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Abstract

In this paper, we introduce a subcategory-aware object

classification framework to boost category level object clas-

sification performance. Motivated by the observation of

considerable intra-class diversities and inter-class ambigu-

ities in many current object classification datasets, we ex-

plicitly split data into subcategories by ambiguity guided

subcategory mining. We then train an individual model for

each subcategory rather than attempt to represent an object

category with a monolithic model. More specifically, we

build the instance affinity graph by combining both intra-

class similarity and inter-class ambiguity. Visual subcate-

gories, which correspond to the dense subgraphs, are de-

tected by the graph shift algorithm and seamlessly inte-

grated into the state-of-the-art detection assisted classifi-

cation framework. Finally the responses from subcategory

models are aggregated by subcategory-aware kernel regres-

sion. The extensive experiments over the PASCAL VOC

2007 and PASCAL VOC 2010 databases show the state-of-

the-art performance from our framework.

1. Introduction

Category level classification based on bag-of-words

(BoW) framework [14, 23, 35, 17, 5] has achieved signif-

icant advances during the past few years. This framework

combines local feature extraction, feature encoding and fea-

ture pooling to generate global image representations, and

represents each object category with a monolithic model,

such as a support vector machine classifier. However, the

large intra-class diversities induced by pose, viewpoint and

appearance variations [27] make it difficult to build an ac-

curate monolithic model for each category, especially when

there are many ambiguous samples. For example, the chair

category in Figure 1 includes three obvious subcategories,

namely, sofa-like chairs, rigid-material chairs and common

chairs. In feature space, these subcategories are essentially

far away from each other. Furthermore, the ambiguous sofa-

like chairs look more like sofas than common chairs. In this

case, representing all chairs with a monolithic model will
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Figure 1: Overview of the proposed ambiguity guided subcat-

egory mining and subcategory-aware object classification frame-

work. For each category, training samples are automatically

grouped into subcategories based on both intra-class similarity and

inter-class ambiguity. An individual subcategory model is con-

structed for each detected subcategory. The final classification re-

sults are obtained by aggregating responses from all subcategory

models.

weaken the model separating capacity and cannot distin-

guish sofas from chairs. Hence, it is intuitively beneficial to

model each subcategory independently. These considerable

intra-class diversities and inter-class ambiguities are com-

mon in the challenging real world datasets [13, 37], which

makes the subcategory mining necessary.

Clustering all training data of an object category based

on intra-class similarity seems to be a natural strategy

for subcategory mining, since objects belonging to the

same subcategory should intuitively have larger similarity

in terms of appearance and shape. However, in the context

of generic object classification, subcategories mined with

only intra-class visual similarity cues are unnecessary to be
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optimal due to the ignorance of valuable inter-class infor-

mation [8]. More specifically, if the samples are clustered

by standard clustering methods, we are unable to utilize the

valuable inter-class information to handle the ambiguous

samples. Then all ambiguous samples, which often lie near

the decision boundary, may be grouped together and pre-

serve the original complicated decision boundary. On the

contrary, with the assistance of inter-class information am-

biguous samples can be grouped into proper subcategories,

which leads to easier subproblems and further improves the

overall performance. For instance, chair category and other

categories in Figure 1 have non-linear decision boundary.

By noting the ambiguous chair sample distribution near the

decision boundary, all chairs should be intuitively divided

into separate subcategories. The proper split as indicated

in Figure 1 will make all subcategories linearly separable

from other categories, which is only achievable with the as-

sistance of inter-class information.

The above observation inspires us to propose an am-

biguity guided subcategory mining approach to explore

the intrinsic subcategory structure embedded in each cat-

egory. With subcategory awareness, we can boost cate-

gory level classification by subcategory-aware object clas-

sification (SAOC). As indicated in Figure 1, we split data

into subcategories by ambiguity guided subcategory mining

and train an individual model for each subcategory. Since

the diversities in each subcategory and ambiguities between

subcategories and other categories are reduced, more accu-

rate shape-based [9, 16]/appearance-based [33, 24] detec-

tors and foreground classification model [5] can be built,

which fits nicely with the state-of-the-art detection assisted

classification framework [21, 31]. The final classification

results are generated by aggregating subcategory responses

through subcategory-aware kernel regression.

The main contributions of this paper are summarized

as follows. First, we propose a novel ambiguity guided

subcategory mining approach, which gracefully integrates

the intra-class similarity and inter-class ambiguity for ef-

fective subcategory mining. Second, we provide an ef-

fective subcategory-aware object classification framework

based on the current detection assisted classification frame-

work [21, 31]. Our ambiguity guided subcategory min-

ing approach can be seamlessly integrated into such frame-

work. Utilizing mined subcategories can improve both de-

tection and classification performance and allow more ef-

fective subcategory level interaction in the fusion model.

The state-of-the-art classification results on the PASCAL

VOC datasets verify the effectiveness of our new frame-

work.

2. Related Work

Many state-of-the-art image classification systems fol-

low the popular local feature extraction-coding-pooling

pipeline [14]. First, local features like HOG [9], SIFT [26]

and LBP [28] are extracted on the dense grids or sparse

interest points. They are then encoded by vector quanti-

zation (VQ), locally-constrained linear coding (LLC) [35]

or Fisher kernel (FK) [17]. Finally the encoded vectors

are pooled together to form the image-level representa-

tion [23, 5]. Much research on image classification has

been focused on improving this pipeline [35, 17, 4]. Some

recent works [31, 21, 24, 33, 30] begin to investigate out

of this pipeline. Harzallah et al. [21] introduced the pi-

oneering work for detection and classification contextual-

ization, the extension of which leads to the state-of-the-art

results [31, 5, 30]. However, all the above methods train

a monolithic model for each category, and there are few

works analyzing the data structure embedded in each cat-

egory. In this work, we show that properly splitting the data

into subcategories will boost the performance of the state-

of-the-art pipeline.

Object detection [16] is another central problem in object

recognition, which is complementary to object classifica-

tion [31, 21]. As most standard semantic categories do not

form coherent visual categories, mixture models are pro-

posed and have become the standard approach for object

detection [39, 16]. Early works only investigate heuristics

based on meta-data or manual labels such as bounding box

aspect ratio [16], object scale [29], object viewpoint [19]

and part labels [3] to group the positive samples into clus-

ters. However, each of these methods has its own limitations

and ignores other more general intra-class variations such

as appearance and shape variance [27, 18]. Malisiewicz

et al. [27] handled the intra-class variation by training a

separate model for each positive instance, which inevitably

reduces the generalization capacity of each model. Some

recent works begin to investigate the visual subcategory

structure embedded in each category [10, 18, 7, 39, 1, 11],

which leads to considerable improvement in object detec-

tion performance. In contrast to our method, they either

require manual annotation or are fragile to outliers corre-

sponding to highly occluded or strange samples. Further-

more, these methods discard the inter-class information dur-

ing data grouping, which is critical for object classification.

When the data has a complex non-linear structure, lo-

cally adaptive classifiers are usually superior to the use of a

single global classifier [32, 22, 8]. Kim and Kittler placed

the local classifiers at the clusters obtained by the K-means

clustering algorithm [22]. Instead of placing the classifiers

based on the data distribution only, Dai et al. [8] proposed a

responsibility mixture model that uses the uncertainty asso-

ciated with the classification at each training sample. Using

this model, the local classifiers are placed near the deci-

sion boundary where they are most effective. In this work,

we borrow the idea of uncertainty piloted classification and

propose an ambiguity guided subcategory mining approach

under the graph shift [25] framework.
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Figure 2: Diagrammatic flowchart of the proposed subcategory-aware object classification framework. Given a testing image, they are

first processed by each learnt subcategory model including detection and classification models. Then the responses from all subcategory

models are fed into the fusion model to generate the final category level classification results.

3. Subcategory-aware Object Classification

Figure 2 shows the diagrammatic flowchart of our SAOC

framework. We will first introduce each component of the

framework and emphasize how subcategory mining fits into

each step later.

As shown in Figure 2, the whole framework consists

of three models - detection, classification and fusion mod-

els. For detection, each subcategory is characterized by

one shape-based sliding window detector [16, 38] and one

appearance-based selective window detector [34, 33], re-

spectively. The usage of two detectors is to guarantee both

high precision and high recall on object detection since none

of the detectors can achieve this alone and they complement

each other. For classification, we follow the state-of-the-art

pipeline [5] and train a classifier for each subcategory in-

dividually. Since the background is cluttered and many of

the concerned object classes may co-occur in a single im-

age, detection confidence maps are employed as the side

information for Generalized Hierarchical Matching (GHM)

pooling proposed in [5]. The fusion model mainly aims to:

(1) boost the classification performance by complementary

detection results, (2) utilize the context of all categories for

reweighting, and (3) fuse the subcategory level results into

final category level results. All of these are achieved by

kernel regression. First, we construct a middle level repre-

sentation for each training/testing image by concatenating

classification scores and the leading two detection scores

from each subcategory model. The final category level clas-

sification results are then obtained by performing Gaussian

kernel regression on this representation. Without sophisti-

cated models and complicated postprocessing [12, 31], our

subcategory-aware kernel regression is very efficient and

still performs well experimentally.

Subcategory awareness, which benefits each model sepa-

rately and then boosts the overall performance of the frame-

work, plays a critical role in extending current detection as-

sisted classification framework. 1) The subcategory infor-

mation can be used to initialize both detection and classi-

fication models to better handle the rich intra-class diversi-

ties in challenging datasets. Less diversity in each subcat-

egory will lead to a simpler learning problem, which can

be better characterized by current state-of-the-art models,

such as the Deformable Part based Model (DPM) for de-

tection and the foreground BoW models involved in GHM.

2) The subcategory awareness will lead to more effective

fusion models. First, subcategory awareness allows us to

model the subcategory level interaction. For example, oc-

cluded chairs and sitting persons often occur together and

should boost the classification scores of each other. On

the contrary, unoccluded chairs and pedestrians are inde-

pendent and should not boost each other. However, these

two different cases cannot be differentiated in the category

level. Only by subcategory awareness can such underly-

ing correlation be captured effectively. Second, the subcat-

egory awareness is able to reduce the false boosting caused

by ambiguity. For example, diningtables often appear to-

gether with common chairs, which leads to mutual boost-

ing in classification. Sofas and diningtables are independent

and should not boost each other. If sofas are misclassified as

chairs, the dinningtable scores may be incorrectly boosted

and lead to false alarms on diningtables in category level

interaction. With subcategory awareness, the response of

diningtable will not be boosted as there is no boosting cor-

relation between the sofa-like chairs and diningtables.

4. Ambiguity Guided Subcategory Mining

In this section, we will introduce how to find the

subcategories by our ambiguity guided subcategory min-

ing approach as illustrated in Figure 3. Before digging

into details, we first summarize the notations used in this

work. For a classification problem, a training set of M
samples are given and represented by the matrix X =

827827827829829
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Figure 3: Ambiguity guided subcategory mining approach. First

instance affinity graph is built by combining both intra-class sim-

ilarity and inter-class ambiguity. Then dense subgraphs are de-

tected within the affinity graph by performing graph shift. Each

detected dense subgraph corresponds to a certain subcategory.

[x1, x2, . . . , xM ] ∈ R
d×M . The class label of xi is ci ∈

{1, 2, . . . , Nc}, where Nc is the number of classes. We also

denote the number of samples belonging to the cth class by

nc, and the corresponding index set of samples by πc.

4.1. Similarity Modeling

In this work, we define the appearance similarity as

the Gaussian similarity between classification features

(exp{−||xi − xj ||
2/δ2}), where δ2 is the empirical vari-

ance of x. Though it is a common similarity metric for ob-

ject classification, appearance similarity only is not enough

for our SAOC framework, as in SAOC classification and

detection are closely integrated. Subcategory mining only

based on appearance similarity may lead to poor detectors,

which in turn harms the overall performance. Hence detec-

tion and classification feature spaces ought to be taken into

count simultaneously for similarity calculation.

The HOG based sliding window methods are the dom-

inant approaches for object detection, which concatenate

all the local gradients to form the window representation.

These grid based HOG representations roughly capture ob-

ject shapes and thus are sensitive to highly cluttered back-

grounds and misalignments. Directly computing distance

in concatenated HOG feature space often leads to poor re-

sults due to image misalignments [27]. To better measure

the shape similarity between samples, we train a separate

Exemplar-SVM detector[27, 20] for each positive sample.

The misalignments can thus be partially handled by sliding

the detector. The calibrated detection scores are defined as

the pair-wise shape similarity.

The final instance similarity is defined by fusing the ap-

pearance similarity and pair-wise shape similarity. More

specifically, we denote the appearance similarity as S(A)i,j
and the pair-wise shape similarity as S(P )i,j . Both S(A)
and S(P ) are normalized to [0, 1]. The final instance simi-

larity is defined as Si,j = S(A)i,j × S(P )i,j .

4.2. Ambiguity Modeling

As discussed above, inter-class information is crucial for

object classification. Dai et al. [8] have shown that plac-

ing local classifiers near the decision boundary instead of

based on the data distribution only leads to better perfor-

mance. This is intuitive as even there are many subcat-

egories spreading separately in the feature space, if none

of subcategories are close to samples of other categories,

a single classifier may be enough to correctly classify all

these subcategories. On the contrary, if some subcategories

are near the decision boundary, separate classifiers should

be trained for these ambiguous subcategories. Otherwise

the ambiguous subcategories may decrease the classifica-

tion performance of categories near the decision boundary.

As ambiguity is critical for object classification, subcate-

gory mining should be guided by ambiguity instead of only

relying on intra-class data distribution. Before introducing

how to combine sample similarity and ambiguity into a uni-

fied framework, we need to first explicitly define the ambi-

guity measure. Here, we consider the L-nearest neighbours1

of a particular sample xi. If most of its neighbours share

the same class label as xi, the classification of xi should be

easy. Otherwise, xi will be ambiguous and likely to be clas-

sified incorrectly. We thus define the ambiguity A(xi) of a

training sample xi as:

A(xi) =

∑
j∈NL

i
,j /∈πci

Si,j
∑

j∈NL

i

Si,j
, (1)

where NL
i is the index set of the L-nearest neighbours of xi.

From the definition, a large A(xi) means that the neighbour-

ing samples are likely to be of different classes, and hence

the classification of xi is more uncertain. On the contrary, a

small A(xi) indicates that more neighbouring samples share

the same class label of xi. Note that computing the ambigu-

ity relies on not only the intra-class information but also the

inter-class formation. The ambiguity will be high for those

training samples lying close to the decision boundary, and

thus such samples should be more likely to form a separate

subcategory.

4.3. Subcategory Mining by Graph Shift

Intuitively, the subcategory mining algorithm is expected

to satisfy the following three properties. (1) It should be

compatible with graph representation. Many similarity met-

rics are defined based on pair-wise relation, such as our

pair-wise shape similarity, hence only graph based algo-

rithms can directly utilize this pair-wise information. (2)

It is able to utilize the informative inter-class ambiguities.

Clustering methods based on only intra-class data distribu-

tion may fail to detect the ambiguous subcategories on the

decision boundary and lead to subcategories imperfect for

classification. Hence the expected algorithm should be able

to adaptively cluster the data guided by ambiguity. (3) It

should be robust to outliers. Some samples, such as highly

occluded or strange images, may not belong to any subcat-

egory. Methods insisting on partitioning all the input data

1In the experiments, we simply use L = nc/10 for the cth class.
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(a) Kmeans (b) Spectral clustering (c) Graph shift 

Figure 4: The subcategory mining results on synthetic data from

kmeans, spectral clustering and graph shift. Here, triangles (△)

and dots (·) represent samples from two different categories, re-

spectively. Dots are split into subcategories, and different colors

represent different subcategories. Kmeans and spectral cluster-

ing cluster the dots relying on only intra-class information, which

leads to non-linearly separable subcategories from triangles. How-

ever, by utilizing the inter-class information, all three subcate-

gories mined by the ambiguity guided graph shift are linearly sep-

arable from triangles, which is desired for classification. For better

viewing, please see original colour pdf file.

into coherent groups without explicit outlier handling may

fail to find the true subcategory structure.

The traditional partition methods, such as k-means and

spectral clustering methods, are not expected to always

work well for subcategory mining due to their insisting on

partitioning all the input data and inability to integrate the

inter-class information. Hence we need a more effective al-

gorithm satisfying the above three properties. The graph

shift algorithm [25], which is efficient and robust for graph

mode seeking, appears to be particularly suitable for our

subcategory mining problem as it directly works on graph,

allows one to extract as many clusters as desired, and leaves

the outlier points ungrouped. More importantly, the am-

biguity can be seamlessly integrated into the graph shift

framework. The graph shift algorithm shares the similar

spirit with mean shift [6] algorithm and evolves through it-

erative expansion and shrink procedures. The main differ-

ence is that mean shift operates directly on the feature space,

while graph shift operates on the affinity graph. The simula-

tion results for comparing our ambiguity guided graph shift

(AGS) with kmeans and spectral clustering are provided in

Figure 4, from which we can see that our AGS can lead to

subcategories more suitable for boosting classification.

Formally, we define an individual graph G = (V,A)
for each category. V = {v1, . . . , vn} is the vertex set,

which represents the positive samples for the correspond-

ing category. A is a symmetric matrix with non-negative

elements. The diagonal elements of A represent the ambi-

guity of the samples while the non-diagonal element mea-

sures the similarity between samples. The modes of a graph

G are defined as local maximizers of graph density func-

tion g(y) = yTAy, y ∈ Δn, where Δn = {y ∈ Rn :
y ≥ 0 and ||y||1 = 1}. More specifically, in this paper

sample similarity and ambiguity are integrated and encoded

as the edge weights of a graph, whose nodes represent the

instances of the specific object category. Hence subcate-

gories should correspond to those strongly connected sub-

graphs. All such strongly connected subgraphs correspond

to large local maxima of g(y) over simplex, which is an

approximate measure of the average affinity score of these

subgraphs.

Since the modes are local maximizers of g(y), to find

these modes, we need to solve following standard quadratic

optimization problem (StQP) [2]:

maximize g(y) = yTAy

subject to y ∈ Δn.
(2)

Replicator dynamics, which arises in evolutionary game

theory, is the most popular method to find the local maxima

of StQP (2). Given an initialization y(0), corresponding lo-

cal solution y∗ of StQP (2) can be efficiently computed by

the discrete-time version of first-order replicator equation,

which has the following form:

yi(t+ 1) = yi(t)
(Ay(t))i

y(t)TAy(t)
, i = 1, . . . , n. (3)

It can be observed that the simplex Δn is invariant under

these dynamics, which means that every trajectory starting

in Δn will remain in Δn . Moreover, it has been proven

in [36] that, when A is symmetric and with non-negative

entries, the objective function g(y) = yTAy strictly in-

creases along any non-constant trajectory of Eqn. (3), and

its asymptotically stable points are in one-to-one correspon-

dence with strict local solutions of StQP (2). One of the

main drawbacks of replicator dynamics is that it can only

drop vertices and be easily trapped in any local maximum.

The graph shift algorithm provides a complementary neigh-

bourhood expansion procedure to expand the supporting

vertices. The replicator dynamics and the neighbourhood

expansion procedure thus have complementary properties,

the combination of which leads to better performance.

Like mean shift algorithm, the graph shift algorithm

starts from an individual sample and evolves towards the

mode of G. The samples reaching the same mode are

grouped as a cluster. Each large cluster corresponds to one

subcategory, while small clusters usually result from noises

and/or outliers.

5. Experiments

5.1. Datasets and Metrics

We validate the proposed framework on the challeng-

ing PASCAL Visual Object Challenge (VOC) datasets [13],

which provide a common evaluation platform for object

classification and detection. VOC 2007 and 2010 datasets,

which contain 9,963 and 21,738 images respectively, are

used for experiments. The two datasets are divided into

“train”, “val” and “test” subsets. We conduct our exper-

iments on the “trainval” and “test” splits. The employed

evaluation metric is Average Precision (AP) and mean of

829829829831831
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Figure 5: Visualization of our ambiguity guided subcategory mining results for bus and chair category on VOC 2007. Each row on the

left shows one mined subcategory. Images on the right are detected as outliers.

Average Precision (mAP). We follow the standard PASCAL

VOC comp1 test protocol for classification and PASCAL

VOC comp3 test protocol for detection.

5.2. Ambiguity Guided Subcategory Mining Results

It has been shown that models trained by “clean” subsets

of images usually perform better than trained with all im-

ages [39]. The importance of “clean” training data suggests

that it is critical to cluster training data into “clean” sub-

sets and remove outliers simultaneously. Figure 5 displays

our subcategory mining results for bus and chair categories.

Each row on the left side shows one discovered subcategory

while right side images are detected as outliers and left un-

grouped.

For the bus category, the first 3 subcategories correspond

to 3 different views of buses. This is mainly due to the dis-

criminative pair-wise shape similarity for different views of

buses, as the Exemplar-SVM works well for the categories

with common rigid shapes. We note the shape and appear-

ance of the last subcategory show much larger diversity than

other subcategories. Though these images are not very sim-

ilar to each other, the strong ambiguity with the person cat-

egory still guides them to form a separate subcategory.

For chairs, there are no common rigid shapes as buses

and the shapes of various chairs are very diverse, which

leads to much noisier pair-wise shape similarity. Hence

the subcategory mining results should be the combination

effects of both appearance similarity and shape similarity,

which can be observed from the discovered subcategories.

Some subcategories may not have common shapes, but have

similar local patterns. For example, chairs of the 2nd sub-

category all have the stripe-like patterns. We note again the

last detected subcategory looks like sofas. Besides being

different from other chair subcategories, the ambiguity with

sofa is also one of the main reasons that these images form

a separate subcategory.

5.3. Subcategory Mining Method Comparison

We extensively evaluate the effectiveness of different

subcategory mining approaches on the VOC 2007 dataset,

as the ground-truth of its testing set is released. To al-

low direct comparison with other popular works [17, 4, 5],

we only implement a simplified SOAC framework. More

specifically, we choose the state-of-the-art FVGHM [5] as

the classification pipeline (dense SIFT feature [26] with FK

coding [17] plus GHM pooling [23, 5] ) and the customized

DPM [15] as object detector. The only difference between

customized DPM and the standard DPM is the model initial-

ization. DPM-spectral, DPM-GS and DPM-AGS replace

the aspect ratio based initialization with spectral clustering,

830830830832832



Table 1: Classification results (AP in %) comparison for different subcategory mining approaches on VOC 2007. For each

category, the winner is shown in bold font.
plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mAP

FV [17] 75.7 64.8 52.8 70.6 30.0 64.1 77.5 55.5 55.6 41.8 56.3 41.7 76.3 64.4 82.7 28.3 39.7 56.6 79.7 51.5 58.3

FVGHM [5] 76.7 74.7 53.8 72.1 40.4 71.7 83.6 66.5 52.5 57.5 62.8 51.1 81.4 71.5 86.5 36.4 55.3 60.6 80.6 57.8 64.7

FVGHM-CTX 78.5 80.0 54.9 71.9 55.4 75.1 87.1 67.2 58.4 60.3 60.0 47.3 83.0 76.3 90.5 44.9 59.6 63.2 83.5 68.9 68.3

FVGHM-CTX-spectral 81.2 82.1 56.7 73.5 56.2 76.5 88.5 67.8 58.0 60.1 61.7 48.1 85.1 77.8 90.7 45.5 60.6 64.4 84.3 69.2 69.4

FVGHM-CTX-GS 81.8 82.3 58.5 74.1 56.5 77.2 88.7 68.4 59.4 61.5 63.0 49.8 84.9 80.0 91.3 47.7 61.3 65.9 85.7 70.8 70.4

FVGHM-CTX-AGS 82.2 83.0 58.4 76.1 56.4 77.5 88.8 69.1 62.2 61.8 64.2 51.3 85.4 80.2 91.1 48.1 61.7 67.7 86.3 70.9 71.1

Table 2: Detection results (AP in %) comparison for different subcategory mining approaches on VOC 2007.
plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mAP

E-SVM [27] 20.8 48.0 7.7 14.3 13.1 39.7 41.1 5.2 11.6 18.6 11.1 3.1 44.7 39.4 16.9 11.2 22.6 17.0 36.9 30.0 22.7

MC [18] 33.4 37.0 15.0 15.0 22.6 43.1 49.3 32.8 11.5 35.8 17.8 16.3 43.6 38.2 29.8 11.6 33.3 23.5 30.2 39.6 29.0

DPM [15] 28.9 59.5 10.0 15.2 25.5 49.6 57.9 19.3 22.4 25.2 23.3 11.1 56.8 48.7 41.9 12.2 17.8 33.6 45.1 41.6 32.3

DPM-spectral 32.9 60.3 9.6 15.9 29.2 52.6 58.1 21.6 21.1 24.6 26.1 10.8 58.2 48.1 37.6 11.9 21.5 35.3 48.6 43.1 33.4

DPM-GS 34.3 60.7 11.4 17.5 29.9 53.0 58.9 23.7 22.9 25.8 30.3 12.6 60.8 49.2 42.6 13.3 22.9 37.0 50.2 45.4 35.1

DPM-AGS 34.7 61.4 11.5 18.6 30.0 53.8 58.8 24.7 24.7 26.8 31.4 13.8 61.4 49.2 42.2 12.9 23.9 38.5 50.8 45.5 35.7

graph shift, ambiguity guided graph shift mining results, re-

spectively. As detection assisted classification has become

a standard approach for classification on PASCAL VOC.

We augment FVGHM with detection context information

and utilize the resulting FVGHM-CTX as the starting point

to evaluate different subcategory mining methods. Dense

SIFT is extracted using multiple scales setting (spatial bins

are set as 4, 6, 8, 10) with step 4. The size of Gaussian Mix-

ture Model in FK is set to 256. For GHM [5], we construct

the hierarchical structure with three-level clusters, each of

which includes 1, 2, 4 nodes respectively. The subcategory

number is determined by the expansion size of the graph

shift algorithm. Here the expansion size is decided by cross-

validation, and the subcategory number is generally from

2 to 5. Spectral clustering, the representative graph based

partition method, is chosen for comparison. We extensively

evaluate spectral clustering with the cluster number from 2

to 5 and report the best results.

The detailed classification results are shown in Table 1.

It can be concluded from the table that: 1) subcategory

awareness does improve the performance of current detec-

tion assisted classification framework, and even with the

naive spectral clustering, we can still boost the state-of-

the-art classification performance; 2) our ambiguity guided

graph shift approach is effective for subcategory mining and

the resulting subcategories can obviously improve the clas-

sification performance; and 3) ambiguity is informative for

subcategories mining and with the assistance of sample am-

biguity, the graph shift algorithm can obtain better results

for 17 out of 20 categories.

As object detection is an inseparable component of our

SAOC framework, we also show the intermediate detec-

tion results in Table 2. Besides standard DPM, we add

two more baselines, which also use the multiple compo-

nents/models for object detection [18, 27]. When com-

pared with other leading techniques in subcategory based

detection, our method obtains the best results for most cat-

egories, achieving superior performance on categories with

rigid shape or high ambiguity. We note the MC [18], which

requires manually labelling the pose of each image, per-

forms quite well on articulated categories. The inferior per-

formance of our ambiguity guided mining framework on ar-

ticulated categories is mainly due to the limited discrimina-

tive ability of current similarity metric.

5.4. Comparison with the State-of-the-arts

In this section we compare the performance of our SAOC

framework with the reported state-of-the-art results on the

VOC 2010 dataset. To obtain the state-of-the-art perfor-

mance, we conduct the experiments with more complicated

setting. For classification, we extract dense SIFT, HOG,

color moment and LBP features in a multi-scale setting.

All these features are encoded with VQ, LLC and FK [4]

and then pooled by GHM. The pooling results are con-

catenated to form the final image representation. For ob-

ject detection, we train one shape-based detector and one

appearance-based object detector for each object category.

The augmented DPM [38, 31] employing both the HOG

and LBP features is adopted as the shape-based model. For

appearance-based approach [34, 33], we sample 4000 sub-

windows of different sizes and scales, and perform the BoW

based object detector on these sub-windows. The number

of subcategories is also determined by cross-validation as

mentioned above.

The comparison results are presented in Table 3, from

which it can be observed that our proposed method outper-

forms the competing methods on all 20 object categories.

We note that all the leading classification methods com-

bine object classification and object detection to achieve

higher accuracy. However, most of the previous methods

simply fuse the outputs of a monolithic classification model

and a monolithic detection at category level. This limita-

tion prevents them from grasping the informative subcate-

gory structure and the interaction among the subcategories.

By effectively employing the subcategory structure, we can

further improve the state-of-the-art performance by 2.1%.

Note that our methods can significantly improve the perfor-
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Table 3: Classification results from our complete framework with comparison to other leading methods on VOC 2010.
plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mAP

NLPR [12] 90.3 77.0 65.3 75.0 53.7 85.9 80.4 74.6 62.9 66.2 54.1 66.8 76.1 81.7 89.9 41.6 66.3 57.0 85.0 74.3 71.2

NEC [12] 93.3 72.9 69.9 77.2 47.9 85.6 79.7 79.4 61.7 56.6 61.1 71.1 76.7 79.3 86.8 38.1 63.9 55.8 87.5 72.9 70.9

ContextSVM [31] 93.1 78.9 73.2 77.1 54.3 85.3 80.7 78.9 64.5 68.4 64.1 70.3 81.3 83.9 91.5 48.9 72.6 58.2 87.8 76.6 74.5

GHM ObjHierarchy [5] 94.3 81.3 77.2 80.3 56.3 87.3 83.8 82.2 65.8 73.7 67.0 75.9 82.3 86.5 92.0 51.7 75.1 63.3 89.9 77.3 77.2

Our Method 95.9 83.2 79.0 84.0 57.5 91.4 84.3 83.4 70.2 75.1 68.9 78.2 85.4 88.4 92.8 52.4 78.5 67.8 93.0 77.4 79.3

mance of rigid categories (bus, train) and ambiguous cate-

gories (sofa, chair). When measured with object detection,

we can achieve the performance of 37.1% compared to the

state-of-the-art results of 36.8 % [12], which is obtained by

much more complicated detection models than ours. As our

framework focuses on classification, detailed detection re-

sults are omitted due to the space limitation.

6. Conclusions and Future Work

In this paper, we proposed an ambiguity guided subcat-

egory mining and subcategory-aware object classification

framework for object classification. We modeled the sub-

category mining as a dense subgraph seeking problem. This

general scheme allows us to gracefully embed intra-class

similarity and inter-class ambiguity into a unified frame-

work. The subcategories, which correspond to the dense

subgraphs, can be effectively detected by the graph shift

algorithm. Ambiguity guided subcategory mining results

are then seamlessly integrated into the subcategory-aware

detection assisted object classification framework. Exten-

sive experimental results on both PASCAL VOC 2007 and

VOC2010 clearly demonstrated the proposed framework

achieved the state-of-the-art performance.

In the future, we plan to further explore whether our

ambiguity guided subcategory mining can be extended for

object segmentation and also develop a more efficient and

scalable version of current framework to handle bigger data.
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