1/2

)

I Tlhow = T3
k

_ 1/2
1Tl =D 72|
k

Given two sequences T, T’ €seq(S), we can form a product sequence (T;T}:4,5=1,2,...)
which we may consider an element of seq(B(H)), if we wish, by relabelling the double
sequence as a single sequence. Though for the computations below it will be more
convenient to allow the index set to vary in the obvious way. In particular, every T€
seq(S) can be raised to the nth power to obtain T"€seq(B(H)), n=1,2,.... For each
n=1,2, ... we define E,(S)€[0,+o0] as

EH(S) =Sup{||T"||301 :Te Seq(S), ”T”row < 1}-

In the most explicit terms, we have

<t

Definition 7.1. F1(S), E3(S), ... is called the energy sequence of the operator space S.

o0 xD
En(S):sup{H N T, T TiEs, HZTT
T1yeeyin=1 i=1

the sup being taken over finitely nonzero sequences T;€S.

If § is the one-dimensional space spanned by a single operator T' of norm 1, then
the energy sequence degenerates to E,(S)=|T"||?, n=1,2,.... In general, E,(S)'/? is
the norm of the homogeneous polynomial T— 7™, considered as a map of row sequences

in S to column sequences in B(H).

Remarks. We have defined the energy sequence in elementary terms. It is useful,
however, to relate it to completely positive maps. Fixing an operator space S, notice that
every sequence T €seq(S) gives rise to a normal completely positive map Pp on B(H) as
the sum of the finite series

Pp(A) =T, AT + T, AT} +... . (7.2)
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Let ¢p(S) denote the set of all completely positive maps of the form (7.2). The norm of
P=Ps is given by
121 = 1P =T lrow-

Now any map P€cp(S) of the form (7.2) has an adjoint P, which is defined as the
completely positive map satisfying

trace(P(A)B) =trace(AP.(B))

for all finite-rank operators A, B. One finds that if P€cp(S) is given by the finitely
nonzero sequence T then P, €cp(S*) is given by the sequence of adjoints

P.(A)=T; AT, +T; ATy +... . (7.3)

Of course P, being a normal linear map of B(H), is the adjoint of a bounded linear
map P, acting on the predual of B(H), and the map of (7.3) is simply this preadjoint
extended from the trace class operators to all of B(H) (note that we use the fact that the
sequence T is finitely nonzero here, since in general a bounded linear map of the trace
class operators can be unbounded relative to the operator norm, and thus not extendable
up to B(H)).

In any case, we find that if Pecp(S) has the form P= Py for T €seq(S) then
1P| = 1P (L)l = | T ] cor-
Thus the definition of E,(S) can be restated as
En(S) =sup{||P][|: Pecp(S), [P <1} (7.4)

The following result implies that for a finite-dimensional operator space S the terms of
the energy sequence are all finite, and if S is commutative then they grow no faster than
E,(8)=0(n%"1), where d is the dimension of S.

ProrosiTION 7.5. Let S be an operator space of finite dimension d. Then
E,.(S) <d",

and if S is also commutative then

d(d+1)...(d+n-1) (n+d-1)!
Ea(S)< n! T onl(d-1)!"
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Proof. Let Pecp(S) satisfy ||P||<1, and let d be the dimension of S. It is clear that
the metric operator space [8] of P is a subspace of S, and in particular there is a linearly
independent set of r<d elements Ty, ...,T;. in § such that

P(A)=T\ ATy +..+T,AT), Ae€B(H).

Since || Plj=||P(1)||=|IT1TF+...+ 1. TF||<1 it follows that ||Tx| <1 for every k=1,...,r,
and hence
|P =T T4 + T T <7 <

Thus || Pl||<d™ for every n=1,2,.... From (7.4) we conclude that E, (S)<d".

In fact, the preceding argument shows that if () is a normal completely positive map
of B(H) whose metric operator space is r-dimensional and which satisfies ||Q|| <1, then
we have || Q.|| <r.

We apply this to Q=P as follows. By (8], the metric operator space &, of P" is a
subspace of

span{LLy... L, : L;€ S}.

Assuming § to be commutative, the latter is naturally isomorphic to a quotient of the
n-fold symmetric tensor product of vector spaces S™. Since

(n+d—1)!

dim & = !

(see formula (A.5) of Appendix A), and since | P"||<1, we find that

i (n+d-1)!
Prl=1(P™")] €d S
IP2I= 1) < dime, < T
The required estimate follows from the observation (7.4). O

Remark. The asserted growth rate of the binomial coefficients of Proposition 7.5 is

well known, and the precise asymptotic relation is reiterated in formula (A.6).

Throughout the remainder of this section we will be concerned with finite-dimen-
sional commutative operator spaces.

Definition 7.6. A commutative operator space S of finite dimension d is said to be
maximal if for every n=1,2, ... we have
(n+d-1)!
E.(8)=——=.
n(5) n! (d—1)!

Remarks. Tt is obvious that the row norm of any sequence of normal operators is

the same as its column norm. It follows that if S is a space of mutually commuting
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normal operators, then E,(S)=1 for every n. Similarly, it can be shown that if S is a
finite-dimensional space of commuting quasinilpotent operators, then

lim E,(S)=0.

n—oc
(Following the suggestion of a referee, we have included a proof in Appendix B.) Thus
the maximal spaces are rather far removed from both of these types.

It is also true (though less obvious) that if S is a commutative operator space of

dimension d for which

(n+d—1)!
E, =
(5) n!(d—1)!
for some particular value of n>>2, then
(k+d—1)!
E R
KS) = (d—1)!

for every k=1,2,...,n. Thus for operator spaces which are not maximal, once the se-
quence of numbers E,(S) departs from the sequence of maximum possible values, it
never returns. We omit the proof of the latter assertion since it is not required in the

sequel.

THEOREM 7.7. For every d=1,2, ... the operator space Sg of the d-shift is mazimal.

Conversely, if d>2 and if S is a d-dimensional commutative operator space which
is mazimal, then there is a representation 7 of the unital C*-algebra C*(S) generated by
8 on H? such that n(S)=S8y. In particular, the Toeplitz C*-algebra Ty is isomorphic to
a quotient of C*(S).

Before giving the proof of Theorem 7.7, we deduce from it the following character-
ization of Sy as a space of essentially normal operators (by that we mean a commuting
family of operators in B(H) whose image in the Calkin algebra consists of normal ele-
ments). We remark that both the corollary and the essential part of Theorem 7.7 are

false in dimension one.

COROLLARY. Assume d>2. Up to unitary equivalence, the space Sy spanned by
the d-shift is the only d-dimensional irreducible commutative operator space consisting

of essentially normal operators, which is maximal in the sense of Definition 7.6.

Proof of corollary. Suppose that S acts on a Hilbert space H, and let X denote
the algebra of all compact operators on H. Let m: C*(S)—B(H?) be the representation
of Theorem 7.7. The operators in S cannot be normal because Sg=n(S) contains no
normal operators. Since [S*, S|CKNC*(S) and since C*(S) is irreducible, it follows that
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C*(8) contains K. 7(K) cannot be {0} because that would imply that 7(S)=38, consists
of normal operators.

Thus 7 is an irreducible representation of C*(S) which is nonzero on X, and hence
7 must be unitarily equivalent to the identity representation of C*(S). In particular,
& is unitarily equivalent to S . O

Proof of Theorem 7.7. The proof of Theorem 7.7 will occupy the remainder of this
section. Let (Sy,...,Sg4) be the d-shift, let Sy=span{Sy,..., Sz} be its associated operator
space, and define Pecp(Sy) by

P(A) =S8, AS} +...+S4AS,.

By the remark following Definition 2.10 we have P(1)=1- Ey, and hence ||P||=1. Thus
to show that Sy is maximal it suffices to show that for each n>1, the operator P;*(1)

satisfies
(n+d—1)!

n!(d—1)!"

While (7.8) can be deduced directly from Theorem 4.9, we actually require somewhat

[P =[P (1)l = (7.8)
more information about the operators P;*(1) and their eigenvalue distributions.

LEMMA 7.9. Let N=FE;+2E;+3E3+... be the number operator acting on H?, and
for every n=1,2,... let g,:]0,00)—R be the bounded continuous function
S r+k+d—1
gn(@) =[] e
paler z+k
Then

Pf(l) :gn(N) :Zgn(k)Ek-
k=0

The eigenvalue sequence {g,(0)2g,(1)=...} of PI(1) is decreasing and we have

(n+d-1)!

H117(1)H==gn(0)==;azzﬁ:ijr.

If d>2 then the eigenvalue sequence is strictly decreasing, g,(0)>g,(1)>....

Proof of Lemma 7.9. The assertions follow from a direct computation, which can be
organized as follows. By Proposition 5.3 we have

P, (1) =g1(N), (7.10)

where N is the number operator and g; is the function of a real variable defined by



204 W. ARVESON

More generally, if ¢ is any bounded continuous function defined on [0, 0c), then we have

P.(g(N))=3g(N), (7.11)
where id
x
g(z)=g(z+1)— =1 ¢ 2 0.
Indeed, (7.11) follows from the fact that if £ denotes the kth spectral projection of N,
X
N= Z kE,,
k=1

then Ej} is the projection on the subspace of homogeneous polynomials of degree k in H2,
and thus for each i=1,...,d we have the commutation formulas S} FE¢=0, and S} Ey=
E; 1S} for kz1. It follows that P.(E)=0 and P.(Ey)=Fx_1P:(1) for k=1,2,..., and
thus

[ee]

)= 9(k)P.(Ex) = g(N).
k=1
After iterating (7.11) we find that P*(1)=g,(N) where

“ +k+d 1
gn(z)=g1(@)g1(z+1) ... 1 (z+n-1) :H

Since each g, is a monotone decreasing function we conclude that

d(d+1) ... (d+n— U

P21 = 94(0) = =

and (7.8) follows. It is clear from the recurrence formula for g,+; in terms of g, that
when d>2, g,(z) is a strictly decreasing function of z. O

COROLLARY. Let w be a state of the Toeplitz algebra Ty, d>2, such that for some

n>1 we have
(n+d—1)!
nl(d—1)!"

Then w is the ground state w(X)={(Xw,v), v denoting the constant function v=1.

w(PH1)) =P (1)) =

Proof. Fix n. By Lemma 7.9 we have
Pr(1y=XEq+ME1+...,
where A\p>XA;>...>0 and Ag=||P*(1)]|. Thus P?(1) has the form

Pr(1)=Xo(Eo+K),
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where K is a positive operator satisfying K=(1—FEy)K(1—Ep) and ||K||=A1/Ae<1.
Since w(P{(1))=Xo we have
w(Ey)+w(K)=1.

If w(Ep)<1 then we would have
w(K) <[|Kllw(1-Eo) = | K||(1-w(Eo)) <1-w(Eo),

contradicting the preceding equation. Hence w(FEjy)=1 and w must be the ground state. [

In particular, Lemma 7.9 implies that S; is maximal among all d-dimensional com-
mutative operator spaces.

In order to prove the converse assertion of Theorem 7.7, we recall one or two facts
from the theory of boundary representations (see [3, 2.1.2 and 2.2.2]). By a unital
operator space we mean a pair SCB consisting of a linear subspace S of a unital C*-
algebra B, which contains the unit of B and generates B as a C*-algebra, B=C*(S). An
irreducible representation 7: B—B(H) is said to be a boundary representation for S if
m|s has a unique completely positive linear extension to B, namely 7 itself. Boundary
representations are the noncommutative counterpart of points in the Choquet boundary
of a function space SCC(X). Their key property is their functoriality; if §;CB; and
82 C By are unital operator spaces and ¢: 81 —Ss is a completely isometric linear map
satisfying ¢(1)=1 and ¢(S;)=38z, then for every boundary representation mo: Bo—B(H)
for S; there is a unique boundary representation w: By —B(H) for §; which satisfies

m2(¢(T)) =m(T), TeS:. (7.12)

LEMMA 7.13. For d>2, the identity representation of the Toeplitz algebra Ty is a
boundary representation for the (d+1)-dimensional space span{l, S1, ..., Sq}.

Proof. By [4, Theorem 2.1.1] it is enough to show that the Calkin map is not isomet-
ric when promoted to the space My®S of (dx d)-matrices over S. Consider the operator
AeM;®S defined by

S5 0 ... 0
S 0 ... 0
A= . . .
S¢4 0 ... 0

Then ||A*A|=|S;S;+...+85S,||=d by Proposition 5.3. Hence ||A||=v/d. On the other
hand, by Theorem 5.7 the Calkin map carries Sy to the kth coordinate function zx{x)=
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(x,ex), x€OB,. Hence the image of A under the promoted Calkin map is the matrix of
functions on 0B, defined by

zi(z) O 0
Fla)= za(x) O 0
ze(z) 0 .. 0
Clearly sup{||F(z)|:x€0B4}=1<+vd =| A||, as required. O

Lemma 7.13 implies that in dimension d>2, the d-shift S=(S, ..., Sq) can be dilated
to another d-contraction T in only a trivial way as a direct summand Ty =S ® Zj, where
(Z1, ..., Zy) is some d-contraction.

LEMMA 7.14. Suppose d>2, let (T1,...,T4) be a d-contraction acting on a Hilbert
space H, and let KCH be a subspace of H such that the compressed d-tuple

(PkTi ik, ..., Pk TylK)

is unitarily equivalent to the d-shift. Then Py commautes with {Ty,...,T4}.

Proof. By hypothesis, there is an isometry U:H3—H such that UH2=K and
U*T,U=5y, k=1,...,d. By Theorem 6.2, there is an A-morphism ¢: 73— B(H) such
that ¢(Sk)=Tx, k=1,...,d. Define a completely positive map v: Tu;—B(H2) by ¢(X)=
U*$(X)U. We have ¥(1)=1, and ¥(S;)=U*T,U=S, k=1,...,d. Lemma 7.13 implies
that % must be the identity map of 7.

In particular, Y(XY)=¢(X)¥(Y) for all X,Y €7,. Multiplying the latter equation
on left and right by U and U* respectively, we obtain

P ¢(XY) Pk = Pk ¢(X) Pk ¢(Y) P, X, Y€Ty. (7.15)

Taking X =Y"* in (7.15) and making use of the Schwarz inequality for completely positive
maps we have

((1=Pr)$(Y) Px)*(1— Pr)$(Y) P = P ¢(Y)*$(Y) Px — Px ¢(Y)* Pk ¢(Y) P
< Pr¢(Y'Y)Pg—Pr ¢(Y ™) P ¢(Y) P =0,

and hence (1—Pk)¢(Y)Px=0. Thus K is an invariant subspace for the self-adjoint
family of operators ¢(7;), and hence Pxed(73) C{T1,...,Ta} - O
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LEMMA 7.16. Let SCB(H) be a commutative operator space of finite dimension
d>=2, and suppose that S is mazximal. Then there is a state p of the unital C*-algebra
C*(S) generated by S, and a d-contraction T=(Ty,...,Ty), T;€S, such that

o(g(T)" J(T))=(f.9) =
for all polynomials f,geP.

Proof of Lemma 7.16. The set of all d-contractions (T1,...,74) whose component
operators belong to & can be regarded as a compact subset of the Cartesian product of
d copies of the unit ball of &, and of course the state space of C*(S) is weak*-compact.
Thus, after a routine compactness argument (which we omit), the proof of Lemma 7.16
reduces to establishing the following assertion: for every n=1,2, ... there is a pair (g, T)
consisting of a state g of C*(S) and a d-contraction T=(T,...,T4) whose components

belong to S such that
e(9(T)" F(T)) =(f, 9} u (7.17)

for all polynomials f,geP of degree <n.
To prove the latter, since E,(S)=(n+d—1)!/n!{d—1)! we may find a completely
positive map Pecp(S) such that | P||<1 and

(n+d—1)!

IPE I = e

(7.18)
(note that the supremum of (7.4) is achieved here because the space {P€cp(S): || Pl <1}
is compact). Considering that the metric operator space of P is a subspace of S [8] we
can find a (linearly independent) set 77, ..., T;-€8 such that

P(A) =T, AT} +..+T, AT, AcB(H).

By appending T,.1=...=T3=0 to the sequence if necessary, we can assume that r=d.
Because
1P =P =T T7 +.. + T, T || <1,

T=(T1,...,1y) is a d-contraction for which (7.18) holds.
Let ¢ be any state of C*(S) satisfying

(n+d—-1)!

(P (V) = IPX ()]l = T

and consider the positive semidefinite inner product defined on P by

(f,9) = o(g(T)* f(T)). (7.19)
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One sees (after consideration of the GNS construction for the state g) that since T is a
d-contraction, the Hilbert seminorm || f||2=o(f(T)* f(T)) satisfies

iz fr et zafal® <A+ fall®

for all polynomials fi, ..., f4€P. By Proposition 4.2, | - || will be a contractive seminorm
provided that
1L 21P+...+24P

in its associated inner product space; or equivalently, that
o(Tif(T))=0, k=1,...d, feP.
Since p is a state, the latter will follow if we establish
T, TeY=0, k=1,..,4d. (7.20)

To prove 7.20, let ¢: Tg—B(H) be an A-morhpism satisfying ¢(Sk) =Tk, k=1,...,d
(see Theorem 6.2), and let w be the state of 7T defined by w=g-¢. We claim that w is
the ground state of 73. Indeed, for every n-tuple of integers 1<4, ...,1, <d we have by
the Schwarz inequality

#(S}, .- 85,85, .8 ) = d(S;, . Si,) (S, - S, =T TL T T

in

and hence
w(Sfl...S-* S, ..S8,) =2 Q(T;’;...Y’;ﬂn...ﬁl).

tn " tn”

Summing over all such n-tuples we obtain

d
> w(S; .S58, Si) = e(PR(1)

i1yensin=1

_ (n+d-1)!
Coal(d-1)

The corollary of Lemma 7.9 implies that w must be the ground state of 7;. In particular,
for each k=1, ...,d we have

(T Ti) = o(#(Sk) (Sk)*) = 0(¢(SiSk)) =w(S,S5) = |5¢11|* =0,

and (7.20) follows.

It is clear that the Hilbert seminorm of (7.19) is normalized so that ||1]|?=p(1)=1,
so by Theorem 4.3 we have || fii <[ fll = for every f€P. Theorem 4.9 now implies that
(7.17) is satisfied, and the proof is complete. U
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To complete the proof of Theorem 7.7, we find a d-contraction T=(T1, ..., Ty) and a
state g of C*(8) satisfying the conditions of Lemma 7.16. The set of operators {71, ..., T3}
must be linearly independent; indeed, for every polynomial f#0 we have

o(f (T1s s Ta)" f(T1, oy Ta)) = I 32 #0,

and hence f(T1,...,T4)#0. It follows that span{Ty,...,Ty}=S.

The GNS construction provides a nondegenerate representation ¢ of C*(S) on a
Hilbert space K and a unit vector £ € K such that o(X)=(0(X)&,£), XeC*(S). The key
property of ¢ implies that we can define an isometry U: Hg-»K on polynomials by

UfZJ(f(Tlv '"7Td))€7 fe ,'D1

and we have USy=0(Ty)U for every k=1,...,d. Thus the range UH3 of U is invariant
under each o(T}), and the restriction of the d-contraction (o(T4),...,0(T4)) to UH3 is
unitarily equivalent to the d-shift. By Lemma 7.14, the projection UU* must commute
with o(T%), k=1,...,d, and hence with the unital C*-algebra o(C*(S)) these operators
generate.

We obtain a representation 7: C*(S)—B(H3) by setting n(X)=U*a(X)U. Since
7(Ty)=U*0(T)U =35 for each k, it follows that 7(S8)=38,. O

8. Various applications

In this section we give several applications of the preceding results to function theory
and multivariable operator theory. These are a version of von Neumann’s inequality for
arbitrary d-contractions, a model theory for d-contractions based on the d-shift, a discus-
sion of the absence of inner functions in the multiplier algebra of the d-shift, and some
remarks concerning C*-envelopes.

We point out that Popescu has established versions of von Neumann’s inequality
for noncommutative d-tuples of operators [30], [32], [34], [35]. Here, on the other hand,
we are concerned with d-contractions. The version of von Neumann’s inequality that is

appropriate for d-contractions is the following.

THEOREM 8.1. Let T=(Ty,...,Ty) be an arbitrary d-contraction acting on a Hilbert
space H. Then for every polynomial f in d complex variables we have

| flla being the norm of f in the multiplier algebra M of H?2.
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More generally, let (Sy,...,Sq) be the d-shift and let ACTy be the algebra of all
polynomials in Sy, ...,Sq. Then the map f(S1,...,Sq¢)— f(T1,...,T4) defines a completely

contractive representation of A.

Proof. The assertions are immediate consequences of Theorem 6.2, once one observes

Turning now to models, we first recall some of the literature of dilation theory
in d dimensions. There are a number of positive results concerning noncommutative
models for noncommuting d-tuples which satisfy the conditions of Remark 3.2. The first
results along these lines are due to Frazho [21] for pairs of operators. Frazho’s results
were generalized by Bunce [15] to d-tuples. Popescu has clarified that work by showing
that such a d-tuple can often be obtained by compressing a certain natural d-tuple of
isometries acting on the full Fock space F(C¢) over C¢ (the left creation operators) to
a co-invariant subspace of F(C¢), and he has worked out a functional calculus for that
situation [28], [29], [30], [31]. We also point out some recent work of Davidson and Pitts
(18], [19], relating to the operator algebra generated by the left creation operators on the
full Fock space.

There is relatively little in the literature of operator theory, however, that relates
to uniqueness of dilations in higher dimensions (however, see [11]). Indeed, normal
dilations for d-contractions, when they exist, are almost never unique. On the other
hand, recent results in the theory of semigroups of completely positive maps do include
uniqueness. Generalizing work of Parathasarathy, B. V.R. Bhat [14] has shown that
a unital semigroup of completely positive maps of a von Neumann algebra M can be
dilated uniquely to an Fy-semigroup acting on a larger von Neumann algebra N which
contains M as a hereditary subalgebra. A similar (and simpler) result holds for single
unital completely positive maps: there is a unique dilation to a unital endomorphism
acting on a larger von Neumann algebra as above. In the case where M=B(H), the
latter dilation theorem is closely related to the Bunce-Frazho theory of d-tuples by way
of the metric operator space associated with a normal completely postive map of B(H)
(8], [9]. SeLegue [42] has succeeded in unifying these results.

In the following discussion, we reformulate Theorem 6.2 as a concrete assertion
about d-contractions which parallels some of the principal assertions of the Sz.-Nagy-
Foias model theory of 1-contractions [43]. Much of Theorem 8.5 follows directly from
Theorem 6.2 and standard lore on the representation theory of C*-algebras. For com-
pleteness, we have given a full sketch of the argument.

We recall some elementary facts about the representation theory of C*-algebras
such as 7;. Let m: 73— B(H) be a nondegenerate *-representation of 7; on a separable
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Hilbert space H. Because of the exact sequence of Theorem 5.7, standard results about
the representations of the C*-algebra of compact operators imply that = decomposes
into a direct sum m;®mq, where 7 is a multiple of n=0, 1, 2, ..., 0o copies of the identity
representation of 7; and my is a representation which annihilates K. m; and my are
disjoint as representations of 7;. This decomposition is unique in the sense that if 7] is
another multiple of n’ copies of the identity representation of 7; and w5 annihilates I,
and if 7] @®n is unitarily equivalent to m1@ma, then n’=n and 7} is unitarily equivalent
to g [5].

We will make use of these observations in a form that relates more directly to
operator theory.

Definition 8.2. Let d=1,2,.... By a spherical operator (of dimension d} we mean
a d-tuple (Z1, ..., Zy) of commuting normal operators acting on a common Hilbert space
such that
2+ +Z3Z,=1.

Spherical operators are the higher-dimensional counterparts of unitary operators.
For every spherical operator (Z1, ..., Z) acting on H there is a unique unital *-represen-
tation m: C(0Bq)— B(H) which carries the d-tuple of canonical coordinate functions to
(Z4,...,Z4). This relation between d-dimensional spherical operators and nondegenerate
representations of C(JBy) is bijective.

If T=(T1,...,Ty) is an arbitrary d-tuple of operators acting on a common Hilbert
space H and n is a nonnegative integer or 400 we will write n-T=(n-T1,...,n-Ty) for

the d-tuple of operators acting on the direct sum of n copies of H defined by

nTy =T BT D...,
N e’
n times
where for n=0 the left side is interpreted as the nil operator, that is, no operator at all.
The direct sum of two d-tuples of operators is defined in the obvious way as a d-tuple

acting on the direct sum of Hilbert spaces. The preceding remarks are summarized as
follows.

PROPOSITION 8.3. Let (n,Z) be a pair consisting of an integer n=0,1,2,...,00 and
a spherical operator Z=(Z, ..., Z4) (which may be the nil d-tuple when n>1). Then

there is a unique nondegenerate representation m of Ty satisfying
m(Sk)=n-Sk®Zk, k=1,..,d.

Every nondegenerate representation of Ty on a separable Hilbert space arises in this way,
and if (n',Z') is another such pair giving rise to a representation 7', then ' is unitarily

equivalent to 7 if and only if n'=n and Z' is unitarily equivalent to Z.
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Remarks. Of course, if Z is the nil d-tuple then its corresponding summand in the
definition of 7 is absent. Let SCB(H) be a set of operators acting on a Hilbert space H.
A subspace KCH is said to be co-tnvariant under S if S* KCK. K is co-invariant if and
only if its orthogonal complement is invariant, SK+CK=. A co-invariant subspace K is
called full if H is spanned by {T¢: £€ K} where T ranges over the C*-algebra generated
by S. The following are equivalent for any co-invariant subace K:

(8.4.1) K is full.

(8.4.2) H is the smallest reducing subspace for & which contains K.

(8.4.3) For every operator T in the commutant of SUS* we have

TK ={0} = T=0.

Let A be the algebra generated by S and the identity. We will often have a situation
in which the C*-algebra generated by A is spanned by the set of products AA4*, and in
that case the following criterion can be added to the preceding list.

(8.4.4) H is the smallest invariant subspace for & which contains K.

Indeed, since C*(A) is spanned by AA* we have

Span C*(A)K =span AA*K =5pan AK,

and hence (8.4.1) and (8.4.4) are equivalent.
Since the d-shift is a d-contraction, any d-tuple (T4, ..., T4) of the form

T, =n-Spy D7y

described in Proposition 8.3 is a d-contraction. If K is any co-invariant subspace for
{T1, ..., T4} then the d-tuple (T7},...,T;) obtained by compressing to K,

Ty = P Ty Tk,
is also a d-contraction. Indeed, for each k=1, ...,d we have
T Ty = Px T P Tp Tk < P T Ti T
and therefore ), T} T;* <1. The following implies that d-tuples obtained from this con-

struction are the most general d-contractions.

THEOREM 8.5. Let d=1,2, ..., let T=(T1,...,Ty) be a d-contraction acting on a sep-
arable Hilbert space and let S=(S1, ..., S4) be the d-shift. Then there is a triple (n,Z, K)
consisting of an integer n=0,1,2, ...,00, a spherical operator Z, and a full co-invariant
subspace K for the operator

n-S®Z
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such that T is unitarily equivalent to the compression of n-S®Z to K.

Let T'=(17,...,T;) be another d-contraction associated with another such triple
(n',Z',K"). If T and T' are unitarily equivalent then n'=n, and there are unitary
operators VeB(n-H?) and W: Hz— Hz, such that for k=1, ...,d we have

VS =SV, WZ=ZLW,

and which relate K to K' by way of (VOW)K=K'.
Finally, the integer n is the rank of the defect operator

1-T\ Ty —..— T, T,

and Z is the nil spherical operator if and only if T is a pure d-contraction.

Remark 8.6. Notice that the situation of (8.4.4) prevails in this case, and we may
conclude that for the triple (n, Z, K) associated with T by Theorem 8.5, the Hilbert
space H on which n-S@®Z acts is generated as

H=span {f(n-S192%1,...,n-S4974)¢: (€ K, fe P},

P denoting the set of all polynomials in d complex variables.

Before giving the proof of Theorem 8.5 we want to emphasize the following general
observation which asserts that, under certain conditions, a unitary operator which inter-
twines two representations of a subalgebra A of a C*-algebra B can be extended to a
unitary operator which intertwines x-representations of B.

We recall a general theorem of Stinespring, which asserts that every completely
positive map

¢ B— B(H)

defined on a unital C*-algebra B can be represented in the form ¢(z)=V*n(z)V, where
7 is a representation of B on another Hilbert space H,, and Ve B(H, H,). The pair
(V,7) is called minimal if

H,=span[r(z)¢:z€ B, {c H].
One can always arrange that (V, ) is minimal by cutting down to a suitable subrepre-
sentation of .

LEMMA 8.6. Let B be a C*-algebra and let A be a (perhaps non-self-adjoint) sub-
algebra of B such that
B=spanl'lAA*. (8.7)
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For k=1,2 let ¢: B—B(Hy) be A-morphisms, and let U: Hy— Hy be a unitary operator
such that
Udi(a) =¢2(a)U, acA.

Let (Vi, ) be a minimal Stinespring pair for ¢x, ¢x(x)=Vme(z)Vk, x€B. Then
there is a unique unitary operator W: Hy, — Hy, such that

(i) Wm(z)=m2(x)W, z€B, and

(ii) Wvi=W,U.

Proof. Since both ¢; and ¢, are A-morphisms, the hypothesis on U implies that
Ugi(ab*)=¢2(ab*)U for all a,be A. Hence (8.7) implies that U¢g;(z)=¢2(z)U for every
x€B. The rest now follows from standard uniqueness assertions about minimal com-
pletely positive dilations of completely positive maps of C*-algebras [3]. O

Remark. There are many examples of subalgebras A of C*-algebras B that satisfy
(8.7) besides the algebra 4 of polynomials in the Toeplitz algebra 7. Indeed, if A is any
algebra of operators on a Hilbert space which satisfies

A"AC A+ A"

then the linear span of 4.A* is closed under multiplication, and hence the norm-closed lin-
ear span of AA* is a C*-algebra. Such examples arise in the theory of Ey-semigroups [6],
and in the Cuntz C*-algebras O,,, n=2, ..., 0.

Proof of Theorem 8.5. Suppose that the operators T} act on a Hilbert space H. Let
A be the algebra of all polynomials in the d-shift S=(S41, ..., S4). By Theorem 6.3 there
is an A-morphism

¢: Ty — B(H)

such that ¢(Sx)=T for k=1, ...,d. Let
H(X)=V*r(X)V, XeTy

be a minimal Stinespring representation of ¢. We have
VV=vV*2(1)V=¢(1)=1,

and hence V is an isometry.
We claim that VH is co-invariant under w(.A),

7(A)VHCVH. (8.8)
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Indeed, if A€ A and P denotes the projection P=VV* then for every X €7; we have
Pr(A)Pr(X)V=V¢(A)p(X)=V¢(AX)=Pr(AX)V = Pr(A)n(X)V,
and hence the operator Pr(A)P— Pr(A) vanishes on
span [m(X)§: X €Ty, (€ H] = Hy.

Thus 7(A)*P=Pr(A)*P, and (8.8) follows.

Because of minimality of (V,n) it follows that the subspace K=VHCH, is a full
co-invariant subspace for the operator algebra 7(A).

Proposition 8.3 shows that if we replace m with a unitarily equivalent representation
and adjust V accordingly then we may assume that there is an integer n=0,1,2,...,00
and a (perhaps nil) spherical operator Z=(Z1, ..., Z4) such that H,=n-H?>®Hz and

W(Sk):n-SkeaZk, k=1,..4d.

That proves the first paragraph of Theorem 8.5.

The second paragraph follows after a straightforward application of Lemma 8.6,
once one notes that if we are given two triples (n, Z, K) and (n’,Z’, K’), and we define
representations © and 7' of Ty by

W(Sk) =n-Sp®Z, =01 (Sk)@ag(sk),
7' (Sk) =n' Sk ®Z}, = 71 (Sk) B3(Sk),

then o is disjoint from o2, o} is disjoint from ¢4, while oy is quasi-equivalent to o;,. Thus,
any unitary operator W which intertwines the representations 7 and 7’ must decompose
into a direct sum W=W;®W, where W; intertwines o; and o}, and W3 intertwines oo
and o%.

To prove the third paragraph, choose an integer n=0,1,2, ..., 00, let Z=(Z1,-.., Za)
be a spherical operator whose component operators act on a Hilbert space L, and let
KCn -H?@®L be a full co-invariant subspace for the operator

n-S»Z,
where S=(Si, ..., S4) is the d-shift. Define T=(T1,...,Ty) by
Tj:PK(n-Sj@Zj)[K,

j=1,...,d. We have to identify the multiplicity » and the existence of the spherical
summand Z in terms of T.
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Let PxeB(n-H2®L) denote the projection on K. Since K is co-invariant under
n-S®Z we have
PK(TL‘SJ'@ZJ‘)—:PK(TL-S]'@ZJ‘)PK:T]'PK

for every j=1,...,d, and hence
T,T; = Px(n-S;S;©2;Z;) - (8.9)

By the remarks following Definition 2.10 we may sum on j to obtain
d
> Ty} = Px(n-(1-Ey)©1L) k= 1k — Pk (n- Ey®0) g (8.10)
j=1

where Eye B(H?) denotes the one-dimensional projection onto the constants.
From (8.10) we find that the defect operator D has the form

D=1K—T1Tf—...——TdT;:PK(TL'E()@O)[K. (811)

Now for any positive operator B we have B£=0 if and only if (BE, £)=0. Thus the
relation (8.11) between the positive operators D and n-Ey®0 implies that their kernels
are related by

{€eK: DE=0}={e K:(n-Ey®0)¢ =0},

and hence
rank D =dim((n- E;®0) K).

The dimension of the space N=(n-Ey®0)K is easily seen to be n. Indeed, notice that
if A€B(H?) is a polynomial in the operators Si,...,Sq then we have EgA=FEyAEq=
(A1,1)Ey, and hence FEyA is a scalar multiple of Ey. Similarly, if BEB(n-H?*®L) is a
polynomial in the operators n-S$1® 21, ...,n- S Z4 then (n-Eo®0) B is a scalar multiple
of (n-Ey®0), and hence for all such B we have

Because K is a full co-invariant subspace, (8.4.4) implies that n-H2®L is spanned by
vectors of the form B¢, with B as above and £€ K. It follows that

(n-Ey®0)(n-H?®L)C N,

and therefore N is the range of the n-dimensional projection n-Ey@0. Hence dim N=n.
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Finally, we consider the case in which T is a pure d-contraction. Let @ and P be
the completely positive maps on B(H?) and B(K) given respectively by

P(A)=8,AS +..+S,AS;, AcB(H?),
Q(B)=T\BT; +..+T,BT:, BeB(K).

Formula (8.9) implies that Q(1x)=Pk(n-P(1g2)® 1) k. Similarly, using co-invariance
of K repeatedly as in (8.9) we have

Ty, Ty, Th . Th = Pr(n-(S;, . 8,85, . S3)® 25, . 2,25 . Z3)

I3 VIV

for every ji,...,jr€{1,...,d}. After summing on j,..., j we obtain
Qr(lK):PK(TL'PT(le)GBlL)[K, r=1,2,....

Since P"(1g2)]0 as r—oo, we have

lim Q"(1x)=Px(0®1.)k -

T—00

We conclude that T is a pure d-tuple if and only if 0® L LK, that is, K Cn-H?>®{0}.
Noting that n-H2@®{0} is a reducing subspace for the operator n-S®Z we see from
(8.4.2) that
n-H*®L Cn-H?*®{0},

and therefore L={0}. But a spherical d-tuple cannot be the zero d-tuple except when it
is the nil d-tuple, and thus we have proved that 7' is a pure d-contraction if and only if
Z is nil. g

The two extreme cases of Theorem 8.5 in which n=0 and n=1 are noteworthy. From

the case n=0 we deduce the following result of Athavale [11], which was established by
entirely different methods.

COROLLARY 1. Let T,...,T; be a set of commuting operators on a Hilbert space H
such that TY Ty +..+T;T,=1. Then (Th,...,Ty) is a subnormal d-tuple.

Proof. Let A, =T}. (Ai,..., Aq) is a d-contraction for which
n=rank(1—A; A7 —...— A A;)=0.

Theorem 8.5 implies that there is a spherical operator Z=(Zy, ..., Z4) acting on a Hilbert
space PNIQH such that Z;HCH and Ay is the compression of Zy to H, k=1,...,d.
Hence Ty =A;=Z;|x for every k, so that (Z}, ..., Z}) is a normal d-tuple which extends
(T1,...,T4) to a larger Hilbert space. O

From the case n=1 we have the following description of all d-contractions that can

be obtained by compressing the d-shift to a co-invariant subspace.
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COROLLARY 2. Every nonzero co-invariant subspace KCH? for the d-shift S=
(S1,...,84) is full, and the compression of S to K,

Ty =PkSklk, k=1,..,d,
defines a pure d-contraction T=(T,...,T;) for which
rank(1-T,77 —...~TyTy)=1. (8.12)

If K’ is another co-invariant subspace for S which gives rise to T', then T and T' are
uniterily equivalent if and only if K=K'.
Every pure d-contraction (11, ...,T;) satisfying (8.12) is unitarily equivalent to one

obtained by compressing (Si, ..., Sq) to a co-invariant subspace of H?.

Proof. Let {0}#KCH? be a a co-invariant subspace for the set of operators
{81, ..., Sa}. Since Ty is an irreducible C*-algebra it follows that K satisfies condition
(8.4.2), hence it is full. Let T} be the compression of S; to K, j=1,...,d. The canonical
triple associated with T'=(T1, ..., Ty) is therefore (1,nil, K), and the third paragraph of
Theorem 8.5 implies that 7' is a pure d-contraction satisfying (8.12).

If K’ is another co-invariant subspace of H? giving rise to a d-contraction 7’ which
is unitarily equivalent to T then Theorem 8.5 implies that there is a unitary operator
V which commutes with S={5, ..., S4} such that VK=K’. Because V is unitary it
must commute with S* as well, and hence with the Toeplitz algebra 7;. The latter is
irreducible, hence V' must be a scalar multiple of the identity operator, hence K'=K.

Finally, if T=(T1, ...,Ty;) is any pure d-contraction then Theorem 8.5 implies that
the spherical summand Z of its dilation must be the nil d-tuple, and if in addition

rank(1-T\ 77 —..—T,T3)=1,

then the canonical triple associated with T is (1, nil, K') for some subspace K of H? which
is co-invariant under the d-shift. U

Lemma 7.13 asserts that the identity representation of the Toeplitz C*-algebra is
a boundary representation for the unital operator space generated by the d-shift. This
fact has a number of significant consequences, and we conclude with a brief discussion
of two of them. Rudin posed the following function-theoretic problem in the sixties: Do
there exist nonconstant inner functions in H*(By) [37]? This problem was finally solved
(affirmatively) in 1982 by B.A. Aleksandrov [38]. The following proposition implies
that the answer to the analogue of Rudin’s question for the multiplier algebra M is the
opposite: there are no nontrivial isometries in B(H?) which commute with {51, ..., Sq}

when d>2. Indeed, we have the following more general assertion.
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PROPOSITION 8.13. Let T1,T5, ... be a finite or infinite sequence of operators on HC%,
d>22, which commute with the d-shift and which satisfy

YT+ T3 Ty +... = 1. (8.14)

Then each T is a scalar multiple of the identity operator.

Proof. Consider the completely positive linear map ¢ defined on B(H?) by
O(A)=TyATI +T5 ATy +... .
The sum converges strongly for every operator A because by (8.14) we have
ITE*+ Tl +... = g]|* < oo, €€ H.

Moreover, since each T} commutes with each S; we have T,:Ska :T,:‘Tij, and thus
from (8.14) we conclude that ¢(A)=A for every A in S=span{1, Si,...,S4}. Since the
identity representation of 7 is a boundary representation for § it follows that ¢(A)=A
for every A in the Toeplitz C*-algebra 73.

Let n be the number of operators in the sequence 71,75, ... and let V be the linear

map of H? to n-H? defined by

VE= (1§, T, ..).

Because of (8.14), V is an isometry. Letting 7 be the representation of B(H?) on n-H?
defined by

m(A)=A®A®...,
we find that (V,7) is a Stinespring pair for ¢,
§A)=V"r(A)V, AcB(H?).
Since
(VA=m(A)V)" (VA-(A)V) = A"§(1) A~ $(A)* A~ A" $(A) +$(A"A) =0,

we conclude that VA—n(A)V=0. By examining the components of this operator equa-
tion one sees that Tp A=AT} for every k and every AcTy. Since 7y is an irreducible
C*-algebra it follows that each T} must be a scalar multiple of the identity operator. O

Finally, we offer a few remarks about C*-envelopes, that is to say, noncommutative
Silov boundaries (see the discussion preceding Lemma 7.13).
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THEOREM 8.15. The Toeplitz algebra T, is the C*-envelope of the commutative
algebra A of all polynomials in the d-shift (S1,...,Sq). Moreover, every irreducible rep-
resentation of Ty is a boundary representation for A.

Proof. Lemma 7.13 implies that the intersection of the kernels of all boundary rep-
resentations for A is {0}, and the first assertion follows.

The irreducible representations of 7; are easily identified using Proposition 8.3.
In addition to the identity representation (and other members of its unitary equiva-
lence class) there are the one-dimensional representations corresponding to points of the
boundary dBy4. One may verify directly that the latter are boundary representations. [

Remarks. T; is generated as a C*-algebra by two other natural abelian subalgebras,
namely the algebra of all multiplications by polynomials in the Hardy space of the bound-
ary H?(0By), or by the corresponding algebra acting on the Bergman space H?(By) of
the interior. However, in both of the latter cases the C*-envelopes are not 73 but rather

its commutative quotient C*-algebra

74/K =C(8Ba)-

Appendix A. Trace estimates
Fix d=1,2, ..., let E; be a d-dimensional Hilbert space, and let
Fi(Eq)=COE40E®...

be the symmetric Fock space over E;. The number operator is the unbounded self-adjoint
diagonal operator N satisfying Né=n¢&, £€E], n=0,1,.... Let P, be the projection
on E%. Then for every p>0, (14+N)~? is a positive compact operator,

1+N)P=) (n+1)7"P,,
n=0
whose trace is given by
. dim E?}
trace(1+N)~ Z . (A.1)

(n+1)?

Thus (14+N) ™! belongs to the Schatten class LP(F(Fy)) if and only if the infinite series
(A.1) converges. In this appendix we show that that is the case if and only if p>d.
Notice that the function of a complex variable defined for Re z>d by

Ca(z) =trace(1+N)™*
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is a d-dimensional variant of the Riemann zeta function, since for d=1 we have dim E} =1

a=Y .
n=1

We calculate the generating function for the coefficients dim E7.

for all n and hence

LEMMA A.2. The numbers a, 4=dim E7} are the coefficients of the series expansion
o
(1-2)"%= Z anaz”, |z|<1l.
n=0

Proof. Note that the numbers a, 4 satisfy the recurrence relation
On,d+1=004d+01d+...+ang, n=0,1,..,d=1,2,.... (A.3)
Indeed, if we choose a basis ey, ..., eq for Eg4 then the set of symmetric products
{ei,€iy...€,:1<4; €... <4, <d}
forms a basis for the vector space E7, and hence a, 4 is the cardinality of the set
Sna={(1,.,in)e{l,...,d}":1<d; €... i <d}
Since Sy, 4+1 decomposes into a disjoint union
n
Snpdi1= k|;|0{(i1, oy in) € Spat1: ik <A, lgp1 =... =ip =d+1},

and since the kth set on the right has the same cardinality ax 4 as Sk,q4, (A.3) follows.
From (A.3) we find that an441—@n—1,4+1=0n,4. Thus if we let f; be the formal
power series

fa(z)= Z Ana2" (A4)
n=0
then fa41(2)~2fa+1(2)=fa(2), and hence
z
far(z) = J;dfz)-
Lemma A.2 follows after noting that fi(z)=1+2+22+...=(1—2)7". |

Remark. Notice that the power series of Lemma A.2 converges absolutely to the
generating function (1—2z)~¢ throughout the open unit disk |z|<1.
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By evaluating successive derivatives of the generating function at the origin, we find

that
(n+d—1)(n+d—2)..d _(n+d-1)!

n! T opld-1)!
A straightforward application of Stirling’s formula [36, p. 194]

N~ /2r NNH1/2e=N

dim E} = (A.5)

leads to (ntrd—1) )
. —ap1\nta—1)
i (n+1) nl @1’

and hence i1
. (n+1)*~
We now prove the assertion of (5.2).

THEOREM. For p>0 we have trace(1+N) P<oo if and only if p>d.

Proof. By (A.6), the infinite series

“EL:E( N) z : n ] P
n=0 ( )

converges if and only if the series

> 1
Z —d+1
n=0 (n_+_1)17

converges; i.e., if and only if p>d. U

Appendix B. Quasinilpotent operator spaces

In this appendix we prove that if S is a finite-dimensional operator space generated by
commuting quasinilpotent operators then the energy sequence is itself quasinilpotent in
the sense that

lim E,(S)Y™=0. (B.1)

n—00
In particular, for such an operator space we must have lim, .o, F,(S)=0.

We first show that if S is an arbitrary operator space of finite dimension d, then
the energy sequence can be defined in terms of d-tuples (rather than arbitrarily long
sequences in seq(S)). Indeed, for every n=1,2,... we claim that

En(S) =sup [ T"]2 (B.2)
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where the sup on the right is taken over all d-tuples T'=(T1, ..., T3) with components in
S which satisfy ||7|lrow<1. In view of the description of E,(S) in terms of completely
positive maps (see 7.4), the formula (B.2) is an immediate consequence of the following
observation. We remark that the relationship between completely positive maps of B(H)
and the theory of operator spaces is developed more fully in [8].

LEMMA B.3. Let § be a finite-dimensional operator space, let T\, Ty, ... T €S be a
finite sequence of elements of S and let ¢ be the completely positive map of B(H) defined
by ¢(X)=T\ XT7+...4T,, X T}, Then there is a linearly independent set TY,...,T. in S,
r<dim(S), such that

$(X)=> T;XTy, XeB(H).
k=1

Proof. Let m- H denote the direct sum of m copies of the underlying Hilbert space H,
and define an operator V€ B(H,m-H) by

VE=(TYE, T3¢, .., Tr8).
If #(X)=X@...®X is the natural representation of B(H) on m-H, then we have
o(X)=V"R(X)V, XeB(H).
Let 7 be the subrepresentation of 7 defined by restricting it to the invariant subspace
K=[#(X)¢: XeB(H),{cH]|.

Then ¢(X)=V*r(X)V is a minimal Stinespring representation of the completely positive
map ¢.

7 is a normal representation of B(H), and therefore the projection onto K can be
decomposed into an orthogonal sum

Py=E{+F>+...

of minimal projections F; in the commutant of #(B(H)). For each j let U;: H—>K be
an isometry satisfying U;Uf=E; and U; X =7(X)U; for X€B(H).
{U1, U3, ...} is of course a linearly independent set of operators. Set T;:V*Uj. We
claim that {77,753, ...} is a linearly independent set of operators in S for which
HX) =TI XTI+ T, XTy+..., XeB(H).
Indeed, since U; X =7(X)U; for all Xe B(H), U; must have the form

Uj€= (A€, N3, ...)



224 W. ARVESON

for some sequence of scalars (A}, A2,...). Hence Tj=3", \¥Ty€S. To see that the {T}}
are linearly independent, choose c1, ..., ¢; € C such that ¢;T{ +...4+¢s T, =0. Then for every
€€ H and every Xe B(H) we have

VR(X)Y Ui =) V' a(X)Uj6=)Y ¢;V'U; XE=) ¢;TjX¢=0.
J J 7 J

By taking the inner product with a vector of the form V¢ for (€ H we find that (> ¢;U;)&
is orthogonal to all vectors in m-H of the form 7 (X*)V{(. Since the latter vectors span K
and since (3 ¢;U;)€ belongs to K, it follows that ). c;U;=0, and hence ¢; =...=c,=0.

In particular, there are at most d=dim(S) elements in the set {77, T3, ...}. Finally,

Y TXTE =) VU XUV =Y V'n(X)EV =V*rn(X)V = ¢(X),
k k k

because ), Ex=Px and PkV=V. O

Turning now to the proof of (B.1), let Ay, ..., A4 be a linearly independent commuting
set of quasinilpotent operators and consider the operator space

S= {a1A1+...+adAd 14y, ...,a4 € C}

Formula (B.2) implies that, in order to estimate E,(S), we may confine attention to
sequences 11, ...,T3€S of length d which satisfy

d
R
k=1

and for such a sequence we must find appropriate estimates of the norms

d
| & nomnn

yeenyin=1

, n=1,2 ..,

independently of the particular choice of Th, ..., Ty satisfying (B.4).
This is done as follows. Since Aq,..., A; are linearly independent, we can define a
positive constant K by

K =sup{|a1|+...+]|aq|: [la1 A1 +...+aq 44| < 1}

Choose a sequence 71, ..., Ty €S satisfying (B.4). Then there is a (d x d)-matrix (a;;) such
that

d
Ti = Z a,»jAj.
j=1
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Since Ty, ..., Ty satisfy (B.4) we have
TP =TT || | TVTT +- 4+ Ty Tl < 1
for every ¢=1,2,...,d, and hence

d
> layl <K, i=1,2,..,d.
=1

It follows that for every i, j we have

d
IT3T5]| < Z laip|-lajql- | ApAgll < K? L hax 1 Ap Aqll;
pa=1 *P4s

and similarly for every choice of 41,42, ...,4,€{1,2,...,d} we have
1T Tl < Knlsjlr,r.l.%?nsd A - Aj || = K™,

where

= A A
an 1<jff.1.?§n<d” g Al

is the largest norm of any n-fold product of elements drawn from {Ay, ..., A4}. Thus for
every n=1,2, ... we have

d d
| > memm < Y I T
i1yeyin=1 i1yeenyin=1

d
< Y. KMal=d'K*al,

21,..,in=1

which implies the following upper bound on the energy sequence:
E.(S)<(dK?))"a2, n=12,... (B.5)

Note that we have not used commutativity in establishing (B.5).
To complete the proof we estimate «,, as follows. Choose £>0. For every j1, ..., jn €
{1,2,...,d} we use commutativity to write A, ... A;, in the form

Ajy ... Aj, = AP AR

where py, ..., pg are nonnegative integers summing to n. Since each of the operators A;
is quasinilpotent there is a constant C>0 (depending on ¢) such that

47| < Ce?
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for every p=0,1,2,... and every j=1,2,...,d. Hence
||A11’1... ASd” < Cd6p1+”'+pd — Cdsn.
We may conclude that

= A A <Cd€n
o= max [4; .. A<

for every n=1,2,.... From (B.5) it follows that
E.(S) < C*(e2dK*)", n=1,2,....
The preceding inequality implies that

lim sup En(S)l/" <e2dK?,

n—oo

and since ¢ is arbritrarily small, (B.1) follows.
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