
November 18, 2008 9:39 WSPC/181-IJWMIP 00266

International Journal of Wavelets, Multiresolution
and Information Processing
Vol. 6, No. 6 (2008) 895–906
c© World Scientific Publishing Company

SUBBAND VARIANCE COMPUTATION OF
HOMOSCEDASTIC ADDITIVE NOISE IN

DISCRETE DYADIC WAVELET TRANSFORM

ARIANNA MENCATTINI∗ and MARCELLO SALMERI†

Department of Electronic Engineering
University of Rome “Tor Vergata”

Via del Politecnico 1, 00133 Rome, Italy
∗mencattini@ing.uniroma2.it

†salmeri@ing.uniroma2.it

FEDERICA CASELLI

Department of Civil Engineering
University of Rome “Tor Vergata”

Via del Politecnico 1, 00133 Rome, Italy
caselli@ing.uniroma2.it

BERARDINO SCIUNZI

Department of Mathematics, University of Calabria
Via Pietro Bucci, 87036 Arcavacata di Rende (CS), Italy

sciunzi@mat.unical.it

ROBERTO LOJACONO

Department of Electronic Engineering
University of Rome “Tor Vergata”

Via del Politecnico 1, 00133 Rome, Italy
lojacono@ing.uniroma2.it

Received 18 January 2008
Revised 16 June 2008

The paper deals with noise power variation that occurs when Discrete Dyadic Wavelet
Transform (DDWT) is applied to signals affected by Wide Sense Stationary (WSS) addi-
tive white noise owing to the use of a non orthonormal expansion. An exact relationship
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1. Introduction

Discrete Dyadic Wavelet Transform (DDWT) represents a powerful tool in signal
analysis and processing.10 It belongs to the class of redundant frame expansions of
signals which exhibits translation invariance (overcoming orthogonal wavelet trans-
forms) and very good multiresolution analysis capabilities, at the expense of undec-
imation. In recent years, DDWT has been extensively used in various fields11,16 and
specially in medical image processing.4,9,14,17

In most applications, noise reduction is a central issue and a lot of wavelet-
based denoising algorithms may be found in the literature.18,19 Most of them are
based on Wavelet Thresholding, a simple and effective technique introduced in a
seminal work by Donoho and Johnstone.3 The basic principle of wavelet thresh-
olding is to identify and zero out, at each level of wavelet decomposition, those
coefficients which are under a certain level-dependent threshold. The motivation
behind this approach is that, due to the sparsity of wavelet representation, small
coefficients are likely to contain mostly noise while large coefficients are related to
important signal features. The key aspect of this strategy is to optimally choose
the thresholds: too high thresholds turn out in loss of information, too low thresh-
olds cause a remaining noise (which may be dramatically emphasized in a further
signal-enhancement step). In almost all threshold-selection methods, the thresholds
are function of noise power.1–3,8 However, when using DDWT noise power does not
remain constant through the decomposition levels5 and has to be determined at
each level to set the proper subband threshold. A possible approach is to estimate
the noise variance of wavelet coefficients in each subband, but this is a complex and
time-consuming task.

In this paper, we provide the relation between noise variance in the original
signal and noise variance in each subband of the DDWT decomposition, under the
assumption of a WSS additive white noise in the original signal. In this way, only
noise variance in the original signal has to be estimated. We address both the one-
dimensional and the two-dimensional case. The proof of the main results will be
accomplished by using complex analysis and random process theory.

The paper is organized as follows. In Sec. 2, we recall main properties of DDWT
and its fast implementation. In Sec. 3, we provide the expressions of noise variance
in each subband; the proofs of these expressions are given in Secs. 4 and 5, for
one-dimensional and two-dimensional cases, respectively. Finally, Sec. 6 is devoted
to conclusions and remarks.

2. Discrete Dyadic Wavelet Transform

In this paper, we consider the DDWT firstly introduced by Mallat,10,11 which rep-
resents a translation invariant and redundant representation. We recall only the
fundamental properties of DDWT, referring the reader to Refs. 9 and 10 for an
exhaustive description. We consider the particular subclass of DDWT based on the
so called Spline Dyadic Wavelets since the scaling function φ(x) is a box spline
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Fig. 1. Filter bank implementation of DDWT in one-dimensional case (D = 2).

function whose Fourier transform is given by Φ(ω) = (sin(ω/2)/(ω/2))z+1e(−ιεω/2)

(where ε = 1 if z is even and zero otherwise). The scaling function φ, the wavelet
ψ and the dual frame φ̃, ψ̃ are designed with filters h(n), g(n), h̃(n), and g̃(n) with
Fourier transform given by

H(ω) = eιωs1 cosp+1
(ω

2

)
, G(ω) = eιωs2

(
2ι sin

(ω
2

))r

, (2.1)

where p ∈ N, s1 = 1
2 ((p + 1)mod 2), r ∈ {1, 2}, s2 = 1

2 (rmod 2), H̃(ω) = H(ω),
and G̃(ω) = K(ω) with K(ω) = (1 − |H(ω)|2)/G(ω). A fast dyadic wavelet trans-
form (and its inverse) may be evaluated by a filter bank algorithm, called algo-
rithme à trous.7 Let D be the number of decomposition levels. The filter bank
for one-dimensional case is shown in Fig. 1, where dm and am denote detail and
approximation coefficients at decomposition level m respectively, m = 1, . . . , D
(two decomposition levels are considered in the picture). Figure 2 shows the two-
dimensional filter bank (again for D = 2). Let us observe that in this case we
have vertical (dv,m) and horizontal (dh,m) detail coefficients. Filters H , G and
K are the same as in the one-dimensional case, while filter L(ω) is obtained by
L(ω) = (1 + |H(ω)|2)/2. In the figure, the notations ωv and ωh mean that the
corresponding filter is applied to the rows and to the column of the input signal
respectively. This paper deals, in particular, with the cases p = 1, r = 1 and p = 1,
r = 2.

3. Subband Noise Variance Computation

In this section, we provide a direct relation between noise variance in original signal
(which may be estimated by several methods6,12,15) and noise variance at each level
m, m = 1, . . . , D. Let us start with the one-dimensional case and consider again
the block diagram in Fig. 1, with particular attention to decomposition levels.
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Fig. 2. Filter bank implementation of DDWT in two-dimensional case (D = 2).

Suppose now that the input signal is affected by a Wide Sense Stationary (WSS)
additive white noise x(n) with variance σ2

x and autocorrelation Rx x(n) = δ(n)σ2
x,

where δ(n) is the unit sample sequence. We will derive the relation between σ2
x

and σ2
d(m), and the relation between σ2

x and σ2
a(m) for each level m = 1, . . . , D,

where σ2
d(m) and σ2

a(m) are the noise variance in the sequence dm(n) and am(n),
respectively. In this paper, we only address a homoscedastic additive random noise,
since we suppose that σ2

x is constant along signal. The case of heteroscedastic addi-
tive random noise is under investigation, with particular attention to the case of a
signal dependent additive random noise (e.g., Poisson noise) often encountered in
Charged Coupled Device (CCD) acquisition systems or in scan film radiography.13

We recall some basic notions about stationary random process and linear sys-
tems. Suppose that a random processes x(n) is a WSS white noise and it is the
input to a linear digital system characterized by an impulse response f(n). Let us
denote with y(n) the output of the system. Then the power spectrums of y(n) and
x(n), Syy(ω) and Sxx(ω), respectively, satisfy Syy(ω) = Sxx(ω)|F (ω)|2, where F (ω)
is the Fourier transform of the impulse response f(n) (i.e. the transfer function of
the filter). Then, the autocorrelation of process y(n) is given by

Ryy(n) =
1
2π

∫ π

−π

Syy(ω)eιωndω =
1
2π

∫ π

−π

Sxx(ω)|F (ω)|2eιωndω.

Recall that for any linear system with input x(n), output y(n) and impulse response
f(n), it holds E[y(n)] = E[x(n)] ∗ f(n), where E denotes the mean value and ∗ is
the convolution operator. Thus, if x(n) is a WSS white random process, then y(n)
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is zero mean. Therefore σ2
y = Ryy(0) and hence

σ2
y =

1
2π

∫ π

−π

Sxx(ω)|F (ω)|2dω.

Finally, since we have Sxx(ω) = σ2
x it follows that

σ2
y =

σ2
x

2π

∫ π

−π

|F (ω)|2dω.

So, the first step to obtain the desired relations is to evaluate the square absolute
value of the overall transfer function F (ω) corresponding to each subband of the
filter bank in Fig. 1.

Considering the filters described in Sec. 2 with p = 1 and r = 1, we easily get
the transfer functions of filters at level m as



G1(ω) = 2ιeι ω
2 sin

(ω
2

)
, m = 1,

Gm(ω) = G(2m−1ω) = 2ιeι2m−1 ω
2

(
2m−1ω

2

)
, m ≥ 2,

Hm(ω) = H(2m−1ω) = cos2
(
2m−1ω

2

)
, m ≥ 1.

(3.1)

Hence, considering the filter cascade whose output is dm(n), we can easily derive
the square absolute value of overall transfer function GT

m as

|GT
m(ω)|2 = |H1(ω)|2 · · · |Hm−1(ω)|2 · |Gm(ω)|2

= 4 sin2
(
2m−1 ω

2

) · m−1∏
k=1

cos4
(
2k−1ω

2

)
, m ≥ 2.

(3.2)

and |GT
m(ω)|2 = 4 sin2(ω

2 ) for m = 1. Analogously, we find

|HT
m(ω)|2 =

m∏
k=1

cos4
(
2k−1ω

2

)
(3.3)

where HT
m(ω) is the transfer function of the filter cascade whose output is am(n).

Let us state now the first result which will be proved in Sec. 4.

Theorem 3.1. Given a WSS white additive random process x(n) with variance
σ2

x, let us consider filter bank in Fig. 1 with filters Gm(ω) and Hm(ω) defined
by (3.1) and the cascaded transfer function GT

m(ω) up to level m given by (3.2).
Then, the variances of processes dm(n) and am(n), σ2

d(m) and σ2
a(m), respectively,

for m = 1, . . . , D, with D number of decomposition levels, are given by

σ2
d(m) = σ2

x

22(m−1) + 1
23(m−1)

, σ2
a(m) = σ2

x

22m+1 + 1
3 · 23m

. (3.4)

In the case p = 1, r = 2, a common practice is to split the filter G(ω) into two
cascaded gradient filters,4 GI(ω) = e−

ιω
2
(
2ι sin

(
ω
2

))
and GII(ω) = e

ιω
2
(
2ι sin

(
ω
2

))
,
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Fig. 3. Splitting of filters G in the case p = 1, r = 2.

and to apply wavelet thresholding to wavelet coefficients dI
m at the output of filters

GI (Fig. 3). In fact, performing denoising after the first gradient filter is more
efficient since Signal to Noise Ratio (SNR) is higher after GI than after GII . In
contrast, a potential enhancement step is better performed after GII . The noise
variance in the coefficients dI

m, am is still given by relations (3.4).
Theorem 3.2 generalizes the above result to the case of two-dimensional WSS

white random processes.

Theorem 3.2. Given a two-dimensional WSS white additive random process
x(n, q), let us consider filter bank in Fig. 2, relations (3.1) and (3.2), and Theo-
rem 3.1. By symmetry of the filter bank in Fig. 2, the variance of process dj(m),
where j = {v, h} and m = 1, . . . , D, is given by

σ2
dj (m) = σ2

x

(22(m−1) + 1)(22m−1 + 1)
3 · 26(m−1)

. (3.5)

The proof of Theorem 3.2 will be given in Sec. 5.

4. Proof of Theorem 3.1

Using (3.2) and recalling that

σ2
y =

σ2
x

2π

∫ π

−π

|F (ω)|2dω,

with σ2
y = σ2

d(m) and F (ω) = GT
m(ω), we get for σ2

d(m)

σ2
x

2π

∫ π

−π

4 sin2
(
2m−1ω

2

)
·

m−1∏
k=1

cos4
(
2k−1ω

2

)
dω, m ≥ 2 (4.1)
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and

σ2
x

2π

∫ π

−π

4 sin2
(ω

2

)
dω = 2σ2

x

for m = 1. Let us consider now the following identity

m∏
k=1

cosα
(
2k−1ω

2

)
=


sin(2m−1ω)

2m sin
(ω

2

)



α

, ω ∈ R, α ∈ N. (4.2)

The proof can be easily accomplished by induction. So, using (4.2) with α = 4, we
can rewrite (4.1) as follows

σ2
d(m) = σ2

x

1
2π

∫ π

−π

4 sin2
(
2m−1ω

2

)
· Pm(ω)dω, (4.3)

where

Pm(ω) =





 sin(2m−2ω)

2m−1 sin
(ω

2

)



4

, m ≥ 2,

1, m = 1.

To evaluate the last integral, some results from analytic function theory will
be applied. When dealing with integral of the form I =

∫ 2π

0
R(cos(x), sin(x))dx,

where R is a generic rational function, the solution can be accomplished by
reducing it to the integral of an analytic function of a complex variable on a
closed curve. Introducing the complex variable z = eιx, we have cos(x) = z+z−1

2

and sin(x) = z−z−1

2ι . So, the generic integral is transformed into the following
I = 1

ι

∫
|z|=1R( z+z−1

2 , z−z−1

2ι )dz
z . Using that I = 2π

∑M
k=1 Res[R̃(z), zk], where

R̃ = 1
z R( z+z−1

2 , z−z−1

2ι ) and Res[R̃(z), zk] denotes the residue of R̃(z) in zk, we
finally get

I = 2π
M∑

k=1

1
(αk − 1)!

lim
z→zk

dαk−1

dzαk−1
[(z − zk)αk R̃(z)],

where αk is the order of the pole zk, k = 1, . . . ,M . Let us apply the above results
to (4.3) in the case m ≥ 2.

By setting ω
2 = x, from the symmetry and the π-periodicity of the integrand, it

follows

σ2
d(m) =

σ2
x

2π

∫ 2π

0

4 sin2(2m−1x)
(

sin(2m−1x)
2m−1 sin(x)

)4

dx.

Using Euler’s relations and setting s = 2m−1, we get

σ2
d(m) =

σ2
x

2π

∫ 2π

0

4
s4

(
eιsx − e−ιsx

2ι

)6( 2ι
eιx − e−ιx

)4

dx.
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By setting now z = eιx, we get

σ2
d(m) =

σ2
x

2πι

∫
Γ+

1

4
s4 z

(
zs − z−s

2ι

)6( 2ι
z − z−1

)4

dz

=
σ2

x

2πι

∫
Γ+

1

4
s4 z

(
z2s − 1
2ιzs

)6( 2ιz
z2 − 1

)4

dz

=
−σ2

x

2πι

∫
Γ+

1

1
s4

(
z2s − 1
z2 − 1

)4 (z2s − 1)2

z6s−3
dz,

where Γ+
1 denotes the circle {|z| = 1} positively oriented. Since

(
z2s−1
z2−1

)4 =(∑s−1
k=0 z

2k
)4, we get

σ2
d(m) =

−σ2
x

2πι

∫
Γ+

1

1
s4

(
s−1∑
k=0

z2k

)4

1 − 2z2s + z4s

z6s−3
dz

and thus the only singularity is in z = 0, with order α0 = 6s− 3. Using the above
results, we get

σ2
d(m) =

−σ2
x

s4(6s− 4)!
· lim

z→0

d6s−4

dz6s−4
f(z)

where

f(z) =

(
s−1∑
k=0

z2k

)4

· (1 − 2z2s + z4s).

Note that in order to determine σ2
d(m) it is sufficient to evaluate the multiplicative

coefficient of the term of order 6s − 4 in the function f(z). Terms of order 6s − 4
in f(z) correspond to the terms of order 6s− 4, 4s− 4, and 2s− 4 in

(∑s−1
k=0 z

2k
)4.

Let us evaluate them one by one. In order to compute the term of order 6s − 4,
consider the scheme in Fig. 4 where the two rows correspond to

(∑s−1
k=0 z

2k
)2. The

(s − 1) arrows point out the only products of order 6s − 4, whose sum can be

4 4 4 6 4 8 2s+2 2 2 2 2 4 22 3 ( 2) ( 1) ( 1) 2 1s s s s s sz z z s z s z sz s z z− − + − −+ + + + − + − + + − + + +

4 4 4 6 2 2 2 2 4 22 3 ( 2) ( 1) ( 1) 2 1s s s s sz z z s z s z sz s z z− − − −+ + + + − + − + + − + + +

4 4 4 6 4 8 2 2 2 2 4 22 3 ( 2) ( 1) ( 1) 2 1s s s s sz z z s z s z sz s z z− −

4 8 2s+2s+4 8

− −+ + + + − + − + + − + + +⋅ ⋅ ⋅

4 4 4 6 2 2 2 2 4 22 3 ( 2) ( 1) ( 1) 2 1s s s s sz z z s z s z sz s z z− − − −+ + + + − + − + + − + + +⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

Fig. 4. Evaluation of the term of order 6s − 4.



November 18, 2008 9:39 WSPC/181-IJWMIP 00266

Subband Variance Computation of Homoscedastic Additive Noise 903

written as

z4s−4z2s · (s− 1) + 2 · z4s−6z2s+2 · (s− 2) + · · · + (s− 1) · z2sz4s−4

= z6s−4
s−1∑
k=1

k(s− k) = z6s−4

(
s

s−1∑
k=1

k −
s−1∑
k=1

k2

)
.

Recalling now that

s−1∑
k=1

k =
s(s− 1)

2
,

s−1∑
k=1

k2 =
s(s− 1)(2s− 1)

6
,

we finally get that the sum of the (s− 1) products is equal to

z6s−4

(
s
s(s− 1)

2
− s(s− 1)(2s− 1)

6

)
. (4.4)

By symmetry, it follows that the term of order 2s − 4 is the same. The terms of
order 4s−4 can be obtained as shown in Fig. 5. The arrows identify 2s−1 products
whose sum can be written as

z4s−4 + 2 · z4s−6z2 · 2 + · · · + (s− 1)z2sz2s−4 · (s− 1)

+ s · z2s−2z2s−2 · s+ · · · + 2 · z2z4s−6 · 2 + z4s−4

= z4s−4

((
s−1∑
k=1

k2

)
+ s2 +

(
s−1∑
k=1

k2

))

= z4s−4

(
s2 + 2

s−1∑
k=1

k2

)

= z4s−4

(
2
(
s(s− 1)(2s− 1)

6

)
+ s2

)
. (4.5)

Since the term of order 4s − 4 must be multiplied by −2, we finally get that the
global term of order 6s − 4 in f(z) is given by (4.4) multiplied by 2 plus (4.5)

4 4 4 6 4 8 2 2 2 2 4 4 22 3 ( 1) ( 1) 3 2 1s s s s s sz z z s z sz s z z z− − − − −+ + + + − + + − + + + +⋅ ⋅ ⋅ ⋅ ⋅ ⋅4 4 4 6 4 8 2 2 2 2 4 4 22 3 ( 1) ( 1) 3 2 1s s s sz z z s z sz s z z z− − −+ + + + − + + − + + + +

4 4 4 6 4 8 2 2 2 2 4 4 22 3 ( 1) ( 1) 3 2 1s s s s s sz z z s z sz s z z z− − − − −+ + + + − + + − + + + +⋅ ⋅ ⋅ ⋅ ⋅ ⋅4 4 4 6 4 8 2 2 2 2 4 4 22 3 ( 1) ( 1) 3 2 1s s s sz z z s z sz s z z z− − −+ + + + − + + − + + + +

Fig. 5. Evaluation of the term of order 4s − 4.
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multiplied by −2, that is z6s−4(−s(s2 + 1)). Consequently, we obtain

σ2
d(m) =

−σ2
x

s4
· (−s(s2 + 1)) = σ2

x

s2 + 1
s3

.

Recalling now that s = 2m−1, we get the left part of (3.4). If m = 1 the result
follows immediately by (4.1). Using (4.2), we obtain

σ2
a(m) =

σ2
x

2π

∫ π

−π


 sin(2m−1ω)

2m sin
(ω

2

)



4

dω

Exploiting symmetry and periodicity properties of functions involved and substi-
tuting ω

2 = x, we get

σ2
a(m) = σ2

x

1
2π

∫ 2π

0

(
sin (2mx)
2m sin(x)

)4

dx.

Setting now s = 2m and z = eιx and arguing as in the evaluation of σ2
d(m), it also

follows

σ2
a(m) = σ2

x

1
2πι

∫
Γ+

1

(
zs − z−s

z − z−1

)4 1
z s4

dz

= σ2
x

1
2πι

∫
Γ+

1

(
z2s − 1
z2 − 1

)4 1
z4s−3 s4

dz

= lim
z→0

σ2
x

1
s4 (4s− 4)!

d4s−4

dz4s−4


(s−1∑

k=0

z2k

)4

 .

Now, considering again Fig. 5, the term of order 4s− 4 can be written as

z4s−4

(
2

s−1∑
k=0

k2 + s2

)
= z4s−4

(
s(s− 1)(2s− 1)

3
+ s2

)
= z4s−4 2s3 + s

3

and hence we finally obtain

σ2
a(m) = σ2

x

2s3 + s

3s4
= σ2

x

22m+1 + 1
3 · 23m

, m = 1, . . . , D.

5. Proof of Theorem 3.2

In order to prove relation (3.5), observe that at level m−1 filter h has to be applied
twice (firstly, on the rows and then on the columns of the input signal) before
applying filter g at level m. Then, owing to separability of filters, the variance of
vertical detail coefficients at level m can be expressed by

σ2
dv

(m) =
σ2

x

(2π)2

∫ π

−π

(
m−1∏
k=1

|Hk(ωv)|2
)
|Gm(ωv)|2 dωv ·

∫ π

−π

m−1∏
j=1

|Hj(ωh)|2 dωh,
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for m ≥ 2 (for m = 1 it is easily get by Sec. 2). So, applying right part of (3.4) at
level m− 1, we obtain the multiplicative coefficient

r(m) =
22(m−1)+1 + 1

3 · 23(m−1)
=

22m−1 + 1
3 · 23(m−1)

that concerns second integral in the last expression. Then, using the left part of (3.4)
at level m to compute the first integral and multiplying by r(m) we finally get the
thesis. By symmetry, the same expression holds for σ2

dh
(m). In a similar fashion,

one can derive the analogous expression for σ2
a(m).

6. Conclusion

In this paper, we have considered a particular class of DDWT based on spline func-
tions and we have provided a direct relation between noise power in original signal
and noise power in each subband of wavelet decomposition, under the assumption
of a WSS white additive random noise. This relationship is of fundamental impor-
tance for denoising, since in most of the threshold-selection methods the knowledge
of the subband variance is required.

The paper does not address the case of signal dependent noise such as quantum
noise encountered in CCD-based acquisition devices or scan film radiography. In
this case, homoscedasticity cannot be assumed and relations used in Sec. 3 have to
be modified.
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