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Abstract—We consider a transmit beamforming for an OFDM
channel with multiple transmit antennas and single receive an-
tenna. With channel information, a receiver selects and quantizes
transmit beamforming vector for each subcarrier. The quantized
beamformers are then relayed to the transmitter via a rate-
limited feedback channel. We propose to reduce the required
number of feedback bits by applying a common transmit beam-
former for a cluster of adjacent subcarriers. The sum capacity
over all subcarriers depends on a cluster size, the number of
feedback bits, and the number of channel taps. Approximation
of the optimal cluster size that maximizes the sum rates is derived
and is shown to predict simulation results very well. Numerical
results show that operating with the optimal cluster size can
achieve significant performance gain.

I. INTRODUCTION

Orthogonal frequency-division multiple access (OFDM) de-
livers a high data rate for today’s ever increasing demand and
eliminates inter-symbol interference (ISI). Equipping transmit-
ter and receiver with multiple antennas has been shown to in-
crease the capacity [1] and link reliability. Thus, many current
and future wireless standards are based on multiple-antenna
OFDM [2]. In this work, we consider an OFDM channel with
multiple transmit antennas and single receive antenna. For
a multiple-input single-output (MISO) channel, beamforming
is a simple and effective method to increase an achievable
rate [3]. For beamforming, a transmit waveform is transmitted
in a direction of the strongest channel mode by adjusting
transmit antenna coefficients. However, this technique requires
channel information at the transmitter.
Obtaining channel information at a receiver is achieved by

sending pilot signal. The transmitter, on the other hand, cannot
estimate the channel by itself, especially in frequency-division
duplex (FDD) and has to rely on the receiver for channel
information via a feedback channel. With channel information,
the receiver determines the optimal transmit beamformer and
sends it back to the transmitter. Since feedback channel is nor-
mally rated limited, the transmit beamforming vector need to
be quantized. Many quantization schemes and codebooks have
been proposed and analyzed [4]–[7, see references therein].
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The corresponding system performance was shown to depend
on codebook design and available feedback bits.
Majority of the previous work on quantized beamforming

focus on a narrowband system. Here we consider a wideband
channel, which OFDM transforms into several parallel sub-
channels or subcarriers. If the transmit beamforming vector,
which consists of transmit antenna coefficients, for each sub-
carrier is quantized separately, the total number of feedback
bits required can be prohibitively high. References [8]–[10]
have proposed methods to reduce the number of feedback
bits in OFDM system with multiple antennas. All proposed
to use the same or similar beamforming vectors for a group
or cluster of adjacent subcarriers since subcarriers are highly
correlated in a frequency-selective channel. However, none
has analyzed the optimal cluster size and the associated
performance. Clustering of subcarriers in OFDM was also
applied to select modulation schemes [11].
In this work, we quantize the transmit beamforming vector

of each subcarrier with a random vector quantization (RVQ)
codebook. RVQ uses a simple codebook, which contains
independent isotropically distributed vectors and was shown
to perform close to the optimum codebook [6], [12]. To
reduce amount of feedback, we propose to group nearby
subcarriers into clusters and use the same quantized beam-
forming vector for all subcarriers in the same cluster. The
common beamforming vector for a cluster is chosen to be
the quantized beamformer of the subcarrier in the middle or
next to the middle in the cluster. We determine the optimal
cluster size that maximizes the sum capacity. This has not
been investigated by others and is a very valuable and useful
parameter. We show that the optimal cluster size is a function
of the number of channel taps and available feedback bits and
that operating with the optimal cluster size gives a significant
performance gain.

II. CHANNEL MODEL

We consider a point-to-point discrete-time multiple-input
single-output (MISO)-OFDM channel with N subcarriers. A
transmitter is equipped with M antennas while a receiver
is equipped with single antenna. We assume that transmit
antennas are placed sufficiently far apart that they are inde-
pendent. For each transmit-receive antenna pair, a transmit-
ted signal propagates through a frequency-selective Rayleigh
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fading channel with order L. We denote a channel impulse
response of the mth transmit-receive antenna pair by an L×1
vector hm =

[

hm
0 hm

1 · · · hm
L−1

]T . Each channel tap hm
l is

an independent complex Gaussian random variable with zero
mean and variance σ2

m,l. Assuming a uniform power delay
profile for all antenna pairs, σ2

m,l =
1
L for ∀l and ∀m. Thus,

L−1
∑

l=0

σ2
m,l = 1. (1)

A frequency response at the nth subcarrier is given by a
discrete Fourier transform of the L-tap channel as follows

Hm
n = h

T
mDn =

L−1
∑

l=0

hm
l e

−j2πln
N (2)

where Dn =
[

1 e
−j2πn

N e
−j2π2n

N · · · e
−j2π(L−1)n

N

]T
.

Assuming a transmit beamforming or a rank-one precoding,
the received signal on the nth subcarrier is given by

rn = H
†
nvnxn + zn (3)

where the M × 1 channel vector for the nth subcarrier
Hn =

[

H1
n H2

n · · · HM
n

]T , vn is an M × 1 unit-norm
beamforming vector, xn is a transmitted symbol with zero
mean and unit variance, and zn is an additive white Gaussian
noise with zero mean and variance σ2

z .
Thus, the associated sum capacity over all subcarriers is

given by

C =
N−1
∑

n=0

EHn
[log(1 + ρv†

nHnH
†
nvn)] (4)

where the expectation is over distribution of Hn. We assume
uniform power allocation for all subcarriers and hence, the
background signal-to-noise ratio (SNR) for each subcarrier
ρ = 1/σ2

z . From (4), we note that the sum capacity is a
function of a set of beamforming vectors {v0,v1, . . . ,vN−1}.
The receiver with perfect channel information can optimize

the sum capacity over transmit beamforming vectors. For the
nth subcarrier, the optimal vn that maximizes the rate is
the normalized channel vector Hn/‖Hn‖. With unlimited
feedback, the receiver can relay the optimal beamforming
vector to the transmitter without quantization. Practically, the
feedback channel between the receiver and the transmitter is
rate-limited. Thus, quantization of the optimized beamforming
vector is required. Here we apply a random vector quantization
(RVQ) codebook whose entry is a independent isotropically
distributed vector to quantize a transmit beamforming vector.
RVQ is simple, but was shown to perform close to the optimum
codebook [6], [12], [13].
With available Bn feedback bits and the RVQ codebook

denoted by V = {w1,w2, . . . ,w2Bn }, the receiver selects for
the nth subcarrier,

v̂n = argmax
w∈V

log(1 + ρw†
HnH

†
nw) (5)

= argmax
w∈V

w
†
HnH

†
nw (6)

and the associated capacity for the nth subcarrier

Cn = EHn,V log(1 + ρv̂†
nHnH

†
nv̂n) (7)

where the expectation is over both distribution of Hn and V .
This quantization has to be performed for the beamforming
vector of each subcarrier. Hence, the required total number of
feedback bits increases linearly with the number of subcarriers,
which is usually large, e.g., 512. In this work, we would like
to propose the quantization scheme that maximizes the sum
capacity for a given available feedback bits.

III. CLUSTERING OF SUBCARRIERS
Since the number of channel taps is much lower than the

number of subcarriers (L $ N ), adjacent subcarriers are
highly correlated. Thus, the optimal transmit beamforming
vectors for those subcarriers are very similar. To reduce a
number of quantization bits for the beamforming vectors, we
propose to group nearby subcarriers into a cluster and use
the same quantized beamformer for all subcarriers in the
same cluster. For each cluster, the transmit beamformer of
the center subcarrier or next to the center is used for all
subcarriers. Thus, the quantized beamformer is best matched
to the center subcarrier and is progressively less matched to
subsequent subcarriers. Let T be the number of subcarriers
in each cluster. We assume that each cluster consists of even
number of subcarriers. Hence, the sum capacity of the first
cluster is given by

T−1
∑

q=0

Cq =
T−1
∑

q=0

E log(1 + ρv̂†
T
2
HqH

†
q v̂T

2
). (8)

As the cluster size increases, the capacity loss due to mis-
matching beamformer grows. However, the number of quan-
tization bits we are saving also increases.
Let K = N/T be the total number of clusters and K is

assumed to be a whole number. With this proposed clustering,
the sum capacity averaged over subcarriers is given by

C̄ =
1

N

K
∑

k=1

kT−1
∑

q=(k−1)T

E log(1 + ρv̂†

k T
2
HqH

†
q v̂k T

2
). (9)

Assuming total number of feedback bits B, the common
beamforming vector in each cluster is quantized with B/K
bits. If K is large, the transmit beamforming vector is updated
very often throughout OFDM band, but has a large quantiza-
tion error. On the other hand, if K is small, the quantized
transmit beamforming vector is updated less often, but with
more accuracy. Thus, there is a performance tradeoff over the
number of clusters K or the cluster size T . We would like
to determine the optimal cluster size that maximizes the sum
capacity as follows

T ∗ = arg max
1≤T≤N
T∈Z

C̄. (10)

To analyze C̄, we start with the inner product v̂†
pHrH

†
r v̂p.

With unlimited feedback (B → ∞), the quantized beamformer
is matched to the channel

v̂p → v̂
∞
p = Hp/‖Hp‖. (11)



Thus,

E
[

(v̂∞
p )†Hp+qH

†
p+qv̂

∞
p

]

= E

[

|H†
pHp+q|2

‖Hp‖2

]

. (12)

With property of DFT and some algebraic manipulation, we
can show that

E|H†
pHp+q|

2 = E

∣

∣

∣

∣

∣

M
∑

m=1

D
†
ph

∗
mh

T
mDp+q

∣

∣

∣

∣

∣

2

(13)

=
M2

L2

(

sin Lπq
N

sin πq
N

)2

(14)

and

E‖Hp‖
2 = E

∣

∣

∣

∣

∣

M
∑

m=1

D
†
ph

∗
mh

T
mDp

∣

∣

∣

∣

∣

= M. (15)

Using (14) and (15), we approximate that

E
[

(v̂∞
p )†Hp+qH

†
p+qv̂

∞
p

]

≈
M

L2

(

sin Lπq
N

sin πq
N

)2

. (16)

Given that q = 0 and B/K quantization bits, it was shown
by [13] that

E
[

(v̂p)†HpH
†
pv̂p

]

E
[

(v̂∞
p )†HpH

†
pv̂

∞
p

] = 1− 2B/Kβ

(

2B/K ,
M

M − 1

)

(17)
! γ(B/K) (18)

where β(x, y) = Γ(x)Γ(y)
Γ(x+y) is the beta function and the gamma

function Γ(x) =
∫∞

0 txe−t dt. Based on our simulation results,
we find that similar relationship as in (17) also applies when
q )= 0. Thus, we approximate that

E
[

v̂
†
pHp+qH

†
p+qv̂p

]

≈ γ(B/K)
M

L2

(

sin Lπq
N

sin πq
N

)2

. (19)

Applying Jensen’s inequality and substituting (19) into (9),
we have

C̄ "
1

T

T−1
∑

q=0

log(1 + ργ(B/K)
M

L2

(

sin
Lπ(q−T

2 )
N

sin
π(q−T

2 )
N

)2

). (20)

We would like to maximize this approximate upper bound on
sum capacity over cluster size T for given total feedback B.
Thus,

T̃ ∗ =

arg max
1≤T≤N
T∈Z

1

T

T−1
∑

q=0

log(1+ργ(B/K)
M

L2

(

sin
Lπ(q−T

2 )
N

sin
π(q−T

2 )
N

)2

).

(21)
Solving (21) requires integer optimization for which there are
many tools available, and is much easier than solving for T ∗

in (10) where numerical simulations are needed. In the next
section, we will show that T̃ ∗ and the corresponding K̃∗ =
N/T̃ ∗ can predict T ∗ in (10) and K∗, respectively, very well.

IV. NUMERICAL RESULTS
In Fig 1, we plot the average capacity (9) obtained by

simulations and the approximate capacity bound (20) with
B/M for different number of channel taps. We note that both
increase with the number of feedback bits as expected and that
both give the same performance trend. Also the gap between
the simulation result and approximate upper bound narrows
when the number of channel taps is large or the channel is
heavily frequency-selective. In this example, subcarriers are
divided into 8 clusters (K = 8). As the channel becomes more
frequency selective (larger L), subcarriers are less correlated.
Thus, updating the beamformer for every 8 subcarriers is not
sufficient and the capacity decreases as shown.
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Fig. 1. A sum capacity is shown with the total number of feedback bits B
for N = 64, K = 8, M = 2, and ρ = 10 dB.

Fig. 2 shows the sum capacity with the number of clusters
K from both analytical approximation and simulation. Given
a constraint on the number of feedback bits B = 48, selecting
the optimal number of clusters, which is shown by simulation
result, may perform 50% better than not clustering (K = N ).
We note that only cluster size that gives an integer number
of clusters is plotted. Comparing the analytical approximation
and simulation results, we observe that the gap is quite
substantial, however, the analytical result still can accurately
predict the optimal K . For a flat fading channel (L = 1), all
subcarrier gains are the same and thus, the optimal K∗ = 1.
For frequency selective fading (L > 1), subcarriers are less
correlated and the optimal K∗ increases with L.
In Fig. 3, the optimal number of clusters K̃∗ computed

from (21) is plotted with different number of channel taps.
We see that K̃∗ increases with L. As channel becomes more
frequency selective, the number of clusters should increase as
well. The optimal K̃∗ also depends on the total feedback bits.
In the figure shown, the number of clusters for B = 128 is
larger than that for B = 64. Larger amount of feedback allows
more clusters with quantization error essentially unchanged.
Fig. 4 shows K̃∗ with B and L. For flat fading, the optimal

number of cluster K̃∗ is always one regardless of available
feedback bits. For frequency selectivity, K̃∗ increases with
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Fig. 2. Sum capacity is shown with the number of clusters K and different
number of channel taps L for N = 64, M = 3, B = 48 and ρ = 10 dB.
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Fig. 3. The optimal K̃∗ is shown with L and B for N = 64, M = 4, and
ρ = 10 dB.

feedback bits. The larger the number of total feedback bits is,
the larger the number of clusters should be.

V. CONCLUSIONS

In this work we have derived the approximation of the sum
capacity upper bound, which can then be used to determine
the optimal cluster size for given numbers of total feedback
bits, channel taps, and transmit antennas. The optimal cluster
size obtained from the analytical approximation is shown
to accurately predict that from simulations and should be
useful to system designers. The performance achieved by using
the optimal cluster size is substantial when compared with
selecting arbitrary size.
Here our analysis contains some crude approximations and

hence, the gap between analytical and simulation results in
some regime can be large. Refining the approximations is
challenging and will be our future work. Moreover, we intend
to extend our results to MIMO-OFDM and multiuser channels.
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