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ABSTRACT 

In this paper, a new set of speech feature representations 
for robust speech recognition in the presence of car noise are 
proposed. These parameters are based on subband analysis 
of the speech signal. Line Spectral Frequency (LSF) rep
resentation of the Linear Prediction (LP) analysis in sub
bands and cepstral coefficients derived from subband anal
ysis (SUBCEP) are introduced, and the performances of 
the new feature representations are compared to mel scale 
cepstral coefficients (MELCEP) in the presence of car noise. 
Subband analysis based parameters are observed to be more 
robust than the commonly employed MELCEP representa
tions. 

1. INTRODUCTION 

Extraction of feature parameters from the speech signal is 
the first step in speech recognition. It is desired to have 
perceptually meaningful parameterization and yet robust to 
variations in environmental noise. The mel scale is accepted 
as a transformat;ion of the frequency scale in a perceptually 
meaningful scale, and it is widely used in feature extraction 
[9]. However the environmental noise may effect the per
formance of the mel scale derived features. In this paper, 
the performance, of the subband analysis based methods are 
investigated for robust speech recognition in the presence of 
car nOise. 

Of the two techniques based on sub band analysis that 
are presented here, the first is the Line Spectral Frequency 
(LSF) representation of the Linear Prediction (LP) analysis 
in subbands, and the second is the extraction of cepstral 
coefficients derived in subband analysis of speech signal. 
These representations are described in Sections 2 and 3, 
respectively. 

The performance evaluation is done with a speaker inde
pendent continuous density Hidden Markov Model (HMM) 
based isolated word recognition system. The vocabulary 
consists of ten Turkish digits (O:sIii.r, l:bir, 2:iki, 3:ii�, 4:dort, 
5:be�, 5:altl, 7:yedi, 8:sekiz, 9:dokuz). The simulation ex
amples are described in Section 4. 

2. SUBBAND ANALYSIS DERIVED LSF 

REPRESENTATION 

Linear Predictive modeling techniques are widely used in 
various speech coding, synthesis and recognition applica-
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tions. Line Spectral Frequency (LSF) representation of the 
Linear Prediction (LP) filter is introduced by Itakura [1]. 
LSFs have some desirable properties which make them at
tractive to represent the Linear Predictive Coding (LPC) 
filter. The quantization properties of the LSF representa
tion is recently investigated [2, 3, 4]. 

It is well known that LSF representation and cepstral 
coefficient representation of speech signals have compara
ble performances for a general speech recognition system 
[5]. Car noise environments, however, have low-pass char
acteristics which may degrade the performance of general 
full-band LSF or mel scaled cepstral coefficient (MELCEP) 
representations [6]. In this section, LSF based representa
tion of speech signals in subbands is introduced. 

Let the m-th order inverse filter Am(z), 

Am(z) = 1 + alz-1 
+ ... + amZ-m (1) 

is obtained by the LP analysis of speech. The LSF poly
nomials of order (m + 1), Pm+1(z) and Qm+1(Z), can be 
constructed by setting the (m + 1 )-6t reflection coefficient 
to 1 or -1. In other words, the polynomials, Pm+1 (z) and 
Qm+l (z), are defined as, 

and 
Qm+l(Z) = Am(z) - z-(m+l) Am(z-l). (3) 

The zeros of Pm+l(Z) and Qm+l(Z) are called the Line 
Spectral Frequencies (LSFs), and they uniquely character
ize the LPC inverse filter Am(z). 

Pm+1(z) and Qm+tfZ) are symmetric and anti-symmetric 
polynomials, respectively. They have the following proper
ties: 

(i) All of the zeros of the LSF polynomials are on the 
unit circle, 

(ii) the zeros of the symmetric and anti-symmetric LSF 
polynomials are interlaced, 

(iii) the reconstructed LPC all-pole filter maintains its 
minimum phase property, if the properties (i) and 
(ii) are preserved during the quantization procedure, 
and 

(iv) it hILS been shown that LSFs are related with the 
formant frequencies [5]. 
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In this scheme, the speech signal is filtered by a low-pass 
and a high-pass filter and the LP analysis is performed on 
the resulting two subsignals. Next the LSFs of the sub
signals are computed and the feature vector is constructed 
from these LSFs. 

It is experimentally observed that significant amount 
spectral power of car noisel is localized under 500 Hz. Due 
to this reason the LP analysis of speech signal is performed 
in two bands, a low-band (0-700 Hz) and a high-band (700-
4000 Hz). In this case the high-band can be assumed to be 
noise-free. 

This kind of frequency domain decomposition can be 
generalized to cases in which the noise is frequency local
ized. 

3. SUBBAND ANALYSIS BASED CEPSTRAL 

C OEFFICIENT REPRESENTATION 

In this section, a new set of cepstral coefficients derived from 
subband analysis (SUBCEP) is introduced. The speech sig
nal is divided into several subbands by using a perfect recon
struction filter bank [8] via a tree-structure. The selected 
filter bank corresponds to a biorthogonal wavelet transform 
[8}. The sub bands are divided in a manner similar to the 
well-known mel scale decomposition [6]. 

Figure 1: Basic block of subband decomposition. 

The perfect reconstruction filter bank structure is shown 
in Figure 1. The low-pass filter, Ho(z), and the high-pass 
filter, HI(z), are given by 

and 

1 2 } Ho(z) = 2'[1 + zA(z ) , (4) 

Hl(Z) = _z-1 + �B(z2)(1 + zA(Z2)) (5) 
where A(z2) and B(Z2) are arbitrary polynomials of z2. In 
this study we selected Ho(z) as a 7-th order Lagrange filter 

(6) 

which is a half-band linear phase FIR filter. Note that (6) 
can be easily put into the form of (4) with 

A(Z2) = 
1
9
6(1 + z-2) -

1
1
6(z2 + z-4) 

The second polynomial, B ( Z2) is chosen as 

(7) 

(8) 

1 This noise is recorded inside a Volvo 340 on a rainy asphalt 
road by Institute for Perception-TNO, The Netherland •. 
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This selection of B(z2) produces good low-pass and high
pass "frequency responses for filters, Ho(z) and H1(z), re
spectively [8}. This filterbank approximately divides the 
frequency domain into two half-bands, [0,71"/2] and [71"/2,71"]. 

By applying the filter bank in a cascaded manner the 
frequency domain is divided into L = 22 subbands similar 
to the mel scale as shown in Figure 2 (This is equivalent to 
a wavelet packet bases decomposition of the input speech 
signal [8]). 

111,/'1,11 I 
o 05 1.5 2 2.5 3.5 4 kHz 

Figure 2: The subband decomposition of the speech signal. 

The feature vector is constructed from the subsignals as 
follows: Let xl(n) be the subsignal at the I-th subband. For 
each subsignal the parameters, e(I), is defined by 

N, 
1 � , e(l) = Nl � lxl(n)l, 1=1,2, ... ,L 

n=l 
(9) 

where Nl is the number of samples in the I-th band. The 
SUBCEP parameters, Seek), which form the feature vector 
are defined similar to MELCEP coefficients as 

L k(l- 0.5) SC(k) = L log(e(l»cos( 
L 

7r),k=1,2, ... ,12. 
1=1 

(10) 
The SUBCEP parameters are obtained in a computa

tionally efficient manner because at every stage of the sub
band decomposition tree a downsampling by a factor of two 
is performed, and the filter bank structure of [8] can be im
plemented using integer arithmetic because all of the filters 
have rational coefficients. 

Commonly used MELCEP parameters are obtained ei
ther in time domain with critical band filter banks or in fre
quency domain with critical band windowing of the speech 
spectrum. Since multirate signal processing techniques are 
not employed in the design of the so-called critical band 
filter bank [9] large filter orders are necessary for narrow 
subbands. This results in a computationally expensive and 
memory intensive implementation. Critical band window
ing, on the other hand, requires complex arithmetic. 

Apart from computational advantages, the SUBCEP 
approach also provides extra flexibility in dividing the fre
quency domain effectively. For instance, if the noise spec
trum is localized in the frequency domain (e.g. car noise) 
then less emphasis can be given to the corrupted frequency 
regions by assigning larger sub bands. 

Other filter-bank structures and wavelet transforms can 
also be used to achieve a similar frequency decomposition 
and another set of SUBCEP parameters. 

4. SIMULATION STUDIES 

In simulation studies a continuous density Hidden Markov 
Model (HMM) based speech recognition system is used with 



5 states and 3 mlxture densities. The speech signal is sam
pled at 8 kHz and the so called car noise is down sampled 
to 8 kHz. The noisy speech is obtained with the car noise 
recording, assuming that the noise is additive . Simulation 
studies are performed on the vocabulary of Turkish digits 
from the utterances of 51 male and 51 female speakers. The 
isolated word re·cognition system is trained with 25 male 
and 25 female speakers, and the performance evaluation is 
done with the remaining 26 male and 26 female speakers. 

4.1. Performance of LSF Representation in Sub

bands 

A 12-th and 20-1;h order LP analysis are performed on ev
ery 10 ms with a window size of 30 ms (using a Hamming 
window) for low-band (noisy band) and high-band (noise 
free band) of the speech signal, respectively. First 5 LSFs 
of the low-band and the last 19 LSFs of the high-band are 
combined to form the sub-band derived LSF feature vector 
(SBLSF). 

To compare the performance of LSF representation in 
subbands (SBLSFs) with full-band LSF, a 24-th order LP 
analysis is performed on full-band speech signal and recog
nition rate of full-hand LSF feature vector is also recorded. 
The performance of LSFs with their time derivatives are 
also obtained using 12-th order LP analysis. Frequency 
domain cepstral analysis is performed to extract 12 mel 
scale cepstral coefficients. Mel scale cepstral feature vector 
(MELCEP) is obtained from these 12 cepstral coefficients 
and their time derivatives. The performances of the all four 
feature sets for various SNR values are plotted in Figure 3. 
In our simulation studies we observed that the performance 
of the subband derived LSF (SBLSF) representation is more 
robust in the pre,sence of car noise. 
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Figure 3: Performance evaluation of SBLSF, MELCEP and 
LSF representations. 

4.2. Performance of SUBCEP Representation 

The filter bank structure of Figure 1 is applied to the speech 
signal in a cascaded form (up to 6 levels) to achieve the sub-
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band decomposition shown in Figure 2. This decomposition 
results in 22 subsignals. The window size is chosen as 48 ms 
(384 samples) with an overlap of 32 ms sO that the subsig
nal with the smallest subband has 6 samples. The SUnCEP 
parameters are derived as in Equation (10) and the feature 
vec tor is constructed from these SUBCEP parameters and 
their time derivatives. The performance of the SUBCEP 
and MELCEP representations are compared in Figure 4. 
The SUBCEP representation exhibits robust performance 
in the isolated word recognition application and it outper
forms the MELCEP representation. 
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Figure 4: Performance evaluation of SUBCEP and MEL
CEP representations. 

4.3. Conclusion 

In this section, two new sets of speech feature parameters 
based on subband analysis, SBLSF's and SUBCEP's are 
introduced. It is experimentally observed that the SUB
CEP representation provides the highest recognition rate 
for speaker independent isolated word recognition in the 
presence of car noise. 
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