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�is paper presents a two-stage so	 thresholding algorithm based on discrete cosine transform (DCT) and empirical mode
decomposition (EMD). In the 
rst stage, noisy speech is decomposed into eight frequency bands and a speci
c noise variance
is calculated for each one. Based on this variance, each band is denoised using so	 thresholding in DCT domain. �e remaining
noise is eliminated in the second stage through a time domain so	 thresholding strategy adapted to the intrinsic mode functions
(IMFs) derived by applying EMD on the signal obtained from the 
rst stage processing. Signi
cantly better SNR improvement and
perceptual speech quality results for di�erent noise types prove the superiority of the proposed algorithm over recently reported
techniques.

1. Introduction

In many speech related systems, the desired signal is not
available directly; rather it is mostly contaminated with some
interference sources.�ese background noise signals degrade
the quality and intelligibility of the original speech, resulting
in a severe drop in the performance of the post applications.
Speech enhancement aims at improving the perceptual qual-
ity and intelligibility of such speech signals degraded in noisy
environments, mainly through noise reduction algorithms
[1]. Due to its signi
cant importance in today’s information
technology, many methods have been developed for this
purpose. A major problem in most algorithms is that the
enhanced speech signal has distortions compared to the
original one which results in loss of some speech details.
�e residual noise is another problem which a�ects the
performance of the postprocessing systems.

So	 thresholding is a powerful technique used for remov-
ing the noise components by subtracting a constant value

from the coe�cients of the noisy speech signal obtained
by the analyzing transformation. However, such type of
direct subtraction results in a degradation of the speech
components. Unlike the conventional constant noise-level
subtraction rule [2, 3], a new so	 thresholding strategy based
on frequency frames was proposed in [4].�e later one is able
to remove the noise components while giving signi
cantly
less damage to the speech signal. �is enables even signals
with high SNRs to be processed e�ectively. However due to
the thresholding criteria, a noticeable amount of noise still
remains in the enhanced signal. Another disadvantage is the
lack of robustness of the algorithm to di�erent noise types.

�e empirical mode decomposition (EMD), recently pio-
neered byHuang et al. [5] as a new and powerful data analysis
method for nonlinear and nonstationary signals, has made
a novel and e�ective path for speech enhancement studies.
Recent studies have shown that, with EMD, it is possible to
successfully remove the noise components from the IMFs of
the noisy speech. Since the extraction of the IMFs relies on
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frequency characteristics, the IMFswith higher index contain
lower frequency components. �is property helps the noise
and speech components to be roughly separated in terms of
frequency and to dominate in di�erent IMFs. �erefore, it
will be even possible to identify and remove the noise parts
that are embedded in the speech components.

In this paper, we propose a hybrid algorithm which will
include a two-stage so	 thresholding. In the 
rst stage, a
subband approach DCT domain so	 thresholding is adapted
to the noisy speech. �e remaining noise in the enhanced
speech looks like random tones and results in an irritating
sound. Hence further denoising should be applied to get rid
of this artifact. However, it is not an easy task to identify
and remove these noise components without degrading the
speech signal. Due to the frequency characteristics of the
IMFs, further enhancement is achieved in the second stage
through an EMD based so	 thresholding strategy.

2. DCT Soft Thresholding

Transform domain speech enhancementmethods commonly
use amplitude subtraction based so	 thresholding de
ned by
[2, 3]

�̂� = {sign (��) (
���������� − �V) , if

���������� > �V,0, otherwise, (1)

where �
V
denotes the noise level, �� is the kth coe�cient of

the noisy signal obtained by the analyzing transformation,

and �̂� represents the corresponding thresholded coe�cient.
Since all the coe�cients are thresholded by �

V
, the speech

components are also degraded during this process. �is
degradation results in a loss in speech quality. Unlike the con-
ventional constant noise-level subtraction rule in (1), a frame
based so	 thresholding strategy was proposed in [4]. �e
strategy depends on segmenting the signal into short time
intervals and applying discrete cosine transform (DCT) on
each frame. �e DCT coe�cients of each frame are divided
into frequency bins which are categorized as either signal- or
noise-dominant depending on their speech and noise energy
distribution. Figure 1 shows an illustration of typical noise-
and speech-dominant frequency bins. �e problems of the
conventional constant noise-level subtraction rules given in
(1) can be well observed in this 
gure. For instance, it is
apparent from Figure 1(a) that subtracting a constant value
from the noisy speech coe�cients in order to obtain the
clean speech coe�cients is inadequate. Furthermore, due
to the second part of thresholding a signi
cant amount of
speech information may be lost, resulting in a source of
musical noise. �erefore a linear thresholding is followed
in noise-dominant frames. On the other hand, Figure 1(b)
proves that so	 thresholding is very inaccurate for signal-
dominant frequency bins and will most probably degrade
the speech components, therefore giving more damage than
its contribution to the enhanced speech. �erefore, the
signal-dominant frames should better be kept as they are in
order not to degrade the high energy speech components.
�is enables even signals with high SNRs to be processed
e�ectively.

�e noisy speech is 
rst segmented into 32ms frames
and a 512-point DCT is applied on each frame. �e DCT
coe�cients of the frames are further divided into 8 frequency
bins, each containing 64 DCT coe�cients. As discussed
before, for adaptive thresholding, each bin is categorized as
either signal- or noise-dominant. �e classi
cation pertains
to the average noise power associatedwith that particular bin.
If the 	th bin satis
es the following inequality:

1


�∑
�=1

�������������2 ≥ �2� , (2)

where �2� denotes the variance of the noise,��� is the kth DCT
coe�cient of the 	th frequency bin, and N (=64) is the num-
ber DCT coe�cients of the bin; then the bin is characterized
as signal-dominant, otherwise as noise-dominant.�e signal-
dominant bins are not thresholded, since it is highly possible
to degrade the speech signal, especially for high SNRs. In the
case of a noise-dominant frequency bin, the absolute values
of the DCT coe�cients are sorted in ascending order and a
linear thresholding is applied:

�̂� = sign (��) [max {0, (���������� − ��)}] , (3)

where �� is the linear threshold function obtained as

�� = � ���
∑��=1 �2 , (4)

where � is the index of sorted |��|. It is evident from (2)
that, for the noise-dominant frequency bins, the average noise
power added would be less than the average noise power
estimated over the entire speech signal. Here, the added
average noise power over any of these frequency bins is
denoted as ���. To 
nd a reasonable value for �, three speech
signals contaminated with white noise at 10 dB SNR are used.
Using the categorization in (2) at each frequency bin, the
noise dominants are identi
ed and a value of � is calculated
by simply dividing the variance of that frequency bin by the
overall noise variance. �e sorted variation of � is shown in
Figure 2. It can be observed that the value of � varies between
0.2 and 0.8 for all speech signals. �erefore, experimentally,
the value of � should be selected in this range.

3. Basics of EMD

�e principle of EMD technique is to decompose any signal�(�) into a set of band-limited functions��(�), which are zero
mean oscillating components, simply called the IMFs. Each
IMF satis
es two basic conditions: (i) in the whole data set
the number of extrema and the number of zero crossings
must be the same or di�er at most by one and (ii) at any
point the mean value of the envelope de
ned by the local
maxima and the envelope de
ned by the local minima is
zero [5]. �e 
rst condition is similar to the narrow-band
requirement for a Gaussian process and the second condition
is a local requirement induced from the global one and is
necessary to ensure that the instantaneous frequency will
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Figure 1: A typical (a) noise-dominant and (b) signal-dominant bin noisy frame (solid line), threshold (dotted line), and clean speech frame
(dashed line).
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Figure 2: �e calculated value of � in noise-dominant frequency
bins.

not have redundant �uctuations as induced by asymmetric
waveforms. �e name intrinsic mode function is adopted
because it represents the oscillation mode in the data. With
this de
nition, the IMF in each cycle, de
ned by the zero
crossings, involves only one mode of oscillation; no complex
riding waves are allowed [5]. IMF is not restricted to a
narrow-band signal; it can be both amplitude and frequency
modulated; in fact it can be nonstationary.

�e idea of 
nding the IMFs relies on subtracting the
highest oscillating components from the data with a step by
step process, which is called the si	ing process. Although a

mathematical model has not been developed yet, di�erent
methods for computing EMD have been proposed a	er its
introduction [6, 7]. �e very 
rst algorithm is called the
si	ing process. �e si	ing process is simple and elegant. It
includes the following steps:

(1) identify the extrema (both maxima and minima of�(�)),
(2) generate the upper and lower envelopes (�(�) and�(�)) by connecting the maxima and minima points

by cubic spline interpolation,

(3) determine the local mean �1(�) = [�(�) + �(�)]/2,
(4) since IMF should have zero local mean, subtract out�1(�) from �(�) to get ℎ1(�),
(5) check whether ℎ1(�) is an IMF or not,

(6) if not, use ℎ1(�) as the new data and repeat steps 1 to 6
until ending up with an IMF.

Once the 
rst IMF ℎ1(�) is derived, it is de
ned as�1(�) =ℎ1(�), which is the smallest temporal scale in �(�). To compute
the remaining IMFs, �1(�) is subtracted from the original
data to get the residue signal �1(�): �1 = �(�) − �1(�). �e
residue now contains the information about the components
of longer periods. �e si	ing process will be continued until
the 
nal residue is a constant, a monotonic function, or a
function with only one maximum and one minimum from
which nomore IMF can be derived [6].�e subsequent IMFs
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and the residues are computed as

�1 (�) − �2 (�) = �2 (�) , . . . , ��−1 (�) − �� (�) = �� (�) . (5)

At the end of the decomposition, the data �(�) will be
represented as a sum of IMF signals plus a residue signal,

� (�) = �∑
�=1
�� (�) + �� (�) . (6)

Anoisy speech signal and some selected IMF components
are shown in Figure 3. It can be observed that higher order
IMFs contain lower frequency oscillations than those of lower
order IMFs. �is is reasonable, since the si	ing process is
based on the idea of subtracting the component with the
longest period from the data till an IMF is obtained.�erefore
the 
rst IMF will have the highest oscillating components:
the components with the highest frequencies. Consequently,
the higher the order of the IMF is, the lower its frequency
content will be. However, the IMFs may have frequency
overlaps but at any time instant the instantaneous frequencies
represented by each IMF are di�erent. �is phenomenon
can be well understood in Figure 4 which shows the instan-
taneous frequencies of the 
rst 6 IMFs. �erefore EMD is
not band pass 
ltering but is an e�ective decomposition
of nonlinear and nonstationary signals in terms of their
local frequency characteristics. �e recent development of
EMD focused on the use of ensemble EMD (EEMD) [8]
and noise assisted multivariate EMD (MEMD) [9, 10] to
implement the traditional univariate EMD (UEMD). �e
key advantage of the newly developed EMD methods is to
achieve the accurate decomposition of the analyzing signal.
�e EEMD approach consists of si	ing an ensemble of white
noise-added signal and threatens the mean as the 
nal true
result. �e e�ect of the added white noise is to provide
a uniform reference frame in the time-frequency space;
therefore, the added noise collates the portion of the signal
of comparable scale in one IMF. A noise-assisted approach
in conjunction with MEMD is also used for the computation
of EMD, in order to produce localized frequency estimates
at the accuracy level of instantaneous frequency [9]. �e
traditional EMD is prone to mode-mixing and is designed
for univariate data. �e noise assisted MEMD (NA-MEMD)
approach utilizes the dyadic 
lter bank property of the
MEMD providing the solution to the problem of standard
EMD.

With these powerful characteristics, recent studies have
shown that it is possible to successfully identify and remove a
signi
cant amount of the noise components from the IMFs of
a noisy speech. Although all IMFs contain energy from both
the original speech and the noise, the amount of the energy
distribution is di�erent. Since speech signals are mainly
concentrated in the low and mid frequency bands, the high
frequency noise components dominate the 
rst IMFs. For
instance, in case of white noise,most of the noise components
are centered on the 
rst three IMFs, while the speech signals
dominate between the 3rd and 6th IMFs, as can be observed
in Figure 3.�erefore, EMDmakes it possible to some extent
to separate the high frequency noise from the major speech
components.
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Figure 3: �e illustration of EMD. A noisy speech signal at 10 dB
SNR and its 
rst 8 IMFs out of 14, plus a residue signal which can be
observed to be close to a constant.

4. Proposed Hybrid Algorithm

�e proposed hybrid algorithm is based on applying the
frame based so	 thresholding strategy [4] in two stages. �e

rst stage includes the DCT domain so	 thresholding with a
subband approach in order to provide robustness to di�erent
noise types. �e second stage of the algorithm consists of an
EMD domain so	 thresholding for further enhancement.

4.1. Subband DCT So� �resholding. �e major problem in
DCT so	 thresholding algorithm given in [4] is that it is
not robust to di�erent noise types. Since all the frequency



Advances in Acoustics and Vibration 5

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

Time (s)

N
o

rm
al

iz
ed

 I
F

IMF1 

 IMF2

IMF3 

IMF4 

IMF5 
IMF6 

Instantaneous frequencies of IMFs 

Figure 4: Instantaneous frequencies of the 
rst 6 IMFs.

bins are processed with a unique noise variance estimated
in the time domain, the algorithm is mainly applicable to
white noise which has a �at spectrum. �e method fails for
other noise types that show di�erent spectral distribution
within the frequency bins. �erefore, it is important to
have a subband approach where a speci
c noise variance
is calculated for each frequency band. �e index of the
frequency bins represents the index of the subband. For
instance, the 
rst frequency subband consists of the 
rst
frequency bins of each frame. �e variance of each subband
is calculated through aminimum statistics approach from the
frequency bins. With this subband approach, each band will
have an e�ective bin categorization. �erefore, the algorithm
will be robust to di�erent noise types.

Apart from the subband approach, a novel strategy is
introduced here for the bin categorization. �e limit given in
(2), which is set to noise variance, is not e�cient to identify all
the noise-dominant bins. Since the variance of the noisy bins
will have �uctuations, there will be many noise-dominant
bins which will be identi
ed as signal-dominant. �erefore,
the limit for bin categorization should have a larger value than
the noise variance, in order to guarantee that all the noisy bins
are thresholded. A novel limit relies on the idea that a bin can
be de
ned as noise-dominant, if the noise power in that bin
is higher than the speech power. �erefore, the limit should

be set to the case where the noise and speech variances �2�
and �2� , respectively, are equal. �e variance �2 of the noise
contaminated speech for any frequency bin is represented as

�2 = �2� + �2� + 2! (�, ") , (7)

where !(�, ") is the covariance term of signal and noise. If
the signal and noise are independent, the covariance function
gives zero; thus we have

�2 = �2� + �2� . (8)

For frame categorization (into signal- and noise-dominant
frames), the threshold is considered with equal noise and

speech power, and hence �2 = 2�2� .�erefore, in case of equal
noise and speech power, the variance of the bin is equal to2�2� . �e variance of a speech segment directly corresponds
to its power. �e equal variance of speech and noise exhibits
the equilibrium contribution of speech noise power to the
noisy speech frame. Hence such level of power is considered
as the threshold for speech frame categorization. It is treated
as the minimum power level of noise-free speech frame. Any
frame with power higher than such threshold exhibits that
the speech power is dominating. Otherwise, the noise power
dominates the analyzing frame. �at is why the limit for the
categorization of the bins in (2) should be set to this value.
With the proposed strategy, if

1


�∑
�=1

�����#�������2 ≥ 2�2� , (9)

where �2� denotes the variance of the noise for the 	th
subband and #�� is the k	th sample of the 	th bin, then this
bin is categorized as signal-dominant, otherwise as noise-
dominant.Noise-dominant frequency bins are thresholded as
in (3). �e optimum value for � is de
ned here.

4.2.OptimumValue of�. �eso	 thresholding algorithmcan
further be improved by de
ning an optimum value for �. As
we discussed, it is better to have a higher � for low SNRs and
a lower value for high SNR input signals. �is dependency
of � on the input SNR can be better observed in Figure 5,
which shows the e�ect of � on the SNR improvement results
at di�erent input SNRs. �erefore, the optimum value of �
can be related with an estimated value of the input SNR. �e
input SNR can be estimated as

SNRinput = 10 log(�
2
��2�) , (10)

where �2� denotes the variance of the speech signal and �2�
denotes the variance of the noise signal within the whole
noisy mixture. From the independency of the speech and

noise, �2� is determined as �2� = �2 − �2� . Extensive computer
simulations are performed to determine the values of the
parameters &0 (0.6 < &0 < 0.8) and &1 (0.01 < &1 < 0.03);
hence the optimum value of � is obtained as

�opt = &0 − &1 (SNRinput) . (11)

4.3. EMDDomain So��resholding. A signi
cant amount of
the noise components is reduced in the 
rst stage. However,
there is still remaining noise fromboth the thresholded noise-
dominant and unthresholded signal-dominant frequency
bins. It is possible to extract a considerable amount of this
residual noise in the second stage from the IMFs of the
enhanced speech. Due to the frequency characteristics of
EMD, the noise and speech signals mostly dominate in
di�erent IMFs.Mainly, the high frequency noise components
centre in the 
rst few ones. �erefore a noticeable amount
of high frequency noise components that were in signal-
dominant bins in the 
rst stage can be identi
ed from the 
rst
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Figure 5: �e e�ect of � on the SNR improvement results in di�erent input SNRs.

IMFs of the enhanced speech. Similarly, the lower frequency
noise signals can be identi
ed from the later IMFs.

�e IMFs are in time domain and may have frequency
overlaps. However, at any time instant, the instantaneous
frequency represented by each IMF is di�erent. �at is
why, although the IMFs are in time domain, they have
spectral di�erence at time instances. �erefore, the DCT so	
thresholding algorithm can be applied to the IMFs as given
in [11]. First, the EMD is applied to the enhanced speech.
�e obtained IMFs are divided into 4ms frames, thus each
having 64 data for a 16 kHz sampling frequency. Due to the
decomposition characteristics, the IMFs di�er in terms of
noise and speech energy distribution. �erefore the speci
c
noise variance of each IMF is estimated from the speechless
parts. As, in the DCT bin categorization case, the frames

are characterized as either signal- or noise-dominant frames
with the novel categorization limit given in (9). �e noise-
dominant frames are thresholded using (3), while the signal-
dominant frames are not.

5. Experimental Results and Discussion

To illustrate the e�ectiveness of the EMD based hybrid
algorithm, extensive computer simulations were conducted
with 10 male and 10 female utterances sampled at 16 kHz,
randomly selected from the TIMIT database. �e clean
speech samples were corrupted with weighted noise from
the NOISEX database in order to obtain the noisy speech
samples. To illustrate the robustness of the univariate EMD
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Table 1: Comparison of the SNR, AvgSegSNR, and PESQ improvements of di�erent denoisingmethods for a high range of SNR values (white
noise).

A

Input SNR (dB)
Output SNR (dB)

WP [3] DCT [11] So	 DCT [4] 'EMD (�opt)
0 4.86 6.44 6.42 7.91

5 8.92 10.03 10.07 11.22

10 12.52 13.61 13.95 14.98

15 15.64 17.26 18.05 18.87

25 20.95 24.92 26.78 27.18

30 23.27 28.86 31.32 31.51

B

Input AvgSegSNR (dB)
Output AvgSegSNR (dB)

WP [3] DCT [11] So	 DCT [4] 'EMD (�opt)
−4.111 −1.933 −0.669 −0.317 0.779

−1.341 0.926 2.01 2.246 3.166

2.079 3.666 4.823 5.187 6.078

5.758 6.504 7.83 8.472 9.294

13.837 11.64 14.516 15.902 16.394

18.002 13.71 18.092 19.679 19.998

C

Input SNR (dB)
PESQ

Input WP [3] DCT [11] So	 DCT [4] 'EMD (�opt)
0 1.06 1.27 1.38 1.36 1.74

5 1.36 1.58 1.78 1.76 2.07

10 1.69 1.95 2.19 2.14 2.39

15 2.04 2.31 2.58 2.52 2.71

25 2.81 2.86 3.32 3.21 3.32

30 3.21 3.06 3.64 3.53 3.66

('EMD) scheme to di�erent noise types, white, pink, and high
frequency (HF) radio channel noise samples have been used.
For evaluating the performance of the method, overall and
average segmental SNR improvements as well as objective
speech quality results were used.�e quality of the enhanced
signals has been measured with the perceptual evaluation of
speech quality (PESQ).

Figures 6(a) and 6(b) show the spectrogram for the
male clean speech “do not ask me to carry an oily rag
like that” from the TIMIT database and the corresponding
noisy speech corrupted with white noise at 10 dB SNR. �e
spectrogram of the enhanced speech a	er the 
rst stage of
the algorithm is illustrated in Figure 6(c). It can be observed
that, with the 
rst stage, there is a reasonable enhancement
in the noisy speech signal. Although the noise components
are e�ectively removed for a wide range of frequencies, the
remaining noise in the enhanced speech can be observed.
With the second stage, we couldmanage to e�ciently remove
the remaining noise. By this way, not only do we have a
signi
cant improvement in the SNR but we also get rid of

the irritating residual noise. �e spectrogram of the overall
enhanced signal in Figure 6(d) illustrates the e�ectiveness
of the proposed method. Figure 7 shows the corresponding
waveforms.

Similar to the DCT so	 thresholding, the algorithm
can be applied for a wide range of SNRs. Since the signal-
dominant frames are never thresholded, there is still signif-
icant improvement even in case of high SNRs where even the
most proposed 'EMD based methods fail to hold on to the
input SNR. �e average results of the computer simulations
for 10 male and 10 female utterances for a wide range of SNR
values with a comparison of di�erent denoising methods are
listed in Table 1(A) for white noise. �e superiority of the'EMD scheme can be well observed in this table.

It can be observed that, for all SNR levels, the proposed'EMDmethod gives signi
cantly better results. Although SNR
improvement is a goodmeasure for quantifying performance,
it has little perceptual meaning and is therefore not a
good measure for speech quality [12]. Instead, the average
segmental SNR (AvgSegSNR) is relatively a better measure.
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Figure 6: Spectrogram of (a) the clean speech, (b) the noisy speech corrupted with white noise at 10 dB SNR, (c) the recovered speech a	er
so	 thresholding with subband DCT, and (d) the overall recovered speech of the 'EMD based method.
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Figure 7: Waveform of (a) the clean speech, (b) the noisy speech corrupted with white noise at 10 dB SNR, (c) the recovered speech a	er so	
thresholding with subband DCT, and (d) the overall recovered speech of the 'EMD method.
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Figure 8: �e spectrogram of (a) clean speech, (b) noisy mixture at 10 dB (pink noise), and enhanced speech with (c) wavelet packets
thresholding [3], (d) DCT hard thresholding [11], (e) DCT so	 thresholding, and (f) proposed 'EMD based hybrid method (�opt).
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Table 2: Comparison of overall SNR, average segmental SNR (AvgSegSNR), and PESQ improvements of di�erent denoising methods for
pink and HF channel noise.

Input SNR (dB)
Output SNR (dB)

0 5 10 15 25 30

PINK

WP [3] 2.57 7.19 11.66 15.81 22.69 25.20

DCT [11] 2.12 6.78 11.35 15.81 24.58 28.98

S. DCT [4] 1.41 5.98 10.73 15.51 25.24 30.13

'EMD 4.51 8.27 12.41 16.81 26.01 30.44

HF

WP [3] 1.96 6.72 11.63 16.45 24.24 26.47

DCT [11] 3.59 7.84 11.88 15.94 24.11 28.21

S. DCT [4] 0.94 5.38 10.08 14.92 24.70 29.61

'EMD 4.92 8.95 12.96 17.14 26.21 30.84

In. AvgSegSNR (dB)
Output AvgSegSNR (dB)

−4.047 −1.124 2.256 5.959 14.059 18.188

PINK

WP [3] −2.983 0.017 3.196 6.373 12.354 14.904

DCT [11] −3.149 −0.162 3.057 6.435 13.695 17.526

S. DCT [4] −3.598 −0.649 2.704 6.328 14.292 18.341

'EMD −1.594 0.927 3.538 7.074 15.088 18.834

In. AvgSegSNR (dB)
Output AvgSegSNR (dB)

−4.162 −1.287 2.079 5.781 13.906 18.049

HF

WP [3] −3.574 −0.476 3.006 6.685 13.441 16.017

DCT [11] −2.683 0.218 3.219 6.411 13.319 17.007

S. DCT [4] −4.171 −1.349 1.948 5.599 13.603 17.725

'EMD −1.234 1.526 4.416 7.671 15.342 19.239

Input SNR (dB)
PESQ

0 5 10 15 25 30

PINK

Input 1.33 1.68 2.06 2.43 3.22 3.61

WP [3] 1.64 2.04 2.38 2.66 3.15 3.32

DCT [11] 1.91 2.27 2.59 2.93 3.51 3.77

S. DCT [4] 1.85 2.17 2.51 2.84 3.50 3.79

'EMD 1.93 2.29 2.62 2.95 3.55 3.83

HF

Input 1.58 1.84 2.14 2.44 3.15 3.49

WP [3] 1.67 1.87 2.12 2.45 3.15 3.47

DCT [11] 1.60 1.83 2.13 2.46 3.11 3.37

S. DCT [4] 1.49 1.62 1.84 2.14 2.94 3.32

'EMD 1.61 1.96 2.32 2.66 3.34 3.65

�e results for the AvgSegSNR are listed in Table 1(B), which
still proves the superiority of the 'EMD based algorithm in
all SNRs. In order to have a better idea about the perceptual
quality of the enhanced speech signals, PESQ has been used.
Recently regarded as the best algorithm for estimation of the
results of a subjective test, PESQ returns a score between−0.5 and 4.5, with higher scores indicating better quality.�e

results of the PESQ simulation results can be observed in
Table 1(C). It can be observed that the'EMD based algorithm
is still more e�ective in terms of perceptual quality than the
other methods.

In order to prove the robustness of the algorithm to
di�erent noise types, extensive computer simulations were
conducted with pink and high frequency (HF) channel noise.
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Figure 9: �e waveform of (a) clean speech, (b) noisy mixture at 10 dB (pink noise), and enhanced speech with (c) wavelet packets
thresholding [3], (d) DCT hard thresholding [11], (e) DCT so	 thresholding, and (f) 'EMD based hybrid method (�opt).

�e average results of computer simulations for 10 male and
10 female utterances for overall SNR, average segmental SNR,
and PESQ results are listed in Table 2.

As discussed before, it can be seen that the DCT so	
thresholding algorithm in [4] dramatically fails in such
noise types that do not have �at spectral distribution in the
frequency spectrum. Due to the subband variance approach
adapted in the 
rst stage, our proposed hybrid method is
signi
cantly robust to such noise types and highly superior
to other methods. Moreover, since the signal-dominant
subframes are never thresholded, the algorithm is always
performing improvement in all SNR values. �e EMD based
so	 thresholding in the second stage not only improves the
SNR but also plays a critical role in removing the irritating
musical noise, therefore extensively increasing the perceptual
speech quality. Figures 8 and 9 show the spectrograms and
waveforms of the clean speech, the noisy speech at 10 dB
SNR contaminated with pink noise, and the enhanced speech
signals for the female speech “they will take a wedding trip
later.”

�e performance of 'EMD based speech enhancement is
also compared with the methods in which the traditional
EMD is computed using EEMD (*EMD) [8] and MEMD
(-EMD) [9]. �e comparative results for a wide range of
SNRs obtained by three EMD methods for white noise are
illustrated in Figure 10. Only the white noise is taken into
consideration.

It is found that the EEMD based approach exhibits lower
performance than that of the traditonal EMD for white noise,
whereas a slight improvement is acheived withMEMD based
implementation of standard EMD. One underlying consider-
ation of having improved result usingMEMDbased approach
is that the noise assisted MEMD fully uses the dyadic 
lter
property of MEMD to implement traditional EMD. It does
not su�er from the mod-mixing problem and hence the
improvement of denoising results.�e improvement of other
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Figure 10: Performance comparison of speech enhancement using
EMD based hybrid algorithm (for white noise). �e EMD is imple-
mented by univariate EMD(UEMD), enssemble EMD(EEMD), and
multivariate EMD (MEMD).

EMDs (e.g., EEMD andMEMD) is more prominent in lower
SNR, that is, highly noise contaminated speech signals.

6. Conclusions

In this paper, we presented a hybrid speech enhancement
method based on DCT and EMD. In order to provide
robustness to di�erent noise types, a DCT so	 thresholding
strategy with a subband approach is proposed in the 
rst
stage of the algorithm. Furthermore, a novel limit for frame
categorization was given in order to have a better identi-

cation of the noise components. In the second stage, we
proposed an EMDdomain so	 thresholding strategy in order
to remove the remaining noise components within the 
rst
stage enhanced signal.
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One of the main advantages of the method is that it
does not include any prior knowledge of the noise signal. Its
robustness to di�erent noise types is another signi
cance of
the method. �e major drawback of the algorithm is its time
cost. Since a mathematical representation is not yet given for
EMD, the process takes long time.�erefore, the algorithm is
not applicable to real time speech processing.

�e algorithm can be further improved by adapting an
optimum value calculation for the number of subbands. �is
can be achieved by analyzing the spectral distribution of the
noise signal which can be obtained from the speechless parts
of the noisy speech.
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